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Abstract

Background: Deep learning (DL) is the fastest-growing field mfchine learning (ML). Deep convolutional neural
networks (DCNN) are currently the main tool usedifoage analysis and classification purposes. Tasreseveral DCNN
architectures among them AlexNet, GoogleNet, argidual networks (ResNetMethod: This paper presents a new
computer-aided diagnosis (CAD) system based on rieatutraction and classification using DL techniue help
radiologists to classify breast cancer lesions ammmograms. This is performed by four different expents to determine
the optimum approach. The first one consists ofterend pre-trained fine-tuned DCNN networks. In geeond one, the
deep features of the DCNNs are extracted and feal sapport vector machine (SVM) classifier with ei#nt kernel
functions. The third experiment performs deep fegdusion to demonstrate that combining deep featwill enhance the
accuracy of the SVM classifiers. Finally, in theufth experiment, principal component analysis (P@Aintroduced to
reduce the large feature vector produced in feafus®mn and to decrease the computational cost. edperiments are
performed on two datasets (1) the curated breasgiing subset of the digital database for screemammography (CBIS-
DDSM) and (2) the mammographic image analysis $pciigital mammogram database (MIASResults and
Conclusions: The accuracy achieved using deep features fusiohdth datasets proved to be the highest compardte
state-of-the-art CAD systems. Conversely, when apglthe PCA on the feature fusion sets, the accudatyot improve;

however, the computational cost decreased as #wiBan time decreased.

Keywords: Deep convolutional neural networks, machinerieay, principal component analysis, and supportoranachines

1. Introduction

Breast cancer is considered a severe danger thiegtiwomen’s life and health. Breast cancer is okeskto
be one of the most prevalent types of cancer amangen worldwide [1]. In Egypt, all types of cancere
increasing rapidly, especially in the breast.lfedetection of breast cancer is crucial for susfidsreatment

and reducing the mortality rate.

Medical image examination is the most effectivehmdtfor the diagnosis of breast cancer. There iffiexeht
imaging modalities used for diagnoses such asadigitammography, ultrasound (US), magnetic resonance
imaging (MRI), and infrared thermography, althouglammography imaging is mostly recommended [2,3].
Mammography produces high quality images to vigeathe internal anatomy of the breast. There arerak
indicators of breast cancer from mammograms. Amtrgn are masses, macrocalcifications (MCs), and
architectural distortions. The former two indicatare the crucial indicators of tumors in the priyrstage, while

the architectural distortions are found to be fgaificant compared to the masses and MCs [4].

Radiologists cannot easily provide accurate maaualuation due to the increasing number of mammmogra

generated in widespread screening. Therefore, @ummaided diagnosis (CAD) system has been degdltp
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detect the indicators of breast cancer and imptheeaccuracy of diagnosis. These systems will ifatdl the

diagnosis process and can be considered as a sgginiwh for radiologists [2].

Recently, several researchers proposed machimgrigaiML) methods for classifying breast abnornyaiit
mammogram images. Assiri et al. [5] proposed armbte classifier based on a majority voting mecsrani
The performance of different state-of-the-art Masdification algorithms was evaluated for the Whsiio breast
cancer dataset (WBCD) achieving an accuracy of298.4Ragab et al. [6] used image processing techsitm
remove the pectoral muscle of the mammographic énsalysis society digital mammogram database (MIAS
[7] and the digital mammography dream challengagt[8]. The authors extracted the features usimge
statistical metrics and classified them using sErghd multiple classifiers. The highest accuradyieaed was
99.7% [6]. Zhang et al. [9] use Fourier transforam principal component analysis (PCA), followed dy
support vector machine (SVM) to classify the sampmé the MIAS dataset [7]. The accuracy achieved wa

92.16%. Moreover, the classical CAD systems usihgnvthods were cited in some papers as in [10-16].

In the last few years, deep learning (DL) usingvoduitional neural networks (DCNN) has emerged asam
the most powerful ML tools in image classificatid7]. It has surpassed the accuracy of traditictessification
methods and human ability. The convolutional precgmplifies an image that has millions of pixelsat small
feature map, thus the dimension of the input dsteeduced whilst retaining the most-important défeial

features [18-21].

Recently, several researchers studied and propasetthods for breast mammography abnormalities
classification using DCNN. Zhang et al. [22] deysld and evaluated DCNN models for whole mammography
image classification introducing transfer learnamgl data augmentation techniques. The authorstheanhages
from the Department of Radiology, University of Kiacky. The area under the receiver operating cheniatics
curve (AUC) scored 0.73 (73%) [22]. Hepsag et28] used deep features to classify the MIAS datagetsing
8-fold cross-validation. The accuracy achieved 68%. Tan et al. [24] proposed a DCNN architechyreising
TensorFlow to classify normal and abnormal MIAS phes [7]. The accuracy achieved was 85.85%. Jiaag e
[25] used GoogleNet and AlexNet DCNNs architectuceslassify breast lesions of a new dataset nameaist
cancer digital repository film mammography datasenber 3 (BCDR-F03). The AUC of the GoogleNet and
AlexNet was 0.88 (88%) and 0.83 (83%), respectivéhdoon et al. [26] proposed a model that resdimee
classes; normal, benign, and malignant. The moaggsed two methods, namely convolutional neurbd/owk
discrete wavelet (CNN-DW) and convolutional neungtwork curvelet transform (CNN-CT). The authors

classified the samples of the Image Retrieval irdiglE Applications (IRMA) dataset using the SVM sddier.
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They achieved accuracy rated from 81.83% to 83.[2B} Ragab et al. [27] extracted the featureshefdurated
breast imaging subset of DDSM (CBIS-DDSM) [28] s fine-tuned DCNN-SVM AlexNet architecture. The
accuracy achieved was 87.2% with AUC equaling 82t @94%). Mendel et al. [29] extracted and clasdifihe
features of 78 mammogram lesions using pre-traiDE&NN VGG-19 and SVM, respectively. The AUC
achieved was 0.81 (81%). Khan et al. [30] propasedulti-view feature fusion (MVFF) based CAD system
using a feature fusion technique for the clasdificaof mammograms. The deep features were exttzate
fused from four fine-tuned DCNN architectures: VG@&-VGG-19, GoogleNet, and ResNet-50. The authors
performed their experiments on CBIS-DDSM [28] antAB [7] datasets. The classification accuracy ahiCA
achieved were 96.66%, 0.934 (93.4%), respectiv@dy. [Khan et al. [31] extracted and fused the fiestwsing
the fine-tuned DCNN architectures VGGNet, GoogleMeid ResNet-50. They classified the fused featoyes
the average pooling method achieving 97.67% acygurBloey used two breast microscopic image data sets
Breast cancer histopathology images [32] and dljocallected dataset from LRH hospital Peshawaki§tan

to evaluate the performance of the proposed CAResy$31]. Song et al. [33] proposed a new CAD exysto
classify three classes, normal, benign, and matigeamples of the DDSM dataset [34]. The authossduthe
deep features of GoogleNet, Inception-v2, and Itieepwith nxn convolution with handcrafted featurdse
handcrafted features included scoring features, /@] &nd histogram of oriented gradient (HOG) feaduiEhe
features were classified by SVM and extreme gradimmosting (XGBoost) classifiers. The authorstfirs
classified the end-to-end DCNN features achievim@gecuracy of 82.84%; however, when classifyingftised
features, the accuracy increased reaching 92.8%rdsults achieved by the XGBoost proved to bedrigfan
those achieved by the SVM classifier alone [33]rdbwer, deep learning (DL) was used in a breassifieation

problem as in [35-41].

