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Abstract
In Hyperspectral Imaging (HSI), the detrimental influence of noise and distortions on data
quality is profound, which has severely affected the following‐on analytics and decision‐
making such as land mapping. This study presents an innovative framework for assessing
HSI band quality and reconstructing the low‐quality bands, based on the Prophetmodel. By
introducing a comprehensive quality metric to start, the authors approach factors in both
spatial and spectral characteristics across local and global scales. This metric effectively
captures the intricate noise and distortions inherent in the HSI data. Subsequently, the
authors employ the Prophet model to forecast information within the low‐quality bands,
leveraging insights from neighbouring high‐quality bands. To validate the effectiveness of
the authors’ proposedmodel, extensive experiments on three publicly available uncorrected
datasets are conducted. In a head‐to‐head comparison, the framework against six state‐of‐
the‐art band reconstruction algorithms including three spectral methods, two spatial‐
spectral methods and one deep learning method is benchmarked. The authors’ experi-
ments also delve into strategies for band selection based on quality metrics and the quality
evaluation of the reconstructed bands. In addition, the authors assess the classification
accuracy utilising these reconstructed bands. In various experiments, the results consistently
affirm the efficacy of the authors’ method in HSI quality assessment and band recon-
struction. Notably, the authors’ approach obviates the need for manually prefiltering of
noisy bands. This comprehensive framework holds promise in addressing HSI data quality
concerns whilst enhancing the overall utility of HSI.
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1 | INTRODUCTION

The rapid development of hyperspectral imaging (HSI) tech-
nology has garnered significant attention in various fields due
to its ability to capture and provide an extensive range of
spectral information across the electromagnetic spectrum [1].
This allows for detailed and accurate characterisation and
analysis of materials and objects, leading to increasing appli-
cations, such as non‐destructive measurement [2], data classi-
fication [3, 4] and change detection [5].

Due to the limitations of the atmospheric condition, sensor
noise, and other environmental factors, certain bands in
hyperspectral imaging (HSI) data may exhibit lower quality

compared to others, such as the water absorption bands [6, 7].
These bands are susceptible to noise interference, signal
distortion, and reduced sensitivity, compromising the accuracy
and reliability of subsequent image analysis and processing
tasks. In recent years, the field of natural image quality
assessment has witnessed significant advancements. For
example, the LIVE (LIVE Image and Video Quality Evalua-
tion database) dataset, encompasses a diverse range of dis-
torted images, each assigned subjective quality scores by
professional human evaluators [8]. Moreover, numerous image
quality metrics have been developed to evaluate various types
of noise and distortions. These metrics include the Natural
Image Quality Evaluator (NIQE) [9], the Perception‐based
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Image Quality Evaluator (PIQUE) [10], structural similarity
(SSIM) [11], and Peak Signal‐to‐Noise Ratio (PSNR) [12].
However, in HSI, there is still a lack of specific human eval-
uators for the quality evaluation of individual bands. This
presents a unique challenge in terms of data preprocessing.

Although some quality metrics are proposed for band‐
based individual images, they are mainly used in band selec-
tion and feature extraction in HSI. For example, Luo et al. [13]
proposed an importance‐assisted column subset selection
(iCSBS) that uses an active gradient‐reference index to evaluate
the quality of each band and select the high‐quality bands for
further hyperspectral imaging. Cao et al. [14] introduced an
objective image quality assessment combining the structural
similarity index (SSIM) and mutual information to select the
optimal band subset from the original hyperspectral data. Sun
et al. [15] proposed a new HSI quality measuring index using
noise‐adjusted principal components and the Maximum
Determinant of Covariance Matrix (MDCM) to find the bands
with high signal‐to‐noise ratios (SNRs) and low correlation.
Most studies focus on selecting the discriminative bands and
only use them for further data analysis, discarding the rest of
the bands. However, this results in the outright forfeiture of a
substantial portion of spectral data. Recent research has un-
veiled the untapped potential and valuable information
embedded within the water absorption bands [16, 17]. Besides,
it is validated that these water absorption bands still contain
useful information for data classification [6].

Tomitigate the noise in low‐quality bands of HSI, numerous
researchers have devised sophisticated methodologies. For
instance, Sun et al. [18] introduced an innovative technique called
Fast Superpixel‐based Subspace Low Rank Learning (FS2LRL)
to solve the augmented Lagrangian method. After decomposing
the initial HSI into two lower‐rank sub‐matrices, this method
enforced the nuclear norm within superpixel‐based regions to
leverage the inherent spatial low‐rank characteristics locally. Fan
et al. [19] introduced an innovative denoising technique for HSI
known as superpixel segmentation and low‐rank representation
(SS‐LRR). Rather than using square patch as the conventional
approach, thismethod opted for adaptive homogeneous regions.
It subsequently applied the LRR to each of these homogeneous
regions to effectively eliminate various types of noise
simultaneously.

In recent years, deep learning methods have exhibited
remarkable performance across various image restoration
tasks. Sidorov et al. [20] proposed an effective single‐HSI
restoration algorithm, harnessing the intrinsic capabilities of
a two‐dimensional Convolutional Neural Network (CNN)
(denoted as Deep‐HS‐prior 2D) without the necessity for
training. Shi et al. [20] introduced a unique dual‐attention HSI
denoising network featuring separate branches for extracting
spatial and spectral features, where a position attention module
was employed for determining interdependencies within the
feature map and a channel attention module for simulating
spectral correlations. Additionally, a multiscale structure is then
used to merge multiscale spatial and spectral features. Cao et al.
[21] developed a deep spatial‐spectral global reasoning network
to consider both the local and global information for HSI

noise removal. This new network can extract representations
from new dimensions and help tackle complex noise by
exploiting multiple representations.

These advanced HSI denoising methods leverage spectral,
spatial, or high‐level features to proficiently eliminate various
types of noise. However, a significant limitation is that most of
these methods are designed to introduce different specific
types of simulated noises solely onto corrected HSI datasets
(after pre‐filtering the water absorption bands). In real sce-
narios, it is challenging to discern various noise categories,
particularly within the water absorption bands in HSI,
regardless the extra efforts that are needed for denoising
before the reconstruction of the HSI.

For image reconstruction from noisy images, a number of
models have been proposed. Some methods use the infor-
mation from high‐quality regions to fill in areas with lower
quality, assuming similar statistical and geometrical structures
within the neighbouring regions [22–25]. Additionally, auxiliary
data was utilised to aid the image reconstruction, capitalising
on the high correlation present among images [26, 27]. These
studies have demonstrated promising results in reconstructing
data for various satellite images. However, there remains a
scarcity of research specifically targeting the reconstruction of
low‐quality bands within HSI.

