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Prompting-to-Distill Semantic Knowledge for
Few-shot Learning

Hong Ji, Zhi Gao, Jinchang Ren, Xing-ao Wang, Tianyi Gao, Wenbo Sun, Ping Ma

Abstract—Recognizing visual patterns in low-data regime ne-
cessitates deep neural networks to glean generalized repre-
sentations from limited training samples. In this paper, we
propose a novel few-shot classification method, namely ProDFSL,
leveraging multi-modal knowledge and attention mechanism. We
are inspired by recent advances of large language models and
the great potential they have shown across a wide range of
downstream tasks, and tailor it to benefit the remote sensing
community. We utilize ChatGPT to produce class-specific textual
inputs for enabling CLIP with rich semantic information. To
promote the adaptation of CLIP in remote sensing domain, we
introduce a Cross-modal Knowledge Generation Module, which
dynamically generates a group of soft prompts conditioned on the
few-shot visual samples and further uses a shallow Transformer
to model the dependencies between language sequences. Fusing
the semantic information with few-shot visual samples, we build
representative class prototypes, which are conducive to both
inductive and transductive inference. In extensive experiments
on standard benchmarks, our ProDFSL consistently outperforms
the state-of-the-art in few-shot learning.

Index Terms—Few-shot learning, ChatGPT, CLIP, multi-modal
knowledge, attention mechanism

I. INTRODUCTION

OVER the past decade, the rapid expansion of Earth ob-
servation technologies has led to an exponential increase

in the availability of remote sensing imagery, fueling the ca-
pabilities of deep learning models [1]. However, the insatiable
hunger for vast amounts of high-quality, well-annotated data
has become one of the major concerns that impedes deep
models applying to real-world scenarios. Inspired by biological
vision, few-shot learning (FSL) aims to generalize to novel
tasks in the presence of extremely limited training samples,
and it can be roughly categorized into transfer learning [2, 3],
meta-learning [4], and metric-learning [5, 6]. Despite some
successes, FSL still faces challenges such as model complexity
and overfitting due to the scarcity of visual samples.

Foundation models, including large language models
(LLMs) [7, 8] and vision language models (VLMs) [9, 10], are
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Fig. 1. Multimodality reduces the ambiguity of few-shot learning. Classical
few-shot leaning (left) is usually sub-optimal. Adding textual descriptions
(middle) helps clarify the problem setup (right).

usually pre-trained on large-scale datasets and capture general
patterns in various data modalities, such as text, images, or
both. Current examples such as BERT [7], ChatGPT [11],
and CLIP [9] have showcased powerful capabilities in tasks
spanning natural language processing, computer vision, and
beyond. One particular benefit of such models is the sample
efficiency of adaptation, i.e., few-shot or zero-shot capabilities
[9]. Most recently, some early attempts have explored the
foundation models for various remote sensing tasks [12].
Although these initial endeavors have demonstrated the suc-
cess of employing foundation models in remote sensing, it
remains an emerging field fraught with unresolved challenges.
Existing approaches in the remote sensing tasks may suffer
from domain gaps due to the significant difference between
natural scene images and remote sensing images, therefore
demanding large-scale image-text pairs for fine-tuning.

To address the above issues, this paper leverages cross-
modal understanding of visual and language modalities to
improve the few-shot adaptation. As shown in Fig. 1, reading
about airport and island helps to build a better visual classifier
to them. Specifically, we utilize ChatGPT [11] to provide
prior knowledge. ChatGPT is based on GPT (Generative Pre-
trained Transformer) architecture [8] and has acquired sub-
stantial language knowledge, allowing it to generate coherent
and contextually relevant responses in a conversation. For
each scene category, it takes a set of hand-written templates
as input and produce human-like descriptions, as shown in
Fig. 2 (a). To distill domain-specific semantic knowledge,
we design a Cross-modal Knowledge Generation Module,
which learns soft prompts conditioned on the remote sensing
visual samples, and combine them with the class-specific
descriptions to prompt CLIP textual encoder. By doing so,
we take advantage of the differentiable nature of neural
networks and reduces the negative impact of noise in the
fixed language phrases, thus estimating representative semantic
prototypes to assist the few-shot learner. In Fig. 2 (b), several
independent semantic embeddings are extracted from CLIP
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Fig. 2. (a) Prompt with ChatGPT for each class. (b) Cross-modal Knowledge Generation Module. We utilize soft prompt generator to learn soft prompts
conditioned on the input visual samples, which are combined with fixed prompts from ChatGPT. Then the CLIP textual encoder is adopted to extract semantic
embeddings. Finally the Transformer is used to process the language sequences, thereby outputting a cross-modal semantic prototype. (c) The overview of
our meta-learning framework. For each FSL task, cross-modal prototypes are generated to classify the query samples by Nearest Class Mean.

