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Abstract 
Highly ordered ZnO doped WO3 thin films with good crystalline quality are prepared using RF magnetron 

sputtering technique and its structural and morphological properties are studied using various characterisation 

tools such as XRD, micro-Raman, XPS, FESEM and EDX analysis. X-ray diffraction studies reveal the 

enhancement of crystalline quality of the films with increase in ZnO doping concentration up to 5 wt%, beyond 

which the crystalline quality gets deteriorated. A phase modification from single monoclinic WO3 phase to a 

mixed monoclinic WO3 and W18O49 phases is observed for films with higher ZnO doping concentrations. 

Morphological analysis shows that a smooth surface for pure film whereas the ZnO doped films presents a dense 

distribution of grains of larger sizes with well-defined grain boundary. 

1. Introduction
Tungsten trioxide (WO3) is an important semiconductor oxide material showing a broad spectrum of novel 

properties [1]. It shows structural and stoichiometric transitions upon change in conditions that fascinated 

scientists to explore their future technological applications in different fields [2-3]. Since structural and 

morphological properties of nanomaterials show a vital role in device performance, the designing of 

nanomaterials is a crucial problem when technological applications are concerned [4]. From application point of 

view, it is utmost desirable to synthesise highly crystallized nanomaterial thin films by controlling their 

structural and morphological properties. WO3 thin films are better known for their important physiochemical 

properties which make them a suitable candidate in catalysis, gas sensors, electro-chromic devices, etc. [5-7]. 

The structural and morphological properties of WO3 thin films (at sub-micrometric scale) have profound effects 

on its physiochemical properties, which strongly depends on its preparation methods and conditions [8]. WO3 

thin films have been prepared by many groups through different techniques like chemical vapour deposition[9], 

RF magnetron sputtering [10], solvothermal process [11], electrodeposition [12], sol–gel process [13], 

hydrothermal techniques [14], atomic layer deposition [15], pulsed laser deposition technique [16-17], etc. 

Among this RF magnetron sputtering technique is relatively simple and one can grow homogenous, high quality 

thin films of larger area suitable for device applications. Here we report the fabrication of ZnO doped WO3 thin 
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films of superior crystalline quality using RF magnetron sputtering technique and its structural and 

morphological studies using different techniques such as XRD, micro-Raman, XPS, FESEM and EDX analysis. 

2. Experimental details 

ZnO doped tungsten oxide thin films were prepared using RF magnetron sputtering technique from sputtering 

targets made of WO3 powder (Sigma, purity ~99.99%) and desired doping concentrations (0, 0.5, 1, 3, 5 and 7 

wt%) of ZnO powder (Sigma, purity ~99.99%). Chamber pressure was maintained initially at 10-6 mbar using a 

diffusion pump and a rotary pump and then pure argon gas (argon pressure of 0.015 mbar) was introduced in to 

the chamber during deposition. Films were fabricated on quartz plate (kept at 5 cm from the target) with a 

constant RF power of 150 watts for a deposition time of 30 minutes. The as-deposited films are annealed at a 

temperature 600°C for 1 hour. These films with ZnO doping concentrations 0, 0.5, 1, 3, 5 and 7 wt% are coded 

as WZ0, WZ0.5, WZ1, WZ3, WZ5 and WZ7 respectively. XPERT PRO Diffractometer (Bruker) was employed 

to perform the structural analysis of the films using Bragg-Brentano geometry. CuKα1 X-ray radiation of 

wavelength 1.5406 Å was used and the XRD patterns were recorded for the 2θ range of 20-70° with a step size 

of 0.020305 and at a scan speed of 2° min-1. Labram-HR800 spectrometer (Horiba Jobin Yvon, USA) equipped 

with an Argon-ion laser (wavelength 514.5 nm) was used to record the Raman spectra (spectral resolution ~1 

cm-1). The valance state and stoichiometry of the deposited films are studied using X-ray photoelectron 

spectrometer equipped with a αKA1 monochromatic X-ray source of ~1486.7 eV energy (Omicron 

Technology). The surface analysis and elemental analysis of the films were done using a Nova Nano SEM-450 

Field Emission Scanning Electron Microscope (FEI- USA) equipped with an XFlash detector 6/10 (Bruker) and 

electron energy dispersive X-ray spectrometer (EDS-Quantax 200, Germany). The average thickness of the 

films was determined using lateral FESEM images. 