The novelty of this paper lies in the design ofefficient CAD system based on feature extractiod a
classification using DL techniques to classify lgenand malignant, (or normal and abnormal) breaster
lesions. This CAD system is evaluated using twaaskts, CBIS-DDSM and MIAS. Several papers in the
literature employed individual DCNNSs to classifyebst cancer in their CAD systems [22—-25] and [J7\2Bere
the classification accuracies between 68-94% wetesufficient for a reliable and powerful CAD systeOther
papers proposed the use of feature fusion fronraelNNs of different architectures [30,31,33]th&dugh the
fusion techniques could improve the accuracy tB8®®7.67%, the combination of deep features, which
contributed the most to the improved performance mat analyzed. Moreover, they did not investidgades to

reduce the computational cost of the CAD systemtatkle these drawbacks, in this paper, a novel Gpddem



is proposed to explore the fusion of various fezguextracted from different DCNNs for choosing test
combination of the features, which improves theueacy of the CAD system. Moreover, the proposed CAD
system used PCA to reduce the feature dimensiorelhss the associated computational cost. Thessepures
are made through the following four different expemts. The first is an end-to-end DCNN processereh
features are extracted and classified using selBCAIN architectures including, AlexNet, GoogleNegsNet-
18, 50, and 101. These architectures are fine-ttmelistinguish between two classes instead of 0Which
they were originally trained. In the second expenin the features are extracted using the finestUDENN
architectures. These features are used separatetnstruct SVM classifiers with different kernels the third
experiment, a deep feature fusion process is ilpatst, which is performed by ranking the extractieeép
features and using them to form four feature deds include a different combination of deep feagurghis
experiment is performed to determine if combiningep features from different DCNNs can enhance the
classification performance of SVM. Finally, in tfigurth experiment, the effect of using a featurduction
method such as PCA to reduce the feature spackeofour sets of features is evaluated as well as th

computational cost. The number of principal compdsiés chosen in a sequential forward strategy.

This paper is organized as follows: Section 2 ohices the methodology of the paper, section 3 shiogvs
experimental setup, and section 4 gives the cordpugsults of the technique. A discussion of thegssted

technique is presented in section 5 and finalky werk is concluded in section 6.

2. Methodology
The CAD system consists of four modules, which @)eimage preprocessing, (2) feature extractioh, (3

feature classification and reduction, and (4) d&ssvaluation. The proposed framework is showirig. 1.

2.11mage Preprocessing

Usually, in this step, the images are enhancecttamdegion of interest (ROI) is cropped. In thipga the
contrast-limited adaptive histogram equalizatiohABIE) is used as an enhancement technique [42]. EEAs
a type of adaptive contrast enhancement method JARHE is a technique accomplished by improvingaloc
contrast and using all the details in the imagprdvved to be an exceptional contrast enhancemetitaa for all
types of images [43,44]. CLAHE creates and cligshistogram of each contextual region at a preddfiralue.
The clipped amount is reallocated among the hiatogoins. The created histogram is a modified versiothe
original one. This method solves the edge-shadoveffgct of AHE and reduces the problem of over-

enhancement [45,46].
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2.2 Feature Extraction

In traditional CAD systems, much effort is exertgdthe human designer to extract and produce haftddr
features, including the shape and density inforomatf the cancerous area in medical images [47his 15
actually a very challenging task, as this procsslengthy yet the extracted handcrafted features stith not
have the discrimination power for classifying cancs regions [48,49]. Consequently, the emerging DL
techniques have attracted increased attention feir butstanding performance by skipping the desifin
handcrafted features and providing high classificaiccuracy consistency. The main advantage obthand
more specific the DCNN is its ability to learn agxtract the optimal features by itself throughaaning process
[50]. Furthermore, DCNN consists of several layargonlinear or quasi-nonlinear processing to atthigh-
level representation of features in images comptaramnventional CAD systems using handcraftedufeatas
an input. On the other hand, DL has the abilitgéaluce an optimal representation of the raw imaggsut
image preprocessing i.e. enhancement, segmentatidnfeature extraction processes, leading to reffeetive
classification and even lower complexity of desigmpared to conventional CAD systems [51]. To énid, in

this paper, DL techniques were employed to exsiggtificant features using several DCNNSs.

DCNN can be used either as a classifier or a featutractor [52,53]. In the first experiment, DCNai&
used as classifiers. However, in experiments (&)-they are used as feature extractors. DCNN misvare
built-up using three main types of layers; (1) agational layer, (2) pooling layer, and (3) fullprnected (fc)
layer [54,55]. The feature extraction is carried loy the convolution layers while the classifioatis performed
using a fully connected layer. This layer classifieghich category input belongs to the extractetufea. The
pooling layer is employed to minimize the dimensiaf feature maps and network parameters [55]his t

paper, several DCNN are evaluated such as Alext8t (GoogleNet [56], and the ResNet [57] architezsu

2.2.1 AlexNet Architecture
AlexNet consists of five convolution layers, thrpeoling layers, and two fully connected layers with

approximately 60 million free parameters [18]. TAlexNet DCNN architecture is shown in Fig. 2. Ireth
convolution layers, a dot product operation is genied for each neuron between the weights andtia tegion
that is connected to the input [18]. While the pugpllayers perform a down-sampling operation ongrevious
layers to reduce the amount of computation [18]rédwer, the neurons of the fully connected layergehfull

connections to all neurons in the previous lay8rg8].
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Fig. 1. The framework of the CAD system proposed.
(a) Experiment (1), (b) experiment (2), (c) expen(3), and (d) experiment (4).



2.2.2 GoogleNet Architecture
GoogleNet is a DCNN architecture consisting of &gls. It was introduced by Szegedy C. et al. {&6d

proposed a computationally efficient structure. sThietwork structure is based on the Inception nedul
therefore, it is called Inception-vl. Each Layertldé GoogleNet has nine inception units and finalljully
connected layer before the output. GoogleNet hasraklnception modules weighted upon each othéh s
maximum pooling layer. Although GoogleNet is indkdgdeep, it has twelve times fewer parameterstha

AlexNet, which makes it faster to train. The Godigé architecture is shown in Fig. 3.

2.2.3 Residual Networks (ResNet) Architecture
ResNet is one of the recent architectures that@renonly used for medical imaging applicationsetteived

first place in ILSVRC and COCO 2015 competition ImageNet Detection, ImageNet localization, Coco
detection, and Coco segmentation [57,60]. The roailding block in ResNet is the residual block aauced by
He et al. [57]. This method adds shortcuts (calésiduals) between layers of traditional DCNNsypdss a few
convolution layers at a time. It increases the nemiif deep layers as well to enhance its perforemana
employs the residual shortcuts to accelerate theergence of these large numbers of deep layeRedNet has
several stacks of residual blocks. Each block islanap of several stacked convolution layers. Eséngle
convolution layer takes the output fields of thatfee map of the previous layer as its input. Timput of every
residual block is added to its input through arpeisge identity mapping path [61,62]. ResNet hasescommon

architectures such as ResNet-18, 50, and 101.

2.3 Feature Reduction

Principal Component Analysis (PCA) reduces the remtif observed variables to a smaller number of
principal components that still contain most of théormation of the large set. PCA is performedngsthe
variance-covariance structure of a set of varialiesugh linear combinations. It is used when \@es are
highly correlated, and it is suitable for data setsnultiple dimensions. PCA provides a powerfudltéor data

analysis and pattern recognition. It is used fre¢yeén signal and image processing [63].
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2.4 Feature Classification
In this step, the ROI is classified as either befmi@lignant or normal/abnormal lesions accordinghi®
features. There are lots of classifier techniqumsray them decision trees (DT), artificial neurawarks (ANN),

and support vector machines (SVM) [64,65].

