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Abstract: We are living in a world progressively driven by data. Besides mining big data which 

cannot be altogether stored in the main memory as required by traditional offline methods, the 

problem of learning rare data that can only be collected over time is also very prevalent. 

Consequently, there is a need of online methods which can handle arriving data and offer the 

same accuracy as offline methods. In this paper, we introduce a new lossless online Bayesian-

based classifier which uses the arriving data in a 1-by-1 manner and discards each data right 

after use. The lossless property of our proposed method guarantees that it can reach the same 

prediction model as its offline counterpart regardless of the incremental training order. 

Experimental results demonstrate its superior performance over many well-known state-of-the-

art methods in the literature. 

Keywords: Online learning, lossless methods, online classifiers, Bayesian method, variational 

inference, multivariate Gaussian 

1. Introduction 

 In machine learning, online learning is a learning mechanism in which data arriving in a 

sequential manner are processed incrementally, and predictions must be made if required at any 

time before all the data are seen. This situation is very popular in real-time applications such as 
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medical data analysis (e.g. [18]), network traffic (e.g. [23]), and financial markets (e.g. [24]), in 

which data is collected gradually and not all of the data is available at the beginning of the 

analysis. As opposed to traditional batch algorithms where the prediction is made based on 

learning the entire training dataset at once, strictly online algorithms do not require the whole 

dataset to be stored or loaded into memory, but just make use of a single/set of observations and 

then discard them before the next observations are used (this property is called discard-after-learn 

or one-pass-thrown-away).  

In this paper, we focus on online supervised classification algorithms which usually 

perform the following three main steps: 

• Predict: When a new observation  �� arrives, a prediction ��� is made using the current 

model ��.  

• Calculate the suffered loss: After making the prediction, the true label �� is revealed, and 

the loss ���� , ���	  can be estimated to measure the difference between the learner's 

prediction and the revealed true label ��. 

• Update: Based on the result of the loss, the learner can use the observation ��� , ��	 to 

update the classification model ��� → ����	.  

 Many of the online methods are built based on their offline versions. For example, from 

offline classifiers like linear methods, Bayesian methods, decision trees, Bagging, Boosting or 

Random Forest, their online descendants can be found like online linear methods (e.g. [6-11, 14, 

33, 38, 39, 40]), online Bayesian classifiers (e.g. [2, 26]) , online decision trees (e.g. [13, 37]), 

online Bagging [29], online Boosting [29], or online Random Forest [34], respectively. While 

enjoying computational efficiency, online methods generally suffer degradation in performance 

compared with their offline counterparts due to the inability of accessing the full training set. 

Moreover, the sequential nature of the model updating process also introduces order-dependence 

bias to the final result. In the literature, Incremental Tree Induction (ITI) [37] is a lossless 
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incremental method which can produce the same tree for a dataset regardless of the incremental 

training order or whether the tree is induced incrementally or not (batch setting). However, to be 

lossless, it violates the requirement of a strictly online method by having to retain all the previous 

training data for revisiting decisions, thus prohibiting its use on large datasets. Besides ITI [37], 

Online Naïve Bayes (discrete version [2] and continuous version [26]) is also lossless, but its 

“Naïve” assumptions do not allow the predictive model to achieve a high accuracy on a diversity 

of datasets. In this paper, we describe a new lossless Online Variational Inference for 

multivariate Gaussian based method (OVIG), which is demonstrated to outperform many state-

of-the-art online methods, namely Adaptive Regularization of Weights (AROW) [10], Soft 

Confidence Weighted (SCW) [38], and online Bagging with Hoeffding trees as the based 

learners (OBHT) [13, 29], as well as the widely-used Passive Aggressive learning (PA) [8], and 

Online Gradient Descent (OGD) [40] algorithms. As opposed to ITI [37], our proposed method 

does not need to store more than a single observation in the main memory. It also does not 

require the discretization of attributes before testing and training as in the discrete version of 

Online Naïve Bayes [2] where relevant counts for the predictive model are maintained in tables. 

Compared to the continuous version of Online Naïve Bayes [26], the new lossless method is 

significantly more time-efficient. Moreover, by updating the predictive model only when an 

arriving observation is classified incorrectly OVIG becomes the first lossless conservative online 

method. Additionally, OVIG is naturally parallelizable as it learns the predictive models for 

different classes independently and for each class, the predictive model and its relevant sufficient 

statistics can be updated independently. As a generative (Bayesian) method, OVIG can give 

access to the full data distribution and class distributions at any time which is needed for many 

advanced online learning tasks such as online semi-supervised learning, imbalanced learning, and 

cost-sensitive learning (see e.g. [27]). 

The remainder of this paper is organized as follows. In section 2, we briefly review 

several online learning methods, especially the ones we used as benchmark algorithms. The 
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Bayesian-based online learning methods are further discussed in section 3. Section 4 presents 

our proposed algorithm and the next section is for experimental studies. Finally, the conclusion 

is given in Section 6. 

2. Related work 

 In literature, there are several online learning methods which are mainly distinguished by 

the different type of loss function ���� , ���	 or the way of updating �� → ����. Many of them only 

update when they make wrong prediction (using 0-1 loss function) (which are called conservative 

algorithms). The Perceptron algorithm, a binary linear classifier [33], is perhaps the oldest 

conservative algorithm. Crammer and Singer [11] extended the binary Perceptron algorithm to a 

family of multiclass Perceptron algorithms with the label predicted as ��� = argmax
�∈��,⋯,�� �� ∙ ��, here 

� is the number of classes and �� is the weight vector of class i �� = 1, … , �	. Perceptron, and 

some other popular methods like PA (Passive Aggressive learning) [7, 8] and OGD (Online 

Gradient Descent) [40] are first-order online linear methods. Recently second-order online linear 

classifiers such as SOP (Second-order Perceptron) [6], CW (Confidence Weighted learning) [14], 

IELLIP (Improved Ellipsoid Method for Online Learning) [39], SCW (Soft Confidence 

Weighted) [38], and AROW (Adaptive Regularization of Weights) [9,10] have been explored to 

better exploit the underlying structures between features. Instead of giving point estimate like 

first-order learners, most of the second-order learning algorithms typically assume the weight 

vector follows a Gaussian distribution �~ �!, "	. They not only find the most likely solution 

for � but also the distribution of all possible solutions, hence taking advantage of the training 

data more efficiently. Although linear methods are efficient in computation and memory, they 

learn linear prediction models which are not flexible enough for many real-world applications. 

