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Abstract: In this paper, we propose a weighted multiple classifier framework based on random 

projections. Similar to the mechanism of other homogeneous ensemble methods, the base classifiers 

in our approach are obtained by a learning algorithm on different training sets generated by projecting 

the original up-space training set to lower dimensional down-spaces. We then apply a Least Square-

based method to weigh the outputs of the base classifiers so that the contribution of each classifier to 

the final combined prediction is different. We choose Decision Tree as the learning algorithm in the 

proposed framework and conduct experiments on a number of real and synthetic datasets. The 

experimental results indicate that our framework is better than many of the benchmark algorithms, 

including three homogeneous ensemble methods (Bagging, RotBoost, and Random Subspace), several 

well-known algorithms (Decision Tree, Random Neural Network, Linear Discriminative Analysis, K 

Nearest Neighbor, L2-loss Linear Support Vector Machine, and Discriminative Restricted Boltzmann 

Machine), and random projection-based ensembles with fixed combining rules with regard to both 

classification error rates and F1 scores. 

Keywords: Ensemble method, random projection, multiple classifier system, weighted multiple 

classifier. 

 

 

 

1. Introduction 



Ensemble methods have been shown to achieve higher classification accuracy than single 

classifier systems and have been applied to many applications such as object detection and tracking, 

computer-aided medical diagnosis, and intrusion detection [48]. In general, ensemble methods can be 

categorized into two types [27]: 

• Heterogeneous ensemble method: A set of diverse learning algorithms are used on one 

training set to generate different classifiers and decisions are made based on the output of 

these classifiers [28, 29]. This approach focuses on designing the algorithm that combines the 

outputs of the base classifiers to achieve higher accuracy than any single base classifier. 

• Homogeneous ensemble method: A set of classifiers are generated by a single learning 

algorithm on different training sets obtained from an original one. The outputs of these 

classifiers are then combined to give the final decision. Several well-known homogeneous 

ensemble methods are Bagging [5], Boosting [15], Random Subspace [18], and Random 

Forest [6]. 

In this paper, we focus on the homogeneous ensemble method. In the literature, research on 

homogeneous ensemble methods can be divided into three aspects: 

• Design of new ensemble systems: Several recent research efforts have focused on designing 

new ensemble systems [4, 31-33, 41]. Verma and Rahman generated an ensemble of 

classifiers based on clustering data at multi-layers [31] as well as the learning of clustering 

boundaries [41]. Rodriguez et al. [32] proposed the Rotation Forest in which principal 

component analysis (PCA) is applied to each of the � subsets randomly selected from a 

feature set. The � axis rotations form the new features for a base classifier. Schclar and 

Lokach [33] built ensemble system on training set schemes generated from a training set by 

using random matrices. Blaser and Fryzlewicz [4] designed a novel ensemble system by 

generating random rotation matrices to rotate the feature space before generating the base 

classifiers. Zhang et al. [45] combined Rotation Forest and AdaBoost in a single method 

named RotBoost which inherits the advantage of both ensembles for the classification tasks. 



• Enhancing ensemble methods: This approach focuses on techniques to enhance the 

performance of Bagging, Boosting, Random Subspace, and Random Forest. For example, 

several classifier selection or redundant classifier pruning methods were proposed such as 

dynamic classifiers selection [7], instance-based pruning [17], ordered aggregation-based 

pruning [26], and semi-definite programming [46]. There are also hybrid approaches to weigh 

base classifiers in Random Subspace [44], and weigh feature subspaces in Bagging [9]. 

Several methods have been introduced to improve the performance of AdaBoost, for example 

by maximizing the margin between training samples of different classes via linear 

programming in LPBoost [12], and learning from skewed training data in RUSBoost [34] to 

handle imbalanced datasets. Besides the well-known combining algorithms like Sum and 

Majority Vote [29], novel combiners were introduced to enhance the task of combining on 

classifiers’ outputs. For example, Kuncheva et al. [21] used Ordered Weighted Averaging 

(OWA) operators to aggregate the classifiers’ outputs. Wang et al. [42] proposed a new fusion 

scheme based on upper integrals. 

• Study on properties of the ensemble: The research look at properties of an ensemble such as 

diversity, margin, and generalization error bound, and their relationships. For instance, 

Kuncheva et al. [22] studied ten diversity measures among binary classifiers and examined 

the relationships between the accuracy and measures of diversity. Tang et al. [38] 

theoretically analyzed six diversity measures to understand the relations between them and 

the concept of margin. Gao and Zhou [16] obtained a tight generalization error bound by 

considering the empirical average margin and margin variance. Shi et al. [36] studied the 

preservation of margin after projecting data by random matrices. Wang et al. [43] studied the 

relationship between the model’s generalization ability and fuzziness of fuzzy classifiers. 

Kuncheva et al. [20] derived bounds with a kappa-error diagram which is used to analyze the 

performance of ensemble systems. Cannings et al. [10] introduced some theoretical results 

under some assumptions for the ensemble method generated by learning base classifiers on 

the projected data. Unlike our approach, the outputs of these classifiers are combined via the 

threshold-based voting method. The results include the difference in the expected 



classification error rate between the random projection ensemble classifier and its infinite-

simulation counterpart, and the bound for the difference between the expected error rate and 

the Bayes risk. The authors also derived results for specific choices of base classifier such as 

Linear Discriminative Analysis, K Nearest Neighbor, and Quadratic Discriminative Analysis. 

 

In this paper, we develop a homogeneous ensemble framework in which the training set 

schemes are generated by projecting the original training set to lower dimension spaces. A learning 

algorithm then learns the base classifiers on the down-space schemes. Further, we propose a technique 

to weigh the outputs of the base classifiers when combining them to generate the final prediction. We 

assume that each classifier is associated with a suitable weight, and our experiments will show that the 

proposed method performs better than un-weighted combining methods. Although random projection 

has been used to generate homogeneous ensemble systems before, to our knowledge, this is the first 

work that uses a weighted combination for random projection-based ensemble systems. Here we 

weigh the base classifiers by exploiting the relationship between the output of base classifiers on the 

training observations (called meta-data or Level 1 data) and their class labels via the Least Square 

method. It is noted that the technique to obtain the meta-data and the combiner is actually based on a 

heterogeneous ensemble technique known as stacking. As a result, the proposed method can be 

viewed as a combination of two approaches: homogeneous ensemble system (multiple base classifiers 

from one learning algorithm) and heterogeneous ensemble system (a learnable combiner obtained via 

stacking).  

The paper is organized as follows. In section 2, we briefly discuss random projection and 

methods to weigh base classifiers in ensemble systems. In section 3, we develop our weighted multi-

classifiers system based on random projections and regression. Experimental studies are presented in 

section 4 in which we conduct experiments on twenty-three datasets and compare the results of the 

proposed framework to a number of benchmark algorithms. Our conclusions and suggestions for 

further research appear in the last section. 



 

2. Preliminary 

2.1. Random Projection 

In 1984, Johnson and Lindenstrauss (JL) published a paper about extending Lipschitz 

continuous maps from metric spaces to Euclidean spaces and introduced the JL Lemma [19]. The 

lemma begins with a linear transformation from a �-dimensional space ℝ� (called up-space) to a �-

dimensional space ℝ� (called down-space). Specifically, given a finite set of �-dimension data � =
	
�, 

, … , 
�� ⊂ ℝ�, they considered a linear transformation T: ℝ� → ℝ�: � = T��� =
	��, �
, … , ��� ⊂ ℝ� and �� = T�
��. The linear transformation T can be represented in the form of 

matrix � ��� = T�
�� = �
�� so that if each element of the matrix is generated according to a 

specified random distribution, T is known as a random projection [30]. 

Random projections have three important properties: 

• Random projections are useful in dimension reduction since the dimension of the 

down-space can always be chosen to be lower than that of up-space, i.e. � < �. In 

some situations, random projection is more preferred than Principle Component 

Analysis (PCA). First, random projection is independent of the data while PCA are 

data-dependent. This is useful in situations where data cannot be accessed all at once, 

such as in data streaming or online learning. Moreover, generating the principle 

components is computationally expensive compare to generating the random matrix 

in random projection [3]. 

• Fern and Brodley [14] indicated that random projections are very unstable since the 

dataset schemes generated from a data source based on random matrices are quite 

different. This property is important since other sampling methods like bootstrapping 

only generate slightly different dataset schemes. Thus an ensemble system based on a 

set of random projections offers a potential for increased diversity. 



• Random projection can preserve in probability the pairwise distance between pairs of 

points in the up-space and down-space with a specified distortion level � [11]. 

Specifically, the JL Lemma asserts that the distance between two data points in the 

down-space is bounded above and below by (1 ± �), respectively, with probability 

�1 − 1 #
⁄ � if the dimension of the down-space is greater than or equal to a target 

dimension �% (also called the JL bound). Here the value of �% only depends on the 

number of observations # and �, and does not depend on the dimension (�) of the up-

space. Empirical evidence in [40] suggested that the bound given by � ≥ �% =
�2 × ln�#� �
⁄ � is the smallest value that ensures the distance preservation with 

probability �1 − 1 #
⁄ �. 

These projections with bounded distortions are simply obtained by using a random matrix 

� = 1 +�⁄ ,-./0 of size �� × ��, where -./ are random variables such that E2-./3 = 0 and Var2-./3 =
1. Several forms of � are summarized in [2]: 

• Plus-minus-one or Bernoulli random projection: � = 1 +�⁄ ,-./0 where -./ is randomly 

chosen from 	−1, 1� such that Pr2-./ = 13 = Pr2-./ = −13 = 1 2⁄   

• Achlioptas random projection: � = 1 +�⁄ ,-./0 where -./ is randomly chosen in ,−√3, 0,
√30 such that Pr2-./ = √33 = Pr2-./ = −√33 = 1 6⁄  and Pr2-./ = √33 = 2 3⁄  

• Normal random projection: � = 1 +�⁄ ,-./0 where -./ is distributed according to a Gaussian 

distribution <�0, 1�. 

 

2.2. Weighted combining methods 

Fixed combining methods are frequently applied to the outputs of base classifiers to predict 

class labels. Popular fixed combing methods use fixed combining rules such as the Sum Rule, Product 

Rule, Min Rule, Max Rule, Median Rule and Majority Vote Rule [29]. An issue with fixed combining 



rules is that the learners are treated equally in the aggregation step, i.e. all classifiers make an equal 

contribution in the final class label prediction.  