In addition to the conventional approaches such as the
Moving Average (MA) [28], Median Filtering (MF) [29] and
Autoregressive Integrated Moving Average (ARIMA) [30],
many signal processing tools have been utilised recently for
data analysis, prediction and reconstruction, including Singular
Spectrum Analysis (SSA) [31, 32], Long Short‐Term Memory
(LSTM) [33], Empirical Mode Decomposition (EMD) [34],
and the Prophet model [6]. Herein, SSA, LSTM, EMD and
Prophet have been successfully applied in HSI with validated
efficacy in various tasks, such as feature extraction and classi-
fication even without prefiltering noisy water absorption bands
[35]. As a recently developed forecasting tool by Facebook, the
Prophet model has demonstrated its efficiency in analysing
data as it can decompose data into several components, and
further explore the different portions. Notably, the Prophet
model can learn the trends and patterns from the observed
data, making it robust and effective for the datasets with gaps,
missing observations, and highly noisy data. HSI is charac-
terised by sequential data in the spectral domain [18],
encompassing intricate non‐linear scattering noise and poten-
tial data gaps. Given these challenges, we are motivated to
harness the capabilities of the Prophet model within the HSI
context. Our objective is to leverage the Prophet model to
reconstruct low‐quality spectral bands using insights extracted
from high‐quality band images.

In this paper, we introduce a novel quality metric and band
reconstruction method for HSI. Leveraging the Prophet
model’s exceptional ability to capture patterns from neigh-
bouring bands, we achieve an effective reconstruction of low‐
quality bands, enabling the simulation of gradual transitions
between bands. Our goal is to develop a comprehensive quality
metric to model the complex noises in HSI and to facilitate the
reconstruction of the discriminative features in low‐quality

2 - MA ET AL.



bands. The major contributions of this study are summarised
as follows:

(1) The proposed quality metric takes into account spatial
features on both local and global scales, as well as spectral
features across neighbouring bands and the entire band
spectrum. This enables it to effectively model complex
noise and distortions present in HSI data.

(2) Notably, this work marks the first application of the
Prophet model for band reconstruction in HSIs. The
Prophet model adaptively predicts missing bands by
leveraging the characteristics of neighbouring bands. These
reconstructed bands prove highly beneficial for enhancing
data analysis and facilitating HSI classification tasks.

(3) Combining the quality metric and the image reconstruc-
tion process, our proposed framework demonstrates its
effectiveness in automating the preprocessing of HSI data.

This paper is structured as follows. Section 2 provides an
introduction to the research background. In Section 3, we
present a detailed description of the proposed framework.
Section 4 covers the design of experiments, including infor-
mation about the testing datasets, benchmarking methods and
parameter settings. In Section 5, we present the experimental
results and analysis. Finally, some concluding remarks are
drawn in Section 6.

2 | BACKGROUND

2.1 | Concept and algorithm of the prophet
model

Time series forecasting is a critical task in numerous domains,
and the Prophet model [36], which is designed by Facebook,
has emerged as a powerful tool for the analysis of time series
data. Prophet has the ability of flexibility and accuracy when
processing various time series data. The Prophet model can
decompose the input data into several distinct components,
each responsible for capturing specific aspects of the under-
lying patterns. As illustrated in Eq. (1), these components
include the trend g(t), seasonality S(t), and holiday effects f(t),
and they are integrated into the model to provide a holistic
understanding of the time series.

yðtÞ ¼ gðtÞ þ SðtÞ þ f ðtÞ þ εt ð1Þ

where εt denotes an error term.
Trend modelling in the Prophet model is a vital component

for capturing long‐term patterns and changes in time series data.
Prophet employs a piecewise linear approach, enabling it to
handle intricate non‐linear trends. The foundation for modelling
the trend is the logistic growth function as shown below:

gðtÞ ¼ 1= 1þ e� kðt� cÞ
� �

ð2Þ

where k determines the steepness of the trend growth, that is,
the rate and c is an offset factor. In the Prophet model, we
configure D changepoints across the entire time period t. At
each changepoint, the growth rate is changed with δd (δ 2 RS),
which is calculated using a Laplace distribution: δd ~ Laplace
(τ). Consequently, the growth rate at any changepoint is
calculated by adding the rate adjustment to the previous
growth rate.

kd ¼ kd� 1 þ δd ð3Þ

Seasonality modelling is another integral aspect of the
Prophet model. It aims to capture the recurring patterns and
periodic fluctuations within the time series data. Seasonality is
often decomposed into yearly, weekly, and daily components
using Fourier series. The seasonality model can be defined as
follows:

SðtÞ ¼ cos
2πð1Þt
P

� �

;…; sin
2πðLÞt
P

� �� �

E ð4Þ

where p denotes the period, such as the yearly or weekly cycle.
The parameter E is computed using Normal (0,σ2). The
parameter L determines the fitting performance of seasonality.

The Prophet model allows for the incorporation of holiday
effects, enabling users to account for the impact of specific
dates or periods on the time series. Holiday effects are intro-
duced using binary indicators, indicating whether a date falls
within a holiday period or not. These binary indicators take on
a value of one if a particular date corresponds to a holiday and
0 otherwise. By including holiday effects in the model,
Prophet allows for the explicit consideration of the unique
characteristics associated with holidays, which may lead to
deviations from regular time series patterns.

f ðtÞ ¼ V ðtÞκ ð5Þ

where V(t) is the binary indicator and κ is the magnitude of the
effects caused by holiday events, where κ~Normal (0,γ2).

2.2 | Non‐reference image quality evaluator

Various methods assess image quality categorised as Full
Reference, Reduced Reference, and No Reference. No Refer-
ence method can assess quality without any reference image
[37]. Full and Reduced Reference methods are limited by the
requirement for a perfect reference image, making No Refer-
ence methods more practical in real‐world scenarios.

2.2.1 | Blind/referenceless image spatial quality
evaluator

The Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [37] is an exceptionally competitive No Reference
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image quality assessment model. Given a grey image I (i,j), the
mean subtracted contrast normalised (MSCN) image Î ði; jÞ is
first calculated as follows:

Î ði; jÞ ¼
Iði; jÞ � μði; jÞ

σði; jÞ þ 1
ð6Þ

where i = 1,…,H and j = 1,…,W denote the spatial indices of
an image. H and W are the image height and width, respec-
tively. μ(i,j) and σ(i,j) are the local mean and standard deviation
calculated as follows:

μði; jÞ ¼
XM

m¼� M

XN

n¼� N
ωðm; nÞIðiþm; j þ nÞ ð7Þ

σði; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XM

m¼� M

XN

n¼� N
ωðm; nÞ½Iðiþm; j þ nÞ � μði; jÞ�2

v
u
u
t

ð8Þ

where ω = {ω(m,n)|m = � M,…,M,n = � N,…,N} is a 2‐
dimension circularly symmetric Gaussian weighting function,
sampled within 3 standard deviations (M = N = 3), and then
scaled to unit volume.

