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Abstract. Retrofitting and thermographic survey (TS) companies in Scotland col-
laborate with social housing providers to tackle fuel poverty. They employ ground-
level infrared (IR) camera-based-TSs (GIRTSs) for collecting thermal images to
identify the heat loss sources resulting from poor insulation. However, this iden-
tification process is labor-intensive and time-consuming, necessitating extensive
data processing. To automate this, an AI-driven approach is necessary. Therefore,
this study proposes a deep learning (DL)-based segmentation framework using the
Mask Region Proposal Convolutional Neural Network (Mask RCNN) to validate
its applicability to these thermal images. The objective of the framework is to auto-
matically identify, and crop heat loss sources caused byweak insulation,while also
eliminating obstructive objects present in those images. By doing so, it minimizes
labor-intensive tasks and provides an automated, consistent, and reliable solution.
To validate the proposed framework, approximately 2500 thermal images were
collected in collaboration with industrial TS partner. Then, 1800 representative
images were carefully selected with the assistance of experts and annotated to
highlight the target objects (TO) to form the final dataset. Subsequently, a trans-
fer learning strategy was employed to train the dataset, progressively augmenting
the training data volume and fine-tuning the pre-trained baseline Mask RCNN.
As a result, the final fine-tuned model achieved a mean average precision (mAP)
score of 77.2% for segmenting the TO, demonstrating the significant potential of
proposed framework in accurately quantifying energy loss in Scottish homes.

Keywords: Infrared thermographic testing · instance segmentation · Mask
RCNN · thermal images · transfer learning

1 Introduction

Fuel poverty is predicted to affect about 39% of Scottish households after a significant 
increase in energy prices was announced in April 2023. Therefore, the Scottish govern-
ment has made it a top priority to reduce carbon emissions from homes and businesses to
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mitigate the fuel poverty. The Scottish Fuel Poverty Act (SFPA) aims to increase energy
efficiency and reduce carbon footprint in all infrastructures by 2040 [1]. Additionally, it
is imperative to prioritize the energy efficiency of buildings, as it aids in securing fund-
ing for emerging technologies like heat pumps, insulation, and retrofitting. Specialized
companies that focus on retrofitting and conducting thermographic surveys (TSs) col-
laborate with social housing providers to ensure compliance with the Energy Efficiency
Standard for Social Housing (EESSH) policy [2]. They detect buildings that require
retrofitting by using thermal images gathered by ground-level infrared (IR) camera-
based-TSs (GIRTSs) [3]. However, the current challenge is the need to manually analyze
those images after collection to identify sources of heat loss and eliminate obstructive
objects. This process is labor-intensive, time-consuming, and relies heavily on domain
experts. As a result, this hinders scalability and limits the utilization of cloud-based sta-
tistical thermal profile analyzer toolkits. Therefore, this research aims to develop a deep
learning (DL) based-automated solutions to identify the target objects (TO) related to
the actual heat loss in GIRTS-thermal images, streamlining data analysis and reducing
the mentioned labor-intensive tasks.

Researchers have addressed similar problem types by utilizing vehicle and drone-
mounted IR cameras to capture thermal images of building facades and applying various
machine learning (ML) algorithms to detect thermal bridges. Macher et al. [4] used a
vehicle-mounted camera to create a thermographic 3D point cloud and successfully
detect thermal bridges under balconies and between levels. However, this method has
limitations such as difficulty in extracting ground-level and basement windows and
the inability to detect windows hidden by foliage or other objects. Using drones for
thermographic assessments has becomemore popular as they allow for the entire outside
of a building to be captured and there is less interference caused by obstructions. Rakha
et al. [5] proposed a thermal drone-based system to locate thermal anomalies in building
envelopes and claimed 75% precision, while Mirzabeigi et al. [6] developed a computer
vision algorithm and drone flight path to detect thermal anomalies but lack quantitative
data on the effectiveness. Kim et al. [7]used neural networks to identify thermal bridges
in terrestrial thermographic images with an average precision of 89% and recall of 87%.
This study examines the difficulties encountered when using thresholding and histogram
methods (as discussed above) to identify TO in non-stationary thermography research
in panorama settings. However, these studies face two main challenges. Firstly, the use
of aerial thermographic survey (ATS) and vehicle-based moving thermographic survey
(VMTS) makes it difficult to capture suitable vantage points for identifying thermal
bridges and sources of heat loss. These approaches cover multiple infrastructures and
encounter varying conditions, such as weather, lighting, and pose fluctuations, making
it challenging to accurately identify the sources of heat loss amid obstructive objects.
Secondly, to address the complexity resulting from the first challenge, existing research
has employed numerous manual thresholding techniques to remove obstructive objects
from ATS/VMTS-thermal images and identify sources of heat loss. However, due to
the varying conditions present in these thermal images, the accuracy of thresholding is
not optimal. Consequently, ML solutions developed to identify the sources of heat loss
struggle to perform effectively and robustly.