Moreover, it is often not straightforward to convert from binary linear classifiers to multiclass 

linear classifiers.  
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Tree-based models are also a popular family among the supervised online learning 

models.  An attractive feature of prevalent trees like CART [4] (or the related C4.5 [31]) is that 

the algorithm asks a sequence of hierarchical Boolean questions (e.g., is #��	 ≤ %&?, where %& is a 

threshold value), which is relatively simple to understand and interpret by humans. When 

converted into online setting, early incremental trees are either memory intensive as all of the 

previous training data must be retained (ITI [37])), or they have to discard important information 

if parent nodes change. In 2000, the state-of-the-art Hoeffding tree [13] was introduced. It is an 

incremental, anytime decision tree, that is capable of learning from massive data streams, 

assuming that the underlying distribution that generates the data does not change over time. 

Among trees, Hoeffding tree is used the most since it has good guarantee of performance not 

shared by other incremental decision tree learners. To measure the number of observations 

needed to estimate some sufficient statistics to within a prescribed precision, it exploits the so-

called Hoeffding bound, which states that, with probability 1 − ), the true mean of a random 

variable of range * will not differ from the estimated mean after + independent observations by 

more than , = -./01��/3	
41 . With this bound, Hoeffding tree’s output is shown to be 

asymptotically nearly identical to that of a non-incremental learner using infinitely many 

examples. However, in the implementation of Hoeffding tree, checking for split at a node is 

often expensive. Therefore, after initializing the predictive model with a number of initial 

observations, it only checks for split at a node after every new +5�1  (default value = 200) 

observations have reached that node. As in batch learning, trees often need to be used in an 

ensemble framework to get high performance [5], one would do the same with the online 

setting. Hoeffding trees are now mainly used as base learners in online meta-learning methods 

(see for example [30]).  

Besides ensembles of incremental decision trees, online committee classifiers can use 

many different online methods as base learners to attain better performance. In an ensemble 
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framework, we might train multiple different models and then make predictions by a combining 

method on the models’ output. Two well-known variants of online committee methods are 

online Bagging and online Boosting [29]. Online Bagging simulates the bootstrap process of 

offline Bagging by sending 6 copies of each new sample to update each base model, where 6 

follows the Poisson (λ = 1) distribution. Meanwhile, online Boosting trains a series of base 

models h�, … , h8, each h5 is learned from each new sample 6 times, where 6~ Poisson(:), : 

is determined based on the classification result of preceding model h5;�. Although ensemble  

method can inherit the good properties of base learners and give better accuracy, they also 

experience some disadvantages. For example, deciding on the number of base classifiers is non-

trivial and a large number can lead to expensive computation while a small number may not 

give expected results.  

Recently, there are a number of online algorithms using hyper-elliptical capsules as 

their learning units including a versatile elliptic basis function (VEBF) neural network [21, 22] 

or a multi-stratum network [36]. In can be seen that hyper-elliptical capsules and multivariate 

Gaussians share a lot of common properties. First, both of them can be represented by the centre 

vector (mean) and the covariance matrix. Furthermore, they can be used as building blocks for 

many flexible algorithms like [21, 22, 36] and the proposed method OVIG. However, our 

approach not only updates point estimates of the mean and the covariance matrix over time, but 

also the distribution of their likely values. It is worth pointing out that when we have a 

distribution, we have the point estimate (as the mean or mode of the distribution) and the 

confidence of our point estimate (inferred from the covariance) at the same time. That is an 

advantage of second-order methods.     

In the next section, we will discuss the online Bayesian algorithms. These algorithms 

are very flexible generative algorithms which give us access to the posterior probabilities =�� =
>|�	  as well as data distribution =��	 and =��, �	. This information is especially valuable in an 

online setting, where samples are discarded after use and cannot be retrieved later.  
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3. Bayesian classifiers 

Given an observation to be classified represented by a vector � = @#��	, ⋯ , #�4	A ∈ ℝC. 

A Bayesian classifier based on Bayes’ theorem predicts the label �  of � from the label set 

�1,2, ⋯ , �� as 

� = argmax
E∈��,4,⋯,�� =�� = >|�	 ~ argmax

E∈��,4,⋯,�� =�� = >	=��|� = >	 (1) 

where =�� = >|�	 is the posterior probability that � belongs to the class >, =�� = >	 is the prior 

probability of class > , and =��|�	  is the class conditional probability density function, 

respectively. 

The class prior =�� = >	 can often be estimated simply from the fractions of training data in 

each of the classes. For online setting, at time step F 

=�� = >	 = 1GH
1G  (2) 

where +�E denotes the number of observations of class k arriving before �I, and +�  denotes the 

number of all observations arriving before �I. 

Based on the way of approximating =��|� = >	, > ∈ �1, … , ��, we have different Bayesian 

algorithms. Naïve Bayes is the simplest Bayesian classifier which is called ‘naive’ because it 

assumes independence of the attributes given the label, i.e. 

∀> ∈ �1, ⋯ , ��, =��|� = >	 = =@#��	K� = >A … =@#�C	K� = >A (3) 

A version of Naïve Bayes classifiers with continuous attributes is introduced in [26], where  

every attribute #��	 of � is assumed to follow a univariate Gaussian distribution given the label 

� = > : =@#��	K� = >A =  @#��	|L��	, M��	4A,  � ∈ �1, ⋯ , N� . The offline maximum likelihood 
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estimates of parameters L��	, M��	4 based on the training set of + observations O = ���, ⋯ , �1� 

from class > can be found in standard statistics textbooks as: 

L1��	 = �
1 ∑ #&

��	1&Q�   (4) 

M1��	4 = �
1 ∑ R#&

��	 − L��	S41&Q�   (5) 

Consequently, the incremental formulae for online Naïve Bayes for Gaussian method (ONBG) 

[26] are as follows. 

L�
��	 = �;�

� L�;�
��	 + �

� #�
��	

 (6) 

M�
��	4 = �;�

� M�;�
�U	4 + �

�;� R#�
��	 − L�

��	S4
 (7) 

On the other hand, Naïve Bayes (NB) method in MOA [2] supposes that each #��	 can take +� 

different discrete values. Upon receiving an unlabelled observation � = @#��	 = V��	, … , #�C	 =
V�C	A, Naïve Bayes classifiers estimate the probability of � belonging to class � = > as: 

=�� = >|�	 ~ =�� = >	=��|� = >	  =  =�� = >	 W =@#��	 = V��	|� = >A
C

�Q�
 

= =�� = >	 ∏ Y@Z�[	Q\�[	,]QEA
Y�]QE	

C�Q�   (8) 

The values =@#��	 = V��	, � = >A and =�� = >	 are estimated from the training data which is 

summarized in a 3-dimensional table that stores for each triple R#��	, V&
��	, >S a count �̂,&,E of 

training observations with #��	 = V&
��	

 and � = >, together with a 1-dimensional table for the 

counts of � = >. Upon receiving a new observation, the relevant counts are increased. It can be 

seen that if ONBG [26] and NB [2] always update their model, after learning on the training set, 

their online and offline versions will have identical performance, i.e. they are lossless online 

methods. 
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4. A novel lossless Bayesian method 

Recently, Nguyen et al. [28] proposed the Variational Inference (VI) for multivariate 

Gaussian distribution (VIG) algorithm to approximate =��|� = >	 for each class k. The VIG 

algorithm has been demonstrated to offer superior performance for batch learning under an 

ensemble framework. In this study, we propose a lossless online version of VIG named OVIG, 

which not only theoretically converges to its offline counterpart but also achieves the same 

predictive model regardless of the incremental training order. Similar to the two aforementioned 

lossless methods, we inspect data strictly in a 1-by-1 fashion, each used observation is discarded 

before the next one is obtained. However, our refined update mechanism makes OVIG much 

more stable. In particular, as opposed to the constantly updating frameworks of ONBG to 

maintain the lossless property, OVIG is a conservative method, that means it only updates its 

predictive model when it makes a wrong prediction. To the best of our knowledge, OVIG is the 

first online method which is simultaneously discard-after-learn, conservative, and lossless. 