In BRISQUE, the MSCN coefficients display varying
behaviour with different distortions. To capture this diversity,
these coefficients are modelled using a Generalised Gaussian
Distribution (GGD), characterised by two key parameters:
variance and shape of the distribution [38]. The adjacent pixels
usually show homogeneity in the pristine image, disrupted in
distorted images. Pairwise products of MSCN coefficients of
neighbouring pixels are computed along horizontal, vertical,
and diagonal orientations to capture this disruption:
Î ði; jÞÎ ði þ 1; jÞ, Î ði; jÞÎ ði; j þ 1Þ, Î ði; jÞÎ ði þ 1; j þ 1Þ, and
Î ði; jÞÎ ðiþ 1; j � 1Þ then fitted in an Asymmetric Generalised
Gaussian Distribution (AGGD) [39]. AGGD is characterised
by four parameters: mean value, shape of the distribution, left‐
scale and right‐scale parameter.

By extracting two parameters from the GGD and four
parameters from the AGGD across four orientations, a total of
18 features are generated. Another 18 features are computed
on a downsampled image (by a factor of 2), totalling 36 fea-
tures to capture multiscale information. A Support Vector
Machine Regressor (SVR) [40] is used to map these features
into quality scores. The SVR is trained using both pristine
reference images and distorted images with five types of dis-
tortions, each associated with a quality score. The LIBSVM
package [41] served as a tool for implementing the Radial Basis
Function (RBF) kernel SVR.

2.2.2 | Natural Image Quality Evaluator

The Natural Image Quality Evaluator (NIQE) is another
competitive No‐reference image quality index [9]. Different

from BRISQUE, NIQE is not constrained by any distortion
type.

First, the MSCN image Î ði; jÞ is calculated following the
same procedure in Eqs.(6)–(8) of BRISQUE. Then, the image
is partitioned into square patches. Let these patches be indexed
b = 1,2,…,B, the local sharpness β in the bth patch is
computed as follows:

βb ¼
X X

ði;jÞ2patch b

σði; jÞ ð9Þ

In NIQE, patches with β > TS are chosen, where TS is set
as a fraction ρ (ρ = 0.75) of the peak patch sharpness across
the image. Following that, 36 features are extracted from each
selected patch using GGD and AGGD, akin to the process in
BRISQUE and subsequently modelled using the multivariate
Gaussian (MVG) model.

Finally, for a test image, its quality is assessed by comparing
its MVG fit to that of a set of pristine natural images,
measuring the distance between the two.

QNi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μna � μteð Þ
T Σna þ Σte

2

� �� 1

μna � μteð Þ

 !v
u
u
t ð10Þ

where QNi is the NIQE quality score of a test image, and μna,
μte and Σna,Σte denote the mean and covariance of the MVG
for natural images and test image, respectively.

2.2.3 | Perception‐based Image QUality
Evaluator

The Perception‐based Image Quality Evaluator (PIQUE) [10]
is designed to estimate distortion exclusively within spatially
prominent regions and at the local block level.

First, the MSCN coefficient Î ði; jÞ is calculated and then
divided into non‐overlapping 16 � 16‐sized blocks. These
blocks are labelled as either Uniform (U) block or Non‐
uniform (NU) block as follows:

Blockb ¼
U νb < TU
NU νb � TU

�

ð11Þ

where νb is the variance of the bth block, b = 1,…,B. B is the
total number of blocks. The threshold TU is set to 10%.

Each edge of the NU blocks is segmented into 11 parts. A
NU block is considered to exhibit noticeable distortion if any
of its segments meets the following equation:

σpq < TSTD ð12Þ

where σpq is the standard deviation of the qth (where q 2 1,2,
…,11) segment in pth (where p 2 1,2,3,4) edge. TSTD is the
threshold value, which is set to 10%.
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Each NU block is also divided into two segments: the
central and the surrounding segments. A block is considered
affected by white noise if it meets the following criterion:

σb > 2�

�
�
�
�
σcen
σsur � σb

�
�
�
�

max σcen
σsur ; σb
� � ð13Þ

where σcen is the standard deviation of the central segment and
σsur is the standard deviation of the surrounding segment. σb
signifies the standard deviation of Blockb.

The PIQUE quality score QPi of an image is calculated as
follows:

QPi ¼

PBN
b¼1θb

� �
þ 1

BN þ 1
ð14Þ

where BN is the total number of NU blocks. θb quantifies the
distortion in the bth NU block, which is computed as follows:

θb ¼
1 if ð12Þandð13Þ
νb if ð13Þ
1 � νb if ð12Þ

8
<

:
ð15Þ

3 | THE PROPOSED APPROACH

The flowchart of the proposed approach is depicted in
Figure 1, which has two main stages, that is, quality evaluation
of HSI bands and band image reconstruction, as detailed in
Figure 1.

3.1 | Quality evaluation for HSI bands

Different from the natural images, the noise in HSI data ex-
hibits high spectral and spatial correlation, high dimensionality,
randomness, and multiple sources of noise [35]. Therefore, it is
difficult to distinguish the distortion categories in a band im-
age. In this paper, a novel multi‐scale and spectral‐spatial image
quality evaluator is proposed to comprehensively assess each
band image in HSI. For a given HSI cube I 2 RH�W�D (where
H,W, and D are the number of rows, columns and bands), the
quality score of the dth band is calculated as follows:

Qd ¼ 1 � ðQBrd þQ
Ni
d þQ

Pi
d þQ

Su
d þQ

PCA
d
�

ð16Þ

where QBrd is the BRISQUE score, QNid is the NIQE score and
QPid is the PIQUE score. QSud stands for the superpixelwise
quality score derived using the superpixel technique [6]. QPCAd
is extracted using the principal component analysis (PCA) [35]
method, namely PCA loading quality evaluator in this study.

3.1.1 | No Reference Natural Image Quality
Evaluator

The BRISQUE can evaluate band image quality in multiscale,
which is particularly effective in capturing distortion categories
in HSI band image including JPEG2000, JPEG, Gaussian blur,
white noise, and a Rayleigh fast‐fading channel simulation [37,
42]. For the dth band image Id, its BRISQUE quality score QBrd
is calculated in multiscale with Id and its downsampled image
by half I 0d . The obtained 36 spatial features are mapped by SVR
to the quality score.

F I GURE 1 The flowchart of the proposed method.
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NIQE can assess local distortions of each band image
using block level spatial features. It offers the advantage of not
being constrained by predefined categories of distortions [9],
making it a versatile choice for evaluating the complicated
distortions in HSI. Specifically, for a band image Id, its MSCN
is calculated and then partitioned into square blocks to extract
the block level 36 spatial features. These features are fitted into
an MVG model. The NIQE quality score QNid is finally
computed as follows:

QNid ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μna � μId
� �T Σna þ ΣId

2

� �� 1

μna � μId
� �

 !v
u
u
t

ð17Þ

where μna; μId and Σna;ΣId represent the mean and covariance
values of the MVG for natural images and the dth band image
of HSI, respectively.

PIQUE can conduct a detailed spatial analysis of various
sections and edges at the block level within HSI. For each band
image, the block level distortion is estimated. The PIQUE
quality score QPid is calculated based on Eqs. (14–15).