In weighted combining methods, each classifier can put different weight on different class 

and the combining algorithm works by taking = weighted linear combinations of posterior 

probabilities for the = classes. The predicted class label for a new observation is then decided by 

selecting the maximum value among these combinations. Several methods have been proposed to find 

the weights. For example, Ting et al. [39] proposed MLR method which depends on solving = Linear 

Regression models corresponding to the = classes based on meta-data and the training data labels in 

crisp form to find these combining weights. Zhang and Zhou [47] proposed using linear programming 

to find the weights. Sen et al. [35] introduced a method that was inspired by MLR which uses a hinge 

loss function in the combiner instead of the conventional least square loss. Using this new function 

with regularization, three different combining methods were proposed, namely weighted sum, 

dependent weighted sum, and linear stacked generalization, based on different regularizations with 

group sparsity. Mao et al. [25] proposed three ways to weight classifiers in the ensemble by 

maximizing three different quadratic forms as the approximate objective functions of ensemble error 

with two constraints. Cai et al. [9] learned Bagging on different feature subspaces in which the 

weights were determined by minimizing classification error rate of Bagging with consideration on the 

combination of classification margins. 

 

3. The proposed framework 

We propose an ensemble framework for class label prediction using a weighted multi-

classifiers framework based on random projection (denoted as WMCRP). The ensemble of classifiers 

is constructed by applying a learning algorithm on different training set schemes generated by 

projecting the original training set to several down-spaces. As random projection often generates 

significantly different training sets from an original training set [14, 30], system diversity is expected. 

To improve the classification performance, the weights of the base classifiers on each class label are 

learned by regressing between meta-data of training observations and their class labels. During 



classification, an unlabeled observation is first projected onto each of the down-spaces. The feature 

vectors of the observation in the down-spaces are then classified by the base classifiers to generate the 

meta-data. The predicted class label is finally obtained by weighted linear combinations of the 

predictions of the base classifiers. The details are as follows. 

During training, � random matrices of size (� × �) denoted by �/ (> = 1, … , �) are 

generated. � training set schemes �/ of size (? × �) are generated from the original training set � of 

size (? × �) through the projection � �@AB �/ given by: 

�/ = 2��/3 +�C  (1) 

A learning algorithm D is then applied to each of the � schemes �/ to obtain the base classifiers EF/ 

�> = 1, … , �� (see Figure 1). 

A Cross Validation based procedure is used to learn the weight of each base classifiers for each class  

[28]. First, the training set G is divided into H disjoint parts 	G�, … , GI�, where G = G� ∪ … ∪ GI, 

G. ∩ G/ = ∅ �M ≠ >�, and |G�| ≈ ⋯ ≈ |GI|, and their corresponding 	GR�, … , GRI� in which GRS = G −
GS. For each GR., we get � training set data �/~. from �/ associated with GR.. The learning algorithm D 

then learns on �/~. to obtain classifier EF/~. associated with GR.. Projected observations in G. denoted 

by �/. are then classified by EF/~. to obtain the posterior probability reflecting how supportive a 

classifier is to a class label for the observation. Assuming that the number of training observations is 

?, the output of the above procedure is an ? × =� matrix U 

U = V P��W�|
�� ⋯ P��WX|
��P��W�|

� ⋯ P��WX|

�⋮ ⋱ ⋮      ⋯⋯⋱     P[�W�|
�� ⋯ P[�WX|
��P[�W�|

� ⋯ P[�WX|

�⋮ ⋱ ⋮  
P��W�|
\� ⋯ P��WX|
\�   ⋯    P[�W�|
\� ⋯ P[�WX|
\�] (2) 

in which P/�Ŵ |
.� is the probability that 
. belongs to class Ŵ  given by the >S_ classifier for each 

> = 1, … , � ; ` = 1, … , = ; and ∑ P/�F^|
�� = 1X̂b�  [28, 29]. Since the class labels of the training 

observations are known in advance, the weights of the base classifiers on the class labels can be 



learned by discovering the relationship between the meta-data and the class labels of the training 

observations. We denote the weight matrix c = ,d/^0 in which d/^ is the weight of the >S_ 

classifier on the `S_ class (> = 1, … , � ; ` = 1, … , =) (see Table 1). The class memberships of an 

observation 
� are obtained by a linear combination of the posterior probabilities and the associated 

weights as: 

CM^�
�� = ∑ d/^g/�Ŵ |
��[/b� = ℙ^i^ (3) 

in which ℙ^ = jg��Ŵ |
��, g
�Ŵ |
��, … , g/�Ŵ |
��, … , g[�Ŵ |
��k and i^ = �d�^, … , d[^�l 

 

TABLE 1. THE MODEL OF WEIGHTED BASE CLASSIFIERS 

 Class 1 Class 2 … Class m … Class n 

Classifier 1 g��W�|
�� d�� g��W
|
�� d�
 … g��Ŵ |
�� d�^ …
 

g��WX|
�� d�X 

Classifier 2 g
�W�|
�� d
� g
�W
|
�� d

 … g
�Ŵ |
�� d
^ …
 

g
�WX|
�� d
X 

… … …  …  … 

Classifier o g/�W�|
�� d/� g/�W
|
�� d/
 … g/�Ŵ |
�� d/^ … g/�WX|
�� d/X 

… … …  …  … 

Classifier p g[�W�|
�� d[� g[�W
|
�� d[
 … g[�Ŵ |
�� d[^  g[�WX|
�� d[X 

 CM� CM
 … CM^ …
 

CMX 

 

 

The weight matrix is obtained by minimizing the difference between the class memberships of 
. and 

its true class label. From meta-data U, we extract the prediction associated with the `S_ class as: 

U^ = VP��Ŵ |
�� ⋯ P[�Ŵ |
��P��Ŵ |

� ⋯ P[�Ŵ |

�⋮ ⋱ ⋮  
P��Ŵ |
\� ⋯ P[�Ŵ |
\�] (4) 



Since the class label of 
� is known in advance, we defined crisp label vector associated with the `S_ 

class as q^ = 	r̂ �
��� �# = 1, … , ?� in which r̂ �
�� is given by: 

r̂ �
�� = s1    if   
� ∈ Ŵ0     otherwise  (5) 

The weight vector i^ corresponding to the `S_ class label is then found by solving the following 

regression equation: 

U^i^ = q^ (6) 

The computation runs through ` = 1, … , = to obtain the � × = weight matrix c = 	i^�. The 

process to obtain c is illustrated in Figure 2. 

In the classification process, an unlabeled observation 
} is first projected to the down-spaces 

with the random projections ,�/0 

�/} = 
}�/ +�⁄ ,  �> = 1, … , �� (7) 

Next, the base classifier ,EF/0 works on �/} to obtain its meta-data. Specifically, the meta-data of 
}, 

i.e. U�
}�, is given by: 

U�
}� = ~P��W�|
}� ⋯ P��WX|
}�⋮ ⋱ ⋮P[�W�|
}� ⋯ P[�WX|
}�� (8) 

The combining algorithm is then applied to U�
}� by considering the weight matrix c (3). Finally, 

the predicted class label is obtained by getting the label corresponding to the maximum value of class 

memberships: 

 
} ∈ WS if � = arg max^b�,…,X CM^ �
}� (9) 



 

Fig. 1 Training architecture for generating the base classifiers 

  

Fig. 2 Architecture for finding the weights for the base classifiers 

Remark 1: Regression equation (6) can be solved by the least square approach, i.e. by minimizing the 

sum-of-square errors function ℒ^ 

ℒ^ = ‖U^i^ − q^‖

 → min (10) 

Training set G 

Learning Algorithm 

Scheme �� Scheme �[ 

��  �[  

EF[ EF� … 

… 

Learning Algorithm 

EF�~� 

EF[~� 

EF�~I 

EF[~I 

Meta-data U 

Regression U�i� = q� 

Regression U
i
 = q
 

Regression UXiX = qX 

… 

… 

… 

… 

U� 

U
 

UX 

Scheme �� 

Scheme �[ 

��~� 

�[~� 

… 

��~I 

�[~I 

… 

 

… 

��� 

�[�  

��I 

�[I  … 

c 

i� 

�
 

�X 



Different constraints can be imposed on im such as: Non-Negative Least Squares, i.e. d/ ≥ 0 [24, 

37], Bounded Variable Least Squares, i.e. �/ ≥ d/ ≥ �/ in which �/ and �/ are given upper and lower 

bounds of d/ [8], and Bounded Variable with Constant Sum, i.e. −1 < d/ < 1, ∑ d/[/b� = 1 [47]. We 

have the following proposition when the proposed method is applied to binary classification 

problems. 

Proposition 1: In binary classification problems, if i� and i� associated with class labels W� and W
 

solve equation (6) by minimizing (10) with the constraint ∑ d/[/b� = 1, then i� = i� 

Proof: In the case of binary classification, from meta-data U, we separate U into two ? × � matrices 

U� and U� associated with the two class labels. Based on the property of posterior probability 

∑ P/�F^|
�� = 1X̂b� , we have U� + U� = �, where � is ? × � matrix of ones. From the definition of 

q� and q� we have q� + q� = � and � is the ? × 1 vector of ones. We solve (10) to find i� as: 

     ‖U�i − q�‖

 → min 

⇔ ‖�� − U
�i − �� − q
�‖

 → min 

⇔ ‖�i − � − �U
i − q
�‖

 → min 

Because i satisfies the constraint ∑ d/[/b� = 1, we have �i − � = � , where � is a ? × 1 vector of 

zeros. Therefore ‖U�i − q�‖

 ⇔ ‖U
i − q
‖

 that is the two optimization problems have same 

solutions □ 

Based on the result of Proposition 1, if the weight vector i is assumed to satisfy the constraint 

∑ d/[/b� = 1, we only need to solve (10) once to find the weight vectors associated with both class 

labels. 