In this paper, specifically in the first experimefite end-to-end DCNN are constructed using AletxNe
GoogleNet, and the ResNet-18, 50, 101 architectorekassify breast cancer lesions. In experimé)jt(3), and
(4) the SVM classifier of different kernels is us&WVM is a supervised learning method that grougta éhto
categories. The goal of the SVM classifier is torfolate an efficient way to separate the data atsses by

creating hyperplanes [66]. Many hyperplanes colddsify two data points, but the ideal is the oagilg the
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maximum margin. The margin is defined as the withwhich the boundary could increase before enewing

a data point. The support vectors are the vedbatsdiefine the hyperplane [67].

2.5Feature Evaluation
There are several tools to evaluate a classifregrgst them the accuracy, the sensitivity or trostive rate
(TPR), the specificity or true negative rate (TN&)d the Matthews correlation coefficient (MCC)dafined in

equations (1) to (4).

_ TP +TN 1
AcCUracy = TN+ FP+ FN + TP M
sensitivity (TPR) = TPIFN (2)
ificity (TNR) = N 3
specificity (TNR) = TN L FP 3)

) . (TP XxTN) — (FP X FN)
Matthews correlation coefficient (MCC) = 4)
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

In equations (1) to (4), TP, TN, FP, and FN are ahbreviations for the true positive, true negatfeése
positive, and false negative, respectively. Accuriadicates to what extent the relevant classifi@s classified
the items correctly. In addition, FPR and FNR iaticthe false positive rate and false-negative ragpectively,
as in equations (5) and (6).

FPR =1 —TNR (5)
FNR = 1—TPR (6)

FPR and FNR criteria represent the system errdR iBRa false alarm rate indicating the percentdgdass

(1) that has been incorrectly classified as cla¥sWhereas FNR provides the percentage of clgsthé® have

been incorrectly classified as class (1).

The area under the receiver operating characte(R®C) curve (AUC) is one of the well-known critethat
is used by most medical diagnostic systems forsagsg the efficiency of classification. ROC is avaubased on
the TPR and FPR and it is generated by changingthteshold decision. AUC provides an approach for
evaluating models based on the average of eaclt poithe ROC curve. A classifier has a higher &fficy

when the AUC value is approaching one.

3 Experimental Setup
The proposed CAD system was applied to the mammograges to estimate the possibility of each image

belonging to one of the two classes either benigmalignant (or normal and abnormal). All the exments
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were performed on the Intel® CORE™ [7 processor [diiDIA GeForce 940MX, Windows 10, 64 bit with 8
GB of random-access memory (RAM). The software usdthplement the experiments was MATLAB R2018b

with an academic license provided by the Universit@trathclyde.

3.1 Dataset Selection

In this study, two datasets were used to test ¢infmpnmance of the proposed CAD system. These datase
(1) the curated breast imaging subset of DDSM (GBESM) [28] and (2) the mammographic image analysis
society digital mammogram database (MIAS) [7]. Toranat of the MIAS dataset is PGM; however, the EBI
DDSM is DICOM, which is the format as obtained ditg from the digital equipment. For simplicity, a

MATLAB tool was used to convert all the samplestte JPG format.

CBISDDSM: Recently, Lee et al. [28] released an updateistandardized version of the DDSM dataset
for the evaluation of CAD systems in mammography@a CBIS-DDSM. It includes an easily accessiblaskit
and improved ROI segmented images. The datasehinoent53 and 891 microcalcification and mass cases,
respectively. In this work, only the mass samplesawised, which are categorized as benign and maalignass

tumors.

MIAS: An organization of the UK research groups callednmagraphic image analysis society (MIAS)
created a database of digital mammograms [7]. Thes fhave been digitized to a 50-micron pixel edgk.
images are available in a size of 1024 x 1024. Magram images are available via the pilot Europeaage
processing archive (PEIPA) at the University ofdéxsf’]. The MIAS dataset has 322 annotated imagédsfto
and right breasts classified as normal and abndesgins. The abnormal samples are divided inteai®gories,
i.e. calcification, architectural distortion, asymtny, well-defined, spiculated, and ill-defined mes. In addition,
the severity of abnormal, benign or malignant,tédesl beside each abnormal sample. However, thé&uaf
samples of normal, benign, and malignant is nomatized. Therefore, we differentiated between amigp
classes, i.e. normal and abnormal, which is cargistith most existing works on the MIAS datasetegrted
in [23,68-72]. Moreover, the ROl was cropped usihg co-ordinates of the center and the radius ef th

abnormality provided by the dataset.

3.2 Transfer Learning
The DCNN networks are trained using the ImageN&is#d, which has 1.2 million natural images in 0,00
labeled classes. The transfer learning technigyeeiformed on these networks so that it can be isedhy

classification problem [73,74]. This is performedrbplacing the last fully connected layer in aeywork with a
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new layer for the classification of two classesniga/malignant for the CBIS-DDSM, normal/abnormat the

MIAS dataset.

To retrain the DCNN after fine-tuning the fully awacted layer, some parameters must be set; tlatidter
number and the primary learning rate are set fbah@10, respectively [75]. However, the momentum and
weight decay are set to 0.9 and 5%1@spectively [75]. The number of epochs and roatth size were set to
20 and 4. Additionally, the validation frequencysaset to the maximum number of iterations per epbishis
done to validate the result at the end of eachlepbloese configurations are to confirm that theapeaters are
fine-tuned for medical breast cancer analysis. Off@ameters are set to default values. The ogtioiz

algorithm used is the stochastic gradient descéhtmomentum (SGDM) [75].

3.3DCNN Architectures
As mentioned in section Il, five DCNN architecturase used in this paper after being fine-tuned to

differentiate between two classes instead of 1@0@detailed layers description for AlexNet, GoogléNand
ResNet-18, 50, and 101 are illustrated in Table®, Bnd 3, respectively. The input layer of eachhef five
DCNN architectures constructed requires a spetifaige size. For example, the input layer of the gkeidet
architecture requires the image samples to benedilsion 224 x 224 x 3. Thus, there was a prepringestgep to
change all the image sizes to the size requireddoh DCNN architecture. However, the output lafehe first
convolutional layer in the AlexNet architecturecaculated using equation (7). The output equals 55 x 96,
which demonstrates that the size of the feature im&p x 55 in width and height respectively. Imigidn, the

number of feature maps is 96. On the other hardotitput size of the pooling layer is calculatemgquation

(8).

i input — filter size + (2 X Padding)
The output size of the conv layer = [( - ) + 1] N
Stride
) ) output of conv — pool size
The output size of the pooling layer = [( Stride ) + 1] (8)

3.4 Data Augmentation

In general, when training on a huge number of sashe classifiers perform well and give high aacu
rates. On the other hand, the biomedical dataseitio a small number of samples due to limitedepat
volume. Consequently, data augmentation is a pitatess. Data augmentation aims to increase théewai
images; this is done by generating new images, wduie variations on the original ones. Data augatiemt has

many forms such as rotation, flipping, and transtion; the one used in this paper is the rotdfiér78] Each
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original image was rotated by four angles, whichren@, 90, 180, and 270 degrees. Accordingly, eaigfinal

image was augmented to four images. The total nuoftmamples used for each dataset is illustratéichble 4.

Table 1.AlexNet architecture layers.