3.1.2 | PCA loading quality evaluator

QPCA is proposed here as a quality evaluator by using the
spectral information among the whole bands of HSI. PCA
aims to discern the principal directions of variability inherent in
the data and then project it from its original high‐dimensional
spectral space into a reduced‐dimensional principal component
space. These principal components contain the major features
and patterns in the HSI dataset.

In the HSI cube, I denotes the xp = [xp1,xp2, …,xpD] as one
pixel vector in the cube (where p 2 [1,H � W]). Then, xp is
transformed as a mean‐adjusted vector zp as follows:

zp ¼ x p �
1

H �W

XH�W

p¼1
x p ð18Þ

In order to identify the primary directions of variation
within the data, the covariance matrix C is calculated:

C ¼ E x p � E x p
� �� �

x p � E x p
� �� �T

n o
¼ E zpzp

T� �

ð19Þ

where E{∙} represents the mathematical expectation.
The matrix C can be presented as the multiplication of

three matrices as follows:

C ¼ AFAT ð20Þ

where F = diag (λ1,λ2,…,λD) denotes the diagonal matrix
composed by the eigen values of C, and A is the orthonormal

matrix composed by the corresponding eigen vectors [α1,α2,
…,αD].

The uncorrelated vector rp is finally derived through a
linear transformation of the original pixel vector zp.

r p ¼ ATzp ¼

α11 α12 …: α1D

α21 α22 ⋯ α2D

⋮ ⋱ ⋮
αD1 αD2 ⋯ αDD

2

6
6
6
4

3

7
7
7
5

D�D

zp1
zp2
⋮
zpD

2

6
6
6
4

3

7
7
7
5

D�1

ð21Þ

It is validated that the first principal component represents
the predominant direction in the data, encapsulating the
maximum variance within the dataset. The first principal
component rp1 is presented as follows:

rp1 ¼ α11 α12 …: α1d …: α1D½ �1�D

2

6
4

zp1

zp2

⋮

zpD

3

7
7
7
7
5

D�1

ð22Þ

where α1d is also the loading factor, the weight of the original
pixel vector to construct the principal component.

The loading factors describe the contributions of different
bands in HSI to form the first component. Thus, the larger the
value of α1d, the greater the influence of the dth band hold on
HSI data’s structure and interpretation. In this paper, the
loading factor value is used as another band image quality
evaluator as follows:

QPCAd ¼ α1d ð23Þ

3.1.3 | Superpixelwise quality evaluator

NIQE and PIQUE make use of local block‐level information
in an image with a fixed window size. However, these blocks
can often encompass pixels from various categories and edge
regions, resulting in a significant variance within a block. This
can have an impact on the accuracy of quality assessment on
HSI with complicated scenes. In real‐world scenarios, regions
of interest are often characterised by irregular shapes and
varying sizes [43]. Consequently, the statistical analysis of band
image data at the block level should be tailored to the unique
structures present in the image. In pursuit of this objective, this
paper employs a superpixel technique [6] to delineate local
homogeneous regions of differing sizes and shapes. In such a
scheme, smoother areas tend to yield larger superpixels, while
superpixels originating from more heterogeneous regions tend
to be notably smaller. To be specific, the simple linear iterative
cluster algorithm (SLIC) [44] is applied to obtain the super-
pixelwise segmentation of the HSI. SLIC is chosen for its
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ability to achieve accurate boundary adherence while main-
taining low computational complexity [45].

For a given HSI, the pseudo‐colour image is firstly derived
by applying PCA and extracting the first three components.
Subsequently, the pseudo‐colour image is transformed from
the RGB colour space to the CIE‐Lab colour space, where
each pixel is represented by a 5‐dimensional vector ϑ[l,m,n,h,
w], comprising colour values (l,m,n), as well as spatial co-
ordinates (h,w). Next, neighbouring pixels are systematically
grouped into distinct clusters, known as superpixels. The
specific process begins by evenly distributing b initial cluster
centres across the image. Then, pixels are clustered within a
square region of size 2R � 2 R, centred around these cluster
centres, based on a homogeneity metric. The cluster centres are
iteratively updated to the mean of the pixels within each cluster
until they no longer shift. This results in the formation of well‐
defined superpixels within the image.

The homogeneity metric φ(i,j) is defined as the combina-
tion of spectral distance and spatial distance to cluster adjacent
pixels with spectral similarity into a single superpixel.

φði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Distspe
� �2

þ
G
R2 Distspa
� �2

r

ð24Þ

where the parameter G is a geometric factor. Distspe and Distspa
are the spectral distance and spatial distance, respectively,
which are calculated as follows:

Distc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lj � li
� �2

þ mj � mi
� �2

þ nj � ni
� �2

q

ð25Þ

Dists ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hj � hi
� �2

þ wj � wi
� �2

q

ð26Þ

Next, the quality of each individual band image in HSI is
assessed at the superpixel level. The location indices of all
pixels within each superpixel are recorded and mapped to all
the spectral bands, resulting in non‐overlapping 3‐D super-
pixels [43]. Here, the standard deviation is utilised, which is
capable of quantifying local image sharpness. For the dth band
image, its superpixelwise quality score QSud is computed as the
average of the standard deviations across all superpixels.

QSud ¼
1
B

XB

b¼1
σb;d ð27Þ

where σb,d is the standard deviation of bth superpixel for the
dth band image.

3.2 | Band image reconstruction via prophet
model

In this section, we initiate the process by identifying low‐
quality bands through a thresholding selection strategy based
on their quality scores, Qd. Specifically, if a band’s quality score
is lower than TQ, then it is selected.

Id 2 QL if Qd < TQ ð28Þ

where QL is the low‐quality bands set. Subsequently, these
identified low‐quality bands are excluded from the HSI dataset
and undergo a reconstruction process using the Prophet model.

From section 2.1, it is clear that the Prophet model em-
ploys a logistic growth curve to capture trends in time series
data, which allows for more complex non‐linear patterns in the
data. It incorporates the direction, the change rate and cur-
vature of trends, which enables it to adaptively adjust the shape
of the trend curve to better fit the data. Based on Eqs. (1–3), it
is evident that the derived trend component, g(t), is not solely
reliant on the isolated observation at a single time point, t.
Instead, it also incorporates information from other time
points. This characteristic imparts a degree of resilience to g(t)
against noise fluctuations and the presence of missing data.
Consequently, the Prophet model holds great potential for the
analysis and processing of the low‐quality band images in the
uncorrected HSI dataset.

The HSI also characterises sequential data, albeit in the
spectral domain [28]. The spectral intensity value of each
pixel changes across multiple contiguous bands. This unique
nature of HSI data motivated us to apply the Prophet model
for the analysis and reconstruction of low‐quality bands. It is
challenging to apply periodic seasonality settings to encap-
sulate the complex, non‐periodic variations in HSI. In this
study, only the trend component is used as recommended in
ref. [6]. Specifically, if Id is recognized as a low‐quality band,
for the ith pixel in Id, the reconstructed intensity value is
computed as follows:

xRi;d ¼ Ci= 1þ e� kd d� cdð Þ
� �

ð29Þ

whereCi denotes the carrying capacity of the ith pixel, adaptively
determined by considering the input spectra. It is defined as the
maximum value observed among all the spectra across different
bands, mathematically represented as Ci ¼ max

d2f1;…;Dg
xRi;d .