Remark 2: As mentioned earlier, the pairwise distance between the observations in the up-space and 

down-space is nearly preserved (in probability) with distortion level 1 ± � if the dimension of the 

down-space is greater than or equal to a target dimension �%. The bound �% only depends on the 



number of observations and � and does not depend on the dimension of the up-space. However, this 

means that if a dataset has a large number of observations but with low feature dimension, �% can be 

greater than �. In this paper, the dimension of the down-space is set to be � = ⌈�%⌉ if ⌈�%⌉ < �, and 

� = � 2⁄  otherwise. Here the value of � = ⌈�%⌉ is the smallest integer greater than the JL bound �% =
�2 × ln�#� �
⁄ �. 
Our algorithm is summarized as follows: 

Algorithm: WMCRP: a weighted multiple classifier framework based on 

random projection. 

Training Process 

Input: Training set: G, dimension of down-space: �, number of 
projections: �, learning algorithm: D 

Output: Base classifiers: EF/, weights: c, and random matrix: �/, (> = 1, … , �) 
Step 1 (Random matrices, training set schemes, and base 

classifiers generation) 

 For >=1 to � 
      Generate random matrix �/ 
      Training set scheme �/ = 2��/3 +�C  

      Base classifier EF/ = Learn(D, �/) 
End 

Step 1 (Meta-data generation) U = ∅  	G�, … , GI� = T-partition�G� 

For each G. 
              GR. = G − G. 
              For >=1 to � 
                             Obtain �/~. and �/. from �/  according to the  
            partition GR. and G.  
                          Classifier EF/~. = Learn(D, �/~.) 
                          U = U ∪ Classify2EF/~., �/.3 

       End 



End For 

Step 2 (Weight vector generation) 

For `=1 to = 

       Get U^ by (4)  
       Compute q^ by (5) 
       Find i^ = ,�/^0/b�,…,[ = arg mini	‖U^i − q^‖

� with  
       constraint 

       c = c ∪ i^ 
End 

 Return ,EF/0, c, ,�/0, (> = 1, … , �) 
Testing process 

Input Unlabeled observation 
}, base classifier ,EF/0, random 
matrix ,�/0, and weight vector c = 	i^�, (> = 1, … , � and ` = 1, … , =) 

Output Predicted class label for 
} 
Step1: (Computing posterior probabilities for 
}) 

For o=1 to � 
     �/} = 
}�/ +�⁄  

     U�
}� = Classify(EF/, �/}) 
End For 

Step2: (Generate class memberships for 
}) 
For `=1 to = 

     CM^�
}� = ∑ d/^P/�Ŵ |
}�[/b�   

End 
} ∈ WS if � = arg max^b�,…,X CM^ �
}� 
 

4. Experiments 

4.1.  Datasets 

We evaluated WMCRP on twenty-three datasets from the UCI Machine Learning Repository 

(http://archive.ics.uci.edu/ml/datasets.html). Information about the datasets is summarized in Table 2. 

 



TABLE 2. INFORMATION OF DATASETS IN EVALUATION 

Dataset # of features # of observations # of classes 

Arcene 10000 200 2 

Balance 4 625 3 

Conn-Bench-Vowel 10 528 11 

Hill-Valley 100 2424 2 

Ionosphere 34 351 2 

Iris 4 150 3 

Letter 16 20000 26 

Libras 90 360 15 

Musk2 166 6598 2 

Optdigits 64 5620 10 

Page Blocks 10 5472 5 

Penbased 16 10992 10 

Phoneme 5 5404 2 

Ring 20 7400 2 

Tae 20 151 3 

Tic-Tac-Toe 9 958 2 

Thyroid 21 7200 3 

Vehicle 18 946 4 

Vertebral 6 310 3 

Waveform_w_Noise 40 5000 3 

Waveform_wo_Noise 21 5000 3 

Wine-Red 11 1599 6 

Wine-White 11 4898 7 

 

4.2. Benchmark Algorithms and Experimental Settings 

We performed an extensive comparison study with several well-known algorithms to validate our 

approach. Since our proposed framework belongs to the homogeneous ensemble-based approach in 

which several different training set schemes are generated from an original training set though random 

projections, we compared with three homogeneous ensemble methods namely Bagging [5], Random 

Subspace [18], and RotBoost [45]. We used C4.5 Decision Tree with prunned option as the learning 

algorithm in all the methods to construct the base classifiers [27]. As Decision Tree classifier returns 

only the class label of an observation, we used the method of [1] to obtain the class posterior 

probabilities needed for the combiner. In brief, it consists of first computing the algebraic distance of 

an observation to the class decision boundary induced by the learned Decision Tree, and then 

performing kernel-based density estimation on the computed algebraic distances to estimate the class 

posterior probabilities needed for the combiner. 

In addition, to show the advantage of weighted combiner approach, we also compared WMCRP 

with six fixed combining ensemble systems based on random projection [29, 33] (denoted by RP Sum 

Rule, RP Product Rule, RP Max Rule, RP Min Rule, RP Median Rule, and RP Majority Vote Rule) . 



To construct the ensemble for both WMCRP and the six fixed combining ensemble systems, we used 

plus-minus-one-based random projections in which the level of distort � is set to 0.25 [30]. Finally, 

we compared WMCRP to six well-known learning algorithms, namely K-Nearest Neighbors (the 

number of nearest neighbors is set to 5, denote by kNN5), Decision Tree, Linear Discriminative 

Analysis (denoted by LDA), L2-loss Linear Support Vector Machine (denoted by L2LSVM, with 

optimal value for the parameter � provided by the package LIBLINEAR at: 

https://www.csie.ntu.edu.tw/~cjlin/liblinear/), Discriminative Restricted Boltzmann Machines 

(denoted by DRBM) [23], and Random Neural Network (denoted by RNN, with optimal values for 

the parameters provided by PRTools v.5 at: http://prtools.org/). 

In this study, we constructed 10 and 200 base classifiers for WMCPR and all the benchmark 

algorithms except the six single-classifier learning algorithms (The subscript in the name of method 

denotes the number of base classifiers used in the ensemble). Ten base classifiers are the smallest 

number of base classifiers for a homogeneous ensemble system [32], while following [27] we selected 

the number of base classifiers as 200 for large ensembles. Non-Negative Least Squares [24, 37] is 

used to find the weight vector from equation (6). All source codes were implemented in Matlab 

running on a PC with Intel Core i5 with 2.5 GHz processor and 4G RAM. The sources are available 

at: https://github.com/ThanhNguyenRGU/RPWeight 

 

4.3.  Comparison criteria and methodology 

We performed 10-fold CV and repeated it 10 times to obtain 100 test results for each dataset. 

Note that the 10-fold CV in the experiment is not related to the 10-fold CV procedure used to generate 

the meta-data. Besides using classification error rate as a performance measure, we also computed the 

F1 score. In this paper, we reported the mean and variance of classification error rate and F1 score 

computed on 100 tests on each dataset. Let #^/ be the number of observations from the `S_ class 

predicted to belong to the >S_ class. The classification error rate is given by: 

Error Rate = 1 − ∑ �������∑ ∑ ��@�@������  (11) 



The Precision, Recall and F1 score associated with the `S_ class are computed as: 

Precision^ = ���∑ �@��@��  (12) 
Recall^ = ���∑ ��@�@��  (13) 

F1^ = 
×����� �¡¢�×£��¤¥¥������ �¡¢�¦£��¤¥¥�  (14) 

The F1 score on a test set is the average value on all F1^  

F1 = �X ∑ F1^X̂b�  (15) 

We used the Wilcoxon signed rank test [13] to assess the statistical significance of the 

difference between the classification results (error rate or F1 score) of WMCRP and the benchmark 

algorithms on each dataset. Here we test the null hypothesis, i.e. “two methods perform equally” on 

each experimental dataset. Denote §. as the difference between the performance scores of the 

proposed method and a benchmark algorithm on the MS_ output of ¨ test sets (in this study ¨ is equal 

100). The differences are ranked according to their absolute values and averaged ranks are assigned in 

cases of no difference. Let ©¦ and ©ª be the sum of ranks for §. > 0 and §. < 0, respectively. 

©¦ = ∑ rank�§.�­®¯% + �
 ∑ rank�§.�­®b%  (16) 

©ª = ∑ rank�§.�­®°% + �
 ∑ rank�§.�­®b%  (17) 

Let © be the smaller of the sums 

© = min�©¦, ©ª� (18) 

For large ¨, the distribution of the statistic 

± = ²ª�³´�´¦��
µ¶�¶·���¸¶·��¸³

 (19) 



will be approximately normal. The performance scores of two methods are treated as significantly 

different if the g − ¹º»�¼ of the test is smaller than a given confident level ½. In our experiments, ½ 

was set to 0.05. 

4.4. Results and Discussions 

4.4.1. Classification error rate comparison 

The classification error rates of the benchmark algorithms and WMCRP are shown in Tables 

A1-A5. The statistical test result displayed in Figure 3 shows that WMCRP is better than the 

benchmark algorithms (The detail of the statistical test results can be found in Tables S1-S2 in the 

supplement material). Comparing WMCRP200 to Bagging200, we rejected 19 null hypotheses that the 

two methods perform equally. In 12 of the 19 cases, the classification error rates of WMCRP200 are 

smaller than that of Bagging200. WMCRP200 also significantly outperforms Random Subspace200 (17 

wins against 6 loses). The statistical test results clearly demonstrate the advantage of using random 

projections to construct the ensemble system. The WMCRP200 is also better than six random 

projection-based ensemble systems using fixed combining rules i.e. RP Sum Rule200 (10 wins against 

6 loses), RP Product Rule200 (22 wins against 1 lose), RP Max Rule200 (22 wins against 1 lose), RP 

Min Rule200 (22 wins against 1 lose), RP Median Rule200 (14 wins against 5 loses), and RP Majority 

Vote Rule200 (10 wins against 6 loses). This demonstrates the benefit of weighted combining methods 

over fixed combining methods in ensemble systems. 

When using only 10 base classifiers, the proposed method is competitive to Bagging and RP 

Sum and is better than the other homogeneous ensemble methods. Moreover, WMCRP10 still 

outperforms six well-known learning algorithms i.e. ¾NN5 (13 wins against 8 loses), Decision Tree 

(15 wins against 5 loses), DRBM (13 wins against 9 loses), RNN (15 wins against 4 loses), LDA (14 

wins against 4 loses), and L2LSVM (14 wins against 6 loses). In overall, WMCRP10 has 17.39 wins 

against 2.89 losses in average. In other words, it beats the other 15 methods in about 64.81% of the 

tests. Similarly, the advantage of using WMCRP200 against the other 15 benchmark algorithms is 

about 73.02%. 



