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A Multimodel-Based Screening Framework for
C-19 Using Deep Learning-Inspired Data Fusion

Achyut Shankar, P Rizwan, M S Mekala, Eyad Elyan, Amir H. Gandomi, Carsten Maple, Joel J. P. C. Rodrigues

Abstract—In recent times, there has been a notable rise in
the utilization of Internet of Medical Things (IoMT) frameworks
particularly those based on edge computing, to enhance remote
monitoring in healthcare applications. Most existing models in
this field have been developed temperature screening methods
using RCNN, face temperature encoder (FTE), and a combination
of data from wearable sensors for predicting respiratory rate
(RR) and monitoring blood pressure. These methods aim to
facilitate remote screening and monitoring of Severe Acute
Respiratory Syndrome Coronavirus (SARS-CoV) and COVID-19.
However, these models require inadequate computing resources
and are not suitable for lightweight environments. We propose
a multimodal screening framework that leverages deep learning-
inspired data fusion models to enhance screening results. A
Variation Encoder (VEN) design proposes to measure skin
temperature using Regions of Interest (RoI) identified by YoLo.
Subsequently, the multi-data fusion model integrates electronic
records features with data from wearable human sensors. To
optimize computational efficiency, a data reduction mechanism
is added to eliminate unnecessary features. Furthermore, we
employ a contingent probability method to estimate distinct
feature weights for each cluster, deepening our understanding of
variations in thermal and sensory data to assess the prediction
of abnormal COVID-19 instances. Simulation results using our
lab dataset demonstrate a precision of 95.2%, surpassing state-
of-the-art models due to the thoughtful design of the multimodal
data-based feature fusion model, weight prediction factor, and
feature selection model.

Index Terms—Covid-19, Thermal imaging, Deep learning,
Measurement index, Machine learning, IoMT, Thingspeck.
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HHUMAN body temperature and respiratory rate and
blood pressure are well know indications of body health

issues [1]. In particularly taking the consideration of covid-
19 pandemic case-study, a fast and lightweight measurement
models are essential for remote monitoring deceases like
severe acute respiratory syndrome (SARS) and COVID-19.
According to World Health Organisation (WHO) reports,
approximately twenty-two million deaths worldwide due to
C-19 disease as of August 2020 [2], [3]. Basically, when the
immune system detects the presence of a pathogen (such as
a virus or bacteria), it will signal the hypothalamus in the
brain to raise the body’s temperature. Therefore, detection of
skin temperature has become an essential primary feature in
this study and more specifically usage of thermal sensors [4].
Non-contact situations and performance limitations of digital
thermometers, along with other smart devices for temperature
screening, pose challenges in deploying them at public places.
In this regard, we propose a technique that utilizes both
thermal images and sensory data for effective screening and
monitoring in crowded areas. The Thermal image visualizes
the temperature variations of objects, with applications related
to health care [5], [6], [7]. Assessing COVID-19 abnormal fac-
tors from medical reports is challenging because most medical
records lack structure due to the large volume of data collected
daily. So the alternate option is using wearable sensors for un-
interrupted monitoring, but in some cases, these results might
be inaccurate due to signal communication noise [8], [9], [10].
The regular symptoms range for fever 83-99%, cough 59-82%,
fatigue 44-70%, loss of appetite 40-84%, short-breath from 31-
40%. These symptoms can be assessed with human wearable
sensors, but combining medical and sensor data for assessing
specific task towards making reliable decisions is a challenging
task. So, there is scope for designing an intelligent decision-
making system that utilizes sensed data, medical data, and
image data to forecast hidden features and characteristics in
monitoring non-contact situations. Many existing models have
focused on developing hybrid models that use weight factors
to extract insightful information for assessing risk factors from
informal data [11], but they have resulted in redundancies and
false classifications. The recurring issue of repeated weights
in each class affects prediction accuracy. In our model, we
eliminate unimportant features by assigning specific weights to
each class for more effective disease classification. We design
an intelligent framework for detecting and monitoring C-19,
combining a Deep Learning (DL) backbone with essential
data fusion models. The data comprises statistical data from
wearable sensors and thermal images from cameras. We assess
the adaptive features of this combined data by applying
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prognostic probability models to estimate the weight of the
feature vectors. The main contributions of this paper are as
follows:

1) Design a Variance Encoder (VE) to assess the disparities
in Regions of Interest (ROIs) generated by YoLo for
screening skin temperature and lip color. Enhance its
functionality to track objects using abnormal ROIs in
crowded environments.