OVIG explores the deep underlying structure of the data, making its model effective for even 

very small datasets where many other online methods have difficulty to learn (see section 5).  

4.1 Offline Variational Inference for multivariate Gaussian (VIG) 

  Before describing OVIG, we briefly summarize the VIG method [28]. VIG applies 

Variational Inference technique to approximate the multivariate Gaussian model  ��|!, "	 for 

=��|� = >	 of each class > ∈ �1, … , ��. In contrast to maximum-likelihood learning, VI treats 

the parameters �!, "	 as random variables and a prior is placed over the parameters to obtain the 

posterior distribution  =�!, "|O	 , where O = _�&|` = 1, … , +a  is the training set, which is 

assumed to be drawn independently from the multivariate Gaussian distribution  ��|!, "	. The 

idea behind VI method is to approximate the posterior distribution =�!, "|O	  of hidden 

variables !, " given observed data O  by a more easily accessible distribution b�!, "	 which 

minimizes the Kullback-Leibler divergence KL�b||=	  between =�!, "|O	  and b�!, "	 . To 
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minimize KL�b||=	 , we maximize ℒ�b	 = ln=�O	 − KL�b||=	 . As KL�b||=	 ≥ 0 , ℒ�b	  is a 

lower bound on the log marginal probability ln=�O	. 

  The conjugate prior of a multivariate Gaussian distribution, =�!, j	, where j = ";� is 

the  precision matrix, with unknown ! and j, is given by the Gaussian-Wishart distribution: 

=�!, j	 = =�!|j	=�j	, where =�!|j	 is a Gaussian distribution: 

=�!|j	 =  �!|kl, �mlj	;�	 = �2π	;o
/ |mlj|p

/ exp s− �
4 �! − kl	tmlj�! − kl	u (9) 

and =�j	 is a Wishart distribution: 

=�j	 = v�j|wl, Vl	 = B�wl, Vl	|j|�yz{o{p	
/ exp s− �

4 Tr�wl;�j	u, (10) 

B�wl, Vl	 = |wl|{yz/ }2yzo
/ πo�o{p	

~ ∏ Γ R\z��;�
4 SC�Q� �

;�
 (11) 

where kl and ml are the N-dimension mean vector and the scale of the precision matrix j of 

the Gaussian distribution =�!|j	, wl  and Vl  are the N × N -dimension scale matrix and the 

number of degrees of freedom of the Wishart distribution =�j	, Tr�. 	denotes the trace operator 

of a matrix, and Γ�. 	 denotes the Gamma function defined by Γ�. 	 = � #�;��;Zd#�
l . 

From [28], the variational solution for parameters ! and j = ";� are given as follows.  

!~q�!	 =  �!|k, �;�	, is a Gaussian with mean k and precision � given by (12) and (13): 

k = �zkz�1��
�z�1  (12) 

� = �ml + +	��j�. (13) 

j~b�j	 = v�j|w, V	, is a Wishart with the number of degrees of freedom V and the scale 

matrix w given by (14) and (15): 

V = Vl + + + 1 (14) 
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w;� = wl;� + �ml + +	�;� + � + �z1
�z�1 � (15) 

where  

�� = �
1 ∑ �&1&Q�  (16) 

� = ∑ @�& − ��A@�& − ��At1&Q�      (17) 

� = ��� − kl	��� − kl	t        (18) 

Thus, we have expressions for the optimal distributions of ! and j, each of which depends on 

values evaluated with respect to the other distributions such as the expectation ��j� of j and 

the precision � of !. To start the iterative re-estimation procedure of VI method, we can make 

an initial guess for the moment ��j� , say, ��j� = Vlwl , and use this to re-compute the 

distribution b�!	. Given this revised distribution we can then use the precision � to recompute 

the distribution b�j	, and so on. 

The lower bound ℒ�b	 of the Variational Inference for the multivariate Gaussian distribution is 

given by 

ℒ�b	 = ln��wl, Vl	 − ln��w, V	 − �
4 �+Nln�2�	 −  N ln�ml	 −  VN + ln|�| + VTr��w	 +

VTr�wl;�w	 + �z1\
�z�1 Tr��w	�.  (19) 

We have the following algorithm for multivariate Gaussian distribution estimation [28]. 

Algorithm 1. VIG 

 

Input: Dataset O, threshold �, kl, ml, Vl, wl, ��j� = Vlwl 

Output: k, � of b�!	 =  �!|k, �;�	 and  w, V of b�j	 = v�j|w, V	 

  � ≔ 1 

  for each � 
      Update k, � using (12), (13) 

      Update V, w using (14), (15) 

      if  � > 1  and  ℒ��b	 − ℒ�;��b	 < �  
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          break; 

      end if 

      � ≔ � + 1 

  end for 

 

In the algorithm above, the four variables of b�!	 and b�j	 are updated step by step from their 

initial values. The updating process will stop when the change in lower bound value ℒ�b	 is 

smaller than a specified threshold � . Only 3 or 4 iterations are typically needed to achieve 

convergence with a threshold set as � = 1� − 10 [28]. 

Estimates for the variables can then be derived in the standard Bayesian ways, e.g. calculating 

the mean of the distribution to get a single point estimate or deriving a credible interval, highest 

density region, etc. In practice, ones often choose ��!� = k as the value of !, and ��j� = Vw 

as the value of j when they need to evaluate  ��|!, j;�	. 

4.2 The lossless OVIG 

In this section, we introduce the lossless online version of VIG. We assume that the 

class conditional probability density functions =��|� = >	  are multivariate Gaussians 

^@!E , jE;�A  for > = 1, … , � , and using Variational Inference technique to update the 

distributions of !E and jE. 

To make the algorithm operate in an online mode, two main questions need to be answered: 

• How to update the model on-the-fly?  

• When to update the model?  