To more effectively capture the statistical spectral‐spatial
structures within a HSI across all bands, we designate each
individual band as a changepoint. This approach facilitates
the identification of local spectral transitions between
consecutive bands, aiding in the construction of a band im-
age. Based on Eqs. (1)–(3), kd and cd in an HSI data can be
calculated.

Figure 2 displays the reconstruction results for the low‐
quality bands using the Prophet model. To illustrate the
performance, a single pixel from the Salinas dataset [40] is
focused on. In Figure 2a, we observe that the Prophet model
successfully predicts and restores the removed low‐quality
bands, utilising trend modelling that takes into account in-
formation from neighbouring bands. Figures 2b and c clearly
demonstrate the impressive performance of the Prophet
model in low‐quality band reconstruction. It is evident that
the reconstructed image in Figure 2c exhibits well‐defined
structural and edge details, along with clear and discernible
content.
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4 | EXPERIMENTAL SETTINGS AND
DATASETS DESCRIPTION

In this study, three publicly accessible HSI datasets for per-
formance evaluation are utilised. The datasets and the specifics
of our experimental settings are elaborated below.

4.1 | Description of the datasets

The first dataset employed in our study is the Indian Pines
dataset, obtained through the Airborne Visible/Infrared Im-
aging Spectrometer (AVIRIS) sensor [46]. This dataset hails
from the scenic Indian Pines study region in Northwest
Indiana, USA, featuring a 145 � 145 pixel grid with a spatial
resolution of 20 m per pixel. It encompasses a remarkable 220
spectral bands, spanning wavelengths from 0.4 to 2.5 μm. In
this dataset, there are 20 water absorption bands (104–108,
150–163, and 220). The dataset is characterised by its diversity
of land‐cover classes, numbering 16 in total, with a predomi-
nant focus on various crop types. This diversity makes it a
valuable asset for tasks spanning agricultural monitoring, land‐
use classification, and hyperspectral image analysis.

Our second dataset is the Salinas, acquired again by the
AVIRIS sensor [46]. It was meticulously collected in the

picturesque Salinas Valley, nestled within the scenic landscapes
of California, USA. The dataset unfolds with an expansive
canvas of 512 � 217 pixels, each representing an area of 3.7 m
per pixel. The Salinas dataset features a grand total of 224
spectral bands with 20 water absorption bands (108–112, 154–
167, and 224). Its ground truth map includes 16 distinct land‐
cover classes, including vegetables, bare soils, and vineyard
fields.

4.2 | Experimental settings

The comparison analysis was conducted and benchmarked
with six band denoising and reconstruction methods, including
moving average (MA) [28], median filtering (MF) [29], autor-
egressive integrated moving average (ARIMA) [30], two
dimensional Deep Hyperspectral prior (Deep‐HS‐prior 2D)
[20], superpixel segmentation‐based denoising (SS‐LRR) [19]
and fast superpixel‐based subspace low‐rank learning method
(FS2LRL) [18]. Note that the methods MA, MF, ARIMA and
Prophet are merely based on the spectral information for
reconstruction, while the SS‐LRR, FS2LRL and Deep‐HS‐
prior 2D are spatial‐spectral reconstruction methods. These
comparing methods are used to generate reconstructed images
for the selected low‐quality bands. In MF and MA, to balance
stability and accuracy, the window size is set to 5. In ARIMA,
the number of lag observations, the number of times differ-
encing, and the size of the moving average window are
empirically set to 3, 1, and 1, respectively. In SS‐LRR, the
superpixel number is set to 40 for Indian pines and Salinas
dataset, and 190 for PaviaU dataset. In FS2LRL, the subspace
dimension, superpixel number, sparse parameter and fidelity
parameter are set to 10, 100, 0.13 and 0.040, respectively, for all
datasets. The Deep‐HS‐prior 2D uses the Leaky Rectified
Linear Unit (LeakyReLU) as the activation function, bilinear
method for upsampling and adaptive moment estimation
(ADAM) for optimisation. In Prophet, based on the parameter
analysis in ref. [6], the scale parameter τ is set to 20. Other
parameters for the comparing approaches are configured based

F I GURE 2 The Prophet reconstruction results. (a) The reconstructed
profile by the Prophet model. (b) The original first band in the Salinas
dataset. (c) The reconstructed image of (b) using the Prophet model.

TABLE 1 List of parameter settings for our proposed MSPM
framework and other benchmarking approaches.

Method Settings

MF Window size: 5

MA Window size: 5

ARIMA Number of lag observations: 3;
Number of times differencing: 1;
Size of the moving average window: 1

SS‐LRR Superpixel number: Indian Pines/Salinas (40), PaviaU (190)

FS2LRL Subspace dimension: 10; superpixel number: 100;
Sparse parameter: 0.13; fidelity parameter: 0.040

Deep‐HS‐
prior 2D

Activation function: LeakyReLU; upsampling method:
Bilinear; optimisation method: ADAM; filter: 3 � 3

Prophet τ:20; r0:0; m0:0
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on their recommended default values, as detailed in Table 1.
The experiments are also applied on the original HSI profile as
a baseline. Note that all involved methods use the same low‐
quality band selection strategy. Here, for the superpixelwise
quality evaluator, the segmentation scales for Indian Pines,
Salinas and PaviaU are set to 100, 600 and 200, respectively,
which are validated as the optimal settings in ref. [6].

To evaluate the performance of the proposed method, we
have conducted three sets of experiments. The first set of
experiments shows the outcomes of selecting low‐quality
bands across different datasets, validating the effectiveness of
our quality‐based band selection strategy.

The second set aims to provide a quality evaluation of the
reconstructed band images. This employs various quality indices,
including root‐mean‐square error (RMSE), structural similarity
(SSIM) [11], Peak Signal‐to‐Noise Ratio (PSNR) [12], and the
relative dimensionless global error in synthesis (ERGAS) [47].
Here, the reference image Iref is derived from the median image
of theHSI cube. This specific image has been validated that it can
sufficiently encapsulate the properties of the entire dataset [48].

Iref ¼ Median I1; I2;…; IDð Þ ð30Þ

The RMSE (MRMSE) is used as the average pixelwise
similarity between all reconstructed low‐quality bands and the
reference image:

MRMSE QLR ; Iref
� �

¼
1
N

XN

n
RMSE QLRn ; I

ref
� �

ð31Þ

where QLR is the reconstructed bands in set QL, and N is the
number of low‐quality bands. The RMSE is calculated as
follows:

RMSE QLRn ; I
ref

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PH�W
p¼1

�
�
�QLRn;p � I

ref
p

�
�
�
2

H �W

v
u
u
t

ð32Þ

where p 2 [1,H � W] is the index of the pixel in one band
image. The RMSE is a commonly employed metric for quan-
tifying the disparity between two images through the evaluation
of pixelwise discrepancies. When the RMSE value approaches
zero, it indicates that the reconstructed image closely resembles
the reference image.