2) Design an Information Attain (IA) model to reduce
noise by eliminating unnecessary features to simplify
the dataset. Additionally, design a Predictive Probability
(PP) method to estimate the weight of features for each
class to improve the success rate of predictions.

3) Develop a decision-making system using ThingSpeak
with measurement indexing levels. This system triggers
the actions based on evaluated information, and gener-
ates a diet strategy. The strategy is based on ontology-
inspired Semantic Rule (OSRi), which refers to a list
of diet plan activities aimed at enhancing the immune
system.
The rest of the paper is structured as follows: Section
II presents a brief related work. Section III describes

a proposed system framework and discusses the PP method,
Variance Encoder (VE), the IA model, and an adaptive mea-
surement index for the decision-making system. Section IV
describes the experimental and simulation results. Finally,
Section V summarises the conclusions and future studies.

II. RELATED WORKS

Most existing machine learning-based vision models suc-
cessfully detect and predict COVID-19. Applications in ref-
erences [12] and [13] utilize Internet of Things (IoT) and
Internet of Medical Things (IoMT), assisting hospitals in
enforcing remote monitoring. Recent articles, such as those
referenced by [14], [15], [16], [17], [18], [19], employ ma-
chine learning, AI, and deep learning techniques for pre-
dicting COVID-19, which encompasses segmentation in X-
rays and CT scans, with common models including ResNet-
50, AlexNet, DenseNet, ResNet-101. Prevalent segmentation
models such as U-Net, DeepLab, MiniSeg, and 3D U-Net are
commonly utilized, while Faster R-CNN with VGG as the
base network is employed for COVID detection [20], [21],
[22]. The subsections below describe the feature extraction-
based and thermal imaging models, respectively.

A. Feature identification models

Most studies have been developed to identify characteris-
tics and the evaluation of disease features, particularly the
evaluation of lung nodules and heart disease, primarily from
a predictive perspective. In [23], a multisensory framework
for data collection using fog/edge computing, combined with
the random forest classification model, is utilized for heart
disease identification. Meanwhile, in [24], a correlation system
is employed to identify future relevant features, which are
assessed based on data fusion. This approach achieved 98%
accuracy with eight features but has not met the needs of
affected patients. In [25], researchers proposed a fuzzy genetic

algorithm to streamline medical uncertainty data. They utilized
a Wavelet transformer to evaluate features and attempted to
reduce computational workloads by eliminating unnecessary
data fields. In [26], random and linear models were employed
for disease prediction, achieving an accuracy of 88.5%. Fourier
transformation in [27] has been used to estimate health-related
diseases based on time constraints, and the results show that it
effectively analyses diseases with combined data. In [3], IoT-
cognitive radio (ICR) framework has been designed to address
health monitoring challenges through an efficient spectrum
system. The primary objective of the design is to allocate
individual radio spectrum channels for seamless communica-
tion, a factor particularly vital during the COVID-19 pandemic
for patient monitoring through the IoMT framework. The
author emphasizes channel allocation to prevent packet loss
and ensure effective resource utilization [28].

B. Thermal-image based skin temperature screening

In [29], researchers developed a real-time alert notification
system by tracking objects exhibiting abnormal fever symp-
toms and assigning them an identification tag for continuous
recognition. In [30], the authors employed infrared thermog-
raphy (IRT) to detect various symptoms during early stages.
They utilized a Convolutional Neural Network (CNN) model
to detect and classify cancers, incorporating features such as
dry eye syndromes and skin temperatures through the skip
symptoms feature. Researchers developed a method based on
thermal imaging to screen skin temperature, as represented
in [31]. They utilized calibrated, error-free thermal devices
to minimize noisy and redundant data [32] while measuring
temperatures across different facial areas. In [33], [34], a
novel stress detection method has been developed to classify
stressed individuals based on both skin temperature and physi-
ological characteristics. The study achieved notable results by
analysing various features extracted from thermal data, and
they tested the model in applications for real-time performance
analysis. In [35], the author developed a Region of Interest
(ROI) method based on four views of features extracted from
thermal images using the Fast Fourier Transform (FFT) power
spectrum. From this study, we inspired to design a lightweight
model as an initial step to classify objects; the defective
skin temperature object is taken to process the next steps;
otherwise, check the objects until the downfall threshold value
of the skin temperature. Body temperature measurements are
recorded as video, which is to be used to classify and process
further steps in our proposed mechanism described in bellow
sections.