To tackle the challenges associatedwith vantage points inATS/VMTS-based-thermal
image analysis, we conducted the GIRTS in partnership with an industrial TS partner. As
a result, we obtained a dataset of 2500 thermal images, fromwhich we carefully selected
1800 imageswith the help of domain experts and annotated the target objects (TO) to cre-
ate a customized dataset called GIRTSD. Then, to automate the identification, detection,
and removal of potential sources of heat loss as well as obstructive objects, we employed
the Mask Region Proposal Convolutional Neural Network (Mask RCNN [8]), a deep
learning (DL)-based segmentation algorithm, eliminating the need for manual thresh-
olding and enhancing accuracy. However, since the GIRTSD might not be sufficient for
training due to variations in object shapes, forms, and weather conditions, we employed
transfer learning strategies. Specifically, we fine-tuned a pre-trainedMask RCNNmodel
from the Microsoft Common Object in Context (MSCOCO) dataset [9], which includes
80 object categories. After preparing the fine-tuned model using a limited set of sam-
ples from our GIRTSD, we progressively expanded the training data, integrated diverse
image augmentation techniques, and employed transfer learning strategies to improve
the model’s performance [10, 11]. Thus, after conducting extensive ablation studies,
we selected the optimal fine-tuned model, which achieved an impressive mean average
precision (mAP) of 77.2% for segmenting the TO. The main contributions of this study
are highlighted below.

1. We introduced the ground-level infrared camera-based thermographic survey
(GIRTS) for collecting thermal images, resulting in a custom dataset named
GIRTSD. This dataset comprises 1800 annotated thermal images representing 7 dis-
tinct target objects (TO), including possible sources of heat loss and obstructive
objects. Unlike aerial/vehicle-basedmoving thermographic survey,GIRTS accurately
captures various TO regardless of object shapes, forms, and weather conditions.

2. To overcome the limitations of existing research in thermal image-based heat loss
source detection, specifically manual thresholding, we propose a Mask RCNN-based
framework. This framework detects and crops potential heat loss sources while elimi-
nating obstructive objects, resulting in reduced manual labor and improved efficiency
in identifying energy losses in buildings.

The rest of the paper is organized as follows: Sect. 2 refers to the experimental set
up and methodology, Sect. 3 discusses the experimental finding, and finally, Sect. 4
concludes the paper.

2 Experimental Setup and Framework Strategy

Figure 1 depicts the complete framework for the validation of our case study. The process
begins with data collection by GIRTSs, followed by dataset creation with the help of
our industrial TS partner. The GIRTSD creation is the initial step, followed by offline
training-testing to refine the proposed Mask RCNN based segmentation framework.
Once satisfactory performance is achieved, the optimal model is selected for online
evaluation.



Fig. 1. Proposed segmentation framework for heat loss identification in thermal images.