The mean SSIM (MSSIM) is given by

MSSIM QLR ; Iref
� �

¼
1
N

XN

n

2μQLRn μIref þ e1

� �
2σQLRn ;Iref þ e2

� �

μ2
QLRn
þ μ2

Iref
þ e1

� �
σ2
QLRn
þ σ2

Iref
þ e2

� �

ð33Þ

where μ and σ denote the mean value and standard deviation,
respectively. e1 and e2 are two constants. SSIM compares local
pixel intensity patterns between two images, yielding values
between 0 and 1. A value of 1 signifies identical reference and
reconstructed images.

The MPSNR is calculated as follows:

MPSNR QLR ; Iref
� �

¼
1
N

∑
N

n
20� log10MAXI � 10� log10RMSE QLRn ; I

ref
� �2

� �

ð34Þ

where MAXI represents the maximum possible range of pixel
values. In this study, MAXI = 255. A higher PSNR value in-
dicates a higher similarity between the two images and lower
image quality loss.

The ERGAS is defined as follows:

ERGAS QLR ; Iref
� �

¼
100
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

n

RMSE QLRn ; I
ref

� �

μ2
Iref

v
u
u
t

ð35Þ

where u is the spatial downsampling factor. ERGAS assesses
image quality based on the normalised average error in each
band. Higher ERGAS values signal image distortion, while
lower values indicate greater similarity to the reference image.

The third experiment evaluates classification performance
after reconstructing low‐quality bands. To circumvent any
potential confounding effects arising from the choice of the
classifier itself, we have opted for the simplest classifier, namely
K‐Nearest Neighbours (KNN) [32, 49]. To ensure a fair clas-
sification comparison with the more advanced spatial‐spectral
methods, particularly due to the exclusive reliance of the
proposed Prophet reconstruction method on spectral infor-
mation, we have introduced a spatial augmentation technique.
This involves employing a majority voting strategy with a 3 � 3
window size within the classification map. This enhancement
effectively integrates spatial details into the Prophet method,
which is denoted as PMV in this paper. To mitigate random
variations and mitigate potential systematic errors, we per-
formed 10 independent runs for all experiments. In each run,
we employed a random partitioning of the training and testing
sets, ensuring there was no overlap. More specifically, we
adopted a stratified sampling strategy, allocating a training
sample size of 10% for each distinct land cover class. For the
quantitative evaluation of classification performance, the
metrics including Overall Accuracy (OA), Kappa coefficients
(κ), and Average Accuracy (AA) are employed.

All experiment sets were implemented using the Matlab
2023a platform on a computer with an 11th Gen Intel(R) Core
(TM) i9‐11950H (2.61 GHz) and 32.0 GB of memory. The
Prophet model was implemented on the Python 3.8.16 with
CUDA 11.7.

5 | EXPERIMENTAL RESULTS

In this section, a comprehensive qualitative and quantitative
evaluation in four sets of experiments is reported to validate
the efficacy of the proposed approach.
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5.1 | Results of band selection

The obtained band‐wise quality scores from the two datasets
are visualised in Figure 3, with the threshold value T marked as
a red line. The histograms of the band quality score of these
two datasets are also given in Figure 4. It is evident from
Figure 3 that there are low‐quality bands in each dataset. In the
Indian Pines dataset as shown in Figure 3a, the majority of
bands have a quality score below 0.7, and their scores tend to
cluster within the range of 0.6–0.7, as also being validated in
Figure 4a. For the Salinas dataset shown in Figure 3b, band
quality scores lie mainly in the range of 0.6–0.8. When it comes
to the low‐quality bands, it is noteworthy that Indian Pines has
the lowest quality scores. As seen in Figure 4, the quality scores
for the low‐quality bands in Indian Pines are predominantly
within the range of 0.1–0.2, whereas for the Salinas dataset,
they cluster around 0.3–0.4. These results validate that Indian
Pines exhibits the lowest band quality.

By adopting the thresholding selection strategy, the low‐
quality bands with the quality score lower than T are selected
as presented in Table 2.Note that the low‐quality bands are listed
in the ascending order of their quality. As shown, in total, we have
38 and 29 low‐quality bands selected from the Indian Pines
dataset and Salinas dataset, respectively. The water absorption
bands in the Indian Pines dataset (104–108, 150–163, and 220)
and Salinas dataset (108–112 and 154–167) are successfully
selected by our proposed method. This affirms the effectiveness
of the proposed HSI quality evaluator in successfully identifying
bands characterised by higher noise levels and a lesser content of
useful information. It is worth noting that in addition to the
water absorption bands, certain low‐quality bands have also been
selected. Intriguingly, these selected bands exhibit even greater
noise levels and a more limited quantity of valuable information
compared to the water absorption bands. These bands, there-
fore, wield a considerable effect on the subsequent data analysis
including classification. However, a predominant portion of
existing research tends to exclusively remove water absorption
bands during the data pre‐processing stage.

Figure 5 displays band images in the Salinas dataset for the
first 224th (water absorption band) and 43rd bands. As seen in
Figure 2, it is evident that even the first band, despite not being
a water absorption band, exhibits higher levels of noise and less
useful content compared to the 224th band. Therefore, it is
necessary to process this band as well. The 43rd band, which
has been selected as the highest quality band in the Salinas

F I GURE 3 The quality score of each band in three datasets. (a) Indian
Pines dataset and (b) Salinas dataset.

F I GURE 4 The histogram of the band quality score. (a) Indian Pines
dataset and (b) Salinas dataset.

F I GURE 5 The band images in the Salinas dataset. (a) The first band,
(b) The 224th band (water absorption band), and (c) The 43rd band.

TABLE 2 The bands selected by the proposed method.

Dataset Low‐quality bands

Indian
Pines

159, 156, 162, 161, 160, 105, 106, 154, 157, 158, 150, 104, 153,
151, 107, 108, 155, 163, 220, 152, 219, 109, 1, 103, 164, 149,
218, 2, 61, 89, 90, 75, 88, 110, 3, 165, 57, 91

Salinas 1, 2, 156, 111, 160, 109, 155, 3, 110, 112, 154, 166, 159, 108,
163, 162, 107, 161, 165, 158, 113, 157, 152, 114, 164, 168, 167,
153, 115
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dataset, displays evident structural features, sharp edges, and
intricate details.

To sum up, the proposed algorithm can accurately identify
low‐quality bands with limited useful content and noise.