III. PROPOSED MODEL

This section outlines the proposed identification and mon-
itoring system that enable DNN structure and cloud comput-
ing framework. The system process is divided into multiple
segments as per their working principle, and it utilizes three
different data sets: real-time sensor data, optical/thermal im-
age data, and medical laboratory history data (optional) as
illustrated in Fig. 1. HWSs like heart rate sensor, an ECG
sensor, a respiration rate sensor, and a blood-oxygen level
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Fig. 1: AWS-inspired disease screening framework

sensor are used to collect the real-time data. The thermal
measurement system measure the skin temperature of facial en-
tities (forehead, ears, etc.) based on infrared rays to determine
the thermal range. Generally, body and facial temperatures
are relatively uniform, ranging from 35.5◦C to 37.5◦C. The
edge processing image system identify and analyse sensory
data as well as lip color using normal images. This process
begins when the respiration rate and skin temperature show
an abnormal condition. Moreover, the system will identify
the lung nodules based on color, size, and breath count
features using the data from an ultrasound scanner and is
preferred during abnormal conditions of respiration and heart
rate. The HWSs stream data to the cloud/fog server through
mobile gateways for distinct computation processes, and the
combined data is securely stored in the database repository
(refer our recent article [36] for more information). Further our
system is equipped with three models: Heap correlation rate
(HCQ), probability probability least weight square (PPLWS)
method, and Data Normalization (DN) factors. These models
are evaluated to determine their effectiveness in predicting
the status of C-19 and SARS. The following steps helps
understand the functionality of our system.

Thermal
image
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Fig. 2: Deep-learning inspired C-19 prediction model

1) Data Fusion: In this step, the Jetson device processes

the image and sensor data collected from sensors. As a
result, a correlation matrix is constructed based on time-
series to prevent data loss during abnormal conditions. A
detailed description is provided in the following sections.

2) Variation Encoder: In this step, the layer weights, feature
weights, and correlation quotient factors under the ther-
mal image-based skin temperature encoder play crucial
roles in accurately assessing variations in RoIs (Regions
of Interest).

3) Computing analysis: In this step, we are evaluating the
Heap Correlation Quotient (HCQ), the Prognosticate
Probabilistic Least Weight Square (PPLWS) method, and
the Data Normalization (DN) factor to cross-verify the
predicted results.

4) The policy of semantic rules inspired by ontology: In this
step, we associate these rules with positive symptoms
and further discuss them in the following subsections.
Please note that these diet plan suggestions apply only
if the symptoms range is close to being positive.

A. Data collection and pre-process

Generally, two types of sensors are used in the data fusion
section: medical data and data sensed based on the objectives
listed above. The data is stored in matrix representation to im-
prove efficiency and facilitate further computation and analysis
in the data collection section. Unlabeled data are considered
to assess risk estimates and eliminate factors to make accurate
decisions. Medical report records including blood pressure,
oxygen level, and measurement index values are used in
prediction of COVID-19. In many cases, mixed data may have
different dimensions. Therefore, we used filtering techniques
to avoid false decisions in below subsection.

1) Missing-data filtering: Most IoMT devices generate re-
dundant data in time-series, and damaged devices will produce
noisy data that potentially leads to incorrect decision-making.
Likewise, an essential information within the collected data
may become obscured during the mining process while es-
timating semantic features. So, we employed an unlabeled
filter to eliminate noise, repetitive records, and irrelevant data
according to their maximum variance rate. Subsequently, the
following filter restores the lost data by calculating the mean
values from the available data, as shown in below Eq. 1.

FXj =
1

2N

F∑
i=1

FXj (1)

Here, FXj represents the mean value of the characteristics
of the data associated with the pattern cluster Xj for the jth

patient. FXj denotes the feature value of the sensed data for
the jth patient in the sample pattern cluster Xj . N represents
the total number of samples. F Indicates the number of
features in the sensed data. These values are substituted when
dealing with data loss related to the correlation coefficient
between the detected data and medical data.

2) Ontology inspired semantic rule policy: Our proposed
system includes the Ontology-inspired semantic rule policy,
which facilitates the integration of facts and semantic rules.
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These facts typically include symptoms and medical data fea-
tures. Semantic rules encompass both predicted outcomes and
the health condition of the patient. We consider 25 rules that
map the diet plans of patients to improve their immune system.
The use of these rules is formulated using the equations 2 and
3 below.

Patient(Fi) ∩ BMI(Fi, no) ∩ HR(Fi, abnormal)∩
Temp(Fi, abnormal) ∩ Respi(Fi, normal)∩
∩Exercise(Fi,NO) ∩ . . .∩ → Rec(Fi,Diet food)

(2)

Patient(Fi) ∩ BMI(Fi, high) ∩ HR(Fi, normal)
∩Exercise(Fi,NO) ∩ . . .∩ →
Rec(Fi,PhyActivity)

(3)

Note: For detailed understanding please check Appendix.