Table 1. Details of our custom thermal image dataset, GIRTSD

Total 1800 thermal images, with 7 target objects (TO)

Off-line phase On-line phase

Train Test Evaluation set

TO Number of instances/TO

Heat loss sources Window 807 89 99

Door 278 31 34

Obstructive objects Fence 61 7 8

Tree 85 9 10

Bin 116 13 14

Road 111 12 13

Other 851 94 105

2.1 Data Collection and Dataset Creation

TSs are non-invasivemethods used to identify insulation issues and heat loss in buildings
[12]. These surveys utilize thermal images to detect air leakage, moisture infiltration,
and structural defects, improving energy efficiency and reducing environmental impact.
Trained professionalswith expertise in both technology and building science are required
for accurate surveys. In our study, we collaborated with an industrial TS partner in
Scotland and collected thermal images using GIRTSs and FLIR E60bx cameras [13].
The high-resolution infrared detectors and multi-spectral dynamic imaging feature of
these cameras provide detailed thermal images with a temperature range of −20 ◦C
to +350 °C. FLIR Tools software is used to process, and analyse these surveys, and



export those as the thermal images. Then, with the help of our TS partner, we selected
1800 diverse images ranging from 320 × 256 to 1920 × 1536 pixels. The subsequent
step involved annotating those images to highlight heat loss sources and obstructive
objects. The annotation process is time-consuming but crucial for instance segmentation.
We used LabelMe as the annotation tool, following the COCO dataset format, and
obtained segmented ground truth masks in JSON format [9]. Each image was resized
to 512 × 512 for training, maintaining a unified aspect ratio. Further details about our
dataset – GIRTSD can be found in Table 1.

2.2 Model Training Strategy, Evaluation, and Optimization

To identify the best segmentation frameworkbasedon theCOCOevaluationmetric (mAP
[9]), we conducted a two-phase process. Firstly, we performed off-line phase training
to determine the top-performing framework. Then, we evaluated its performance using
the online phase-evaluation data. The reported performance indicators in Table 2 are
calculated during the off-line phase training and test data.

Given the limited number of samples, constructing a generalized DL model posed
challenges. As a solution, we adopted theMaskRCNNmodel, denoted asMb, which had
been pretrained on the 80-class MS-COCO dataset, as our framework’s baseline. While
preserving the initial layers that capture low-level features, we retrained the remaining
components responsible for high-level features, effectively producing amodified version
of Mb. To customize Mb, we leveraged TensorFlow, Keras, OpenCV, and Python 3,
utilizing the open-source MMDetection toolbox [14].

Table 2. Ablation study during off-line phase.

Models Backbone - base
model

Data Aug Training data vol mAP50–95 Train mAP50–95

Test

M1/M2 R50-Mb No/Yes 20% 89.2/91.1 59.2/60.1

M3/M4 R101-Mb No/Yes 20% 92.2/94.1 60.9/61.4

M5/M6 R101-M4 No/Yes 40% 94.5/95.1 64.3/65.9

M7/M8 R101-M4 No/Yes 60% 95.7/96.3 67.9/69.2

M9/M10 R101-M4 No/Yes 80% 96.8/97.1 70.7/72.9

M11/M12 R101-M4 No/Yes 100% 97.5/98.2 75.8/78.7

For the classification tasks within the segmentation pipeline, we employed ResNet-
50 (R50) and ResNet-101(R101) as backbone models, using stochastic gradient descent
(SGD) [15] and Adam optimizers [16]. This resulted in the generation of four models
(M1 - M4) to explore the retraining of Mb on our custom dataset while considering
the inclusion or exclusion of image augmentation techniques. The objective was to
determine the optimized framework [17]. During this phase, we only utilized 20% of
the training data from the offline phase. Once the best-performing model was identified,
it was subjected to additional ablation studies and fine-tuning.



In our designed ablation experiments, we aimed to demonstrate the impact of increas-
ing training data on the performance of our model [18]. We initially used only 20% of
the data from Table 1 for training, gradually increasing the training data volume by 20%
in subsequent experiments. By observing the performance of our model on the off-line
phase training and test data, we assessed whether increased data volume resulted in
improved model performance.

We evaluated different models (M5- M12) by considering both with and without
image augmentation techniques, using mAP. The mask head training region of interest
(RoI) was set to 200, while the maximum number of ground truth instances per image
was raised from 100 to 512. Furthermore, the incremental training RoI parameter was
set to 512. Detailed information regarding our various ablation studies can be found in
Table 2.