textual encoder via feeding the learned prompts into it. To
produce abstract semantic information, we utilize attention
architecture [13] to capture dependencies and finally output
a semantic prototype for each category, which is then used
to enhance the visual representations. As depicted Fig. 2 (c),
we propose the meta-learning based cross-modal prompting to
distill knowledge from both LLMs and VLMs. Furthermore,
we utilize a transductive inference algorithm to alleviate the
low-data problem. We have conducted thorough experiments
on established benchmarks, and the quantitative outcomes
affirm the efficacy of our method.

II. OUR METHOD

Notation. Dbase constitutes an extensive set of labeled data
featuring a collection of base classes Cbase. Dnovel comprises
instances from a distinct set of novel classes Cnovel that are
mutually exclusive with the base classes. In FSL, a task
T involves K classes. Within this framework, the support
data is represented as S = (xi, yi)

NK
i=1 , where each class is

characterized by N examples, and the query data is denoted as
Q = (xi, yi)

MK
i=1 . Here, xi and yi ∈ {1, 2, ...,K} correspond

to the input data and its categorical label, respectively. This
is referred to as K-way N -shot setting. Our goal is to train a
few-shot learner on Dbase and perform evaluation on Dnovel.

A. Overview

Our framework overview is illustrated in Fig. 2, which aims
to estimate representative prototypes by the aid of language
modality. Before elaborating each part of the framework, we
introduce the meta-learning method ProtoNet [5], which is
a few-shot learner designed to classify novel classes effec-
tively using prototype representations derived from a lim-
ited support set. Formally, given an FSL task T = {S,Q},
Sk={(xi, yi)}Ni=1 is the support set of k-th category, its corre-
sponding prototype is computed as cvk = 1

|Sk|
∑

xi∈Sk
fθ(xi),

where fθ is the feature extractor.
For a query sample xi ∈ Q, the probability distribution

is determined through a Softmax operation applied to the
distances between the instance and each class prototype. i.e.,
pθ(ŷi = k|xi) = exp(⟨fθ(xi),c

v
k⟩)∑

k exp(⟨fθ(xi),cv
k⟩)

, where ⟨·, ·⟩ represents
the similarity matching between two feature embeddings. ŷi
is the prediction of query image xi. Then the training loss
can be calculated as a standard cross-entropy loss Lb =∑MK

i=1 Lce(pθ(ŷi = k|xi), yi).

B. Prompt with ChatGPT

Neuroscience suggests that cognitive representations are
inherently multi-modal. In FSL, the scarcity of visual modal-
ity data makes it difficult to learn effective representations.
Therefore textual knowledge can supplement a more abstract
and comprehensive semantic understanding to make up for the
lack of visual information and improve the adaptation ability.

Instead of hand-crafted image-text pairs as in prior research
[12], we leverage existing LLMs to extract text knowledge.
Given a K-way N -shot task, we have N training samples for
each K categories. As shown in Fig. 2 (a), for each category,
we define detailed text templates to guide the ChatGPT to gen-
erate precise text descriptions, e.g., “Describe the appearance
of a remote sensing view of [CLASS] with three sentences.”.
We denote the output prompts as:

t = {CLSl}Ll=1 = ChatGPT(Commands) (1)

where CLSl is the l-th sentence and there are totally L
sentences for each category. In this work, we set L as 4. The
text descriptions are mainly centered around general attributes
of the target categories. For example, given a category [island],
we get the prompts as in Fig. 2 (a). To minimize the negative
impact of noise brought by LLMs, we set the first sentence of
t as ”This is a remote sensing photo of [CLASS].”.