B. C-19 Deep-learning framework

Image segmentation and ROI are two essential factors in
our framework. Figure 2 illustrates the functional flow of our
proposed framework. We employed YOLO (You Only Look
Once) [37] for Region of Interest (ROI) analysis in the context
of fever screening, followed by using a Variance Encoder
(VEN) to assess the difference in ROI. We know YOLO is
a real-time object detection system that identify and locate
objects within an image or video frame. Note that the optical
image analysis will be takes place when the skin temperature
and IoT device data are abnormal.

1) Thermal-image based cross-validation architecture:
This subsection outlines thermal image-based c-19 classifi-
cation architecture. During the thermal data collection, we
preferred detecting skin temperature outdoors because thermal
measurements show a slight variation when taken indoors as
opposed to outdoors. In our approach, we used the combina-
tion of two different thermal and an optical camera data. Figure
[?] illustrates that if skin temperature readings are abnormal,
the process continues to check optical data and real-time wear-
able sensor data to classify affected individuals in crowded
areas, and the AWS-based alert notification system notifies re-
spective authorities. This system also facilitates a tracking ser-
vice that screens the hospital test reports to strengthen remote
diagnosis effectively and reliably. The general measurement of
human body temperature is 37°C (98.6°F), but the abnormal
facial temperature can vary from person to person, especially
when wearing a face mask. Therefore, we trained Region of
Interest model to detect the forehead temperature on the face.
In our two-step design, the assessment of skin temperature is
not the final decision as can see in algorithm 1 that assesses
the video to find the abnormal individuals. Figure 3 illustrates
the skin temperature analysis based on thermal images. In the
context of regions of interest (RoI) analysis, YOLO identifies
ROI and assign bounding box for effective tracking. YOLO’s
real-time processing capability and high accuracy make it a
valuable option for monitoring and analyzing RoIs, such as
tracking individuals with fever symptoms in crowded areas.
A variance encoder (VEN) is proposed based on statistical
techniques to assess the differences in RoI, particularly in the
context of fever screening. VEN helps analyze data variance
from various RoIs, like temperature measurements at different

screening locations. It offers a way to examine how the RoIs
differ and whether these differences are statistically significant.
As the author knowledge the VEN architecture is a robust
method for evaluating the effectiveness of fever screening
strategies and identifying areas or groups that may require
adjustments for better RoI detection and control. Most existing

Algorithm 1: Skin temperature analysis

input : Features F=f1, f2, , fF ofC − 19
output: Febrile list

1 Let initialize η̂[k] ̸= 0 # thermal image data frames,
Γ ̸= 0 # clip length in frames;

2 while Γ ̸= 0 do
3 for each η̂[k]inK do
4 η̂[k]← update 3 thermal frames per second;
5 # Measure RoI, i.e R;
6 R (k)← YoLo (η̂[k]);
7 # Febrile list, i.e A with VEN: Variance

Encoder;
8 A (k)← VEN (R (k) , η̂[k]);
9 end

10 end

models focus on normalizing the weights of features that
led abnormal Mean Squared Error (MSE) rate, resulting in
reduced accuracy. Unlike the existing methods, it is essential
to forecast the weight of each class and classify them to trace
the optimal solution with the DRL architecture backbone. The
matrix representations of specific feature weighting are based
on Eq. 4.  ϖ11 ϖ12 ϖ13

ϖ21 ϖ22 ϖ23

ϖ31 ϖ32 ϖ33

 (4)

The particular weight is calculated with Eq. 5.

ϖij =
1

N

m∑
j=1

n∑
K

X (K|fj)×

√
X (K|fj)
X (K)

(5)

Where K and ϖij refer to the feature value of the class and
the specific feature weight rate fj of class X , respectively.
The value of ϖij is associated with the feature state fj ,
where a distinct weight indicates an assigned feature state.
ϖij remains between 0 and 1, representing the crucial feature
value for fj in the C-19 identification. The primary purpose
of obtaining these feature weights is to use them as initial
weights in the DNN model to enhance predictive results. In
this task, classifications are performed with prediction models.
The ROI results further cross-validated to avoid incorrect skin
temperature detection’s due to face-masks and beards.

2) HCQ method: The Heap Correlation Quotient (HCQ)
method estimates the association matrix of cluster patterns
based on patient variations with notable feature coordinates,
such as a and b. The proportion rate is determined using
Equation 7 for the range −1 ≤ Φb

a ≤ 1. This calculation
follows the condition described in Equation 6.