To answer the first question, we notice that the updating equations (12-15) of the 

hyperparameters k, �, V, w essentially depend on the sufficient statistics ��, �, �, where � can 

calculated from ��. Therefore, when a new sample arrives, instead of update k, �, V, w directly, 

we can update two sufficient statistics ��, �. 
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Let us consider the results (16-17) for the sufficient statistics ��, �, which are denoted as ��1, �1, 

when they are based on + observations. 

��� = 1
F � �&

�

&Q�
= 1

F � �&
�;�

&Q�
+ 1

F �� = F − 1
F ���;� + 1

F �� 

�� = �@�& − ���A@�& − ���A�
�

&Q�
 

 = ��� − ���	��� − ���	� + ∑ @�& − ���;� + ���;� − ���A@�& − ���;� + ���;� − ���A��;�&Q�  

         = ��� − ���	��� − ���	� + ∑ @�& − ���;�A@�& − ���;�A��;�&Q� + ∑ ����;� − ���	����;� − ���	��;�&Q� . 

Here we have just used  ∑ @�& − ���;�A����;� − ���	��;�&Q� = _∑ �&�;�&Q� − �F − 1	���;�a����;� −

���	� = 0, and similarly,  ∑ ����;� − ���	@�& − ���;�A��;�&Q� = 0. 

As  ∑ @�& − ���;�A@�& − ���;�A��;�&Q� = ��;�, and ���;� = �F��� − ��	/�F − 1	 ⟺ ���;� − ��� =
���� − ��	/�F − 1	, we have: 

�� = ��;� + ��� − ���	��� − ���	� + 1
�F − 1	4 ���� − ���	��� − ���	�

�;�

&Q�

= ��;� + F
F − 1 ��� − ���	��� − ���	�. 

Therefore, sufficient statistics for current training example ��I, yI	  can be updated in a 

sequential manner: 

��� = �;�
� ���;� + �

� �� (20) 

�� = ��;� + �
�;� ��� − ���	��� − ���	� (21) 
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From here, if OVIG always updates its sufficient statistics, after learning on the training set, 

online and offline VI-based model for multivariate Gaussian will obtain the same sufficient 

statistics which are needed to update their hyperparameters k, �, V, w . After each arrival 

observation is used to update the sufficient statistics, they will be discarded permanently. 

Moving to the second question, we only update the predictive model when it makes a wrong 

prediction, i.e. when the 0-1 loss function is non-negative. To be more precise, the sufficient 

statistics are always updated, but the hyperparameters and consequently the parameters of the 

predictive model itself are only updated when the model has an improper performance. Below, 

the pseudo-code of OVIG is given. 

Algorithm 2. OVIG 

 

 Input: Dataset O, threshold �, kl, ml, Vl, wl, ��j� = Vlwl 

  for  F = 1,2, … 

      Receive �� 

      Predict ��� = argmax
E∈��,4,⋯,�� =�� = >	=��|� = >	 

      Reveal the true class label �� 

      Update sufficient statistics ��, � for class �� by (20), (21) 

      Discard �� 

      Calculate the suffered loss: �� = ����� ≠ ��	 

      if  �� > 0 

         Update sufficient statistics � for class ��  by (18) 

         Use VIG to update k, �, V, w for �� 

     end if 

   end for 

 

In Algorithm 2, the N -dimension vector kl , ml > 0 , Vl > N − 1 , and D×D dimension 

symmetric positive definite matrix wl are the initial parameters representing prior information, 

which are simply set to default values in our experiments, i.e. kl is a N-dimension vector of 

zero elements �0, … ,0	�, ml = 1, Vl = N, wl is a N × N dimension identity matrix, �0, … ,0	� 

is a N-dimension vector of zero elements, I is a N × N dimension identity matrix, D is the 

dimension of data.  



15 

 

It can be seen that as ONBG [26] and NB [2], OVIG is lossless as the sufficient 

statistics can be updated sequentially. And after learning on a training set, offline VIG and 

online OVIG will have the same sufficient statistics. However, unlike ONBG [26], OVIG only 

updates its predictive model (^@!E , jE;�A, > = 1, … , �) when needed, that makes it more stable. 

OVIG is also more flexible then NB [2] as it does not need to discretize continuous attributes 

before testing and training. Furthermore, OVIG learns models for different classes 

independently, and for each class it updates the sufficient statistics and predictive model 

independently, which make it naturally parallelizable. In online learning, parallelization can 

help decrease the execution time significantly (see for example [35]). 

5. Experimental Studies 

5.1 Datasets 

To evaluate the performance of the proposed lossless online method, we performed 

experiments on 30 UCI real-world datasets [25] (see Table 1). The data samples are presented to 

the algorithms sequentially to simulate data streams. 

5.2 Experimental settings 

We compared OVIG with the widely used first-order linear methods: PA (Passive 

Aggressive learning) [8], OGD (Online Gradient Descent) [40]; state-of-the-art second-order 

linear methods: AROW (Adaptive Regularization of Weights) [10], SCW (Soft Confidence 

Weighted) [38]; well-known OBHT (online Bagging using famous Hoeffding trees as based 

learners) [13, 29], and lossless ONBG [26]. All algorithms mentioned in the experiments 

discard instances after using, i.e. they are one-pass-thrown-away online classifiers. 

TABLE 1. INFORMATION OF DATASETS IN EVALUATION 

Dataset #Attributes #Classes #Observations 

Abalone 8 3 4174 

Appendicitis 7 2 106 
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Balance 4 3 625 

Banana 2 2 5300 

Biodeg 41 2 1055 

Blood 4 2 748 

Chess-Krvk 6 18 28056 

Contraceptive 9 3 1473 

Led7digit 7 10 500 

Letter 16 26 20000 

Libras 90 15 360 

Marketing 13 9 6876 

Nursery 8 5 12960 

Optdigits 64 10 5620 

Penbased 16 10 10992 

Phoneme 5 2 5404 

Poker 10 10 1025009 

Ring 20 2 7400 

Satimage 36 6 6435 

Segment 19 7 2310 

Skin-NonSkin 3 2 245057 

Sonar 60 2 208 

Spambase 57 2 4601 

Texture 40 10 5500 

Tic-Tac-Toe 9 2 958 

Titanic 3 2 2201 

Wine-Red 11 6 1599 

Wine-White 11 7 4898 

Yeast 8 10 1484 

Zoo 16 7 101 

 

These four linear benchmark algorithms (PA, OGD, AROW, SCW) have separate codes for 

binary and multiclass cases which are available from the LIBOL library [19]. For benchmark 

algorithm that has more than one version with almost similar results, we used the first version in 

the comparison. Implementation of online Bagging using the default 10 Hoeffding trees as base 

learners (OBHT) can be found in MOA which is the most popular open source framework for 

data stream mining [2]. The lossless ONBG is always updated as each observation arrives and 

in this work, it was used as a single classifier (not in an ensemble framework as in [26]). Default 

parameters for each benchmark algorithms were used if available. For OVIG, we also used 

default parameters as discussed in the earlier sections. 