3. Results and discussions 
3.1 XRD Analysis 
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X-Ray diffraction patterns of the pure and ZnO doped tungsten oxide thin films annealed at a temperature of 

600°C are presented in Fig.1. The XRD patterns reveal that all the post-annealed films are polycrystalline in 

nature. Films with 0, 0.5 and 1 wt% ZnO doping present the characteristic diffraction peaks of only monoclinic 

WO3 crystalline phase (JCPDS Card No. 83-0951). Thus the pure and lightly ZnO doped films exhibit a single 

crystalline phase. However the XRD patterns of the higher ZnO doped WO3 films present mixed crystalline 

phases. For these films in addition to the peaks due to the monoclinic WO3 phase an additional peak )131( (2θ 

=30.6°) corresponding to monoclinic W18O49 (JCPDS Card No. 84-1516) phase also observed whose intensity 

enhances with increase in ZnO doping concentration. This indicates that higher ZnO doping concentration 

Fig.1. XRD patterns of the pure and ZnO doped WO3 thin films annealed at a temperature of 600 °C 
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favours a phase modification from single monoclinic WO3 phase to a mixed monoclinic WO3 and W18O49 

phases. In our earlier studies we have observed silver incorporation in WO3 promotes the formation of 

crystalline W18O49 monoclinic phase [18]. Also we have observed a phase modification from triclinic WO3 

phase to monoclinic W18O49 phase due to gold incorporation in WO3 lattice [10]. Even though the films with 

higher ZnO doping concentration present a mixed phase, the large intensity of the peaks along >< 200
direction in the prepared films confirm the dominance of monoclinic WO3 crystalline phase in all the films. 

Thus it is found that all the films show an a-axis preferential growth which may be due to the least value of 

surface free energy of the crystal along a-axis that can  lead to self-ordering effects [19]. This preferential 

growth along a-axis can be explained by the “survival of the fastest” model (by Van der Drift) which states that 

in the initial stage of the film growth nucleation with different orientation can be formed and these nuclei 

compete to grow. Finally the nucleus with higher growth rate can survive leading the film growth along a-axis. 

[20-21]. The ZnO doping in WO3 lattice seems to have considerable effect on the crystalline nature of the films. 

The intensity of the )200(  peak shows a systematic increase with increase in ZnO doping concentration up to 5 

wt%. Beyond 5 wt% the increase in ZnO doping concentration produces a drastic decrease in intensity of the 

)200( peak. The full width at half maximum (FWHM) of the )200( peak for the pure WO3 film is 0.3268°. 

Interestingly the value of the FWHM of )200( peak for the ZnO doped films shows a systematic decrease with 

increase in ZnO doping concentration up to 5 wt% and thereafter its FWHM increases with increase in ZnO 

doping concentration (Fig 2(a)). This observed increase in the intensity of )200( peak up to 5 wt% may be due 

to the formation of new nucleating centres developed because of the added impurity. Following this, a decrease 

in the )200( peak intensity at higher doping concentration can be due to the saturation of newer seeding sites 

and the segregation of dopant impurity along the grain boundaries at higher doping concentrations [21-22]. 

These observations indicate that moderate doping of ZnO in WO3 lattice improves its crystalline quality.  Thus 

it is clear that 5 wt% ZnO doping is the optimum doping concentration for producing good quality crystalline 

WO3 films. It is interesting to note that the XRD pattern of pure film presents a medium intense peak along 

>< 121  direction but in all the ZnO doped films this peak remains absent. Also in the XRD pattern of WZ0 

film (020) peak is observed with medium intensity. With ZnO doping in WO3 the intensity of this peak reduced 

considerably and it appears either as a weak peak or as a shoulder peak in the XRD patterns of all the ZnO 

doped films. The medium intense peaks )112( , )202(  and )222( observed in WZ0 film also show 

considerable reduction in intensity with ZnO doping. These observations tell us that ZnO doping in WO3 lattice 

promotes the preferential crystalline growth along >< 200 direction and thus an a-axis orientation of the films.  