Φb
a =

 < 0, Negative correlation;
= 0, No correlation and independent;
> 0, Positive correlation;

(6)
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Φb
a =

1

N
×

√√√√ai · bi − γi · (aibi)

γi ·
⌢
ai ·

⌢

b i
(7)

Where N refers to cluster patterns, ai and bi are respective
cluster patterns (CPi), (aibi) refers to the product mean of ai
and bi, and ⌢

ai,
⌢

b i refer to the standard deviations of ai and
bi.

3) Data-Normalization: The sensory measured dataset in-
cludes various features with nonidentical numerical values
that causes increasing computational complexity. To address
this issue, a HR-Normalization is employed to normalize the
sensed values with a range [0,1], as described in Equation 8.

DN = 1
N ·XHig·XLea

×
√(

XSD−XLea
XHig−XLea

)
×(

X̂Hig − X̂Lea

)
+ X̂Lea

(8)

Where DN represents a normalized value calculated using
the source sensed or medical data (XSD), where the most
negligible data value denotes XLea, and the highest data value
(XHig). It is computed as a function involving the square root
and the converted dataset range represented by X̂Lea and
X̂Hig. The preferred values for X̂Lea and X̂Hig are 0 and
1 respectively, that ensures the bounded range [0, 1].

Frames
flow

Target

Relu

Conv 1 x1 

Conv H x W

 Variance
Encoder

Temp
Encoder

Layer's

Febrile Afebrile

Fig. 3: Skin temperature analyses

4) PPLWS model: The Prognosticated Probabilistic Least
Weight Square (PPLWS) and HCQ models are designed based
on DNN architecture, as shown in Fig. 2. This mechanism
assesses the backpropagation strategies, and the inclination
algorithm for binary analysis of COVID-19. Initially, we con-
sidered various features to train the model. The DNN model
enable 5 layers (1 input layer + 3 hidden layers + 1 output
layer). The input layer contains 32 nodes, as indicated by the
feature numbers of the dataset. It is essential to determine the
number of nodes in the hidden layers on the basis of the neural
model, i.e 25 nodes with fully connected layers. Credits are
assigned to the DNN model through the input layer, and these
assignments are passed to the three hidden layers by adjusting
their respective weights. The overall weight is calculated and
bias is included to process the information by the hidden layer
nodes, as shown in Eq. 9.

ϕj =
1

F

F∑
i=1

m∑
j=1

ai×ϖij ×Θj (9)

Where ai, ϖij , and Θj describe input data, the weight among
devices, and the bias value, respectively. The changed infor-
mation is fed into the output layer to predict the presence or
absence of C-19. The output layer comprises two devices that
provide binary predictions (C-19 absence and C-19 presence).
Initially, the DNN-PPLWS system starts with various initial
weights based on sensed and medical sources. Subsequently,
the differential error rate between real-time embedded systems
and expected medical output remains limited due to the
backpropagation mechanism. When training the DNN model,
the weights are updated using Eq. 10.

ψij = 1− γ × 1

ϖij
× d

dx
(Υ) (10)

Where γ describes the rate of learning, declared constant, and
Υ signifies error, which is determined by Eq. 11.

Υj = 0.75×
S∑

s=1

R∑
r=1

√
(P−Q)

2 (11)

Where S and R denote the number of instances and outputs,
and P , Q denotes the suitable output and the actual output,
respectively. Training error plays a vital role in adjusting all
weights and then reevaluates the predictions of the output
layer. The procedure is repeated until the system achieves
a minimal error between the actual output and the predicted
output. Therefore, the approximate DNN rate remains at 0.04.
The Adam approach [38] enhances the DNN model, the
respective steps reflected in algorithm 2.

IV. EXPERIMENTAL RESULTS

In this section, we present the simulation results of our
proposed C-19 system, conducted in MATLAB R2021 on
a Lenovo PC with an Intel(R) Core i5-2557M 1.70GHz
processor and 16GB RAM. The COVID-19 Open Research
dataset (CORD-19) and FAB-lab datasets were utilized for
performance assessment. We employed the Thingspeck plugin
[39] for sensor data visualization, where an external key
shareable for monitoring measured values through the link
https://thingspeak.com/apps/plugins/178859. Prediction mod-
els, including Logistic Regression, eXtreme Gradient Boost-
ing (XGBoost), Multi-layer Perceptron (MLP), and Support
Vector Machine (SVM), were implemented using the Waikato
Environment for Knowledge Analysis (Weka) software. The
evaluation of model performance involved metrics such as
accuracy, precision, sensitivity, and specificity to identify the
optimal model for COVID-19 prediction.