We use the prequential evaluation i.e. each arriving instance is first used to test the 

classification performance of an online algorithm, then it is used to update the model of the 
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algorithm. For each dataset and each method, we draw 10 random permutations of the whole 

dataset as the input data to run the test 10 times and take the average error rate and the standard 

deviation (STD). When comparing our lossless methods with any benchmark algorithms, 

Wilcoxon signed-rank test [12] with a level of significance of 0.05 is used. In this test, the null 

hypothesis is that the performances of two methods are not different, and the alternative 

hypothesis is that they are different. Besides the traditional Wilcoxon signed-rank test for 

comparisons of 2 classifiers, the Friedman test [12] is also employed to test the difference 

between the classification results of multiple methods on multiple datasets. If the null 

hypothesis that “all methods perform equally” is rejected, we can proceed with a post-hoc test to 

further analyze the relative performance of the comparing algorithms. Experiments were 

implemented on a machine with Core i7 3.4 GHz CPU and 16 GB RAM. 

5.3 Results and discussion 

5.3.1 Classification error rate comparison 

The mean and standard deviation (STD) of the classification error rates for all 

mentioned algorithms are reported in Tables 2-3. From the average results over 30 datasets (see 

the last rows of Tables 2-3), we have an overall view that OVIG gets the lowest average error 

rate as well as the smallest variance (see Fig. 1). Between linear methods, undoubtedly first-

order methods are outperformed by second-order methods. Between lossless Bayesian methods, 

the same situation happens where second-order method OVIG achieves higher accuracy than the 

first-order ONBG. This confirms the greater capability of second-order methods in exploring 

the underlying structure of training data.   

The lower classification error rates together with the smaller variance of OVIG 

compared with linear methods are due to the lossless property of OVIG as each sample is 

exploited to update the sufficient statistics. For linear methods like PA, OGD, SCW, many 

correctly classified samples are discarded without learning from them. Furthermore, the linear 
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models seem to be not flexible enough for learning real datasets coming from real-world 

applications. 

TABLE 2. THE MEAN AND STANDARD DEVIATION OF ERROR RATES OF THE TWO 

LOSSLESS ALGORITHMS AND OBHT 

Dataset OVIG ONBG OBHT 

Abalone 0.4646 ± 4.00E-3 0.4797↑ ± 6.76E-3 0.4797↑ ± 4.38E-3 

Appendicitis 0.1868 ± 9.24E-3 0.1500↓ ± 1.43E-2 0.1509↓ ± 1.46E-2 

Balance 0.1130 ± 3.22E-3 0.1328↑ ± 9.78E-3 0.1507↑ ± 1.51E-2 

Banana 0.3887 ± 7.62E-3 0.3930↑ ± 3.78E-3 0.3348↓ ± 1.18E-2 

Biodeg 0.1923 ± 9.21E-3 0.2474↑ ± 9.44E-3 0.1812↓ ± 8.47E-3 

Blood 0.2362 ± 7.23E-3 0.2541↑ ± 8.73E-3 0.2428↑ ± 6.79E-3 

Chess-Krvk 0.6152 ± 1.83E-3 0.7080↑ ± 2.09E-3 0.6934↑ ± 5.97E-3 

Contraceptive 0.4994 ± 7.82E-3 0.5329↑ ± 8.87E-3 0.5215↑ ± 8.29E-3 

Led7digit 0.3300 ± 1.10E-2 0.3404↑ ± 1.08E-2 0.3464↑ ± 1.49E-2 

Letter 0.1371 ± 1.14E-3 0.3674↑ ± 2.45E-3 0.3611↑ ± 3.65E-3 

Libras 0.3419 ± 1.51E-2 0.7081↑ ± 7.50E-3 0.5069↑ ± 2.12E-2 

Marketing 0.6915 ± 1.82E-3 0.6978↑ ± 2.32E-3 0.7049↑ ± 4.75E-3 

Nursery 0.0666 ± 1.42E-3 0.0953↑ ± 1.59E-3 0.0864↑ ± 1.98E-3 

Optdigits 0.1089 ± 2.03E-3 0.1065↓ ± 2.03E-3 0.1133↑ ± 2.12E-3 

Penbased 0.0360 ± 8.25E-4 0.1474↑ ± 1.61E-3 0.1277↑ ± 6.40E-3 

Phoneme 0.2159 ± 2.46E-3 0.2397↑ ± 5.02E-3 0.2126↓ ± 5.20E-3 

Poker 0.4517 ± 6.78E-5 0.4989↑ ± 3.17E-5 0.4585↑ ± 9.06E-3 

Ring 0.0313 ± 9.25E-4 0.0215↓ ± 6.03E-4 0.1168↑ ± 2.63E-3 

Satimage 0.1784 ± 1.79E-3 0.2063↑ ± 1.92E-3 0.2152↑ ± 3.99E-3 

Segment 0.1174 ± 6.69E-3 0.2124↑ ± 4.99E-3 0.2208↑ ± 1.06E-2 

Skin-NonSkin 0.0164 ± 2.07E-4 0.0760↑ ± 8.23E-5 0.0065↓ ± 6.85E-4 

Sonar 0.2490 ± 1.11E-2 0.3572↑ ± 2.41E-2 0.3231↑ ± 2.45E-2 

Spambase 0.1659 ± 4.91E-3 0.1791↑ ± 5.86E-3 0.1568↓ ± 6.12E-3 

Texture 0.0321 ± 1.52E-3 0.2487↑ ± 4.11E-3 0.2260↑ ± 6.08E-3 

Tic-Tac-Toe 0.2689 ± 7.52E-3 0.3105↑ ± 9.74E-3 0.3220↑ ± 1.41E-2 

Titanic 0.2284 ± 1.08E-3 0.2299↑ ± 1.92E-3 0.2278↓ ± 2.68E-3 

Wine-Red 0.4446 ± 4.97E-3 0.4460↑ ± 8.86E-3 0.4755↑ ± 1.45E-2 

Wine-White 0.4812 ± 3.09E-3 0.5057↑ ± 2.01E-3 0.5443↑ ± 6.94E-3 

Yeast 0.5427 ± 4.53E-3 0.5590↑ ± 9.43E-3 0.4724↓ ± 1.37E-2 

Zoo 0.1436 ± 1.42E-2 0.1545↑ ± 2.13E-2 0.2525↑ ± 2.51E-2 

Average 0.2659 ± 6.46E-3 0.3202↑ ± 8.59E-3 0.3078↑ ± 1.12E-2 

↓ or ↑ mean that OVIG is worse or better than the benchmark algorithm, respectively  

For each dataset, the best over all results shown in Table 2 and 3 is in bold 

 