 

4.4.2. F1 Score comparison 

For the F1 score, the statistical test results in Figure 4 exhibit a similar trend to those in Figure 

3 (The F1 score can be found in the Appendix from Tables A6-A10. The detail of the statistical test 

results can be found in Tables S3-S4 in the supplement material). WMCRP200 is better than Bagging 

and significantly better than Random Subspace. Compare to random projection-based ensembles 

using fixed combining rules, WMCRP200 also outperforms RP Sum Rule200 (12 wins against 7 loses) 

and RP Majority Vote Rule200 (11 wins against 7 losses) while significantly outperforms RP Product 

Rule200, RP Max Rule200, RP Min Rule200 (21 wins against 1 lose in all the cases), and RP Median 

Rule200 (13 wins against 5 loses). The comparisons in the case of using 10 base classifiers also show 

the superior performance of WMCRP to the benchmark algorithms. Overall, WMCRP10 has 15.1333 

wins against 4.7333 losses on average. In other words, it beats the other 15 methods in about 66.57% 

of the tests. Similarly, the advantage of using WMCRP200 against the other 14 classifiers is about 

72.43%. 

The success of WMCRP can be explained by two reasons. First, the random projection 

creates a set of diverse data schemes from that of the up-space. This allows an ensemble of classifiers 

to be learned from the projected data. The smaller dimension of the projected data in the down-spaces 

also reduces the adverse effect of the curse of dimensionality. Therefore, ensemble systems built on 

random projection can obtain better classification performance. Moreover, we propose a method to 

weigh the base classifiers of the ensemble system, and a weighted combining mechanism further 

improves the classification performance of random projection-based ensemble. 

It is interesting to see how WMCRP performs on datasets with a large number of features but 

a small number of instances. For this, we examine its performance on the Arcene dataset, which has 

10000 features but only 200 instances. Our method (both WMCRP10 and WMCRP200) is better than 

Decision Tree, RotBoost, RNN, and three RP fixed rule methods (Product, Max, Min) for both 

classification error rate and F1 Score. It is comparable to Bagging and ¾NN5, but underperforms 

DRBM, Random Subspace, L2LSVM, and three RP fixed rule methods (Sum, Median, Majority). 

Therefore, for this kind of dataset, our method does not have a clear advantage over the benchmark 

algorithms we compared with, i.e. it outperforms six benchmark algorithms, underperforms six 

benchmark algorithms, and is comparable with the other two benchmark algorithms. 



 

 

 

Fig. 3 Statistical test results comparing WMCRP10 (top figure) and WMCRP200 (bottom figure) to the benchmark algorithms for classification error rate 
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Fig. 4 Statistical test results comparing WMCRP10 (top figure) and WMCRP200 (bottom figure) to the benchmark algorithms for F1 score
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4.4.3. Time complexity analysis 

Let ¿�D� denotes the complexity of the learning algorithm D which learns on training set 

schemes to obtain the base classifiers, the complexity of the learning process of the proposed method 

is ¿ Àmax ÀH × D, Áprojection matrix generation Ä , Ádown space projection Ä , Áweight vectorcomputation ÄÈÈ in which ¿�H × D� 

is the time complexity of generating meta-data of training set via running H-fold Cross Validation, 

¿ Áprojection matrix generation Ä is the time complexity of random matrix generation, ¿ Ádown space projection Ä is the 

time complexity to project training set to down spaces, and Áweight vectorcomputation Ä is the time complexity to 

find the weight vectors. In this study, we used plus-minus-one random projection so that only � × � 

comparisons are needed to generate a � × � random matrix �/. Hence the complexity of random 

matrix generation is ¿�� × � × ��. The training set � of size (? × �) is projected to down space to 

obtain a new training set scheme �/ of size (? × �) through matrix multiplication, i.e. �/ =
2��/3 +�C . The computational complexity of matrix multiplication for � and �/ is ¿�? × � × ��. 

Therefore, the time complexity of � matrix multiplications is ¿�� × ? × � × ��. Finally, the time 

complexity of finding weight vectors through Least Squares is ¿�= × �
 × ?�. Therefore, the time 

complexity of the learning process of the proposed method is ¿�max �H × D, � × ? × � ×
�, = × �
 × ?��. The proposed method can also be implemented via parallel processors to reduce 

time complexity. 

Table A11 in the Appendix shows the average training and classification time (in seconds) of the 

proposed method and the 3 homogeneous ensemble methods (Bagging, Random Subspace, and 

RotBoost) using 200 base classifiers computed on 100 training sets and the associated test sets 

partitioned from 8 selected datasets. Although the proposed method generally has much longer 

training time and also longer classification time than these benchmark algorithms due to the meta-data 

generation process, the differences are within practical limit. 

 



4.4.4. The effect of using different learning algorithms 

To see the effect of using different learning algorithm, we compare the performance of using 

LDA or kNN5 in place of Decision Tree in WMCRP. Fig 5 shows the mean classification error rates 

and F1 Score of the 3 cases on the 23 UCI datasets (The detailed results can be found in Table S5 and 

S6 in the supplement material). Unlike other ensemble methods such as Bagging which requires 

unstable base classifiers or AdaBoost which requires weak classifiers to construct the ensemble, any 

learning algorithms can be used in WMCRP to generate the base classifiers. Due to the unstable 

properties of the random projection, the generated training sets on the down-space are very different. 

As a result, there is no constraint on the type of learning algorithms for the random projection-based 

ensemble. 

Obviously, using different learning algorithms will result in different performance. Overall, 

WMCRP(kNN5) is the best method, obtaining the best classification error rate and F1 Score on 10 

datasets. On some datasets such as Letter and Penbased, WMCRP(kNN5) is significantly better than 

the others (0.0355, 0.0567, and 0.2475 for the classification error rate of WMCRP(kNN5), 

WMCRP(Decision Tree), and WMCRP(LDA), respectively, on the Letter dataset). Decision Tree is 

also an effective learning algorithm when combining with random projection in WMCRP as 

WMCRP(Decision Tree) outperforms the others on 9 datasets for both classification error rate and F1 

Score. Meanwhile, WMCRP(LDA) is the poorest among the 3 learning methods and obtains the best 

performance measures on only 4 datasets. As different learning algorithms obtain the best results on 

different datasets, a framework that first selects the best learning algorithms and then weighs the base 

classifiers is, therefore, a promising way to further improve the performance of the ensemble on 

diverse data sources. 

 



 

 

 

Fig.5 Classification error rate and F1 Score of the proposed method with 3 different learning algorithms 
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5. Conclusions 

We have introduced WMCRP, a weighted ensemble-based classification framework based on 

random projections and least square regression. Our approach generates training sets from the original 

data based on random projections, and then uses a learning algorithm, here a Decision Tree, to learn 

the base classifiers on the down-space projections. The weights for combining the outputs of the base 

classifiers are obtained by solving a non-negative linear least squares problem using the meta-data of 

the training observations and their crisp class labels. Experimental results on twenty-three UCI 

datasets demonstrated the benefit of our approach compared with 15 other well-known algorithms for 

both classification error rate and F1 score. Specifically, in our experiments the proposed method is 

better than the three homogeneous ensemble methods (i.e. Bagging, RotBoost, and Random 

Subspace), six ensemble systems based on random projections and fixed combining rules (i.e. RP 

Sum Rule, RP Product Rule, RP Max Rule, RP Min Rule, RP Median Rule, and RP Majority Vote 

Rule), and six well-known learning algorithms (i.e. ¾NN5, LDA, Decision Tree, DRBM, L2LSVM, 

and RNN). We believe that WMCRP can be fruitfully combined with feature selection as well as the 

learning algorithm selection to further improve its classification performance. This will be our next 

immediate research focus. 
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Appendix 

TABLE.A1. MEAN AND VARIANCE OF CLASSIFICATION ERROR RATES OF SIX LEARNING ALGORITHMS 

 

ÉNN5 Decision Tree DRBM LDA L2LSVM RNN 

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

Arcene 0.1725 6.32E-03 0.2625 8.37E-03 0.1040 4.03E-03 - - 0.0980 4.75E-03 0.3525 9.32E-03 

Balance 0.1502 1.32E-03 0.2101 1.61E-03 0.0701 7.71E-04 0.1297 6.08E-04 0.1273 6.24E-04 0.1011 4.99E-04 

Conn-Bench-Vowel 0.0701 1.36E-03 0.2333 3.74E-03 0.3043 4.78E-03 0.3856 3.80E-03 0.5431 4.15E-03 0.1154 1.91E-03 

Hill-Valley 0.3904 8.52E-04 0.3891 8.27E-04 0.2599 3.99E-03 0.3160 6.49E-04 0.0160 6.45E-05 0.3119 1.50E-03 

Ionosphere 0.1593 2.51E-03 0.1242 2.57E-03 0.1169 3.24E-03 - - 0.1613 2.35E-03 0.1240 2.55E-03 

Iris 0.0393 1.79E-03 0.0500 2.43E-03 0.0380 1.89E-03 0.0193 1.00E-03 0.0473 2.25E-03 0.0453 2.66E-03 

Letter 0.0450 2.04E-05 0.1346 4.38E-05 0.4945 7.41E-04 0.2978 9.30E-05 0.2947 9.86E-05 0.2705 1.55E-04 

Libras 0.2419 3.68E-03 0.3322 5.32E-03 0.4058 5.06E-03 0.3550 5.73E-03 0.4025 4.44E-03 0.2844 5.20E-03 

Musk2 0.0345 4.70E-05 0.0320 4.86E-05 0.0056 1.69E-05 0.0566 6.39E-05 0.0508 5.96E-05 0.0793 7.36E-05 

Optdigits 0.0124 2.10E-05 0.1023 2.01E-04 0.0693 8.73E-04 - - 0.0334 5.09E-05 0.0780 1.30E-04 

Page-Blocks 0.0432 4.72E-05 0.0344 4.38E-05 0.1003 6.35E-06 0.0532 5.23E-05 0.0437 3.66E-05 0.0352 3.76E-05 

Penbased 0.0074 5.44E-06 0.0418 4.16E-05 0.0669 2.34E-04 0.1252 8.46E-05 0.0822 7.28E-05 0.0365 4.95E-05 