Layer Name Description Output Size
Input layer 227 x 227 x 3
Filter Size 11x11
convl Stride 4 55 x 55 x 96
Padding 0
pooll Poolin.g Size 3x3 27 x 27 x 96
Stride 2
conv2 F"gi:ij:e 5 T 5 27 x 27 x 256
pool2 Poolin.g Size 3x3 13 x 13 x 256
Stride 2
Filter Size 3x3
conv3 Stride 1 13 x 13 x 384
convd Filter.Size 3x3 13 x 13 x 384
Stride 1
convs FiIter_Size 3x3 13 x 13 x 256
Stride 1
Pooling Size 3x3
pool5 Strige 2 6 x 6 x 256
Fully connected (fc) 4096 x 2
Table 2.GoogleNet architecture layers.
Layer Name Filter Sze Stride Output Size
Input Layer 224 x 224 x 3
convl 7x7 2 112 x 112 x 64
pooll 3x3 2 56 x 56 x 64
conv2 3x3 1 56 x 56 x 192
pool2 3x3 2 28 x 28 x 192
Inception (3a) - - 28 x 28 x 256
Inception (3b) - - 28 x 28 x 480
pool3 3x3 2 14 x 14 x 480
Inception (4a) - - 14 x 14 x 512
Inception (4b) - - 14 x 14 x 512
Inception (4c) - - 14 x 14 x 512
Inception (4d) - - 14 x 14 x 528
Inception (4e) - - 14 x 14 x 832
pool4 3x3 2 7 x7 %832
Inception (5a) - - 7 x7 %832
Inception (5b) - - 7 x7x1024
average pooling 7x7 1 1x1x1024
fully connected (fc) 1024 x 2
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Table 3.ResNet architecture layers.

Layer Name Output Size ResNet-18 ResNet-50 ResNet-101
Input Layer 224 x 224 x 3
Filter size =7 x 7
Number of filters = 64
convl 112 x 112 x 64 Stride = 2
Padding = 3
Pooling size =3 x 3
pooll 56 x 56 x 64 Stride = 2
1x1, 64 1x1, 64]
conv2_x 56 x 56 x 64 Bi? gixz [3><3, 64]x3 [3><3, 64 | x3
’ 1 x1, 256 1 x1, 256]
1x1, 128 1 x1, 128]
conv3_x 28 x 28 x 128 [g X g gg] x 2 l:s X3, 128] x4 l:s X3, 128|x4
’ 1x1, 512 1 x1, 512}
3 %3 256 1x1, 256 1x1, 256]
conv4_x 14 x 14 x 256 3 ><3' 256 x 2 [3 X 3, 256]><6 [3 X3, 256 |x23
’ 1x1, 1024 1 x1, 1024]
1x1, 512 1x1, 512
convs_x 7x7x512 B by gg]xz ls x3, 512]><3 ls x 3, 512]><3
’ 1 x1, 2048 1 x1, 2048
Pool size =7 x 7
Average pooling Stride =7
1x1x 512 1 x1x2048 1 x1x2048
Fully connected (fc) 2 (512 x2) 2 (2048 x 2) 248k 2)
Table 4.The total number of samples for the datasets ustd paper.
Training Testing Total
Benign 2728
CBIS-DDSM - 3691 1581 5272
Malignant 2544
Normal 836
MIAS 901 387 1288
Abnormal 452
4 Results

The proposed CAD system performs four experimérusthe first experiment, 70% of the images weedus
for training and the rest for testing, as this @mamon ratio used in the classification problerthédugh, for the
rest of the experiments, the ratio of the trainamgl testing was 80%:20%. This was because theszieents
were validated using five-fold cross-validation.ditébnally, the SVM parameters were tuned usingagd3ian

optimization technique [79]. In the following subesions, the results of the four experiments wdllfyesented

for the CBIS-DDSM and the MIAS datasets.

4.1CBIS-DDSM dataset

For the CBIS-DDSM dataset, the mass samples frentvtb mammogram views: Craniocaudal (CC) and the
mediolateral-oblique (MLO) views were extracted aseid in the four experiments of the CAD systemdap
Images of this dataset were already segmentedhendréast cancer lesion was shown. Therefore, ditkpot

need to be segmented. The samples were only erthastg the CLAHE method. Table 4 shows the numbkrs

15



training and testing samples used for the CBIS-DD&ltaset. In the first experiment, five end-to-&@NNs
including AlexNet, GoogleNet, ResNet-18, 50, and &&re constructed. The end-to-end GoogleNet ratted
highest accuracy of 76.01% as illustrated in Tabléoreover, the training time of each of these INSNs

illustrated in Table 5 as well.

Furthermore, in the second experiment, the dedprisaof the five DCNNSs architectures were extréeted
used separately to train and test SVM classifieith different kernels. Table 6 shows the accurasyC,
sensitivity, and specificity of the SVM classifiensth different kernels constructed with the fiveegh feature
sets. The highest classification accuracy was 93&ébteved by the medium Gaussian kernel SVM classif
constructed using ResNet-18 deep features. Figsplags the ROC curve and the AUC computed for the

ResNet-18 deep features with medium Gaussian kkkmetion SVM.

In the third experiment, four sets of deep featunese generated. These features include a different
combination of deep features extracted from the EMCNNSs. These sets of features were produced rigm@g
the accuracies of the different DCNN architectushewn in Table 5. It was clear that the AlexNet dne
GoogleNet features achieved the highest accuradewared to the others. Therefore, the AlexNet tned
GoogleNet features were combined to produce aesifeglture vector with 5120 features named featetr€13.
The linear kernel SVM achieved the highest accyratych was 94.4%. Moreover, the ResNet-18 featuwes
added to the feature set (1). This set was nanadréeset (2) containing 5632 features. The highestiracy
achieved was 96.9% for the linear kernel SVM ad.walditionally, the features of ResNet-101 wereled to
feature set (2) producing a feature vector of 7i@&@ures in length named feature set (3). The acguncreased
to 97.5% for the linear kernel SVM. Finally, alktideep features were combined to produce a feabater with
9728 features in length named feature set (4).9-&ghows a comparison for the accuracies of SVidsdiars of
different kernels for the four feature sets. Tablshows the accuracy, AUC, sensitivity, and speitffifor the
SVM classifiers of different kernels for featurd &) as it achieved the highest accuracy of 97a83%hown in
Fig. 5. Moreover, the ROC and the AUC of the cubid quadratic SVM classifiers, which achieved tighdst

accuracy using feature set (4) is shown in Fig. 6.

In the fourth experiment, PCA was applied to rediheefeature space of each feature set and theleityp
of the classification process. To choose the optimanber of principal components, a sequential &dv
selection was carried out. Fig. 7 represents thsstication accuracy, using the PCA reductiontfa four

feature sets.
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Table 5. The accuracy and the trained time of t6®&IN architectures for the CBIS-DDSM dataset.

DCNN Architecture DCNN Accuracy Training Time
AlexNet 74.68% 6 hours, 30 min
GoogleNet 76.01% 12 hours
ResNet-18 72.23% 14 hours
ResNet-50 71.09% 33 hours
ResNet-101 71.47% 62 hours
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Fig. 4. The computed ROC for the ResNet-18 witldMe Gaussian kernel function SVM of the CBIS-DDS8taset.

Table 6. The calculated scores of the different S¥évhel functions for the DCNN features of the CBIBSM dataset

