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Abstract. Underwater object detection is essential for ensuring autonomous naval
operations. However, this task is challenging due to the complexities of underwa-
ter environments that often degrade image quality, thereby hampering the perfor-
mance of detection and classification systems. On the other hand, the absence of
a readily available dataset complicates the development and evaluation of under-
water object detection approaches, particularly for deep learning approaches. To
address this bottleneck, we have created a new dataset, called National Subsea
Centre Underwater Images (NSCUI). It is comprised of 243 images, divided into
three subsets that are captured in bright, low-light, and dark environments, respec-
tively. To validate the utility of this dataset, we implemented three popular deep
learning models in our experiments. We believe that the annotated NSCUI will
significantly advance the development of underwater object detection through the
application of deep learning techniques.
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1 Introduction

Obstacles detection and collision avoidance are the key challenges for smooth and 
autonomous operations of naval missions, where sonar and optics sensors are widely used 
[1]. Due to the complexity of the underwater environments, the image quality of both 
sonar and optics system can be severely degraded, resulting in inconsistent performance 
of target detection and classification.

Sonar has been popularly applied in many underwater inspection tasks [2], featuring 
long-range detection. However, its working condition is not only affected by internal 
factors (e.g. latency, narrow bandwidth and self-noise), but also external factors related 
to ocean environment (e.g. spreading loss, multipath effect, reverberation, ocean noise, 
target reflection characteristics and radiation noise [3]). Due to poor performance in
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shallow depth and noisy data [4], it makes it difficult to detect small but important
objects such as nets. Another downside is the heavy cost, which has constrained its wide
deployment. In addition, military sonar systems may severely affect the lives of marine
mammals, leading to deafness and death of dolphins, whales and sea turtles [5].

Optic systems, an economically viable alternative, are celebrated for their substantial
bandwidth, contributing rich structure, shape, and texture features, which are particularly
beneficial for shallow underwater inspection [6]. Despite their advantages, light trans-
mission in water encounters severe attenuation attributed to both internal factors, such
as absorption and scattering, and external factors like turbidity and suspended particles,
which collectively result in a relatively low detection accuracy.

Deep learning (DL) based object detection methods offer a promising solution to
address these limitations.DLmodels have demonstrated success in various imagemodal-
ities, including video surveillance [7], aerial image [8], hyperspectral images [9], etc.
Recently, the application of DL-based methods has extended to underwater object detec-
tion. Examples of applications include the usage of R-CNN [10] and its extended ver-
sions [11] for detecting and recognizing aquatic organisms, for which datasets such as
UTDAC2020 and DUO have been used for modelling. Similarly, Mask R-CNN has been
utilized for deep-sea litter detection [12], with the Trashcan dataset used for modelling
purposes. Additionally, the YOLO series models have been employed for marine ani-
mal detection [13, 14], where the datasets UODD [13] and Blackish [14] have been
conducted for modelling. However, due to lack of sufficient data and labels, the feasibil-
ity of using deep learning models for underwater obstacle recognition remains largely
underexplored and presents significant opportunities for further research.

The aim of this study is to construct a new underwater image dataset and investigate
the potential of deep learning techniques in underwater obstacle recognition. By inte-
grating image enhancement techniques with deep learning-based object detection, we
aspire to advance obstacle recognition under varying lighting conditions. This enhance-
ment is expected to contribute significantly to the autonomous operation of underwater
vehicles, offering improved navigation and operational efficiency of naval missions.

2 Dataset Creation

In this experiment, we captured images for simulated 5 categories of underwater targets
(i.e., container, props, keel, wreck and net) in different light conditions. The water tank
we used has the size of 60 cm × 60 cm × 150 cm and maximum volume of 500 L. The
imaging device we used is a scotopic camera, Sony 4K video camera with full 35 mm
frame Exmor CMOS sensor. It operates in the maximum 4240× 2842 (12M) pixels for
still image and 3810 × 2160 pixels for video recording with an ISO sensitivity ranges
of 50 – 409600, which allows it to capture the high resolution image data in both bright
and low light environments. Figure 1. (a) shows the position of imaging system, Fig. 1.
(b–c) shows the experimental setting for data acquisition in bright environment, and
low light/dark environment. Notably, in the low light environment, we attached black
vinyl sheets on the walls of the water tank and used a black sheet to cover half of the
top to reduce the incoming light. In the dark environment, the top of water tank was
totally covered by the black sheet, resulting a totally black scene. However, the existing



object detection models failed to perform in such kind of scene. Instead, a laser projector
consisting of a laser diode with 520 nm and 50mVoutput power, and a diffractive optical
element with 51 × 51 dot matrix, was employed to provide consistent light source and
point-cloud data for 3D measurement.