Phoneme 0.1140 1.74E-04 0.1331 1.69E-04 0.1620 2.14E-04 0.2409 2.35E-04 0.2455 2.28E-04 0.1530 1.90E-04 

Ring 0.3083 1.68E-04 0.1162 1.53E-04 0.0223 2.75E-05 0.2374 2.33E-04 0.2606 1.52E-04 0.0926 2.25E-04 

Tae 0.5929 1.40E-02 0.4347 1.07E-02 0.5137 1.60E-02 0.4790 1.41E-02 0.5830 9.90E-03 0.4847 1.32E-02 

Tic-Tac-Toe 0.1570 6.89E-04 0.1388 1.55E-03 0.0372 2.64E-04 0.3088 1.26E-03 0.3122 9.80E-04 0.2449 1.95E-03 

Thyroid 0.0600 1.78E-05 0.0042 5.61E-06 0.0457 2.85E-05 - - 0.0523 1.47E-05 0.0553 1.95E-05 

Vehicle 0.3516 1.98E-03 0.2888 1.83E-03 0.3549 1.66E-03 0.2164 1.42E-03 0.2236 1.32E-03 0.2207 1.14E-03 

Vertebral 0.1745 2.48E-03 0.2068 3.08E-03 0.1558 2.37E-03 0.1965 3.69E-03 0.1984 2.42E-03 0.1742 3.04E-03 

Waveform-w-Noise 0.1879 2.57E-04 0.2535 3.63E-04 0.1470 2.67E-04 0.1397 2.27E-04 0.1346 1.89E-04 0.1846 3.72E-04 

Waveform-wo-Noise 0.1804 2.63E-04 0.2487 3.12E-04 0.1369 2.24E-04 0.1397 1.91E-04 0.1399 2.41E-04 0.1718 2.49E-04 

Wine-Red 0.4908 9.90E-04 0.4001 1.48E-03 0.4371 1.04E-03 0.4082 9.79E-04 0.4171 8.77E-04 0.4035 1.09E-03 

Wine-White 0.5136 3.64E-04 0.4186 5.02E-04 0.5247 2.52E-04 0.4656 4.08E-04 0.5296 3.76E-04 0.4554 4.58E-04 

‘-‘ means LDA cannot be run on the dataset because the covariance matrix is non-invertible  

 

 



TABLE.A2. MEAN AND VARIANCE OF CLASSIFICATION ERROR RATES OF SIX RANDOM PROJECTION-BASED FIXED COMBINING 

RULES (USING 10 BASE CLASSIFIERS) 

 

RP Sum Rule10 RP Product Rule10 RP Max Rule10 RP Min Rule10 RP Median Rule10 
RP Majority Vote 

Rule10 

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

Arcene 0.1880 8.41E-03 0.4380 5.91E-03 0.4380 5.91E-03 0.4380 5.91E-03 0.1865 8.94E-03 0.1845 8.78E-03 

Balance 0.1312 2.21E-03 0.1141 1.88E-03 0.1033 1.90E-03 0.1101 1.56E-03 0.1963 6.25E-03 0.2313 8.34E-03 

Conn-Bench-Vowel 0.0856 1.52E-03 0.7490 3.23E-03 0.4051 3.59E-03 0.7490 3.23E-03 0.0842 1.70E-03 0.1123 1.64E-03 

Hill-Valley 0.1275 7.59E-04 0.3917 5.11E-04 0.3917 5.09E-04 0.3917 5.09E-04 0.1282 7.77E-04 0.1415 7.35E-04 

Ionosphere 0.0610 1.34E-03 0.2325 3.23E-03 0.2328 3.22E-03 0.2328 3.22E-03 0.0604 1.38E-03 0.0641 1.83E-03 

Iris 0.0500 3.23E-03 0.1980 9.20E-03 0.1367 5.81E-03 0.1987 8.62E-03 0.0560 3.80E-03 0.0573 3.91E-03 

Letter 0.1204 7.31E-05 0.7021 1.49E-04 0.3602 1.55E-04 0.7021 1.49E-04 0.1437 8.97E-05 0.1404 9.28E-05 

Libras 0.1747 2.95E-03 0.6306 4.65E-03 0.3858 5.25E-03 0.6306 4.65E-03 0.1833 3.36E-03 0.1819 3.49E-03 

Musk2 0.0398 4.83E-05 0.0788 4.72E-05 0.0788 4.72E-05 0.0788 4.72E-05 0.0398 4.88E-05 0.0432 4.80E-05 

Optdigits 0.0319 4.51E-05 0.4966 4.48E-04 0.2531 3.29E-04 0.4966 4.48E-04 0.0390 6.90E-05 0.0356 5.78E-05 

Page-Blocks 0.0418 3.98E-05 0.0611 6.03E-05 0.0585 6.17E-05 0.0611 5.97E-05 0.0423 4.46E-05 0.0435 4.30E-05 

Penbased 0.0152 1.71E-05 0.2620 3.01E-04 0.1426 1.22E-04 0.2620 3.01E-04 0.0157 1.52E-05 0.0158 1.67E-05 

Phoneme 0.1380 2.65E-04 0.2893 5.95E-04 0.2894 5.92E-04 0.2894 5.92E-04 0.1378 2.85E-04 0.1385 2.73E-04 

Ring 0.0420 4.83E-05 0.2396 2.12E-04 0.2396 2.12E-04 0.2396 2.12E-04 0.0426 4.53E-05 0.0454 4.49E-05 

Tae 0.4267 1.24E-02 0.3903 1.11E-02 0.4340 1.57E-02 0.3956 1.19E-02 0.4380 1.35E-02 0.4478 1.38E-02 

Tic-Tac-Toe 0.1395 1.56E-03 0.1935 1.74E-03 0.1941 1.66E-03 0.1941 1.66E-03 0.1506 1.67E-03 0.1706 1.47E-03 

Thyroid 0.0561 2.27E-05 0.1984 2.12E-04 0.1696 1.99E-04 0.1984 2.13E-04 0.0563 2.73E-05 0.0565 2.58E-05 

Vehicle 0.3301 1.93E-03 0.6189 1.09E-03 0.4078 1.53E-03 0.6189 1.08E-03 0.3287 2.20E-03 0.3305 1.96E-03 

Vertebral 0.1910 3.28E-03 0.4261 6.17E-03 0.3152 5.60E-03 0.4258 6.06E-03 0.1926 3.90E-03 0.1971 3.20E-03 

Waveform-w-Noise 0.1852 2.89E-04 0.5361 3.14E-04 0.4415 3.84E-04 0.5361 3.11E-04 0.1868 2.93E-04 0.1922 3.09E-04 

Waveform-wo-Noise 0.1711 2.50E-04 0.4788 5.69E-04 0.3962 5.45E-04 0.4789 5.70E-04 0.1732 2.61E-04 0.1816 3.90E-04 

Wine-Red 0.3715 1.14E-03 0.6285 1.11E-03 0.4049 9.43E-04 0.6290 1.10E-03 0.3727 1.14E-03 0.3783 1.01E-03 

Wine-White 0.3774 3.98E-04 0.6184 4.88E-04 0.4175 4.57E-04 0.6186 4.92E-04 0.3813 4.46E-04 0.3904 4.31E-04 

 

 

 



TABLE.A3. MEAN AND VARIANCE OF CLASSIFICATION ERROR RATES OF TWO HOMOGENEOUS ENSEMBLE METHODS AND PROPOSED 

METHOD (USING 10 BASE CLASSIFIERS) 

 

WMCRP10 Bagging10 Random Subspace10 

Mean Variance Mean Variance Mean Variance 

Arcene 0.2130 9.93E-03 0.2090 8.02E-03 0.1765 5.77E-03 

Balance 0.0880 1.36E-03 0.1682 1.11E-03 0.2504 3.00E-03 

Conn-Bench-Vowel 0.1006 2.00E-03 0.1468 2.31E-03 0.1864 3.52E-03 

Hill-Valley 0.1281 7.64E-04 0.3568 8.10E-04 0.3643 9.73E-04 

Ionosphere 0.0672 1.67E-03 0.0920 2.50E-03 0.0860 1.85E-03 

Iris 0.0467 2.18E-03 0.0527 2.60E-03 0.0593 3.37E-03 

Letter 0.1252 6.54E-05 0.0807 5.30E-05 0.2375 1.03E-03 

Libras 0.2008 3.70E-03 0.2606 4.55E-03 0.2511 4.37E-03 

Musk2 0.0396 4.75E-05 0.0258 3.84E-05 0.0290 3.43E-05 

Optdigits 0.0329 5.58E-05 0.0503 1.04E-04 0.1273 5.66E-04 

Page-Blocks 0.0411 4.00E-05 0.0294 3.16E-05 0.0364 8.26E-05 

Penbased 0.0150 1.63E-05 0.0222 2.26E-05 0.0532 9.61E-05 

Phoneme 0.1349 2.49E-04 0.1070 1.56E-04 0.1797 4.18E-04 

Ring 0.0426 4.91E-05 0.0645 8.08E-05 0.1000 1.17E-04 

Tae 0.4431 1.74E-02 0.4325 1.34E-02 0.5171 1.44E-02 

Thyroid 0.0559 2.05E-05 0.0039 5.44E-06 0.0602 5.45E-05 

Tic-Tac-Toe 0.0916 3.11E-03 0.0822 6.91E-04 0.3087 7.56E-04 

Vehicle 0.3270 2.07E-03 0.2596 1.61E-03 0.2871 1.93E-03 

Vertebral 0.1903 3.78E-03 0.1887 2.67E-03 0.2910 6.08E-03 

Waveform-w-Noise 0.1858 3.24E-04 0.1871 2.86E-04 0.2954 1.10E-03 

Waveform-wo-Noise 0.1702 2.92E-04 0.1851 2.32E-04 0.2293 6.03E-04 

Wine-Red 0.3734 1.19E-03 0.3386 1.14E-03 0.3580 9.03E-04 

Wine-White 0.3789 4.05E-04 0.3530 4.86E-04 0.3735 4.50E-04 

 

 

 



TABLE.A4. MEAN AND VARIANCE OF CLASSIFICATION ERROR RATES OF SIX RANDOM PROJECTION-BASED FIXED COMBINING 

RULES (USING 200 BASE CLASSIFIERS) 