DCNN Different Kernels | Accuracy (std) AUC (std) Sensitivity (std) Specificity (std) MCC (std)
Linear 91.3% (0.001) 0.97 (0) 0.918 (0.005 0.91.0@1) 0.829 (0.005)
Quadratic 91.0% (0.002) 0.96 (0.004) 0.909 (0.006) 0.911 (0.001) 0.819 (0.007)
AlexNet Cubic 90.9% (0.002) 0.96 (0.001 0.904 (0.004 18.@.005) 0.816 (0.007)
Medium Gaussian 91.1% (0.001) 0.97 (0) 0.910(0.001)  0.910 (0.001) 0.820 (0.001)
Coarse Gaussian 89.2% (0.001] 0.96 (0.001) 0.8803) 0.899 (0.001) | 0.782(0.004)
Linear 90.1% (0.002) 0.97 (0) 0.900 (0.001 0.920@1) 0.800 (0.001)
Quadratic 89.4% (0.003) 0.97 (0.004) 0.900 (0.001) 0.900 (0.001) 0.793 (0.004)
GoogleNet Cubic 88.7% (0.004) 0.96 (0.004 0.883 (0.004 0.@9004) 0.773 (0.005)
Medium Gaussian| ~ 87.9% (0.002)  0.95 (0.004) 0.859 (0 0.905 (0) 0.762 (0.001)
Coarse Gaussian 88.6% (0.004 0.95 (0.004) 0.8981p 0.876 (0.006) | 0.773(0.007)
Linear 93.5% (0.002) | 0.98 (0.001 0.931 (0.001 930.(0.004) 0.870 (0.004)
Quadratic 93.1% (0.002) 0.98 (0.001) 0.930 (0.003) 0.931 (0.004) 0.861 (0.005)
ResNet-18 Cubic 93.0% (0.001) 0.98 (0.001 0.930 (0.001 0.@8001) 0.860 (0.001)
Medium Gaussian 93.7% (0) 0.98 (0.013) 0.940 (0.001) 0.931 (0.003) 0.872 (0.003)
Coarse Gaussian 93.4% (0.001] 0.98 (0.001) 0.9823) 0.94 (0.001) 0.872 (0.003)
Linear 87.2% (0.002) 0.95 (0.005 0.864 (0.003 70.8.001) 0.742 (0.004)
Quadratic 88.4% (0.003) 0.95 (0) 0.880 (0.008 D.@B005) 0.765 (0.011)
ResNet-50 Cubic 87.8% (0.001) 0.95 (0) 0.873 (0.001 0.88000) 0.756 (0.006)
Medium Gaussian 87.3% (0.01) 0.95 (0) 0.861 (0.006  0.894 (0.004) 0.752 (0.004)
Coarse Gaussian 85.2% (0.005, 0.93 (0.004) 0.888¢) 0.874 (0.001) | 0.704(0.007)
Linear 89.5% (0.001) 0.96 (0.001 0.878 (0.021 06.0.007) 0.782 (0.028)
ResNet-101 Quadratic 89.3% (0.002) 0.96 (0.001) 0.893 (0.008)  0.900 (0.006) 0.790 (0.004)
Cubic 89.1% (0.001) 0.95 (0.004) 0.890 (0.003 98.60.005) 0.783 (0.005)
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Fig. 5. The accuracies of different SVM kernelstfee different DCNN features combination of thelSBYDSM dataset.

Feature Set (1) = AlexNet and GoogleNet.

Feature Set (2) = AlexNet, GoogleNet, and ResNet-18

Feature Set (3) = AlexNet, GoogleNet, ResNet-18,ResNet-101.

Feature Set (4) = AlexNet, GoogleNet, ResNet-1&Ne¢-50, and ResNet-101.
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The computed ROC for all combined DCNNdees for the cubic and quadratic SVM kernel fumtsi of the CBIS-DDSM
dataset.
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Table 7. The calculated scores of the different S¥évhel functions for feature set (4) for the CEMIBSM dataset.

Linear 97.6% (0.001) 1.00 (0) 0.971 (0.001) 0.98 (0.001) 950 (0)
Quadratic 97.9% (0.001) 1.00 (0) 0.980 (0.003) 0.98 (0.001) 0.960 (0.003)
Cubic 97.9% (0.001) 1.00 (0) 0.980 (0.001) 0.98 (0.001) 0.960 (0.001)
Medium Gaussian | 96.3% (0.001) 0.99 (0) 0.951 (0) 0.97 (0) 0.921 (0)
Coarse Gaussian 94.6% (0) 0.99 (0) 0.950 (0) 0.95 (0) 0.900(0.001)
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Fig. 7. A comparison of different combined DCNMNtigres accuracy after PCA feature reduction folGB&-DDSM dataset.

4.2 MIAS dataset

For the MIAS dataset, the images were enhancedegmiented according to the information providethén
dataset. The center of the abnormal lesion waangiv the description of the dataset. These images used in
the first experiment to construct the five DCNNsble 8 shows the classification accuracy for tHéemint
DCNN architecture to classify normal and abnornesidns. Furthermore, in the second experimentdéep
features were extracted and used to train andheS$VM classifiers built-up with different kerrfehctions. The
classification accuracies of these models aretiitesd in Table 9. The features of the ResNet-58 guadratic
kernel function achieved the highest accuracy, wiwes 95.3% with AUC equaling to 0.99 (99.0%). R@C

and AUC of the quadratic SVM classifier construatisthg deep features of ResNet-50 are shown in8Fig.

In the third experiment, four sets of different dimations of deep features were generated in theesa
manner as those produced in the CBIS-DDSM. Feaietr€l) represents those extracted from the Gbiegle
and ResNet-50 as these DCNNs achieved the highestagies compared to the others as in Table 8. The
feature-length of feature set (1) was 3072 featdrbe highest accuracy achieved was 95.0% usinguhdratic
kernel SVM. On the other hand, feature set (2) istsof feature set (1) plus ResNet-18 producingd3®eature
length. The accuracy was 96.3% achieved using tlaergtic kernel SVM as well. The features of theNRe-

101 were added to the feature set (2) and naméatdéeset (3). The highest accuracy achieved wat/®7or the
qguadratic kernel SVM. Finally, adding the AlexNe&fures to feature set (3) produces a featurésell{is time

the accuracy decreased to 96.6%. Fig. 9 showscth@aacies of the SVM classifiers constructed usiifigrent
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kernels for the four sets of features. Table 10ashdifferent scores for the feature set (3) whichieved the
highest accuracy using the quadratic SVM classifibBe ROC curve and the AUC for the quadratic KeBéM

function of feature set (3) are shown in Fig.10tHa fourth experiment, the PCA was used to rediedarge
dimension of the feature sets generated in expeti(®. Fig. 11 shows a comparison between thesifieation

accuracies of the four sets of features and thébeuwf principal components.

Finally, the results of the proposed CAD system @mpared to existing CAD systems described in the
literature. Table 11 shows a comparison betweenpooposed CAD and the applicable state-of-the-#&DC

systems.

Table 8. The accuracy of the DCNN architecturegtferMIAS dataset.

DCNN Architecture DCNN Accuracy
AlexNet 59.69%
GoogleNet 74.40%
ResNet-18 68.22%
ResNet-50 68.73%
ResNet-101 67.44%
1r i
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Fig. 8. The computed ROC for the ResNet-50 withdyatic kernel SVM function of the MIAS dataset.
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Table 9. The calculated scores of the different S¥évhel functions for the DCNN features of the MId&taset.

M Linear Kernel SVM m Quadratic Kernel SVM ® Cubic Kernel SVM = Medium Gaussian Kernel SVM H Coarse Gaussian Kernel SVM