Numerical data were collected using Human Wearable Sen-
sors (HWSs) for measuring oxygen levels, thermal tempera-
ture, and respiration rate. Data computations for accurate pre-
dictions regarding the presence or absence of COVID-19 are
performed using a high-capacity microcontroller. Simulations
are conducted with two different datasets: Covid-19 USA data
released by the New York Times [40] and thermal image data
+ clinical data [41]. The performance analysis across different
models using three distinct datasets—Covid-19 NYT, thermal
data, and CORD-19 presented in Tables I, II, and III, respec-
tively. Each table provides insights into the precision, F-score,
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Algorithm 2: C-19 prediction

input : Features F=f1, f2, , fF ofC − 19
output: C-19 identification

1 Let initialize ϖij = 0, Θj = 0.125, Υj = 0, γ = 0.04;
2 while f i ̸= 0 do
3 for each fi ∈ fN do
4 Estimate the weighted sum of each hidden

layer using Eq. ϕj = 1
F

F∑
i=1

m∑
j=1

ai×ϖij ×Θj

5 for eachj ∈ m do
6 ψij = 1− γ × 1

ϖij
× d

dx (Υ);
7 Estimate the error rate of each instance I

using Eq.

Υj = 0.75×
S∑

s=1

R∑
r=1

√
(P−Q)

2

8 Update feature weighting matrix using Eq.
4;

9 if Υj ≤ threshold then
10 Update matrix set;
11 f(I)=max(0,ψij) to estimate the C-19

instance I;
12 end
13 else
14 Continue testing and monitoring until

error becomes minimal between P and
Q;

15 end
16 end
17 end
18 end

and recall metrics for both training and testing phases, offering
a comprehensive overview of the model evaluations. In the
Covid-19 NYT dataset I, models such as Linear Regression,
Random Forest (RF), Support Vector Machine (SVM), Naive
Bayes, VEN+RF, VEN+SVM, and VEN+NB are assessed.
The variations in performance metrics between training and
testing phases are observed, highlighting the models’ abilities
to generalize the prediction results, and similar for other
two datasets. In average, the VEN+RF model shows robust
performance across datasets, with notable precision, F-score,
and recall values during both training and testing phases.
Its ability to harness the strengths of Random Forest (RF)
enhances predictive accuracy. VEN+SVM showcases high
precision and recall, indicating strong predictive capabilities,
while maintaining consistency between training and testing re-
sults. VEN+NB demonstrates impressive precision and recall,
underscoring its efficacy in capturing patterns within datasets.
These ensemble models, combining Variational Autoencoder
Network (VEN) with established algorithms, offer promising
results for diverse applications, showcasing their adaptability
and effectiveness in predictive modeling tasks.

The datasets divided into 75% and 25% for better perfor-
mance analysis. Initially, we converted medical report data and

TABLE I: Performance analysis using Covid-19 NYT

Model Precision F-score Recall
training testing training testing training testing

Liner regression 0.669 0.515 0.741 0.593 0.809 0.635
RF 0.897 0.860 0.745 0.718 0.641 0.620

SVM 0.823 0.767 0.697 0.451 0.616 0.481
Naive Bayes 0.642 0.981 0.987 0.799 0.989 0.792

VEN+RF 0.813 0.931 0.670 0.699 0.546 0.678
VEN+SVM 0.9777 0.781 0.813 0.627 0.873 0.820
VEN+NB 0.985 0.799 0.989 0.789 0.980 0.781

TABLE II: Performance analysis using thermal data

Model Precision F-score Recall
training testing training testing training testing

Liner regression 0.791 0.834 0.914 0.856 0.897 0.892
RF 0.892 0.913 0.948 0.9392 0.978 0.951

SVM 0.850 0.868 0.923 0.966 0.972 0.977
Naive Bayes 0.890 0.928 0.938 0.943 0.980 0.989

VEN+RF 0.956 0.961 0.880 0.870 0.791 0.812
VEN+SVM 0.922 0.919 0.930 0.914 0.931 0.900
VEN+NB 0.960 0.955 0.886 0.892 0.841 0.836

sensor data into a labeled format. Furthermore, COVID-19
Open Research Dataset Challenge (CORD-19) dataset is used
performance analysis. We compare the performance of our
model with/without benchmark systems such as Support Vec-
tor Machine (SVM), the Naive Bayes classifier, and Decision
Tree (DT). We deploy our proposed model before and after
feature selection and analyze the results as shown in Figures
5 to 6 below.