FWHM ( hklβ ) of the most intense peak )200( in the XRD patterns is used to calculate the mean crystallites 

size ( hklD ) of the films using the Scherrer formula [23]  

hklhkl
hkl

kD
θβ

λ
cos

=                                                      ------- (1) 
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where k  is a geometric constant called Scherrer constant and its value is usually taken as 0.9 for spherical 

crystallites and λ is the wavelength of the X-ray used. The mean crystallite size calculated for the films using 

the above equation are given in Table 1.  The average size of the crystallites in the film increases with ZnO 

doping concentration up to 5 wt% and thereafter it decreases with higher ZnO doping concentrations. This 

reduction in crystallite size with higher ZnO content may be due to the hindering force generated due to the 

segregation of dopant impurity along the inter particles boundary and when this retarding force exceeds the 

driving force for the grain growth due to W, the movement of the grain boundary is obstructed and thus 

decreasing the crystallite size [24-25].  

In thin films residual stresses and corresponding strains always occur during the film synthesis. A measure of 

the lattice strain ie, lattice constant distribution originating from crystal imperfections and the measure of the 

crystallite size ie, the finite size of a coherently scattering domain affect the diffraction peaks and these effects 

may increase the integral width of the diffraction peak, change the diffraction peak intensity and also shift the 

centre of the diffraction peak [26]. Hence, the effects of the crystallite size induced broadening and the strain 

induced broadening in the FWHM of the diffraction peaks can be analysed by the following Williamson-Hall 

relation [27]  

hkl
hkl

hklhkl D
k θηλθβ sin2cos
'

+=
                                  ------------------(2)

 

Williamson–Hall plots are drawn for the films (Fig.2(b)), the size of the strain free crystallites hklD '  and the 

residual strainη  in the films are calculated using the plots and are tabulated in the Table 1. The crystallite size 

estimated from the W-H plots is higher than the values obtained from Scherrer equation. This suggests the 

presence of appreciable amount of lattice strain in the prepared films [28]. 

 

 
 

 

 

A zoomed view of the maximum intense peak   (200) shows that the centre of the diffraction peak shifts towards 

lower diffraction angle with ZnO doping (Fig.3(a)). This shift to lower diffraction angle is reasonable to expect 

Fig.2. (a): Variations of intensity and FWHM of the most intense )200(  peak with Zn doping concentration; (b): W-H 

plots of the pure and Zn doped WO3 thin films. 
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in the present case because the ionic radius of the Zn2+ (0.074 nm) ion is slightly greater than W6+ (0.065 nm) 

ion [29] which is an indication of the expansion of the unit cell due to the substitutional incorporation of Zn2+ 

ions at W6+ ionic sites (Vegard’s law) [30-31]. The shift of the most intense peak to lower diffraction angle 

indicates the presence of residual stress in the films and this can be due to various reasons such as ionic size 

difference between W6+ and Zn2+, difference of thermal expansion coefficients (during annealing) and lattice 

constants between the film and the substrate, presence of defects and impurities etc. [32]. Lattice parameters (a, 

b and c) of the prepared films are calculated and are given in Table 1. As can be seen, the values of lattice 

parameters a, b and c show an increase with increase in ZnO doping concentration (Fig.3 (b) to (d) and Table 1). 

The interplanar spacing corresponding to )200(  plane, 200d  is also calculated (Fig. 3(a) and Table 1) and it 

increases with increase in ZnO doping concentration. The increase in lattice parameters (a, b and c) and 

interplanar spacing )( 200d  with increase in ZnO doping concentration also supports the incorporation of Zn2+ 

ions in the WO3 host lattice and the resultant expansion of lattice [33].  