ACCURACY

Linear 79.7% (0.002) 0.86 (0.001) 0.871 (0.007| 80.6.003) 0.522 (0.006)
Quadratic 80.8% (0.007) 0.88 (0.004 0.841 (0.04 .728(0.016) 0.561 (0.018)
Cubic 80.0% (0.002) 0.86 (0.001) 0.840 (0.004 5.{®R006) 0.552 (0.008)
Medium Gaussian| 78.8% (0.007) 0.86 (0.008) 0.88306) 0.662 (0.007) 0.498 (0.013
Coarse Gaussian 72.7% (0.004 0.82 (0.001) 0.90P3D 0.573 (0.002) 0.342 (0.005
Linear 76.6% (0.007) 0.83 (0.004) 0.841 (0.011 50.6.005) 0.451 (0.014)
Quadratic 76.4% (0.007) 0.83 (0.004 0.802 (0.044) 0.667 (0.009) 0.460 (0.014
Cubic 77.2% (0.007) 0.84 (0.005) 0.817 (0.011 8.68002) 0.488 (0.01)
Medium Gaussian| 77.3% (0.004) 0.83 (0.007) 0.88800) 0.641 (0.003) 0.467 (0.006
Coarse Gaussian 71.0% (0.003 0.79 (0) 0.916 (.04 0.557 (0.003) 0.305 (0.01)
Linear 87.8% (0.002) 0.94 (0.001) 0.937 (0.004] 90.{0.001) 0.714 (0.004)
Quadratic 89.1% (0.002) 0.94 (0.001 0.921 (0.037) 0.821 (0.011) 0.744 (0.012)|
Cubic 87.9% (0.003) 0.94 (0.004) 0.921 (0.005 10.0.001) 0.722 (0.005)
Medium Gaussian| 85.3% (0.001) 0.93 (0.004) 0.94200 0.740 (0.002) 0.651 (0.003
Coarse Gaussian 73.7% (0.002 0.91 (0.004) 00601) 0.574 (0.002) 0.368 (0.006
Linear 94.4% (0.004) 0.99 (0) 0.968 (0.004 0.820@7) 0.867 (0.009)
Quadratic 95.4% (0.001) 0.99 (0) 0.966 (0.015) 0.921 (0.011) 0.890 (0.009)
Cubic 94.6% (0.002) 0.99 (0) 0.971 (0.005 0.908qM) 0.875 (0.005)
Medium Gaussian| 92.0% (0.001) 0.98 (0.001) 0.97800 0.838 (0.001) 0.802 (0.001
Coarse Gaussian 79.1% (0.002 0.95 (0.004) 0.9971)0 0.627 (0.002) 0.492 (0.003
Linear 93.1% (0.003) 0.98 (0.001) 0.976 (0.004) 60.68.001) 0.828 (0.004)
Quadratic 93.6% (0.002) 0.98 (0.001 0.961 (0.02¢) 0.887 (0.01) 0.851 (0.009)
Cubic 93.6% (0.003) 0.98 (0.001) 0.966 (0.004 P.€B003) 0.843 (0.007)
Medium Gaussian| 91.0% (0.004) 0.97 (0.004) 0.9700/) 0.817 (0.003) 0.774 (0.007
Coarse Gaussian 79.1% (0.001 0.96 (0.001) 0.9901) 0.627 (0.001) 0.492 (0)
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Table 10. The calculated scores of the differentiSrnel functions for feature set (3) of the MiAStaset.

Linear 96.3% (0.001) 0.99 (0) 0.99 (0) 0.917 (0) 0.908@Q)
Quadratic 97.4% (0) 1.00 (0) 0.99 (0.013) 0.952 (0.012) 0.938 (0.013)
Cubic 96.2% (0) 1.00 (0) 0.99 (0.001) 0.926 (0.001) 0.a13
Medium Gaussian 93.3% (0) 0.99 (0) 0.99 (0.001) 0.854 (0.001) 0.8R001)
Coar se Gaussian 79.0% (0) 0.96 (0.001) 1.00 (0.001) 0.629 (0.00])  .508 (0)
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Fig. 10. The computed ROC for feature set (3) doethDCNN features for the quadratic SVM kerneldiion of the MIAS dataset.
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Table 11. Classification results for different tsealassification methods.

Reference Y ear Feature Extraction Classification Dataset Accuracy | AUC
Hepsag et al. [23] 2017 DCNN MIAS 68.00% -
Tan et al. [24] 2017 CNN using Tensorflow MIAS 58 -
0.88
Jiang et al. [25] 2017 GoogleNet and AlexNet BCDBBF - 0.83
)l CNN-DW 81.83%
y -
Jadoon et al. [26] 201 CNN-CT SVM IRMA 83.74%
Ragab et al. [27] 2014 DCNN-AlexNet SVM CBIS-DDSM  7.80% 0.94
Deep features fusion of VGG-16, VGG-19, CBIS-DDSM 0
Khan et. al [30] 2019 GoogleNet, and ResNet-50 MIAS 96.6% 0.934
Khan et al. [31] 2019 Deep features fusion of VGG, GoogleNet, and Res \Ietler:?:;gSp'C 97.67% -
GoogleNet
Song et al. [33] 2020 . XGBoost DDSM 92.80% -
Inception-v2
The fusion of Gist, SIFT, | SVM, XGBoost, Naive | ~pi5_ppsm 90.91%
Zhang et al. [81] 2020 HOG, LBP, VGG, ResNet Bayes, k-NN, DT, b 87.93% -
and DenseNet features AdaBoosting INbreast o0
Deep features fusion of
AlexNet
GoogleNet CBIS-DDSM 97.90% 1.00
Proposed CAD 2020 SVM
ResNet-18 MIAS 97.40% 1.00
ResNet-50
ResNet-101

5 Discussions
This paper proposed a novel CAD system to cladsi@ast cancer lesions by constructing four differen

experiments. Transfer learning was used so thatastefully connected layer (fc) of the pre-trainB€CNNs
architectures was replaced with a new one to ¢jassd classes instead of 1000. In order to inczehs number
of training samples, data augmentation was usettipelly based on the rotation technique. The samplere
rotated by four angles, which were 0, 90, 180, an@ degrees. All the experiments were tested ortvtoe
datasets; CBIS-DDSM and MIAS. The two-dimensioreatter plot based on the feature vectors for beaigh
malignant samples of the CBIS-DDSM breast canctasgais shown in Fig.12. This figure represengsfiith
feature versus the sixth feature as an exampléhéofeatures of ResNet-18 DCNN architecture forfitse 10

samples of CBIS-DDSM dataset images and their tafiems with a total of 40 images for each class.

5.1 Experiment (1)

As stated before, in this experiment an end-toB@dNN of different architectures was constructedeSen
networks include AlexNet, GoogleNet, ResNet-18, &f] 101. For the CBIS-DDSM dataset, it was cleamf
Table 5 that the classification accuracy rangethf(@1.09% — 76.01%) with the best accuracy achieisig

GoogleNet. The training for the five networks vdrleetween (6:30 — 62 hours) which is quite sigaiftc On the
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other hand, the accuracy of DCNN networks in theeoaf the MIAS dataset ranged from (59.69% — 74)40%

with the highest accuracy achieved using Googlegtitecture as well, as shown in Table 8.

5.2 Experiment (2)

To improve the classification accuracy of DCNNSs stancted in the first experiment, deep featuresewer
extracted from each network. These deep features used separately to train and test SVM classifigth
different kernel functions. From Table 6, it wasviolis that the classification accuracies for thd $$BDSM
dataset increased and ranged between 85.2% an#h.93he scores obtained from the deep features eof th
ResNet-18 proved to be the highest compared tmtier networks. Moreover, when comparing the differ
SVM kernels constructed using ResNet-18 deep festilre best accuracy was for the medium Gaussiaelke
function. The accuracy was 93.7% and the AUC sc@®8 (98%) as shown in Fig. 4. Additionally, the
sensitivity, specificity, and MCC were 0.94 (94.09%)931 (93.1%), and 0.872 (87.2%), respectivehe tieep
features obtained for each DCNN for the CBIS-DD3M wasualized in Fig. 13 — 17. In these figureg tinst

and second convolutional layers were visualizedMexNet, GoogleNet, ResNet-18, 50, and 101, respayg.

For the MIAS dataset, the accuracies of SVM classifconstructed using each deep feature of the NDCN
have also increased to reach a range of (71.0%4%95This time the highest accuracy was achiesaguhe
deep features of the ResNet-50 architecture. Runite, the quadratic kernel SVM constructed usigée deep
features ranked the first accuracy which was 95cé¥apared to the other kernels. The sensitivitycifipey,
and MCC of the quadratic SVM in this case, were56.996.6%), 0.921 (92.1%), 0.89 (89.0%), respeltive

Moreover, the AUC calculated from the ROC curve @#&9 (99.0%) as shown in Fig. 8.