Fig. 5(a) illustrates data fusion accuracy collected in two
ways: from sensors and a medical lab. The collected data
include 10 to 13 characteristics and SVM, DT, and Naive
Bayes (NB) classification model performance are measured.
Sensor data have a precision of 69%, while medical data
have a precision of 68. 75% under the NB model, but it is
less accurate due to features limitations. Subsequently, we
observed that our model has an accuracy of 73.45% with

TABLE III: Performance analysis using CORD-19

Model Precision F-score Recall
training testing training testing training testing

Liner regression 0.881 0.875 0.819 0.832 0.885 0.859
RF 0.921 0.893 0.855 0.890 0.823 0.841

SVM 0.963 0.950 0.973 0.830 0.929 0.907
Naive Bayes 0.919 0.884 0.902 0.879 0.964 0.923

VEN+RF 0.952 0.921 0.907 0.881 0.892 0.867
VEN+SVM 0.960 0.936 0.944 0.931 0.930 0.912
VEN+NB 0.984 0.884 0.973 0.846 0.967 0.945

Fig. 4: IoMT setup
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Fig. 6: Data fusion accuracy analysis of before and after proposed method on LAB dataset

Fig. 7: Real-time sensor data visualization

Fig. 8: C-19 measurement analysis
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TABLE IV: Performance analysis using FEB lab data

Model 16 features 20 features Recall F-score
training testing training testing training testing training testing

Liner regression 0.698 0.679 0.703 0.697 0.695 0.675 0.688 0.672
RF 0.684 0.690 0.612 0.609 0.689 0.672 0.691 0.680

SVM 0.708 0.712 0.685 0.668 0.691 0.683 0.657 0.663
DT 0.742 0.726 0.717 0.700 0.705 0.699 0.680 0.664

Naive Bayes 0.805 0.781 0.726 0.719 0.712 0.706 0.693 0.689
VEN+NB 0.841 0.828 0.819 0.802 0.836 0.815 0.827 0.810

sensor data, 79. 51% with medical data and 87% with mixed
data compared to other models. The simulation results show
that our system achieved a notable C-19 identification rate
with different features count compared to other models.

Feature-based training influence the performance of
the system and are mutually dependent on each other.
We conducted simulations with various count of features,
including 16 and 20 features. Fig. 5(b) illustrates the classifier
accuracy based on the selected feature sets, and Fig. 5(c)
shows the analysis of the precision ratio. Observe that all
models have a lower accuracy rate when 16 features. The
feature selection analysis shown in Figure 6 with four metrics:
precision, precision, MAE (mean absolute error) and RMSE
(radio mean square error). Multiple features are evaluated on
the basis of our designed probability models. Additionally,
we simulate a fuzzy analytical hierarchy process and PPLWS
to estimate the performance. Our model achieves significantly
higher accuracy compared to the remaining models due to
Heap Correlation Quotient (HCQ) feature selection approach.
The MAE and RMSE also have lower error rate that can be
observe in Figures 6(a) to 6(c).

A. Thingspeck Result Analysis

Fig. 7 illustrates wearable sensor setup connected with
microcontroller for computation and visualization on the
Thingspeck. The external key is shareable with physicians
and hospitals for remote monitoring using phones or the
Thingspeck. Thingspeck offers services with channels for
accurate control and monitoring. As we are aware of the
importance of SpO2 levels in the blood, it is crucial to note
that temperature, SpO2, and bpm are independent factors used
to assess the importance of monitoring the patient condition.

Fig. 8 shows the values of the C-19 measurement index. The
designed index assesses the priority situation and generates
instructions for assessing the continuation phase of the C-
19 tests. The gauge meter refers to the C-19 phases, where
the yellow indicates the need for vigilant monitoring, and the
red indicates the need for next-level tests and the primary
suspicion of the C-19 virus. In the next phase, lip color and
lung functioning assessed to make precise decision using the
equation below (Eq. 12).

φ(fi) = log10(2)×
(
ηi + εi + ω · ϑi10

)
(12)

Where ϑi10, ηi, εi, and ω = 1.005 refer to the temperature
quotient, oxygen saturation rate, respiration rate, and constant

TABLE V: Device specifications

Device Normal Thermal
Model Medvision GigE Fortic 680

Data type Visible Infrared
Resolution 640x480 640x480

FPS 25∼30 25∼30
Coverage degree 90 90

weight, respectively.