C. Cross-modal semantic knowledge generation module

Due to the inherent domain gaps between nature scene
images and remote sensing images (i.e., the pre-training data
for CLIP model mostly consists of natural scene images,
thus the semantic features obtained from encoding simple
class names might not be helpful for remote sensing image
classification task), even a subtle alteration in wording can
yield a significant impact on performance. To overcome this
problem, we leverage automatic prompt learning to learn task-
specific prompts. As shown in Fig. 2 (b), we introduce the
concept of learning a limited set of new parameters to model
the prompt’s text words as trainable vectors while maintaining
the frozen state of the CLIP textual encoder. Consider a
sentence composed of a sequence of words (tokens), such as
“This is a remote sensing photo of an island.”, CLIP initially
converts each token into a 512-dimensional token embedding
(capped at a maximum of 77 tokens for efficient minibatch
processing). Then the token embeddings (with dimensionality
of 77× 512) are fed into the Transformer architecture to
generate a 512-dimensional semantic vector for the given
sentence.
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To bring about task-specific knowledge, we use the visual
modality to guide the learning of prompt’s context words,
dubbed conditional prompt learning. Compared to discrete lan-
guage phrases and randomly initialized learnable vectors, such
a paradigm can optimize token embeddings to characterize
each class, being more robust to class shifts, rather than merely
serving certain specific classes. We denote the visual feature of
a training sample in k-th class as zvk = fθ(xk)(k ∈ {1, ...K}).
Then the generated soft prompt can be written as:

Pk = s(zvk) ∈ RL×T×512 (2)

where s(·) is the soft prompt generator. L denotes the num-
ber of sentences, and T represents the number of learnable
prompts. We then concatenate the Pk with the embeddings of
existing fixed prompts. The created token embeddings t̂ of the
k-th class can be written as:

t̂ = CAT(Pk, t) = [p]1[p]2...[p]T [δ(t)] (3)

where [p]t (t ∈ {1, ..., T}) denotes learned token embeddings
with dimensionality of L×512. δ(·) indicates the CLIP token
embedding encoder. Accessing the final prompt t̂, we utilize
the CLIP textual encoder g(·) to extract the cross-modal
semantic embeddings for the k-th class:

a = {al}Ll=1 = {g(t̂l)}Ll=1 ∈ RL×512 (4)

where al denotes the semantic embedding for the l-th sentence.
The individual semantic embedding in a are independent

of each other, without taking into account the dependencies
between them. To fully exploit the semantic knowledge, we
utilize a light-weight Transformer architecture [13] to model
the dependencies between the embeddings and capture the
contextual relationships. Concretely, the semantic embeddings
{al}Ll=1 are served as query(Q), key(K) and value(V). The in-
teraction between the semantic embeddings of the L sentences
can be achieved by:

â = {âl}Ll=1 = LN(softmax(
QKT

√
d

)V +Q) ∈ RL×512 (5)

where â is the result of the self-attention module. LN(·) rep-
resents Layer Normalization. d is the embedding dimension.

Once â is obtained, we adopt a straightforward averaging
operation to achieve a cross-modal semantic embedding âm,
and fuse it with the visual sample zv

k by:

âm =
1

L

L∑
l=1

âl zk = zv
k + αâm (6)

where α is a balancing hyper-parameter. Then we use zk to
compute final cross-modal prototype ck for the k-th class.

Moreover, to avoid the prediction ambiguity after multi-
modal fusion of the prototypes, we further enforce the se-
mantic prototypes from different classes to be distinctive. It
is implemented by a cross-entropy loss Lm encouraging the
semantic prototypes to fall in the class each image belongs
to. Thus the final training loss is L = Lb + βLm, where β
controls the contribution of Lm.
D. Inference

Once the training is done, we sample a collection of FSL
tasks from Dnovel to perform evaluation. For each query
xB+i ∈ Q (note x1, ...xB where B = NK are support
samples), we predict its label by finding its nearest cross-
modal prototype, namely inductive inference.

TABLE I
DESCRIPTION OF DATASETS COMPOSITION. # DENOTES THE NUMBER OF

TOTAL IMAGES OF EACH DATASET, AND OTHER COLUMNS SHOW THE
CLASS SPLITS FOR TRAINING, VALIDATION, AND TESTING.