35 T
& Benign
= ®  Malignant

Sixth Feature
.
.

Fifth Feature

Fig. 12. The fifth feature values versus the sifgature values for the first 10 samples of CBIS-DD®nages and their rotated
versions for the ResNet-18 DCNN architecture fesgur
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@ (b) (©
Fig. 13. Visualizing the deep features for the fineed AlexNet DCNN architecture; (a) Malignant Rm the CBIS-DDSM dataset,
(b) the activation features from the first convimotl layer, and (c) the activation features fréma second convolutional layer.

(@ (b) (c)
Fig.14. Visualizing the deep features for the fineed GoogleNet DCNN architecture; (a) Malignaf®IRrom the CBIS-DDSM
dataset, (b) the activation features from the &icstvolutional layer, and (c) the activation featifrom the second convolutional layer.

@ (b) (©
Fig. 15. Visualizing the deep features for theeftuned ResNet-18 DCNN architecture; (a) Benignl R@m the CBIS-DDSM
dataset, (b) the activation features from the &icstvolutional layer, and (c) the activation featifrom the second convolutional layer.

@) (b) (©
Fig. 16. Visualizing the deep features for the fineed ResNet-50 DCNN architectuta) Benign ROI from the CBIS-DDSM dataset,
(b) the activation features from the first convimotl layer, and (c) the activation features fréma second convolutional layer.
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@ (b) ©

Fig. 17. Visualizing the deep features for the fineed ResNet-101 DCNN architecture; (a) Benign ROIn the CBIS-DDSM
dataset, (b) the activation features from the @icstvolutional layer, and (c) the activation featufrom the second convolutional layer.

5.3 Experiment (3)

This experiment was conducted to determine if coinlgi deep features would enhance the performance of
the SVM classifiers, four feature sets represendiffigrent combinations of deep features were pcedu To
generate these sets, the classification accurpcieiiced in experiment (1) were used as a rankiaethod to
order the deep features extracted from each DCNNiegscending order. Subsequently, this ranking was
employed in sequential forward feature set seledtividentify the best combination of deep featufew the
CBIS-DDSM dataset, the first set includes the disgtures of AlexNet and GoogleNet, which have the t
highest accuracies compared to the other netwarks Bable 5. Feature set (2) represents the feattr(1) plus
deep features of ResNet-18. Feature set (3) isrdioation of feature set (2) and deep featuresesNet-101.
Additionally, feature set (4) consists of featuet (8) and features of ResNet-50. These featusevemte added
sequentially to construct the model. Fig. 5 shdwes tncreasing the number of deep features willeiase the
classification accuracy of the SVM classifiers. tiea set (4) had improved the accuracy to reac@987using
the quadratic and cubic kernels. This was highan tihne 93.7% of the linear SVM classifier considctising
only the deep features of ResNet-18 in experin@nfliable VIl also indicated that the sensitivitydaspecificity
were both equal to 0.98 (98.0%), which were highan those achieved experiment (2). Additionaliyg AUC
increased to 1.00 (100.0%) as shown in the ROCecur¥ig. 6. Furthermore, the MCC yielded to 0.96.0%)

for both SVM kernels.

Conversely, for the MIAS dataset, the first setudes the deep features of GoogleNet and ResNethith
have the highest two accuracies compared to thex aitworks as in Table 8. Then, the deep featfrBesNet-
18 were added to the feature set (1) creating wrfeaet (2). Then feature set (3) was created fasian of
feature set (2) and the deep features of ResNetHidally, feature set (4) consisted of feature (8tplus
AlexNet deep features. Fig. 9 reveals that feaetg3) had the highest classification accuracy%? using the

quadratic kernel SVM classifier. This was highesirththe 95.4% accuracy achieved using the deeprésatif
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ResNet-50 only in the second experiment. Furthegmibre sensitivity, the specificity, and MCC inged to
0.987 (98.7%), 0.949 (94.9%), and 0.938 (93.8%gpeetively, which were higher than 0.966 (96.6%:92Q
(92.1%), and 0.89 (89.0%) achieved in experimeht A@ditionally, the AUC increased from 0.99 (99.)0%6

1.00 (100.0%) as clear in Fig. 10.

5.4 Experiment (4)

PCA was applied in this experiment in order to c=dthe large feature space of the feature setsajeddn
the third experiment. In order to select the nurdfeprincipal components that achieve the highestiaacy, a
sequential forward strategy was used. It starteth WD principal components and added the components
iteratively. For the CBIS-DDSM dataset, when redgcihe features of sets (1) and (2) the accuraemshed
93.6% and 96.5% with 300 principal components oklgwever, for feature sets (3) and (4), the accesac
became 97.4% and 97.8% with 400 principal companenly. Therefore, the highest classification aacwyrin
this experiment was achieved using feature seagdghown in Fig. 7. Moreover, the execution timetfaining

decreased from 287.48 s to 57.85 s.

Whereas for the MIAS dataset, when the PCA methasl applied to feature sets (1) and (2) the ac@saci
yielded to 94.7% and 95.3%, respectively. This agseved using 150 principal components. Furtheenthe
accuracies of feature sets (3) and (4) became 9&6&Y85.2% with 200 principal components. Thus hilgaest
accuracy achieved for the MIAS dataset in this ermnt was for feature set (3) as shown in Fig. 11.

Additionally, the operating time decreased fron7ZGCs to 1.97 s when applying PCA on the featuré3et

To validate the statistical significance of theutes obtained in all experiments, an ANOVA test was
performed on all the results by a five-fold crosdidation repetition method. The null hypothesis tdo all
classification was that the mean accuracies oB5¥IM kernel classifiers were the same. Tables 15 -and
Tables 17 — 21 show the ANOVA test for the deepuies of the five DCNN architectures constructedhia
second experiment for the CBIS-DDSM and MIAS datgseespectively. In the third experiment, since th
highest accuracy was achieved using feature searid)feature set (3) for the CBIS-DDSM and the MIAS
datasets, therefore, the ANOVA test was computetthdése sets. Tables 22 and 23 show the ANOVA test f
feature set (4) and feature set (3) performedaérthird experiment for the CBIS-DDSM and the MIA&takets,
respectively. From these tables, it was revealad ttie p-values achieved were lower thamwherea = 0.05.
Consequently, it can be concluded that there wstatéstically significant difference between thewacies of

the classifiers.
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Table 12. ANOVA test details for the different kekfunctions of the SVM classifier for the deeptéeas of AlexNet DCNN for the

CBIS-DDSM dataset.

Columns 0.00298 4 0.00074 532.99 <0.001
Error 0.00006 45 0
Total 0.00304 49

Table 13. ANOVA test details for the different kelfunctions of the SVM classifier for the deeptteas of GoogleNet DCNN for

the CBIS-DDSM dataset.

Columns 0.00267 4 0.00067 100.86| <0.001
Error 0.0003 45 0.00001
Total 0.00296 49

Table 14. ANOVA test details for the different kekiflunctions of the SVM classifier for the deeptéeas of ResNet-18 DCNN for

the CBIS-DDSM dataset.

Columns 0.00037 4 9.33 x10 68.29 <0.001
Error 0.00006 45 1.3667 x 10
Total 0.00043 49

Table 15. ANOVA test details for the different keffunctions of the SVM classifier for the deeptteas of ResNet-50 DCNN for

the CBIS-DDSM dataset.

Table 16. ANOVA test details for the different kerfunctions of the SVM classifier for the deeptéeas of ResNet-101 DCNN for

Columns 0.00605 4 0.00151 60.45 < 0.001
Error 0.00113 45 0.00003
Total 0.00717 49

the CBIS-DDSM dataset.

Table 17. ANOVA test details for the different kelfunctions of the SVM classifier for the deeptéeas of AlexNet DCNN for the

MIAS dataset.