 

RP Sum Rule200 RP Product Rule200 RP Max Rule200 RP Min Rule200 RP Median Rule200 
RP Majority 

Vote Rule200 

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

Arcene 0.1285 4.96E-03 0.5600 4.00E-04 0.5600 4.00E-04 0.5600 4.00E-04 0.1265 4.97E-03 0.1275 5.02E-03 

Balance 0.1067 4.70E-04 0.1438 1.32E-03 0.0811 1.36E-03 0.1441 1.31E-03 0.1256 9.43E-04 0.1430 1.08E-03 

Conn-Bench-Vowel 0.0284 4.39E-04 0.9082 5.89E-05 0.8794 5.96E-04 0.9082 5.89E-05 0.0377 7.73E-04 0.0318 5.20E-04 

Hill-Valley 0.0333 1.69E-04 0.5025 2.39E-06 0.5025 2.39E-06 0.5025 2.39E-06 0.0329 1.42E-04 0.0327 1.42E-04 

Ionosphere 0.0470 1.11E-03 0.3516 2.85E-04 0.3516 2.85E-04 0.3516 2.85E-04 0.0462 1.04E-03 0.0453 1.04E-03 

Iris 0.0407 2.30E-03 0.4980 7.42E-03 0.3140 5.27E-03 0.4980 7.42E-03 0.0427 2.54E-03 0.0407 2.57E-03 

Letter 0.0530 2.50E-05 0.8564 3.17E-05 0.7492 5.40E-05 0.8564 3.17E-05 0.1253 5.38E-05 0.0553 2.95E-05 

Libras 0.1369 2.63E-03 0.7742 3.07E-03 0.6597 4.28E-03 0.7742 3.07E-03 0.1558 2.81E-03 0.1328 2.79E-03 

Musk2 0.0369 4.86E-05 0.1238 3.61E-05 0.1238 3.61E-05 0.1238 3.61E-05 0.0367 4.69E-05 0.0368 4.70E-05 

Optdigits 0.0162 2.77E-05 0.8469 8.80E-05 0.7110 2.01E-04 0.8469 8.80E-05 0.0244 4.66E-05 0.0161 2.86E-05 

Page-Blocks 0.0401 4.27E-05 0.0886 2.63E-05 0.0863 3.36E-05 0.0882 2.68E-05 0.0399 3.90E-05 0.0404 3.95E-05 

Penbased 0.0085 6.73E-06 0.7086 1.36E-04 0.5578 1.76E-04 0.7086 1.36E-04 0.0094 7.61E-06 0.0083 7.25E-06 

Phoneme 0.1155 1.73E-04 0.6319 1.06E-04 0.6319 1.06E-04 0.6319 1.06E-04 0.1152 1.59E-04 0.1150 1.64E-04 

Ring1 0.0205 2.20E-05 0.4936 2.67E-06 0.4936 2.67E-06 0.4936 2.67E-06 0.0209 2.39E-05 0.0206 2.25E-05 

Tae 0.4074 1.38E-02 0.3678 1.04E-02 0.3703 1.15E-02 0.3750 9.64E-03 0.4054 1.51E-02 0.4153 1.64E-02 

Tic-Tac-Toe 0.1360 1.05E-03 0.3466 1.64E-05 0.3466 1.64E-05 0.3466 1.64E-05 0.1539 9.86E-04 0.1561 9.90E-04 

Thyroid 0.0548 1.98E-05 0.6785 3.18E-04 0.6405 3.30E-04 0.6785 3.18E-04 0.0543 2.12E-05 0.0541 2.14E-05 

Vehicle 0.3146 1.82E-03 0.7365 3.03E-04 0.5655 1.14E-03 0.7365 3.03E-04 0.3143 1.89E-03 0.3109 1.81E-03 

Vertebral 0.1797 2.40E-03 0.7410 1.76E-03 0.6106 3.86E-03 0.7410 1.76E-03 0.1790 2.34E-03 0.1781 2.47E-03 

Waveform-w-Noise 0.1346 1.58E-04 0.6616 6.64E-07 0.6506 2.32E-05 0.6616 6.64E-07 0.1346 1.72E-04 0.1355 1.66E-04 

Waveform-wo-Noise 0.1333 2.19E-04 0.6682 1.61E-06 0.6407 5.61E-05 0.6682 1.61E-06 0.1337 2.25E-04 0.1337 2.20E-04 

Wine-Red 0.3558 1.02E-03 0.7134 1.07E-03 0.5754 1.21E-03 0.7134 1.07E-03 0.3567 1.01E-03 0.3608 9.75E-04 

Wine-White 0.3614 4.32E-04 0.6717 4.55E-04 0.5559 4.90E-04 0.6717 4.55E-04 0.3620 4.32E-04 0.3688 4.06E-04 

 

 



TABLE.A5. MEAN AND VARIANCE OF CLASSIFICATION ERROR RATES OF THREE HOMOGENEOUS ENSEMBLE METHODS AND 

PROPOSED METHOD (USING 200 BASE CLASSIFIERS) 

 

WMCRP200 Bagging200 Random Subspace200 RotBoost 

Mean Variance Mean Variance Mean Variance Meam Variance 

Arcene 0.1705 6.70E-03 0.1730 6.97E-03 0.1390 6.98E-03 0.2530 7.89E-03 

Balance 0.0713 8.76E-04 0.1605 8.38E-04 0.2134 1.71E-03 0.1440 9.76E-04 

Conn-Bench-Vowel 0.0312 6.09E-04 0.1016 1.94E-03 0.0699 1.26E-03 0.3230 5.25E-03 

Hill-Valley 0.0290 1.28E-04 0.3230 9.49E-04 0.3311 8.68E-04 0.3608 1.37E-03 

Ionosphere 0.0570 1.49E-03 0.0932 2.27E-03 0.0775 2.00E-03 0.1157 2.76E-03 

Iris 0.0393 1.96E-03 0.0440 2.42E-03 0.0540 3.17E-03 0.0453 2.21E-03 

Letter 0.0567 3.52E-05 0.0599 3.09E-05 0.1016 6.13E-05 0.1413 7.06E-05 

Libras 0.1367 2.28E-03 0.2136 4.13E-03 0.1933 3.02E-03 0.4367 6.59E-03 

Musk2 0.0342 4.67E-05 0.0214 2.77E-05 0.0220 2.41E-05 0.1289 1.49E-04 

Optdigits 0.0161 2.84E-05 0.0389 7.08E-05 0.0389 8.52E-05 0.0637 1.50E-04 

Page-Blocks 0.0378 4.33E-05 0.0272 3.20E-05 0.0313 3.19E-05 0.0634 7.60E-05 

Penbased 0.0074 5.82E-06 0.0179 1.71E-05 0.0225 2.12E-05 0.0592 9.97E-05 

Phoneme 0.1144 1.29E-04 0.0945 1.30E-04 0.1600 2.30E-04 0.1860 3.93E-04 

Ring 0.0232 2.63E-05 0.0551 7.34E-05 0.0315 2.89E-05 0.1122 2.66E-04 

Tae 0.4139 1.61E-02 0.3923 1.66E-02 0.5218 1.16E-02 0.5366 1.41E-02 

Tic-Tac-Toe 0.0211 1.85E-04 0.0592 5.67E-04 0.3067 4.23E-04 0.2846 9.48E-04 

Thyroid 0.0529 2.48E-05 0.0038 5.84E-06 0.0632 8.93E-06 0.0280 8.02E-05 

Vehicle 0.2901 1.70E-03 0.2575 1.74E-03 0.2625 1.53E-03 0.3332 2.70E-03 

Vertebral 0.1806 4.06E-03 0.1781 2.36E-03 0.2619 4.08E-03 0.1858 3.10E-03 

Waveform-w-Noise 0.1398 2.32E-04 0.1619 2.56E-04 0.1715 2.48E-04 0.1678 2.60E-04 

Waveform-wo-Noise 0.1374 1.91E-04 0.1597 2.32E-04 0.1525 2.11E-04 0.1606 2.71E-04 

Wine-Red 0.3509 9.15E-04 0.3061 8.67E-04 0.3176 8.30E-04 0.4120 1.26E-03 

Wine-White 0.3534 3.82E-04 0.3095 5.20E-04 0.3279 3.28E-04 0.4418 2.93E-04 

 

 

 

 



 

TABLE.A6. MEAN AND VARIANCE OF F1 SCORE OF SIX LEARNING ALGORITHMS 

 
ÉNN5 Decision Tree DRBM LDA L2LSVM RNN 

 
Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

Arcene 0.8232 6.61E-03 0.7307 8.68E-03 0.8938 4.22E-03 - - 0.8997 4.98E-03 0.6365 9.59E-03 

Balance 0.6052 6.67E-04 0.5631 8.21E-04 0.8257 5.73E-03 0.6043 2.85E-04 0.6035 2.98E-04 0.6623 4.11E-03 

Conn-Bench-Vowel 0.9278 1.44E-03 0.7598 4.16E-03 0.6573 6.14E-03 0.6024 4.12E-03 0.4330 4.15E-03 0.8819 2.06E-03 

Hill-Valley 0.6088 8.59E-04 0.6104 8.25E-04 0.7338 4.06E-03 0.6541 1.07E-03 0.9840 5.50E-05 0.6770 1.75E-03 

Ionosphere 0.8046 4.90E-03 0.8648 3.09E-03 0.8662 4.46E-03 - - 0.8059 4.77E-03 0.8570 3.79E-03 

Iris 0.9602 1.83E-03 0.9491 2.58E-03 0.9615 1.94E-03 0.9805 1.02E-03 0.9494 2.33E-03 0.9542 2.70E-03 

Letter 0.9548 2.06E-05 0.8653 4.36E-05 0.4548 1.36E-03 0.7018 9.28E-05 0.6739 1.10E-04 0.7275 1.59E-04 

Libras 0.7412 4.94E-03 0.6461 5.52E-03 0.5441 6.84E-03 0.6195 6.77E-03 0.6708 5.75E-03 0.6964 6.13E-03 

Musk2 0.9309 2.10E-04 0.9382 1.84E-04 0.9892 6.33E-05 0.8825 3.14E-04 0.9061 2.40E-04 0.8133 5.65E-04 