   

 

 

 

 

Fig.3.(a):Variations of diffraction angle )2( 200θ  and interplanar spacing )( 200d of the most intense )200( peak as a function 

of ZnO doping  concentration; (b)-(d):Variation of lattice constants (a, b and c) of the pure and  ZnO doped WO3 thin films 

with doping concentrations. 
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Sample 

code 

FWHM 

(degree) 

 

Mean Crystallite size 

(nm) 

Lattice strain 

from W-H plot 
Lattice parameters (nm)∗ 

 
d200 

 
(nm) 

 

Film 

thickness 

from Lateral 

FESEM 

images 

(nm) 

From 

Scherrer 

formula 

From  

W-H plot a 

 

b c 

WZ0 0.3268 24 35±1 0.0193±2.0 ×10-5 0.73055 0.74513 0.75301 0.36279 265 

WZ0.5 0.2755 29 47±10 0.0189±1.0×10-3 0.73432 0.74768 0.75603 0.36661 210 

WZ1 0.2197 37 55±9 0.0137±6.0×10-4 0.73434 0.75083 0.75713 0.36665 180 

WZ3 0.2028 40 53±17 0.0136±1.5×10-3 0.73519 0.75088 0.75841 0.36685 211 

WZ5 0.1999 41 59±22 0.0128±3.4×10-3 0.73605 0.75198 0.75864 0.36697 236 

WZ7 0.2151 38 44±15 0.0197±2.2×10-3 0.73669 0.75283 0.75920 0.36753 231 
∗Lattice parameters of pure WO3 powder a=0.73013 nm, b=0.75389 nm, c=0.76893 nm (JCPDS Card No. 83-0951) 

 

 

3.2 Micro-Raman Analysis 

Table 1. Structural parameters of the pure and ZnO doped WO3 thin films annealed at a temperature of 600 °C. 
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The micro-Raman spectra of the pure and ZnO doped WO3 thin films (Fig.4) are recorded in the wavenumber 

region 100-1100 cm-1. In the Raman spectra of WO3 films vibrational bands below 200 cm−1 can be assigned to 

lattice modes, and the mid (200-500 cm−1) and high-wave number regions (600-900 cm−1) can be assigned to 

deformation and stretching modes of WO3 respectively [34-36]. For WZ0, WZ0.5 and WZ1 films the Raman 

spectra present a very intense band around 803 cm-1 and a medium intense band around 690 cm-1 being due to 

the symmetric and asymmetric stretching modes of W6+−O bond respectively. The bending vibrations of 

O−W−O bond are detected as several bands of less intensity in the 200–500   cm-1 region and an intense band 

around 271 cm-1. The presence of well-defined WO3 characteristic bands in the Raman spectra of these films 

Fig.4. Micro-Raman spectra of the pure and ZnO doped WO3 thin films annealed at a temperature of 600 °C. 
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indicates the formation of WO3 crystalline phase in these films. The Raman bands observed around 803, 702, 

and 272 cm-1 are characteristic vibrational modes of the crystalline WO3 monoclinic phase [2, 37-39]. So it is 

clear from figure that these films (WZ0, WZ0.5 and WZ1) have only crystalline monoclinic WO3 phase. The 

symmetric stretching mode shows a red shift from 803 cm-1 to 799 cm-1 with increase in ZnO doping 

concentration. The crystallite size calculation using Scherrer formula shows an increase of crystallite size with 

increase in ZnO doping concentration. Hence the observed shift in the symmetric stretching mode (γ W6+−O) is 

in accordance with the quantum confinement effect due to particle size variation. All the films present a weak 

band around 985 cm-1 region which can be attributed to the stretching of W6+=O bond. This unsaturated bond 

can be usually observed at the surfaces of clusters and voids in thin films [7,40]. 

On increasing the Zn doping concentration from 1 wt% an additional band positioned around 907 cm-1 was 

observed in the Raman spectra whose intensity increases with increase in ZnO doping concentration. In our 

earlier investigations on Ag incorporated WO3 films and Au incorporated WO3 films a Raman band ~917 cm-1 

was observed for the stretching vibration of W18O49 phase [10,18]. The position of this band can be shifted to 

lower wavenumbers when the strength of the W-O bond decreases and the observed Raman band around 907 

cm-1 in the Raman spectra of higher ZnO doped WO3 films can be assigned to the symmetric stretching 

vibration of W18O49 crystalline phase. Thus the result from the Raman spectral analysis is also in agreement with 

the results of the XRD analysis. So it can be concluded from XRD and Raman analysis that the pure WO3 films 

and the WO3 films with low ZnO doping concentrations (ie; 0.5 and 1 wt%) contain only single monoclinic 

WO3 phase whereas in films with high ZnO doping concentrations (ie; 3, 5 and 7 wt%) both monoclinic WO3 

and monoclinic W18O49 phases coexist. However, in the films with higher ZnO doping concentration also, the 

monoclinic WO3 phase remains as the dominant crystalline phase. 