5.2 | Results of band quality assessment

The qualities of the reconstructed bands by different comparing
methods are first assessed based on quality indices, which include
MRMSE, MSSIM, MPSNR, and MERGAS. The summarised
quantitative results from two datasets are presented in Table 3.
The best‐performing results are highlighted in bold, while the
second‐ranking results are marked with underlines. The visual
reconstruction results of low‐quality band images are also pro-
vided to check and assess the fidelity and perceptual quality of the
image restoration process. These results serve as a crucial means
of evaluating the effectiveness of the restoration technique and
ensuring that the reconstructed images meet the desired stan-
dards of clarity and visual appeal.

5.2.1 | Quantitative results

As depicted in Table 3, the Prophet model exhibits the most
favourable outcomes in terms of quality indices for recon-
structing low‐quality bands when compared to alternative
methods across all datasets. The Prophet model consistently
achieves the top results in MRMSE, MPSNR, and MERGAS
indices across all datasets.

The Indian Pines dataset suffers from significant corrup-
tion due to water absorption and noise factors [18]. Leveraging
the predictive capabilities of the Prophet model results in
substantial enhancements in image quality. Specifically, there is
a noticeable increase of 0.0694 in MRMSE, 0.3132 in MSSIM,
4.3889 in MPSNR, and 181.4719 in MERGAS when compared
to the baseline. While the spectral reconstruction methods MF,
MA, and ARIMA methods also contribute to noise reduction
and image quality improvement, their effectiveness falls short
when compared to the spatial‐spectral methods including

Deep‐HS‐prior 2D, SS‐LRR and FS2LRL. Remarkably, the
SS‐LRR model achieves the highest MSSIM result and
consistently ranks second in most cases on the Indian Pines
dataset. MSSIM, a metric index, assesses image similarity by
comparing their structural similarities. Consequently, ap-
proaches considering spatial features often yield superior
MSSIM values. Despite being a spectral method, the Prophet
model also attains competitive results in the MSSIM metric.

On the Salinas dataset, the proposed Prophet model
notably enhances the quality of low‐quality bands. Compared
to the baseline, the Prophet model demonstrates significant
improvements across multiple metrics: an increase of 0.1143 in
MRMSE, 0.5677 in MSSIM, 5.6053 in MPSNR, and 356.242 in
MERGAS. Additionally, the deep learning method, Deep‐HS‐
prior 2D, outperforms SS‐LRR on this dataset, securing the
top rank in MSSIM. This validates the efficacy of deeper
feature extraction on the Salinas dataset. Simultaneously, ex-
periments conducted on two different datasets indicate that
simple spectral methods exhibit competitive performance in
quality indices as observed in MA.

5.2.2 | Visual results

Figure 6 presents an example illustrating the visual recon-
struction performance of various methods applied to the In-
dian Pines dataset. Due to the influence of water absorption
effects, the 150th band suffers from significant information
loss and appears visually inundated with noise, devoid of useful
information. Through different reconstruction techniques, as
evident in Figures 6 b–h, these methods are capable of
removing a substantial amount of noise and reconstructing the
structural information of objects within the scene. As depicted
in Figures 6b–d, spectral methods including MF, MA, and
ARIMA utilise data from adjacent bands to restore valuable
information within the low‐quality bands. However, these
methods still exhibit some noise due to the absence of spatial
information utilisation. Notably, the MA method produces a
visually improved result, presenting a smoother reconstructed
scene compared to MF and ARIMA. This observation aligns

TABLE 3 The quality indices of the reconstructed bands using different methods for two datasets (Bold = Best, underline = second‐best).

Indian Pines Salinas

Methods MRMSE↓ MSSIM↑ MPSNR↑ MERGAS↓ MRMSE↓ MSSIM↑ MPSNR↑ MERGAS↓

Baseline 0.1850 0.1868 15.0913 483.7387 0.2542 0.1036 11.9845 791.9360

MF 0.1561 0.3212 16.7475 408.1868 0.2500 0.1240 12.2872 778.7319

MA 0.1465 0.3703 17.3392 383.0707 0.2447 0.1672 12.3939 762.3666

ARIMA 0.1806 0.2594 15.2956 472.3751 0.2617 0.1072 11.5859 815.2262

SS‐LRR 0.1405 0.5925 17.8063 364.1436 0.2525 0.1517 12.0981 786.6938

FS2LRL 0.5174 0.3470 6.0979 1348.0000 0.2627 0.1226 11.6502 812.1584

Deep‐HS‐prior 2D 0.1737 0.3906 15.5604 465.3076 0.1415 0.6743 16.8898 440.9015

Prophet 0.1156 0.5000 19.4802 302.2668 0.1399 0.6713 17.5898 435.6940
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with the quantitative findings outlined in Table 3. The spatial‐
spectral approaches SS‐LRR, FS2LRL, and Deep‐HS‐prior 2D
depicted in Figure 6e–g effectively eliminate noise, presenting
significantly smoother and clearer boundaries compared to
spectral methods. Particularly, in Figure 6g, Deep‐HS‐prior 2D
produces the smoothest reconstructed scene among all
methods compared. The proposed method, the Prophet model
in Figure 6f functioning as a spectral method, when contrasted
with spatial‐spectral algorithms, it yields a less smooth recon-
structed scene. However, it still retains crisp outlines and
boundaries of objects and can even capture finer details within
objects. Moreover, the proposed method exhibits more pro-
nounced distinctions between different categories in the
reconstructed images, indicating its significant preservation of
discriminative information among various classes. This un-
derscores the superior performance of the Prophet model in
the domain of image reconstruction.

5.3 | Results of HSI data classification

In this section, our objective is to validate the efficacy of
reconstructing low‐quality spectral bands. This process not
only serves to enhance the quality of these bands by reducing
noise and accentuating pertinent land cover features, but it also
facilitates more in‐depth data analysis and classification. Our
primary goal is to ascertain whether employing different
reconstruction algorithms confers advantages in the classifi-
cation of diverse HSI scenes characterised by the presence of
low‐quality spectral bands.

5.3.1 | Results from the Indian Pines dataset

Table 4 presents the classification results obtained using
various low‐quality band image reconstruction methods, with a
training sample size of 10%, on the Indian Pines dataset. It is
evident that utilising the original low‐quality bands yields a low
classification accuracy, with an Overall Accuracy (OA) of
61.3465%. However, employing spectral reconstruction
methods, such as MF, MA, and ARIMA, has led to some
improvements in classification results. Notably, the proposed
Prophet model achieved the highest OA, Kappa, and AA
among all spectral methods, showcasing a notable increase of
9.7032% in OA compared to the baseline. Moreover, the
incorporation of spatial features in spatial‐spectral methods
including SS‐LRR, FS2LRL, and Deep‐HS‐prior 2D, signifi-
cantly enhanced the classification performances. SS‐LRR
demonstrated the highest OA among all methods considered,
exhibiting an increase of 18.4542% in OA compared to the
baseline. It is worth noting that while FS2LRL demonstrates
moderate performance in the quality indices comparison
within Section 5.2, it notably outperforms spectral methods in
classification tasks. This occurrence primarily arises from the
Indian Pines dataset’s scene containing numerous block‐like
regions, where the definition by Ground Truth (GT) is
coarse. Spatial features can reduce differences within these
blocks, leading to more meaningful classifications. On the
contrary, the spectral reconstruction methods can preserve
substantial detailed information. When we integrate spatial
features into the Prophet model (PMV), classification results
experience further enhancement. PMV achieves the best
Kappa and AA on the Indian Pines dataset, showing
competitive OA results akin to SS‐LRR.