Name # Training Validation Testing

NWPU-RESISC45 31500 25 10 10
AID 10000 16 7 7

miniImageNet 60000 64 16 20
tieredImageNet 779165 351 97 160

TABLE IV
ABLATION STUDY ON THE PROMPTING METHODS.

Prompt Fusing NWPU-RESISC45

1-shot 5-shot

(a) - - 72.16±0.53 86.16±0.28

(b) [Class name] Addition 72.75±0.46 86.11±0.25

(c) “This is a photo of [Class name]” Addition 73.21±0.53 86.18±0.23

(d) ChatGPT w/o soft prompting Addition 73.04±0.48 86.20±0.29

(e) ChatGPT w/o soft prompting Our ProDFSL 73.45±0.51 86.28±0.31

(f) ChatGPT w/ soft prompting Our ProDFSL 76.94±0.41 86.34±0.22

The above prediction is performed independently on each
query sample, ignoring the distribution of the queries. With
this in mind, we utilize the query samples to update the class
prototypes, called transductive inference. The objective is:

min
Ỹ,C̃

∑
i,k

Ỹik∥zi − c̃k∥22 s.t. Ỹ1K = 1 (7)

where Ỹ ∈ RU×K (U = MK) is a mapping matrix, and
Ỹik denotes the allocated portion of i-th query sample to k-
th class. C̃ = {c̃1, ..., c̃K} is the updated class centers that
are calculated by original cross-modal prototypes and query
samples, which is initialized by the cross-modal prototypes.

Inspired by [14], we leverage the prior of uniform distribu-
tion to normalize Ỹ. The normalization itself is a projection of
Ỹ on to the set Sr,d of non-negative matrices with row-wise
sum r and column-wise sum d:

Sr,d := {Ỹ ∈ RU×K |Ỹ1K = r, Ỹ⊤1U = d} (8)

We adopt the Sinkhorn-Knopp algorithm [15] for the projec-
tion, by alternating between rescaling the rows of Ỹ to sum
to r and its columns to sum to d:

Ỹ ← diag(r)diag(Ỹ1K)
−1Ỹ

Ỹ ← Ỹdiag(Ỹ⊤1U)
−1diag(d)

(9)

After convergence, we use Ỹ to update the class centers:

H̃ =
C̃+ Ỹ⊤Z

B + U
C̃ = C̃+ γ(H̃− C̃) (10)

where γ is a hyper-parameter that controls the update speed.

III. EXPERIMENTS AND ANALYSIS

A. Implementation Details

Our methods undergo evaluation on commonly used bench-
marks, encompassing both remote sensing datasets and natural
scene datasets. We follow prior works to determine class splits
(Table I), and implement a deep backbone ResNet12 [1] and
a shallow backbone Conv-256 for feature extraction. The soft
prompt generator is a single fully-connected layer.

The training process involves two stages: pre-training and
meta-training. The backbone is trained on base classes with a
classifier and standard cross-entropy loss. The meta-training
uses pre-trained weights as initialization. The models are
trained using an SGD optimizer with a momentum of 0.9,
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TABLE II
THE 5-WAY CLASSIFICATION ACCURACY (%) ON THE REMOTE SENSING DATASETS.

THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED.

FSL method Backbone NWPU-RESISC45 AID

1-shot 5-shot 1-shot 5-shot

MAML[4] Conv-4-64 58.99±0.45 72.67±0.38 60.11±0.50 70.28±0.41

Meta-SGD[16] ResNet12 60.63±0.90 75.75±0.65 53.14±1.46 66.94±1.20

MatchingNet[17] ResNet12 61.57±0.49 76.02±0.34 64.30±0.46 74.49±0.35

ProtoNet[5] ResNet12 64.52±0.48 81.95±0.30 67.08±0.47 82.44±0.29

RelationNet[18] ResNet12 65.52±0.85 78.38±0.31 68.56±0.49 79.21±0.35

RS-MetaNet[19] ResNet50 52.78±0.09 71.49±0.81 53.37±0.56 72.59±0.73

SCL-MLNet[20] Conv-256 62.21±1.12 80.86±0.76 59.49±0.96 76.31±0.68

SPNet[21] ResNet18 67.84±0.87 83.94±0.50 - -
DLA-MatchNet[22] ResNet12 71.56±0.30 83.77±0.64 - -
IDLN [23] ResNet12 75.25±0.75 84.67±0.23 - -
DCN [24] ResNet12 74.40±0.83 89.22±0.41 - -
Ji et.al [3] ResNet12 76.70±0.44 89.87±0.21 72.67±0.43 87.33±0.23
Wang et.al [25] ResNet12 77.96±0.87 91.17±0.51 - -