TABLE 3. THE MEAN AND STANDARD DEVIATION OF THE CLASSIFICATION 

ERROR RATES OF THE LINEAR METHODS 

Dataset AROW SCW OGD PA 

Abalone 0.4631↓ ± 5.75E-3 0.4624↓ ± 7.47E-3 0.5878↑ ± 6.02E-3 0.6019↑ ± 5.97E-3 

Appendicitis 0.2066↑ ± 5.08E-3 0.2094↑ ± 1.57E-2 0.2075↑ ± 0.00E0 0.3104↑ ± 3.25E-2 

Balance 0.1310↑ ± 7.38E-3 0.1211↑ ± 6.79E-3 0.1746↑ ± 1.60E-2 0.2134↑ ± 1.07E-2 

Banana 0.4438↑ ± 1.33E-2 0.4415↑ ± 3.62E-2 0.4565↑ ± 7.54E-3 0.4838↑ ± 7.15E-3 

Biodeg 0.1570↓ ± 3.45E-3 0.1835↓ ± 6.30E-3 0.2937↑ ± 1.02E-2 0.3570↑ ± 1.11E-2 

Blood 0.2295↓ ± 4.14E-3 0.2418↑ ± 5.56E-3 0.3929↑ ± 2.00E-2 0.3449↑ ± 8.66E-3 

Chess-Krvk 0.8110↑ ± 9.03E-3 0.8271↑ ± 1.37E-2 0.8298↑ ± 3.21E-3 0.8524↑ ± 1.85E-3 

Contraceptive 0.5119↑ ± 7.09E-3 0.5136↑ ± 5.82E-3 0.6000↑ ± 1.19E-2 0.6356↑ ± 1.18E-2 
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Led7digit 0.3278↓ ± 1.20E-2 0.3356↑ ± 7.89E-3 0.4128↑ ± 1.28E-2 0.5302↑ ± 2.15E-2 

Letter 0.4687↑ ± 2.22E-2 0.4859↑ ± 2.82E-2 0.4372↑ ± 3.16E-3 0.5309↑ ± 1.28E-3 

Libras 0.4764↑ ± 3.05E-2 0.4797↑ ± 2.27E-2 0.7753↑ ± 1.75E-2 0.8378↑ ± 1.38E-2 

Marketing 0.7148↑ ± 1.12E-2 0.7324↑ ± 1.07E-2 0.7566↑ ± 3.68E-3 0.7840↑ ± 5.55E-3 

Nursery 0.2464↑ ± 2.98E-3 0.2647↑ ± 9.15E-3 0.2950↑ ± 1.91E-3 0.3829↑ ± 4.12E-3 

Optdigits 0.1248↑ ± 1.43E-2 0.0632↓ ± 2.29E-3 0.0981↓ ± 1.89E-3 0.0940↓ ± 2.45E-3 

Penbased 0.1851↑ ± 3.58E-2 0.1405↑ ± 2.04E-2 0.1452↑ ± 2.95E-3 0.1773↑ ± 2.55E-3 

Phoneme 0.2416↑ ± 2.90E-3 0.2364↑ ± 2.44E-3 0.2359↑ ± 1.67E-3 0.3182↑ ± 3.68E-3 

Poker 0.5075↑ ± 8.43E-3 0.5213↑ ± 9.57E-3 0.5404↑ ± 4.70E-4 0.5695↑ ± 4.31E-4 

Ring 0.2647↑ ± 2.52E-3 0.2834↑ ± 3.04E-3 0.3526↑ ± 5.57E-3 0.3148↑ ± 3.26E-3 

Satimage 0.3379↑ ± 1.32E-2 0.2713↑ ± 1.97E-2 0.3991↑ ± 8.22E-3 0.4652↑ ± 3.65E-3 

Segment 0.2326↑ ± 4.44E-2 0.1564↑ ± 1.80E-2 0.3795↑ ± 1.08E-2 0.4513↑ ± 6.62E-3 
Skin-NonSkin 0.0917↑ ± 4.48E-4 0.0679↑ ± 1.77E-4 0.1636↑ ± 4.14E-4 0.1553↑ ± 6.72E-4 

Sonar 0.2688↑ ± 2.33E-2 0.2899↑ ± 2.52E-2 0.4139↑ ± 2.15E-2 0.4308↑ ± 1.71E-2 

Spambase 0.0960↓ ± 4.82E-3 0.1120↓ ± 1.92E-3 0.4471↑ ± 8.31E-3 0.3317↑ ± 3.63E-3 

Texture 0.0297↓ ± 4.47E-3 0.0276↓ ± 1.86E-2 0.2025↑ ± 4.89E-3 0.2587↑ ± 6.70E-3 

Tic-Tac-Toe 0.3399↑ ± 6.32E-3 0.3574↑ ± 1.15E-2 0.4023↑ ± 1.73E-2 0.4410↑ ± 1.59E-2 

Titanic 0.2359↑ ± 9.62E-3 0.2313↑ ± 2.06E-3 0.2309↑ ± 3.55E-3 0.3507↑ ± 7.56E-3 

Wine-Red 0.4584↑ ± 3.79E-2 0.4603↑ ± 2.54E-2 0.6008↑ ± 1.02E-2 0.6278↑ ± 9.90E-3 

Wine-White 0.4976↑ ± 8.45E-3 0.5617↑ ± 3.07E-2 0.6529↑ ± 4.26E-3 0.6722↑ ± 6.05E-3 

Yeast 0.4569↓ ± 9.09E-3 0.4478↓ ± 7.48E-3 0.5763↑ ± 8.54E-3 0.6528↑ ± 1.21E-2 

Zoo 0.1564↑ ± 9.70E-3 0.1931↑ ± 9.13E-3 0.2861↑ ± 1.50E-2 0.2931↑ ± 1.99E-2 

Average 0.3238↑ ± 1.66E-2 0.3240↑ ± 1.59E-2 0.4116↑ ± 1.00E-2 0.4490↑ ± 1.12E-2 

 ↓ or ↑ mean that OVIG is worse or better than the benchmark algorithm, respectively 

For each dataset, the best over all results shown in Table 2 and 3 is in bold 

 

Compared with OBHT, for small datasets e.g. Libras, Sonar, Zoo, clearly OVIG wins. This is 

because of the sound guarantee by Hoeffding bounds of Hoeffding trees, the base learners of 

OBHT is only effective for medium and big datasets.  