3 Result Analysis and Discussion

Table 2 presents the mAP50–95 results for both off-line phase training and testing. The
mAP50–95 is calculated by averaging accuracy over the intersection over union (IoU)
range from 0.5 to 0.95, with a step size of 0.05. Among the models M1-M4, it was
observed that M4, with the R101-Mb combination as the backbone-base model along
with data augmentation, performed the best. Subsequently, four pairs of models were
gradually built from M4, increasing the training data volume to observe performance
improvements during the offline training phase. In all experiments, data augmentation
consistently led to better performance. Additionally, as the training data volume was
incrementally increased by 20%, a gradual improvement in performance was observed.
These findings clearly highlight the significance of data diversity and the quantity of
training samples in building a generalized and robust model. It is worth noting that as
the trained model improved, the performance on the offline test data also improved.

In Table 1, it can be observed that the number of instances/TO varies significantly,
which impacts the overall model performance. To validate this observation, a closer
examination was conducted on the best performing model from Table 2 (M12), specifi-
cally analyzing its off-line phase test mAP50–95/TO. Detailed analysis can be found in
Table 3, and Fig. 2.

Based on Table 3, it is evident that windows and doors achieved the best results in
terms of bounding box detection (BBOX) and segmentation (SEG). These two object
categories have a relatively higher number of training instances. On the other hand, the
category labeled as ‘other’, which includes various miscellaneous objects like benches,
chairs, flower gardens, and staircases, had the highest number of instances but did
not perform well. This can be attributed to the significant variation in pose and shape
among these objects, making it challenging for the model to achieve consistent perfor-
mance. Therefore, along with a larger number of instances, maintaining a unified object
shape and category is crucial. For instance, the ‘bin’ category, despite having only 116
instances, performed impressively due to the relatively consistent shape of the objects
within that category.

Having reached this stage, we have chosen the best-performing model, M12, from
our offline phase. To assess the overall performance of our framework, we utilized



Table 3. Off-line phase test performance of M12/TO.

mAP50–95 BBOX SEGM

Window 78.9 80.3

Door 74.8 77.5

Fence 59.1 62.3

Tree 57.2 47.3

Bin 71.2 72.4

Road 59.0 60.8

Other 66.7 65.3

Fig. 2. Snapshot of segmentation results.

M12 for TO classification and segmentation first. Then, the unwanted objects will be
removed based on the segmentation results. During this online phase with the test data,
M12 achieved a mAP50–95 of 77.2%, which is remarkably close to our performance in
the offline phase. Alongside the development of our prototype, we have designed a user-
friendly web interface for end-users to evaluate the functionality. This interface allows
users to upload GIRTS-thermal images and visually inspect the detected/segmented
regions for possible heat loss sources or obstructive objects. It also displays the cropped
and cleaned versions of the images, enabling users to save the thermal information from
the processed images. Figure 3 illustrates the activities and workflow of our proposed
solution within the web user interface.

Fig. 3. Snapshot of our developed web-interface.



4 Conclusions

In this research,we propose anAI-driven solution for ground level infrared camera-based
thermographic surveys using thermal images. We implement a Mask RCNN-based deep
learning framework to identify, segment, and remove heat sources and unwanted objects.
As a result, we created a new thermographic dataset. To overcome the issue of limited
thermal images for training, we employed transfer learning strategies and various image
augmentation techniques. Through fine-tuning experiments and parameter adjustments,
our final model achieved a mAP score of 77.2%. In future research, we aim to improve
the training dataset by utilizing generative deep architectures [19]. We also plan to
address the challenge of dense clusters of distracting objects that can potentially lead
to the model overlooking certain segments [20]. Furthermore, we aim to demonstrate
the practical implementation of this solution by developing an open-source tool specifi-
cally designed for industries involved in thermographic surveys. Additionally, we have
plans to publicly release the GIRTS dataset, enabling further exploration of the potential
outcomes achieved through this dataset.
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