ProDFSL (In.) Conv-256 70.86±0.59 83.19±0.40 67.45±0.41 79.13±0.36

ResNet12 76.94±0.54 86.34±0.26 72.98±0.43 81.64±0.25

SIB [26] WRN-28-10 67.34±0.81 78.28±0.48 60.72±0.78 71.86±0.49

CAN+T [27] ResNet12 69.89±0.58 81.04±0.33 63.82±0.56 73.77±0.41

MTL-trans [28] ResNet12 80.58±0.48 89.20±0.21 76.42±0.47 87.31±0.23

MES2L-Net [29] ResNet12 86.55±0.18 91.06±0.11 - -

ProDFSL (Trans.) Conv-256 81.78±0.60 91.27±0.29 73.59±0.63 87.00±0.33

ResNet12 89.34±0.45 94.12±0.25 80.21±0.51 91.04±0.29

TABLE III
CROSS-DOMAIN PERFORMANCE OF INDUCTIVE (I) AND

TRANSDUCTIVE (T) INFERENCE WITH RESNET12.

Source NWPU-RESISC45 AID

1-shot 5-shot 1-shot 5-shot

miniImageNet I 56.44±0.75 70.24±0.39 65.89±0.72 78.85±0.43

T 68.64±0.62 86.24±0.23 80.12±0.56 90.32±0.31

tieredImageNet I 61.88±0.71 74.68±0.33 70.14±0.57 82.25±0.41

T 75.53±0.64 88.58±0.36 85.27±0.54 92.94±0.35

Fig. 3. Selection of hyper-parameters α and T (ResNet12).
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Fig. 4. The t-SNE visualization of prototype vectors w/wo
semantic information (ResNet12).

an initial learning rate of 0.001, and a weight decay of
5e-4. Training spans 100 epochs, with a decay factor of
0.5 applied every 10 epochs. β and γ are set as 0.01 and
0.2, respectively. We assess performance through a random
selection of 1000 tasks designed for 5-way classification, with
each task comprising 15 queries. The evaluation metric is the
average accuracy, accompanied by 95% confidence intervals.
B. Comparison to the state-of-the-art methods

We compare our ProDFSL with other methods, including
transfer learning, meta-learning, metric-learning, and those
transductive based. The results are shown in Table II,
from which we find that without transductive inference, our
ProDFSL achieves fairly competitive performance with both
deep and shallow backbones in 1-shot tasks. Our method
uses semantic knowledge to assist FSL, while other works
[24, 3, 25] introduce various pretext tasks and sophisti-
cated networks to improve their generalization ability. This
demonstrates the effectiveness of the multi-modal information.
Nevertheless, we can see that our method underperforms the
above three methods in 5-shot setting. This is because the
advantage of the semantic modality lies in compensating for
the lack of visual samples. Therefore, with the increase in
visual samples, the gain from semantic information becomes
less pronounced. Regarding those methods using unlabeled
data, our results exceed the second best results by a large
margin, e.g., 89.34% is higher than 86.55%. Therein, MTL-
trans [28] uses label propagation to make predictions based
on a multi-task learning network, however there is still a
significant gap with our results, which proves the superiority
of our transductive inference algorithm as well as the learned
representations.

In Table III, we show the cross-domain FSL performance.
Training on natural scene images, our method achieves good
results on remote sensing images, underlining the general-
ization ability. The results of the second block consistently

TABLE V
ABLATION STUDY ON THE INFERENCE ALGORITHMS WITH RESNET12.