ϑi10 =

(
α1

α2

)(
10◦C

T2−T1

)
(13)

Where α1 and T1 refer to the temperature rate and thermal
temperature, respectively.

B. Thermal image processing importance

For effective evaluation as we have considered multi-
modality data to screen the virus symptoms. Table V outlines
the camera specifications which is used record where two
cameras are used like thermal and normal camera. Like if
the temperature is abnormal, the corresponding normal image
is considered to assess the lip color (this feature helps in
classifying lip colors) and face expressions.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

ROC Curve

DT+Pro
NB+Pro
SVM+Pro

Random Classifier

(a)

36 36.5 37 37.5

1400

1450

1500

1550

Temperature

F
ac
e
F
re
q
u
en
cy

(b)

Fig. 9: ROC curve and face frequency analysis

Figure 9 illustrates the performance of the proposed model
after cleaning the dataset and combining all the features
extracted from multimodal data. We used machine learning
base learners to assess the model’s classification accuracy.
Naive Bayes, as observed in Figure 9(a), achieved notable
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TABLE VI: Comparison results. TRAC is training accuracy,
TEAC is testing accuracy, TRL is training loss, TEL is testing
loss

Metrics VGG19 ResNet50 DensNet21 Xception VEN+YoLo
ROC 93.12 90.20 94.69 93.98 95.23

Precision 93.32 89.53 93.91 92.47 94.59
TRAC 93.09 88.10 94.01 92.65 95.06
TRL 0.16 0.32 0.09 0.21 0.06

TEAC 93.12 88.90 94.23 92.98 95.34
TEL 0.15 0.30 0.13 0.20 0.12

accuracy, surpassing SVM and DT. Similarly, skin temperature
is the primary feature influencing the decision to proceed or
not. Figure 9(b) illustrates the frequency ratio of the face
with the measured temperature, showing that, on average, the
temperature remains normal in most time series frames. Table
VI presents the simulation results with state-of-the-art (SOTA)
models. Our (VEN+YoLo) model has achieved remarkable
results, including a 95.23% ROC, a 94.59% precision, a
95.06% training accuracy, a 0.06% training loss, a 95.34%
testing accuracy and a 0.12% testing loss.

V. CONCLUSION

This paper introduces an innovative C-19 screening and
monitoring system aimed at addressing remote diagnosis chal-
lenges through a deep learning-inspired data fusion model.
The Variation Encoder (VEN) accurately evaluates skin tem-
perature using Regions of Interest (RoI) identified by YoLo.
The data fusion model integrates features extracted from elec-
tronic records and sensor data from wearable human sensors.
Employing a data accumulation method, unnecessary features
are eliminated, reducing computational load and enhancing
performance rates to 47% and 91%, respectively.

Furthermore, a contingent probability method estimates
distinct feature weights for each cluster, improving perfor-
mance by eliminating anomalous data. Simulation results
showcase outstanding performance with a data accuracy of
95.2%, surpassing traditional techniques like kernel random
forest, correlation-based feature selection, sequential forward
selection, and wavelet transformation.

APPENDIX

Based on the patient’s routine habits, including the reg-
ular medication they receive, we fed this information into
the model to generate dietary rules aimed at improving the
patient’s immune system. We have considered two case studies
as follows in the remote screening-monitoring context.

Corollary 1. We have established a set of conditions and
actions involving patient attributes (Fi) and various health-
related factors. These conditions are integral to our smart
system that makes informed decisions about patient care
and treatment plans. This set of rules allows our system to
identify patients who may need specific interventions, such as
dietary changes or increased physical activity, based on their
individual health profiles.

As defined in Equation 2, each component has a specific
role: Patient(Fi) represents the attributes of the patient, de-
noted Fi. BMI(Fi) pertains to the Body Mass Index (BMI)
attribute and specifies that it is ”no,” which typically indi-
cates a normal or healthy BMI. HR(Fi, abnormal) involves
the Heart Rate (HR) attribute and indicates that it is ”ab-
normal,” suggesting an irregular or unhealthy heart rate.
Temp(Fi, abnormal) refers to the Temperature attribute and
states that it is ”abnormal,” possibly indicating a fever or
an unusual body temperature. Respi(Fi, normal) is associated
with respiratory or pulmonary attributes, potentially related to
spirometry, and specifies that it is ”normal,” indicating typical
or healthy respiratory function. Exercise(Fi,NO) checks the
patient’s exercise habits and indicates ”NO,” suggesting that
the patient does not engage in exercise or physical activity. In
conclusion, on the basis of these rules, the suggested course
of action is Rec(Fi,Diet food)
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