The above observations are further verified statistically by Wilcoxon Sign Rank test between 

lossless methods and the other methods. The resulting p-values for OVIG and each of the 

benchmark algorithms are shown in Table A1 in the Appendix, where those ≤ 0.05 indicates a 

significant difference between compared methods. For each dataset, OVIG wins a benchmark 

algorithm if p-value ≤  0.05, and in 10 runs it gets lower error rate more times than the 

benchmark algorithm. We depict results comparing our proposed method with the benchmark 

algorithms based on Wilcoxon signed-rank test in Fig. 2. It can be seen that OVIG significantly 

wins more than any benchmark algorithms. Between the two lossless Bayesian methods (OVIG 

and ONBG), the second-order Variational Inference based algorithm OVIG has 22 wins, 5 

draws and 3 losses compared with the first-order maximum likelihood-based method ONBG.  
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Figure 1. Average mean and standard deviation of the classification error rate of all methods 

over 30 datasets 

 

 

Figure 2. Statistical test results comparing OVIG to the benchmark methods based on Wilcoxon 

signed-rank test 

 

Although Wilcoxon signed-rank test is very popular in comparison of two classifiers, we also 

conduct Friedman test [12] with the significance level �  set as 0.05 to test the difference 

between the classification results of multiple methods on multiple datasets. The p-value 

computed by Friedman Test is 9.0528E-11, which is much smaller than 0.05, so the null 

hypothesis that “all methods perform equally” is clearly rejected. The rankings obtained from 

Friedman test are depicted in Table 4. On average, OVIG ranked the first with ranks 1.8667 

which is far higher than the second best rank 3.1833 of OBHT. AROW and SCW ranked the 
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third with the same rank 3.5333. The followers were ONBG (rank = 3.5833), OGD (rank = 

5.6333) and PA (rank = 6.6667). 

TABLE 4. AVERAGE RANKINGS OF ALGORITHMS BASED ON FRIEDMAN TEST 

Algorithm Ranking 

OVIG  1.8667 

ONBG  3.5833 

OBHT  3.1833 

AROW  3.5333 

SCW  3.5333 

OGD  5.6333 

PA  6.6667 

 

As the null hypothesis of “equal performance among the algorithms” is rejected, we now 

proceed with a post-hoc test to further analyze their relative performance. As suggested by [16, 

17], Hommel test [20] is a suitable post-hoc test when we want to treat OVIG as the control 

algorithm, and for the case we care about the overall comparison of all 7 algorithms mentioned 

in the experiments, the Bergmann-Hommel test [1] is one of the best performing pairwise test. 

Since the post hoc tests differ in the way they adjust the value of the level of significance α to 

compensate for multiple comparisons, we report adjusted p-values in Table 5-6, which take into 

account that multiple tests are conducted [16, 17]. Adjusted p-values can be compared directly 

with any chosen significance level � and provide more information in a statistical analysis. In 

our post-hoc tests, the significance level � is set to 0.05. The difference in the performance of 

two methods is treated as statistically significant if the adjusted value of the p-value computed 

from the respective post-hoc procedure is smaller than 0.05.  

For Hommel test, all adjusted p-values (see Table 5) are < 0.05, so the Hommel’s procedure 

rejects all null hypotheses of “equal performance”, that means the performance of the control 

algorithm OVIG, given that it has the highest rank from Friedman test, is significantly better 

than all benchmark algorithms based on Hommel post-hoc test.  
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TABLE 5. ADJUSTED P-VALUES OF HOMMEL POST-HOC TEST 

Algorithm Adjusted p-value 

PA 4.55E-17 

OGD 7.24E-11 

ONBG 4.21E-03 

AROW 5.61E-03 

SCW 5.61E-03 

OBHT 1.82E-02 

 

TABLE 6. ADJUSTED P-VALUES OF BERGMANN-HOMMEL POST-HOC TEST 

Hypothesis Adjusted p-value 

OVIG vs. PA 1.59E-16 

OVIG vs. OGD 2.17E-10 

OBHT vs. PA 6.35E-09 

SCW vs. PA 2.13E-07 

AROW vs. PA 2.13E-07 

ONBG vs. PA 2.92E-07 

OBHT vs. OGD 1.12E-04 

SCW vs. OGD 1.17E-03 

AROW vs. OGD 1.17E-03 

ONBG vs. OGD 1.66E-03 

OVIG vs. ONBG 2.29E-02 

OVIG vs. AROW 2.29E-02 

OVIG vs. SCW 2.29E-02 

OVIG vs. OBHT 9.12E-02 

OGD vs. PA 4.48E-01 

ONBG vs. OBHT 2.84E+00 

OBHT vs. AROW 2.84E+00 

OBHT vs. SCW 2.84E+00 

ONBG vs. SCW 2.84E+00 

ONBG vs. AROW 2.84E+00 

AROW vs. SCW 2.84E+00 

 

Regarding pairwise Bergmann-Hommel test, it only rejects the null hypotheses of “equal 

performance” for the pair of algorithms with the adjusted p-value ≤ 0.05, which are (see Table 

6): OVIG vs. ONBG, OVIG vs. AROW, OVIG vs. SCW, OVIG vs. OGD, OVIG vs. PA, 

ONBG vs. OGD, ONBG vs. PA, OBHT vs. OGD, OBHT vs. PA, AROW vs. OGD, AROW vs. 

PA, SCW vs. OGD, SCW vs. PA. Therefore, based on Bergmann-Hommel test, given the 
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rankings from Friedman test (see Table 4), OVIG significantly outperforms AROW, SCW, 

ONBG, OGD and PA, but its performance is not significantly different from that of OBHT. 

This confirms the statement of Demsar [12] that the power of the post-hoc test is much greater 

when all classifiers are compared only to a control classifier and not between themselves. 

5.3.2 Time complexity comparison 

To compare the running time of OVIG and the benchmark algorithms, we report the 

average time costs in Fig. 3 (the full-time cost result is presented in Table A2 in the Appendix). 

Clearly, ONBG is the most time-consuming algorithms. OVIG and OBHT have the same order 

of time cost magnitude (~E+0), meanwhile, linear methods are the quickest ones (the order ~E-

1). 

 

Figure 3. Average runtime of OVIG and the benchmark algorithms 

 

5.3.3 Comparison in noisy setting 
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Figure 4. The mean and standard deviation of the classification error rate of all methods in noisy 

setting for Optdigits dataset 

 

 

Figure 5. The mean and standard deviation of the classification error rate of all methods in noisy 

setting for Penbased dataset 

 

 

Figure 6. The mean and standard deviation of the classification error rate of all methods in noisy 

setting for Skin-NonSkin dataset 
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To evaluate the performance degradation in data with noisy label, we used 10-fold 

Cross Validation and randomly selected another label to replace the correct label on 0%, 10%, 

20% and 30% of the training samples. The learning process is online (in a sequential manner) 

on each noisy training set while the evaluation is performed on the respective separate clean 

testing set. The classification error rates are averaged over 10 runs. Due to space limitation, we 

only exhibit the performance degradation of online methods for three datasets, i.e. binary Skin-

NonSkin, multiclass Optdigits, and Penbased, as they are the files that all algorithms perform 

well on (mean of error rates for every method < 0.2 (see Tables 2-3)). If a method is not good 

with clean data, it will not be worth analyzing further for noisy data.  