Examples of captured images in different light condition are shown in Fig. 2. Due to
the uncertainty of water dynamics, it is impossible to capture the same object with the
same position in different light conditions. Thus, we created three subsets separately.

(a) (b) (c)

Fig. 1. (a) Imaging system, (b) experimental setting for bright environment, and (c) dark/low light
environment.

(a) (b) (c) (d)

Fig. 2. Image captured in (a) bright environment, (b) low light environment, (c) dark environment
and (d)dark environment with laser light source.

where the images were captured in bright, low light and dark conditions, and the
number of images in each subset is 95, 74, and 74, respectively.

After that, we made the annotation using an open-source annotation tool LabelMe.
The ground-truth images annotation format is then converted to MS-COCO format.
Figure 3 shows the image data containing single category and its corresponding annota-
tion. To further simulate the complexity in the realworld, image data formixed categories
of targets that were randomly distributed in the water were also captured (Fig. 4), and
the ground-truth data were also carefully annotated.

3 Objective Object Detection Assessment

Deep learning-based object models are designed to replicate the mechanisms involved
in visual perception, aiming to improve object recognition performance and achieve
more brain-like processing capabilities. In our study, we evaluated the object detection
performance using three popular deep learning methods: Mask R-CNN, Faster R-CNN,
and YOLO-X. Since underwater environments often have complex lighting conditions
and lower image quality, these factors can negatively impact object detection accuracy.



Raw 

Image

GT

(a) (b) (c) (d) (e)

Fig. 3. Single category of data acquisition and annotation. (a) container, (b) props, (c) keel, (d)
wreck, and (e) net.
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Fig. 4. Mixed categories of data acquisition and annotated ground-truth(GT).

Drawing inspiration from human visual perception, we recognized that objects with
higher contrast are generally more detectable. This motivated us to further enhance the
performance of these models by integrating image enhancement techniques. Specifi-
cally, we fed the enhanced images into the object detection models to evaluate their
effectiveness in improving object detection accuracy. According to our previous work
[15], three image enhancement methods, including two best performed traditional meth-
ods (CLAHE [16], Fusion-based [17]) and one deep learning method (WaterNet [18]),
are adopted in this study. For objective evaluation, we have calculated mAP50, mAP75
and mAP to analyse the robustness of models under different Intersection over Union
(IoU) thresholds, where IoU threshold is set as 0.5, 0.75 and 0.5:0.05:0.95 for mAP50,
mAP75 and mAP, respectively.

4 Results and Analysis

To assess the object detection accuracy of different models under different light condi-
tion, three experiments were carried out in this paper. In the first experiment, we utilized
a dataset of images captured under bright conditions. This dataset was divided into train-
ing and testing sets, consisting of 68 and 27 images, respectively. For the second and
third experiments, we focused on different lighting conditions. In the second experi-
ment, we used a dataset of images captured under a specific low-light condition. This
dataset was divided into training and testing sets, with 49 images allocated for training
and 25 images for testing. Similarly, in the third experiment, we considered a specific



dark condition. The dataset of images captured under this condition was also divided
into training and testing sets, with 49 images for training and 25 images for testing.

4.1 Object Detection in Bright Environment

Several key findings can be drawn from the results presented in Table 1. YOLOX
consistently outperforms Faster-RCNN and Mask-RCNN in terms of mAP50 score,
regardless of whether image enhancement is applied. The combination of YOLOX with
WaterNet achieves the highest mAP50 score of 0.961. Additionally, Fig. 5 reveals that
YOLOX exhibits superior object recognition capabilities, producing tidier and more
precise bounding boxes compared to Faster-RCNN and Mask-RCNN.

Mask-RCNN Fast-RCNN YOLOX

(a) (b) (c)

Fig. 5. Comparison of three deep learningmethods for underwater object detection on the original
images

Furthermore, the impact of image enhancement on object detection performance
depends on the integration strategy and the specific selection of enhancement and detec-
tion methods. Specifically, CLAHE enhances the detection accuracy of Faster-RCNN,



Table 1. Evaluation of deep learning methods with or without image enhancement in terms of
mAP50, mAP75 and mAP in bright enviroment.

mAP50/mAP75/mAP Faster-RCNN Mask-RCNN YOLOX

Original images 0.899 0.780 0.688 0.901 0.778 0.688 0.938 0.915 0.844

With CLAHE 0.926 0.782 0.695 0.866 0.803 0.710 0.945 0.846 0.809

With Fusion 0.903 0.798 0.623 0.881 0.789 0.679 0.955 0.889 0.832

With WaterNet 0.883 0.763 0.652 0.884 0.791 0.692 0.961 0.921 0.807

Table 2. Evaluation of deep learning methods with or without image enhancement in terms of
mAP50, mAP75 and mAP in low light environment.