  

3.3 XPS Analysis 
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To study the surface stoichiometry, valance state and binding energy of the constituent elements in the deposited 

films, X-ray photoelectron spectroscopic measurement was carried out. XPS survey spectrum for the pure 

(WZ0) film (figure not included) shows the presence of W, O and C elements but the film with 5 wt% ZnO 

concentration (WZ5) shows the presence of Zn element as well (figure not included). The C1s peaks detected in 

the survey spectra may have the origin from the adventitious carbon containing molecules present on the sample 

surface that may have happened when the sample was exposed to air [41]. High resolution W4f and W5p3/2 core 

Fig.5.(a) and (c):W4f and W5p3/2 core level spectra of the pure and 5 wt% ZnO doped WO3 thin films respectively; (b) 

and (d):O1s core level spectra of the pure and 5 wt% ZnO doped WO3 thin films respectively; (e):Zn2p core level 

spectrum of the 5 wt% ZnO doped WO3 thin film. 
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level spectra for the pure and 5 wt% ZnO doped WO3 thin films are presented in Fig. 5(a) and (c) respectively. 

For pure film the W4f component can be fitted with a doublet, peaking around 35.52 eV (W4f7/2) and 37.68 eV 

(W4f5/2) while the W5p3/2 component can be fitted with a singlet, peaking around 41.42 eV [42].The observed 

binding energies of the doublet peaks W4f7/2 and W4f5/2 in undoped film is consistent with +6 valance state of 

W atom in WO3 [42]. The asymmetric O1s core level spectrum of the pure film presented in Fig. 5(b) can be 

deconvoluted in to two symmetric Gaussian peaks with binding energies 530.25 eV and 531.22 eV.  The highest 

intensity peak at 530.25 eV suggests the presence of O2- ion which is bonded to W6+ ion. The shoulder peak at 

531.22 eV arises due to the presence of oxygen adsorbed on the film surface [43]. The W4f and W5p3/2 high 

resolution core level spectrum for the 5 wt% ZnO doped film is shown in Fig. 5(c). Here the W4f region can be 

fitted with two doublets and the W5p3/2 region can be fitted with a singlet. The intense doublet peaks observed at 

35.25 (W4f7/2) and 37.43 eV (W4f5/2) correspond to +6 oxidation state of W atom [42] while the weak doublet 

peaks observed at 34.05 (W4f7/2) and 36.23 eV (W4f5/2) corresponds to +5 oxidation state of W atom [44]. Even 

though we have fitted the W4f region of 5 wt% ZnO doped WO3 films with the spin orbit doublets 

corresponding to +6 and +5 oxidation state of W atom we can’t rule out the existence of small amount of +4 

oxidation state of W atom. These results lead to the conclusion that WZ5 film contains a trace amount sub oxide 

phase of WO3 (ie;W18O49) [45] which is in consistent with our earlier XRD and micro-Raman analysis. Here 

also (ie; for WZ5 film) the O1s peak    (Fig. 5 (d)) can be fitted to two binding states ; one at low binding energy 

(530.20 eV) corresponds to oxygen in WO3 structure and the other at high binding energy (531.21 eV) 

corresponds to the surface adsorbed oxygen in the film [43]. Fig .5(e) shows the high resolution XPS spectrum 

of Zn2p core level in 5 wt% ZnO doped WO3 film which shows a doublets at binding energy values 1021.74 

and 1044.65 eV.  The binding energy peaks at 1021.74 and 1044.65 eV can be respectively assigned to Zn2p3/2 

and Zn2p1/2 energy levels in fully oxidized state of Zn atom ie; +2 oxidation state (Zn2+) [46-48]. So it can be 

concluded that in our case the Zn dopant exist mainly in +2 oxidation state.  