Optdigits 0.9876 2.10E-05 0.8978 2.01E-04 0.9277 1.48E-03 - - 0.9674 4.68E-05 0.9220 1.32E-04 

Page-Blocks 0.7468 3.12E-03 0.8235 2.58E-03 0.2467 2.40E-03 0.6747 4.18E-03 0.6961 7.67E-03 0.7706 4.16E-03 

Penbased 0.9926 5.40E-06 0.9583 4.14E-05 0.9322 2.95E-04 0.8728 8.81E-05 0.9149 7.04E-05 0.9637 4.89E-05 

Phoneme 0.8601 2.60E-04 0.8395 2.49E-04 0.8040 2.89E-04 0.6952 4.11E-04 0.7083 3.47E-04 0.8144 2.63E-04 

Ring 0.6568 3.05E-04 0.8838 1.53E-04 0.9777 2.75E-05 0.7609 2.43E-04 0.7232 2.25E-04 0.9072 2.27E-04 

Tae 0.3943 1.51E-02 0.5499 1.21E-02 0.4698 1.75E-02 0.5034 1.57E-02 0.4311 1.26E-02 0.5002 1.48E-02 

Tic-Tac-Toe 0.7985 1.59E-03 0.8442 2.02E-03 0.9591 3.14E-04 0.5752 2.53E-03 0.5537 2.31E-03 0.7163 2.81E-03 

Thyroid 0.6075 1.68E-03 0.9761 2.05E-04 0.7321 1.99E-03 - - 0.5672 9.38E-04 0.6394 1.93E-03 

Vehicle 0.6395 2.05E-03 0.7096 1.83E-03 0.6120 2.19E-03 0.7799 1.55E-03 0.7651 1.63E-03 0.7777 1.23E-03 

Vertebral 0.7792 4.19E-03 0.7288 5.47E-03 0.8026 3.96E-03 0.7687 5.27E-03 0.7256 5.62E-03 0.7812 4.72E-03 

Waveform-w-Noise 0.8120 2.58E-04 0.7465 3.60E-04 0.8527 2.71E-04 0.8601 2.29E-04 0.8642 1.92E-04 0.8150 3.75E-04 

Waveform-wo-Noise 0.8188 2.70E-04 0.7510 3.13E-04 0.8623 2.30E-04 0.8594 1.96E-04 0.8592 2.67E-04 0.8273 2.52E-04 

Wine-Red 0.2408 6.53E-04 0.3169 1.56E-03 0.2101 2.30E-04 0.3170 4.26E-03 0.2168 3.48E-04 0.2735 5.13E-04 

Wine-White 0.2483 6.48E-04 0.3336 5.89E-04 0.1495 9.13E-05 0.2809 2.00E-03 0.1380 4.42E-05 0.2138 1.47E-04 

‘-‘ means LDA cannot be run on the dataset because the covariance matrix is non-invertible  

 

 

 



TABLE.A7. MEAN AND VARIANCE OF F1 SCORE OF SIX RANDOM PROJECTION-BASED FIXED COMBINING RULES (USING 10 BASE 

CLASSIFIERS) 

 

RP Sum Rule10 RP Product Rule10 RP Max Rule10 RP Min Rule10 RP Median Rule10 
RP Majority 

Vote Rule10 

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

Arcene 0.8071 8.90E-03 0.5058 1.21E-02 0.5058 1.21E-02 0.5058 1.21E-02 0.8086 9.47E-03 0.8121 9.16E-03 

Balance 0.6373 6.93E-03 0.7616 1.06E-02 0.7558 1.49E-02 0.7645 1.01E-02 0.5822 8.07E-03 0.5723 1.33E-02 

Conn-Bench-Vowel 0.9118 1.63E-03 0.2552 6.10E-03 0.5723 4.15E-03 0.2552 6.10E-03 0.9138 1.78E-03 0.8839 1.79E-03 

Hill-Valley 0.8725 7.60E-04 0.5423 1.22E-03 0.5423 1.22E-03 0.5423 1.22E-03 0.8718 7.78E-04 0.8580 7.48E-04 

Ionosphere 0.9332 1.64E-03 0.6796 9.15E-03 0.6791 9.13E-03 0.6791 9.13E-03 0.9338 1.68E-03 0.9286 2.40E-03 

Iris 0.9494 3.32E-03 0.7949 1.09E-02 0.8566 7.13E-03 0.7940 1.02E-02 0.9432 3.94E-03 0.9416 4.11E-03 

Letter 0.8792 7.37E-05 0.3983 2.22E-04 0.6378 1.59E-04 0.3983 2.22E-04 0.8679 6.92E-05 0.8607 8.76E-05 

Libras 0.8143 3.63E-03 0.3894 7.16E-03 0.5772 6.44E-03 0.3894 7.16E-03 0.8083 3.91E-03 0.8052 4.34E-03 

Musk2 0.9153 2.71E-04 0.8058 4.93E-04 0.8058 4.93E-04 0.8058 4.93E-04 0.9152 2.72E-04 0.9065 2.87E-04 

Optdigits 0.9682 4.48E-05 0.5688 4.80E-04 0.7378 3.74E-04 0.5688 4.80E-04 0.9614 6.67E-05 0.9644 5.80E-05 

Page-Blocks 0.7040 5.12E-03 0.5775 6.60E-03 0.6108 6.71E-03 0.5779 6.58E-03 0.6992 5.10E-03 0.6943 4.84E-03 

Penbased 0.9849 1.71E-05 0.7857 2.02E-04 0.8571 1.30E-04 0.7857 2.02E-04 0.9844 1.50E-05 0.9842 1.67E-05 

Phoneme 0.8270 4.70E-04 0.7008 5.45E-04 0.7007 5.42E-04 0.7007 5.42E-04 0.8276 5.02E-04 0.8330 3.96E-04 

Ring 0.9580 4.83E-05 0.7450 3.00E-04 0.7450 3.00E-04 0.7450 3.00E-04 0.9573 4.53E-05 0.9546 4.50E-05 

Tae 0.5637 1.31E-02 0.5960 1.29E-02 0.5544 1.70E-02 0.5902 1.41E-02 0.5518 1.49E-02 0.5402 1.56E-02 

Tic-Tac-Toe 0.8368 2.28E-03 0.7599 3.20E-03 0.7585 3.15E-03 0.7585 3.15E-03 0.8223 2.53E-03 0.7916 2.36E-03 

Thyroid 0.6423 2.05E-03 0.3909 4.47E-04 0.5671 6.67E-04 0.3908 4.50E-04 0.6459 2.17E-03 0.6609 1.86E-03 

Vehicle 0.6649 1.91E-03 0.3285 2.19E-03 0.5577 1.86E-03 0.3286 2.15E-03 0.6697 2.11E-03 0.6633 1.95E-03 

Vertebral 0.7480 6.48E-03 0.5387 6.79E-03 0.6215 7.78E-03 0.5391 6.71E-03 0.7468 7.68E-03 0.7461 6.56E-03 

Waveform-w-Noise 0.8140 2.94E-04 0.4054 6.82E-04 0.5179 5.71E-04 0.4054 6.78E-04 0.8125 2.98E-04 0.8079 3.08E-04 

Waveform-wo-Noise 0.8277 2.58E-04 0.4947 9.97E-04 0.5821 7.62E-04 0.4946 1.00E-03 0.8257 2.69E-04 0.8183 3.90E-04 

Wine-Red 0.3139 1.73E-03 0.2727 2.24E-03 0.3194 2.34E-03 0.2724 2.25E-03 0.3144 1.90E-03 0.3026 1.06E-03 

Wine-White 0.3614 7.77E-04 0.3432 5.84E-04 0.3561 8.75E-04 0.3431 5.85E-04 0.3566 9.87E-04 0.3384 8.88E-04 

 

 

 



TABLE.A8. MEAN AND VARIANCE OF F1 SCORE OF TWO HOMOGENEOUS ENSEMBLE METHODS AND PROPOSED METHOD (USING 10 

BASE CLASSIFIERS) 

 

WMCRP10 Bagging10 Random Subspace10 

Mean Variance Mean Variance Mean Variance 

Arcene 0.7799 1.07E-02 0.7877 8.30E-03 0.8209 6.03E-03 

Balance 0.8471 4.55E-03 0.5933 7.28E-04 0.5196 1.45E-03 

Conn-Bench-Vowel 0.8968 2.12E-03 0.8475 2.55E-03 0.8073 3.97E-03 

Hill-Valley 0.8718 7.66E-04 0.6421 8.18E-04 0.6343 9.84E-04 

Ionosphere 0.9270 1.97E-03 0.8985 3.03E-03 0.9038 2.51E-03 

Iris 0.9526 2.27E-03 0.9465 2.74E-03 0.9397 3.55E-03 

Letter 0.8748 6.52E-05 0.9193 5.29E-05 0.7640 1.03E-03 

Libras 0.7851 4.61E-03 0.7201 5.69E-03 0.7314 5.02E-03 

Musk2 0.9162 2.62E-04 0.9481 1.68E-04 0.9403 1.68E-04 

Optdigits 0.9672 5.53E-05 0.9497 1.05E-04 0.8700 6.07E-04 

Page-Blocks 0.7081 5.20E-03 0.8409 2.29E-03 0.7852 4.37E-03 

Penbased 0.9850 1.63E-05 0.9779 2.26E-05 0.9469 9.69E-05 

Phoneme 0.8341 3.73E-04 0.8726 2.13E-04 0.7838 5.41E-04 

Ring 0.9574 4.91E-05 0.9355 8.08E-05 0.8996 1.19E-04 

Tae 0.5466 1.85E-02 0.5557 1.46E-02 0.4626 1.62E-02 

Thyroid 0.6431 1.76E-03 0.9790 1.66E-04 0.5676 9.16E-03 

Tic-Tac-Toe 0.8959 4.16E-03 0.9032 1.07E-03 0.5175 4.61E-03 

Vehicle 0.6657 2.19E-03 0.7340 1.80E-03 0.7020 2.17E-03 

Vertebral 0.7591 6.46E-03 0.7578 4.97E-03 0.6368 9.03E-03 

Waveform-w-Noise 0.8136 3.29E-04 0.8131 2.85E-04 0.7039 1.11E-03 

Waveform-wo-Noise 0.8288 2.96E-04 0.8149 2.31E-04 0.7702 6.20E-04 

Wine-Red 0.3046 6.46E-04 0.3388 1.84E-03 0.2999 6.18E-04 

Wine-White 0.3572 5.60E-04 0.3760 6.60E-04 0.3232 7.01E-04 

 