mAP50/mAP75/mAP Faster-RCNN Mask-RCNN YOLOX

Original images 0.882 0.591 0.56 0.786 0.511 0.519 0.936 0.757 0.730

With CLAHE 0.862 0.660 0.555 0.864 0.744 0.597 0.398 0.237 0.245

With Fusion 0.897 0.491 0.560 0.886 0.725 0.622 0.930 0.795 0.729

With WaterNet 0.860 0.453 0.504 0.872 0.583 0.576 0.948 0.774 0.724

Table 3. Object detection in the dark environment with laser light source

Methods mAP50 mAP75 mAP

Faster-RCNN 0.769 0.415 0.448

Mask-RCNN 0.737 0.458 0.474

YOLOX 0.563 0.488 0.468

while WaterNet benefits the performance of YOLOX. However, it should be noted that
the selected image enhancement methods do not yield improvements in Mask-RCNN.

When evaluating the detection accuracy withmore restrictive criteria such asmAP75
and mAP, YOLOX consistently demonstrates superior performance. Under the mAP75
criteria, the integration of Fusion, CLAHE, and WaterNet enhances the precision of
Faster-RCNN, Mask-RCNN, and YOLOX, respectively. When considering the mAP
criteria, CLAHE proves to be effective when combined with Faster-RCNN and Mask-
RCNN. However, none of the image enhancement methods yield improvements in the
detection accuracy of YOLOX.

4.2 Object Detection in Low-Light Environment

In general, object detection performance tends to be inferior in low light conditions
compared to bright conditions. The reduced contrast between objects of interest and the
background in low light conditions poses challenges for object detection methods to



accurately recognize objects. However, YOLOX consistently outperforms other object
detection methods when applied to both original images and images enhanced using
Fusion and WaterNet methods (Table 2).

Mask-RCNN Fast-RCNN YOLOX

(a) (b) (c)

Fig. 6. Visualised object detection results generated by (a) Mask-RCNN, (b) Fast-RCNN, and (c)
YOLOX.

An example of applying three DL-based object detectionmethods on original images
is given in Fig. 6. As seen Faster-RCNN and Mask-RCNN either mis-detect the objects
or make redundant detections, while YOLOX can precisely recognize the objects. It
is surprised that CLAHE dramatically reduces the detection accuracy of YOLOX, and
the possible reason is that CLAHE is based on histogram equalization which brings
the distortion to the low light image and mislead the object detection methods to make
decision. Also, similar to the experimental results in Sect. 4.1, image enhancement can
more or less improve the object detection accuracy in the low light condition, though it
depends on the selection of image enhancement methods and the combination strategies
of image enhancement and object detection methods.



4.3 Object Detection in Dark Environment

Additionally, we extended this experiment by applying the object detection methods 
to the image acquired in a totally dark environment. The motivation of this extended 
experiment is to further investigate how the existing object detection methods work in 
the extremely harsh environment. As seen in Figs. 7 & 8, the three object detection 
methods are unable to identify the object in the dark environment. However, with the 
support of laser light source, all three methods are able to make the better detection 
despite the fact that the detection accuracy (as shown in Table 3) is worse than that of 
prior experiments. This main reason is that there are insufficient color attributes and 
only shape and potential texture attributes when capturing the image under a laser light 
source. Consequently, the detection accuracy will inevitably decline.

Images

In dark In low light Ground-truth

Method Mask-RCNN Fast-RCNN YOLOX

Results 

in dark

Results 

in laser 

light

Fig. 7. Object detection in dark condition with laser as light source - Example 1.

To overcome this issue, depth information should be obtained from laser-based trian-
gulation systemand then integratedwith image data for improved detection performance.
Due to the page limitation, we didn’t include this work in this paper. However, it will be
our future focus.
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Fig. 8. Object detection in dark condition with laser as light source - Example 2.

5 Conclusion

In this project, a scotopic imaging system was built up to generate unique underwa-
ter object detection dataset consisting of 243 images with five obstacle-alike objects.
Comprehensive assessment on this dataset has been carried out by three step-by-step
experiments. From the experimental results, some interesting findings can be concluded
as follows.

• Current experimental setting can support data acquisition in different experimental
settings (bright, low-light and dark);

• Image enhancement can somehow enhance visibility of underwater images and pre-
diction accuracy of the objects in various light conditions, but still has big room to
improve;

• Existing deep-learning models can produce good object detection results in the bright
and low light underwater environment;

• There is a big challenge for object detection models to make right predication in the
dark environment;

• Laser can be useful for object detection as an additional light source in the dark
environment and potentially provide supplementary information of depth.
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