Columns 0.00173 4 0.00043 120.51 <0.001
Error 0.00016 45 0
Total 0.00189 49

Columns 0.04284 4 0.01071 509.95 <0.001
Error 0.00095 45 0.00002
Total 0.04379 49

Table 18. ANOVA test details for the different ketfunctions of the SVM classifier for the deeptteas of GoogleNet DCNN for

the MIAS dataset.

Columns 0.02842 4 0.00711 241.34 < 0.001
Error 0.00132 45 0.00003
Total 0.02975 49
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Table 19. ANOVA test details for the different kelfunctions of the SVM classifier for the deeptteas of ResNet-18 DCNN for
the MIAS dataset.

Table 20. ANOVA test details for the different kelfunctions of the SVM classifier for the deeptieas of ResNet-50 DCNN for
the MIAS dataset.

Table 21. ANOVA test details for the different kekfunctions of the SVM classifier for the deeptteas of ResNet-101 DCNN for
the MIAS dataset.

Table 22. ANOVA test details for the different kelfunctions of the SVM classifier for the featset (4) in experiment (3) for the
CBIS-DDSM dataset.

Table 23. ANOVA test details for the different kelfunctions of the SVM classifier for the featset (3) in experiment (3) for the

MIAS dataset.

Jource ot ss df MS F p-Value
Columns 0.15896 4 0.03974 11332.57 <0.001
Error 0.00016 45 0
Total 0.15912 49

Sour ce of
Variation SS df MS F p-Value
Columns 0.18644 4 0.04661 16208.71 < 0.001
Error 0.00013 45 0
Total 0.18657 49

Sour ce of
Y SS df MS F p-Value
Columns 0.15574 4 0.03894 8375.22 < 0.001
Error 0.00021 45 0
Total 0.15595 49

Sour ce of
Variation SS df MS F p-Value
Columns 0.00795 4 0.00199 99391 < 0.001
Error 0 45 0
Total 0.00795 49

Sour ce of ss df MS F p-Value
Variation
Columns 0.23117 4 0.05779 9.3699 *¢10 <0.001
Error 0 45 0
Total 0.23117 49

Finally, the proposed CAD system has been compaittdthe applicable state-of-the-art CAD systems to
prove the efficiency of the proposed method as shmwTable 11. The results reveal that the propdsad
system has outperformed other CAD systems. Regattim CBIS-DDSM dataset, the results have shown tha
the proposed CAD system recorded a slightly highassification accuracy and AUC compared to Kharalet
[30]. This was obvious as Khan et. al [30] achie9édb% for accuracy and 0.934 (93.4%) for AUC. Hoeve
Khan et. al [30] fused the deep features of VGGM®BG-19, GoogleNet, and ResNet-50 DCNN. Moreower, i
was found that the accuracy increased comparedet@AD system proposed by Ragab et al. [27]. Maggov
recently, in 2020, Zhang et al. [81] fused somedceafted features with deep features and clasdifieth using
several classifiers. However, the accuracy wasiidhan that achieved by feature set (4) generaidhe fourth

experiment by 6.99%. Whereas for the MIAS dataketaccuracy achieved was higher than that in Heesal.
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[23] and Tan et al. [24] as well. This was clearttses highest classification accuracy and AUC addewere

97.4% and 0.99 (99%).

On the other hand, when comparing the usage dardiit DCNN architectures, it was obvious that t@es
achieved by the proposed experiments were highedlslw 2017, Jiang et al. [25] and Zhang et a2] [&hieved
an AUC of 0.83 (83%) and 0.8 (80%), respectivelingsthe AlexNet DCNN. However, they evaluated the
approaches on different datasets BCDR-03 and DD&gpectively. Moreover, Jiang et al. [25] used the
GoogleNet DCNN to achieve a better AUC comparedsiog AlexNet although, it was still lower than tthod
the proposed CAD system. Moreover, in 2020, Songl.ef33] extracted and classified the deep featawie
GoogleNet and Inception-v2 using XGBoost classifiehieving an accuracy of 92.8%. Besides, there avas
slight difference between the accuracy achievatigproposed CAD system and with the work offasgdhan
et al. [31]. They fused the deep features of VGG@o@eNet, and ResNet DCNN. However, Khan et al] [31

applied their experiments on microscopic samples.

6 Conclusions

The accurate and early diagnosis of breast casessential to control the progression of tumotsraduce
death rates. Therefore, in this paper, an efficaamt accurate solution to diagnose breast cangamojsosed.
Radiologists cannot easily provide accurate marmaluation due to the huge number of mammograms
generated in widespread screening. Therefore, a €fdlem has been developed to detect the indicafors

breast cancer and improve the accuracy of diagnosis

In this paper, a novel CAD system is proposed ficgg different deep feature combinations and chdbe
one, which best improves the classification acqurdn addition, it studies the process of reducihe
computational cost of classification. This was perfed by constructing four different experimentd emaluated
on two datasets. The first experiment was compadedonstructing five end-to-end pre-trained finedd
DCNN networks of different architectures. Thesemoeks included AlexNet, GoogleNet, ResNet-18, 5 a
101. In order to increase and enhance the claaifitaccuracy of the first experiment, a secombarment was
created. The second experiment was constructedtbgcing the deep features of the DCNNs constduate
experiment (1). These deep features were used atelyato design SVM classifiers with different kefn
functions. The results showed that the classificaticcuracies in experiment (2) were higher tharsehof
experiment (1). The third experiment was devisetksd if combining deep features would enhanceatioeiracy
of the SVM classifiers. In this experiment, the wecy achieved in experiment (1) was used to rasdpd

features in descending order. Consequently, fatufe sets were generated using this ranking. Tieesdare sets
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were used to train the SVM classifiers. The ressittswed that combining more deep features incretised
performance of the SVM classifiers in both datasélss demonstrated that the feature fusion for onéwo
views using feature set (4) for the CBIS-DDSM detasd feature set (3) for the MIAS dataset hadawgd the

accuracy to reach 97.9% and 97.4%, respectively.

Finally, in the fourth experiment, PCA was useaédduce the large dimension of the feature spacdupenl
in experiment three. The results showed that PCA fealuced the feature space to 400 and 200 principa
components for the CBIS-DDSM and the MIAS datasetspectively. In addition, the classification aeies
were the same as in experiment (3). However, thepatational cost decreased when applying PCA to the
feature fusion. This was clear as the executior fion the classification process reduced from 2B88.4b 57.85 s

and from 40.77 s to 1.9794 s for the CBIS-DDSM BHAS datasets, respectively.

The results of the experiments indicated that tiopgsed CAD system is capable of successfully ifjéasg
breast cancer lesions. This is because the higitestacy achieved was 97.9% and 97.4% using thenfuas
deep features for CBIS-DDSM and MIAS datasets,aetbely. However, the highest AUC for the CBIS-DDS
and MIAS datasets was 1.00 (100%) using the fusfodeep features as well. These results were hitiaa

other techniques that appeared in the literature.

This study is a crucial trial compromising a simptmstruct, low cost, efficient, and automatic C&fstem.
It has been demonstrated that it can achieve a &igliracy by determining the optimal fusion of et
DCNNs and PCA. DCNN methods. The results demoresttedt it is more capable of distinguishing betwee
cancerous and non-cancerous cases than manuabsigdpy mammogram images. Radiologists may use this
CAD system to assist them in accurately diagnobiegst cancer. It will also reduce the time andrefiluring

the examination process and reduce human misdiesghas could occur due to human fatigue.

New DCNN architectures are emerging at regulariaie and will be investigated in future work. Mover,
other types of feature extraction techniques cbeldombined with deep features. In addition, adtéve feature

reduction techniques such as linear discriminaatyars (LDA) could be investigated.
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