 

 



TABLE.A9. MEAN AND VARIANCE OF F1 SCORE OF SIX RANDOM PROJECTION-BASED FIXED COMBINING RULES (USING 200 BASE 

CLASSIFIERS) 

 

RP Sum Rule200 RP Product Rule200 RP Max Rule200 RP Min Rule200 RP Median Rule200 
RP Majority 

Vote Rule200 

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

Arcene 0.8686 5.14E-03 0.3054 9.71E-05 0.3054 9.71E-05 0.3054 9.71E-05 0.8708 5.14E-03 0.8698 5.18E-03 

Balance 0.6352 2.06E-03 0.7092 6.49E-03 0.9015 2.88E-03 0.7087 6.50E-03 0.6210 2.34E-03 0.6163 2.65E-03 

Conn-Bench-Vowel 0.9712 4.69E-04 0.0167 4.78E-05 0.0574 6.16E-04 0.0167 4.78E-05 0.9627 7.30E-04 0.9676 5.55E-04 

Hill-Valley 0.9667 1.69E-04 0.3322 4.76E-07 0.3322 4.76E-07 0.3322 4.76E-07 0.9671 1.42E-04 0.9673 1.42E-04 

Ionosphere 0.9490 1.30E-03 0.4113 1.20E-03 0.4113 1.20E-03 0.4113 1.20E-03 0.9500 1.21E-03 0.9509 1.22E-03 

Iris 0.9586 2.41E-03 0.4350 1.42E-02 0.6301 8.82E-03 0.4350 1.42E-02 0.9567 2.62E-03 0.9587 2.66E-03 

Letter 0.9468 2.51E-05 0.1818 7.66E-05 0.2331 8.12E-05 0.1818 7.66E-05 0.9019 2.97E-05 0.9446 2.97E-05 

Libras 0.8560 3.06E-03 0.2189 4.79E-03 0.3369 5.55E-03 0.2189 4.79E-03 0.8428 2.98E-03 0.8609 3.34E-03 

Musk2 0.9212 2.74E-04 0.6294 8.11E-04 0.6294 8.11E-04 0.6294 8.11E-04 0.9218 2.63E-04 0.9214 2.64E-04 

Optdigits 0.9839 2.75E-05 0.1112 2.39E-04 0.2566 2.94E-04 0.1112 2.39E-04 0.9762 4.33E-05 0.9839 2.84E-05 

Page-Blocks 0.7128 5.87E-03 0.3899 3.95E-03 0.4322 5.63E-03 0.3904 4.03E-03 0.7123 4.99E-03 0.7096 4.76E-03 

Penbased 0.9916 6.61E-06 0.3142 2.41E-04 0.4266 2.18E-04 0.3142 2.41E-04 0.9907 7.39E-06 0.9918 7.11E-06 

Phoneme 0.8559 2.76E-04 0.3362 1.97E-04 0.3362 1.97E-04 0.3362 1.97E-04 0.8567 2.52E-04 0.8573 2.56E-04 

Ring 0.9795 2.20E-05 0.3390 1.12E-05 0.3390 1.12E-05 0.3390 1.12E-05 0.9791 2.39E-05 0.9794 2.26E-05 

Tae 0.5834 1.45E-02 0.6198 1.24E-02 0.6162 1.37E-02 0.6110 1.16E-02 0.5840 1.59E-02 0.5751 1.70E-02 

Tic-Tac-Toe 0.8422 1.50E-03 0.3952 2.21E-06 0.3952 2.21E-06 0.3952 2.21E-06 0.8190 1.45E-03 0.8158 1.48E-03 

Thyroid 0.6433 2.03E-03 0.1838 7.35E-05 0.2797 1.40E-04 0.1838 7.35E-05 0.6534 2.04E-03 0.6567 1.96E-03 

Vehicle 0.6783 1.87E-03 0.1453 7.85E-04 0.3336 1.59E-03 0.1453 7.85E-04 0.6818 1.91E-03 0.6827 1.90E-03 

Vertebral 0.7615 4.80E-03 0.1907 2.32E-03 0.3173 2.76E-03 0.1907 2.32E-03 0.7623 4.63E-03 0.7631 4.83E-03 

Waveform-w-Noise 0.8645 1.62E-04 0.1686 2.56E-07 0.1921 8.79E-05 0.1686 2.56E-07 0.8645 1.76E-04 0.8636 1.70E-04 

Waveform-wo-Noise 0.8654 2.28E-04 0.1668 3.71E-06 0.2215 1.69E-04 0.1668 3.71E-06 0.8651 2.34E-04 0.8652 2.28E-04 

Wine-Red 0.3140 6.33E-04 0.2434 2.49E-03 0.2830 2.75E-03 0.2434 2.49E-03 0.3126 6.56E-04 0.3083 5.99E-04 

Wine-White 0.3765 7.30E-04 0.3240 6.12E-04 0.3234 5.07E-04 0.3240 6.12E-04 0.3724 7.74E-04 0.3489 8.65E-04 

 

 

 

 



TABLE.A10. MEAN AND VARIANCE OF F1 SCORE OF TWO HOMOGENEOUS ENSEMBLE METHODS AND PROPOSED METHOD (USING 200 

BASE CLASSIFIERS) 

 

WMCRP200 Bagging200 Random Subspace200 RotBoost 

Mean Variance Mean Variance Mean Variance Meam Variance 

Arcene 0.8253 7.03E-03 0.8231 7.18E-03 0.8576 7.38E-03 0.7378 8.64E-03 

Balance 0.8962 2.27E-03 0.5915 4.56E-04 0.5458 8.44E-04 0.5963 6.42E-04 

Conn-Bench-Vowel 0.9685 6.27E-04 0.8953 2.16E-03 0.9284 1.38E-03 0.6615 6.29E-03 

Hill-Valley 0.9710 1.28E-04 0.6765 9.53E-04 0.6685 8.69E-04 0.6338 1.51E-03 

Ionosphere 0.9382 1.78E-03 0.8977 2.78E-03 0.9142 2.56E-03 0.8621 4.64E-03 

Iris 0.9601 2.04E-03 0.9554 2.51E-03 0.9452 3.28E-03 0.9540 2.30E-03 

Letter 0.9430 4.67E-05 0.9399 3.14E-05 0.8989 6.12E-05 0.8607 6.67E-05 

Libras 0.8561 2.51E-03 0.7690 5.04E-03 0.7924 3.80E-03 0.5172 7.72E-03 

Musk2 0.9278 2.46E-04 0.9570 1.22E-04 0.9554 1.11E-04 0.6087 3.73E-03 

Optdigits 0.9840 2.81E-05 0.9611 7.09E-05 0.9609 8.67E-05 0.9361 1.51E-04 

Page-Blocks 0.7324 5.64E-03 0.8604 2.08E-03 0.8087 3.17E-03 0.4344 5.87E-03 

Penbased 0.9926 5.80E-06 0.9822 1.70E-05 0.9777 2.08E-05 0.9408 1.01E-04 

Phoneme 0.8609 1.88E-04 0.8857 1.86E-04 0.7996 3.65E-04 0.7697 7.06E-04 

Ring 0.9768 2.63E-05 0.9448 7.35E-05 0.9685 2.90E-05 0.8869 2.84E-04 

Tae 0.5771 1.73E-02 0.5943 1.86E-02 0.4601 1.37E-02 0.4445 1.50E-02 

Tic-Tac-Toe 0.9764 2.34E-04 0.9311 8.32E-04 0.5113 2.34E-03 0.5840 4.45E-03 

Thyroid 0.6714 2.06E-03 0.9795 1.76E-04 0.5355 1.61E-03 0.8502 4.03E-03 

Vehicle 0.7017 1.82E-03 0.7367 1.91E-03 0.7250 1.82E-03 0.6485 3.06E-03 

Vertebral 0.7671 7.33E-03 0.7688 4.85E-03 0.6573 8.46E-03 0.7397 7.52E-03 

Waveform-w-Noise 0.8597 2.36E-04 0.8378 2.55E-04 0.8244 2.82E-04 0.8318 2.63E-04 

Waveform-wo-Noise 0.8618 1.96E-04 0.8396 2.39E-04 0.8447 2.30E-04 0.8388 2.72E-04 

Wine-Red 0.3211 7.53E-04 0.3455 6.60E-04 0.3158 5.01E-04 0.2418 7.38E-04 

Wine-White 0.3849 5.90E-04 0.4077 8.89E-04 0.3360 6.03E-04 0.2174 1.61E-04 

 

  



TABLE.A11. TRAINING AND CLASSIFICATION TIME OF THE PROPOSED METHOD AND 3 HOMOGENEOUS ENSEMBLE METHODS ON 8 

DATASETS 

 
WMCRP200 Bagging200 

Random 

Subspace200 
RotBoost 

 

Training 

Time 

Testing 

Time 

Training 

Time 

Testing 

Time 

Training 

Time 

Testing 

Time 

Training 

Time 

Testing 

Time 

Page-Blocks 188.3965 24.2803 0.8595 5.3818 0.5016 6.3882 1.0253 0.0243 

Tae 8.2533 0.6099 0.1485 0.1391 0.1640 0.1769 0.2018 0.0156 

Thyroid 303.7965 35.2585 0.4938 6.6788 0.4094 7.3956 0.7689 0.0214 

Vehicle 39.4032 3.5776 0.3500 0.8267 0.2329 0.9235 0.4321 0.0169 

Waveform-w-Noise 331.7415 27.3840 4.3958 5.9178 1.7096 7.8402 3.7377 0.0259 

Waveform-wo-noise 259.5170 26.8978 2.4690 5.9428 1.4597 8.1921 2.0142 0.0240 

Wine-Red 75.0267 7.4877 0.5782 1.7392 0.3298 1.8392 0.6039 0.0203 

Wine-White 301.3423 32.5567 1.7330 7.1507 0.8407 7.9868 2.0202 0.0319 

Average 188.4346 19.7566 1.3785 4.2221 0.7060 5.0928 1.3505 0.0225 
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