Feature Extractor Inference Algorithm NWPU-RESISC45

1-shot 5-shot

(a) Baseline Nearest Class Mean (In.) 68.77±0.46 84.12±0.25

(b) Baseline Sinkhorn-Knopp (Trans.) 83.45±0.51 89.97±0.27

(c) ProNet Nearest Class Mean (In.) 72.16±0.53 86.16±0.28

(d) ProNet Sinkhorn-Knopp (Trans.) 85.67±0.44 93.67±0.30

(e) ProDFSL Nearest Class Mean (In.) 76.94±0.49 86.34±0.25

(f) ProDFSL Label Propagation (Trans.) 79.44±0.48 87.22±0.22

(g) ProDFSL Prototype Rectification (Trans.) 82.67±0.39 87.99±0.23

(h) ProDFSL Sinkhorn-Knopp (Trans.) 89.34±0.39 94.12±0.23

outperforms the first block. This is because tieredImageNet
has 351 training classes, while miniImageNet only 64 training
classes. Extensive training data assimilates more profound
knowledge and thereby achieving better transfer results.

C. Ablation study

1) Selection of hyper-parameters: We devise several exper-
iments to select suitable hyper-parameter α in Eq. (6), and the
number of learnable prompts T in Eq. (3). As shown in Fig.
3 left, when we set α as 0, the classification results under
1-shot setting is only 72.16%. This indicates the representa-
tion capability of the visual prototypes is insufficient. With
increasing α, the performance improves rapidly. The accuracy
finally peaks at 0.2. Fixing α, we show in Fig. 3 right, that
the performance improves when increasing the number of
learnable tokens from 0 to 2. However, the performance is
saturated and the improvements diminish if further increasing
the context length. Thus we set T as 2 by default.

2) Influence of our cross-modal semantic knowledge gen-
eration module: We compare different prompting methods
in Table IV. Overall, we find that prompt learning can
improve few-shot classification, e.g., 72.75% is higher than
72.16%. Setting (b) shows that only using the class names as
prompt is sub-optimal. As such a method does not introduce
any domain-specific guidance. Setting (c) is widely-used in
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many works [11], which brings about obvious improvements
compared to setting (b). Besides, from setting (d), we see
that, without semantic knowledge interaction, the results are
still not satisfactory even with comprehensive descriptions
from ChatGPT, e.g., 73.04% is lower than 73.45%. Besides,
distinction between the results of setting (e) and (f) clarifies
the importance of soft prompting. Our proposed cross-modal
semantic knowledge generation module leverages the thorough
information from ChatGPT, and dynamically generates soft
prompts conditioned on remote sensing visual samples. More-
over, we use a shallow Transformer architecture to integrate
the cross-modal semantic features. Therefore, our method
learns domain-specific knowledge under few-shot scenarios
and achieves the best performance. In Fig. 4 left, we visualize
the cross-modal prototypes used for testing by t-SNE [30].
It can be seen that the support vectors are prone to cluster
together when they belong to the same class and repulse those
from the other classes. We also compare the same visualization
of visual prototypes in the right, where the vectors are more
diverse and the inter-class variance is very large.

3) Influence of the transductive inference: In Table V,
we discuss the effect of the transductive inference. It is
evident that the Sinkhorn algorithm brings large gains over
the inductive inference, e.g., more than 10.0%. This indicates
the effectiveness of using query samples to assist the classifi-
cation. Comparing (b), (d) and (h), we find that better initial
prototypes can yield better results. Besides, our method also
outperforms other transductive methods, including label prop-
agation [31] and prototype rectification [28]. This is because
that the Sinkhorn algorithm balances the class distribution.

IV. CONCLUSION

In this work, we have presented a novel method, ProDFSL,
to tackle few-shot classification problem, leveraging multi-
modal knowledge. Motivated by the large language models
and the multi-modal nature of cognitive representations, we
propose to meta-learn cross-modal understanding for few-shot
classification. Specifically, we use ChatGPT to provide textual
descriptions for each classes. Then we introduce a cross-modal
semantic knowledge generation module to learn soft prompts
conditioned on the few visual samples, which enables the
CLIP model to distill domain-specific knowledge. By fusing
the cross-modal semantic information with visual samples, we
build better prototypes, which serves as a good initialization
for the transductive inference. Extensive experiments demon-
strates the effectiveness of our ProDFSL. We hope to design
interactive systems that allow users to provide feedback to
improve the text descriptions, making cross-modal learning
become a tool for future research on multi-modal adaptation.
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