When examining individual class‐based performance, the
PMV demonstrates the highest classification accuracy in 10 out
of 16 classes. Taking the second position is Deep‐HS‐prior 2D,
which excels in achieving the best results for 4 classes. In
summary, the proposed Prophet model, despite being a spec-
tral reconstruction method, exhibits competitive performance
in classification tasks compared to spatial‐spectral methods.
Particularly, when incorporating simple spatial features, known
as the PMV algorithm, it demonstrates excellent classification
results, surpassing advanced spatial‐spectral methods in many
class‐based results. These results unequivocally demonstrate
the effectiveness of Prophet’s image reconstruction for HSI
classification, primarily attributable to its exceptional ability to
accurately capture features from the spectral bands, even in the
presence of missing data and noise interference. Prophet em-
ploys non‐linear models and leverages available data points to
fit trends as accurately as possible.

5.3.2 | Results from the Salinas dataset

As for the Salinas dataset, in contrast to the Indian Pines, it
presents a different set of challenges and characteristics. It
exhibits notably lower susceptibility to significant noise inter-
ference, resulting in clearer and more distinct scenes within the

F I GURE 6 The visual reconstruction performance of different
methods on the Indian Pines dataset. (a) The 150th band, and the result
from (b) MF, (c) MA, (d) ARIMA, (e) SS‐LRR, (f) FS2LRL, (g) Deep‐HS‐
prior 2D and (h) the proposed Prophet model.
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spectral data. Hence, the level of spectral mixture is less severe
as observed in the Indian Pines dataset. As a result, the
incorporated spatial features failed to yield significant im-
provements as observed in the Indian Pines dataset. As shown
in Table 5, the spatial‐spectral methods did not notably
improve the classification results when compared against the
baseline and spectral methods.

The proposed Prophet model, functioning as a spectral
reconstruction method, exhibits a higher OA compared to
FS2LRL and slightly lower performance than SS‐LRR and
Deep‐HS‐prior 2D. The Prophet model shows an increase of
1.6313% in OA over the baseline. Upon the inclusion of spatial
features into the Prophet model, namely PMV, it achieves the
highest scores in terms of OA, κ, and AA. Specifically, the OA
surpasses the baseline by 5.4975% and outperforms the
advanced deep learning method Deep‐HS‐prior 2D by
2.9356%.

Furthermore, when delving into individual class‐based
classification performance, PMV demonstrated exceptional
results. It attained optimal classification values for a range of
scenarios, particularly excelling in the classification of 12
distinct classes and an expansive set of 16 land cover cate-
gories. Notably, the Deep‐HS‐prior 2D algorithm also dis-
played noteworthy performance, emerging as the leader in the
classification of 2 specific classes within the Salinas dataset.
These findings underscore the versatility and effectiveness of

our proposed algorithm across varying classification scenarios
within the Salinas dataset, ultimately positioning it as a robust
choice for hyperspectral image classification tasks.

6 | CONCLUSION

Our study introduces a robust and innovative framework for
the quality assessment and the reconstruction of HSI bands.
Firstly, we have validated the effectiveness of our proposed
quality metric, which utilises spatial‐spectral features at both
global and local scales. This metric has demonstrated its
capability to accurately model complex and distorted bands,
resulting in the selection of water absorption bands and noisy
bands across all datasets. Secondly, the Prophet model,
leveraging features and trends from neighbouring high‐quality
bands, has exhibited remarkable effectiveness in reconstructing
low‐quality bands with enhanced structural clarity and details.
After conducting comprehensive experiments on two publicly
available uncorrected datasets, our findings unequivocally
establish the superior performance of our proposed framework
in reconstructing low‐quality bands into high‐quality ones
compared to state‐of‐the‐art spectral and spatial‐spectral band
reconstruction algorithms. Additionally, our results showcase
that the reconstructed images produced by our proposed
method attain competitive and promising classification

TABLE 4 Classification accuracy (%) of all involved methods on the Indian Pines dataset with 10% training samples per class (Bold indicates the best
results).

Class Baseline MF MA ARIMA SS‐LRR FS2LRL Deep‐HS‐prior 2D Prophet PMV

1 8.8095 14.7619 20.0000 17.8571 22.381 22.619 26.6667 22.8571 18.5366

2 55.2255 59.3468 60.5988 62.5350 75.6687 68.6936 78.1571 65.9409 80.1400

3 39.0361 45.5154 48.2865 44.9799 67.925 59.17 64.7523 51.4324 56.3855

4 23.1776 29.8598 24.7664 27.8972 35.7009 36.1215 38.1308 32.8972 37.9907

5 71.4023 76.2529 81.6322 70.1839 87.7471 84.092 87.5632 78.4828 89.7471

6 93.3790 95.5099 95.9513 92.2527 97.382 96.0274 97.0472 96.0426 99.6347

7 18.4615 29.2308 46.5385 62.3077 65.7692 59.2308 68.0769 49.2308 96.0870

8 97.7494 98.2135 97.5638 96.9374 99.0255 98.6775 99.7216 98.6079 99.8376

9 5.5556 5.0000 8.3333 0 12.2222 6.1111 10 6.6667 34.6667

10 41.6114 49.9086 56.0686 50.0343 82.7771 75.5886 83.8743 66.6286 83.0629

11 66.2127 68.4299 70.8643 64.0045 86.2579 79.8416 83.1312 77.3032 86.5928

12 20.8989 26.1798 28.3333 26.3670 51.573 43.015 47.2097 36.0300 43.9700

13 90.3243 90.1622 91.4054 89.6757 97.0811 94.2703 95.027 88.4324 98.3243

14 90.0527 90.9921 90.6409 89.0781 92.1422 93.3099 95.8648 91.5364 97.7524

15 15.8908 18.3046 18.4483 16.7241 36.2931 25.7471 37.5 21.6667 13.8506

16 82.7381 83.3333 83.0952 83.5714 84.6429 84.5238 83.9286 82.8571 90.2381

OA 61.3465 64.8900 66.7804 63.4254 79.8007 74.7925 79.5288 71.0497 79.5523

Κ 0.5550 0.5965 0.6185 0.5806 0.7687 0.7111 0.7656 0.6676 0.7711

AA 51.2828 55.0626 57.6579 55.9004 68.4118 64.19 68.5407 60.4133 70.4261
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accuracy. These findings not only affirm the effectiveness of
our approach but also underscore its potential in automating
HSI quality assessment and band reconstruction, all without
the need for manual prefiltering of noisy bands.
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