 

3.4 FESEM and EDX Analysis 
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 Fig. 6. FESEM micrographs of the pure and ZnO doped WO3 thin films annealed at a temperature of 600 °C. 
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The surface morphology of the pure and ZnO doped films was analysed using FESEM micrographs. Fig .6 

shows the FESEM micrographs of the pure and ZnO doped WO3 thin films. The FESEM image of the pure film 

shows a smooth surface morphology consisting of smaller grains whereas the SEM images of doped films 

present a compact distribution of well-defined grains with different grain sizes. This non-uniform grain growth 

in the prepared film may be due to the non-uniform distribution of sputtered molecules and clusters on the 

growing surface [49]. Increase in ZnO doping concentration enhances grain growth in a direction normal to the 

film surface. Among the deposited films WZ5 film presents larger grains with clear grain boundaries. This 

observation also supports our earlier observation from the XRD analysis that WZ5 film shows the highest 

crystalline quality. Lateral FESEM images are taken to calculate the thickness of the films. Fig. 7(a) and (b) 

show lateral FESEM images of two typical films WZ0 and WZ3. Pure film shows highest value for film 

thickness (~ 265 nm) compared to ZnO incorporated films (Table 1). To study the elemental composition of the 

prepared films, typical energy dispersive X-ray (EDX) spectra is taken. Fig. 7(c) shows a typical EDX spectrum 

of 5 wt% ZnO doped WO3 film. Fig. 7(d) presents the atomic percentage of elements in the prepared films 

detected using EDX spectra. The EDX spectra of the pure film (Fig. 7(d)) shows the peaks of W and O only. 

The observation of Zn peaks in the ZnO doped films confirms the incorporation of Zn in the prepared films.  In 

the spectra of all the films the peak due to W Mα1 is observed with large intensity. This can be due to the 

Fig. 7. (a) and (b):Typical lateral FESEM images of WZ0 and WZ3 films respectively; (c): EDX spectrum of WZ5 film; 

(d):Table showing the atomic percentage of constituents elements in the pure and ZnO doped WO3 films 

 



14 
 

superposition of the emitted X-rays of Si Kα1,2 lines from the quartz substrate with W Mα1 line from the 

deposited film [50]. Also from Fig. 7(d) we can see that with increase in ZnO doping concentration the atomic 

percentage of oxygen decreases which is in agreement with the earlier observation from XRD, micro-Raman 

and XPS analysis 

 

Conclusion 
Highly ordered ZnO doped WO3 thin films with superior crystalline quality suitable for optoelectronic 

applications are prepared using RF magnetron sputtering technique. An enhancement in crystalline quality is 

observed with increase in ZnO doping concentration up to 5 wt%, beyond which a reduction in crystallinity is 

observed with increase in ZnO doping concentration. XRD and Raman analysis reveal the presence of a 

monoclinic WO3 phase in pure and ZnO lightly doped WO3 films. The WO3 films with higher ZnO doping 

concentrations show the coexistence of monoclinic WO3 and monoclinic W18O49 phases. The shift in the 

position of the most intense diffraction peak towards lower diffraction angle suggests the substitutional 

incorporation of Zn in WO3 lattice. The observed increase in the values of lattice parameters suggest the 

expansion of lattice due to the substitutional incorporation of Zn ions of higher ionic radii in the sites of W6+ 

ions of lower ionic radii.  The crystallite size determination using Scherrer equation and W-H plots point to the 

presence of considerable lattice strain in the deposited films.  XPS spectra also confirm the coexistence of 

monoclinic WO3 and monoclinic W18O49 phases in heavily ZnO doped films. The surface morphology analysis 

using FESEM reveals a smooth surface morphology with dense distribution of smaller grains in the pure WO3 

films whereas the ZnO doped films presents a surface morphology with dense distribution of bigger grains. 

EDX spectra also support the incorporation of ZnO in the doped films. 
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