It can be seen from Fig. 4-6 that OVIG is more stable when dealing with noise compared to 

ONBG, the linear methods, and OBHT, as it has the smallest mean and STD of classification 

error on all 3 mentioned datasets and all noisy setting (10%, 20%, 30%).  

For the Skin-NonSkin dataset (see Fig. 6), at 0% label noise (clean data), OBHT ranks the first. 

However, its performance degrades quicker with noise than that of OVIG and ONBG, leading 

to a poorer performance than these lossless algorithms at all noise level of 10%, 20%, and 30%. 

5.4 Application to movie genre classification 

Here, we apply the OVIG and benchmark algorithms to movie genre classification. A collection 

of movie plot text summaries was downloaded from the Internet Movie Database 

(www.imdb.com/interfaces/#plain) with their genres as the class labels. There are 28 class 

labels such as Sci-Fi, Crime, Romance, Animation, Comedy and so on. For the multiclass 

classification purpose, all the data having more than 1 class labels are removed. To extract 

features from raw texts, we use a string-to-word-vector filter as in MEKA project [32], where 

string attributes are converted into a set of numeric attributes representing word occurrence 

information from the text contained in the strings. The dictionary with 1001 words is 

determined from a validation set of data. This results in a dataset of + = 47845 data, N = 1001 
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features and �= 28 classes. It is very popular that in text classification, datasets are high-

dimensional (say > 1000). The curse of dimensionality can make generative methods in 

common, and OVIG in particular less effective. Therefore, it is helpful to reduce the 

dimensionality before applying OVIG. There are a number of common dimensionality reduction 

approaches like principal component analysis (PCA) [3], linear discriminant analysis (LDA) [3], 

random projections (RP) [15]. For simplicity, here we will use random projections as they are 

data-independent. In a random projection, a projection �� ∈ ℝ� (called down-space) of vector 

�� ∈ ℝC (called up-space) can be obtained as follows  

�� = �
 � ��* (22) 

where ¡ = 2 log4 N is the dimension of the down-space, * = _£�&a is N × ¡ random matrix. We 

follow [26] to use an ensemble framework of � base classifiers, where �I¤ base classifier is an 

OVIG model (denoted as OVIG�0		 trained on a projection data stream s��
�0	u�Q�,4,… by a random 

matrix *�0	, � = 1,2, … , �. At step F, the prediction is made by the sum rule 

��� = argmax
E∈��,4,⋯,��

�
© ∑ =�0	�� = >|��	©0Q�  (23) 

where =�0	�� = >|��	 is the output of OVIG�0	 . In our experiment, we use Gaussian random 

projections, i.e. £�& ~  �0; 1	, and choose the ensemble size � = 50. Generally, the bigger � is, 

the more accurate the result, but the higher the time complexity (see [26] for more information 

about random projection based ensembles).  

We use prequential evaluation and perform 10 runs on each algorithm with different random 

permutations of the training data. In each run, the model is trained in a single pass through the 

data, each arriving datum is tested first then used to update the model. We show the top 1-5 

error rates, noting that for a prediction task, a top � error is made if among � class labels having 

the highest confidences there is no the true class label. The average top 1-5 error rate (top1-5-
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ER) with the standard deviation (for top1-ER ) over all runs and the average running time (in 

seconds) are shown in Table 7, where the abbreviation RPVI stands for OVIG under a Random 

Projection based ensemble. We also plot top 1-5 error rates of all mentioned algorithms in 

Figure 7. 

TABLE 7. THE ERROR RATE AND RUNTIME FOR THE MOVIE GENRE 

CLASSIFICATION  

Top1-ER Top2-ER Top3-ER Top4-ER Top5-ER Time 

RPVI 0.7252 ± 8.63E-04 0.5261 0.3892 0.2871 0.2361 701.97 

ONBG 0.8593 ± 2.38E-03 0.7421 0.6369 0.5460 0.4731 2445.57 

OBHT 0.7254 ± 7.04E-05 0.5431 0.3869 0.2875 0.2436 2142.25 

AROW 0.8311 ± 2.55E-03 0.7256 0.6518 0.5943 0.5480 1691.71 

SCW 0.8226 ± 2.19E-03 0.7105 0.6330 0.5737 0.5254 1527.38 

OGD 0.7683 ± 1.45E-03 0.6443 0.5685 0.5160 0.4755 2.12 

PA 0.9720 ± 1.31E-02 0.9490 0.9214 0.8754 0.8359 2.06 

 

 

Figure 7. The mean of the top 1-5 classification error rate of all methods for the movie genre 

classification 
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It can be seen from Table 7 and Fig. 7 that RPVI and OBHT have the lowest average top 1-5 

error rates as well as the lowest standard deviation. While RPVI and OBHT have top 5 error rate 

around 0.2, that of the other 4 methods including ONBG, AROW, SCW, OGD is ≈ 0.5, and the 

value for PA is still very high (over 0.8). Regarding the time cost, OGD and PA seem not to be 

affected by the high dimensionality running impressively fast, RPVI has the moderate run time, 

meanwhile, OBHT, ONBG, AROW and SCW take a long time on this dataset. This experiment 

shows a powerful way to allow OVIG to deal with the curse of high dimensionality (say N > 

1000). Here the number of feature is N = 1001, and the dimension of the down-space is ¡ =
2 log4�1000	 ≈ 20. In the case of N = 1000000, ¡ = 2 log4�1000000	 ≈ 40, which is still 

very moderate. 

6. Conclusion  

We have presented a new lossless online Bayesian method (OVIG) which is guaranteed 

to converge to the same model as its offline counterpart (VIG). OVIG is a second-order 

generative model, where training data is exploited effectively to estimate the full distribution of 

parameters for the predictive model. Besides the superior performance over many well-known 

methods, OVIG is very stable when dealing with noisy datasets. Compared with first-order 

maximum-likelihood based ONBG, Variational Inference based OVIG has a more flexible way 

of updating its predictive model, where all information about the arrived data is encoded in the 

sufficient statistics, and the predictive model is only updated when a wrong prediction is made. 

The updating mechanism and the ability to explore the underlying second-order structure of data 

make OVIG the first online method which simultaneously has the properties of discard-after-

learn, conservative, and lossless. 
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TABLE A1. P-VALUE OF WILCOXON SIGN RANK TEST BETWEEN OVIG AND THE 

BENCHMARK ALGORITHMS 

 
ONBG OBHT AROW SCW OGD PA 

Dataset 

p
-v

alu
e 

R
eject?

 

p
-v

alu
e 

R
eject?

 

p
-v

alu
e 

R
eject?

 

p
-v

alu
e 

R
eject?

 

p
-v

alu
e 

R
eject?

 

p
-v

alu
e 

R
eject?

 

Abalone 0.002 Y 0.002 Y 0.186 N 0.496 N 0.002 Y 0.002 Y 

Appendicitis 0.002 Y 0.002 Y 0.004 Y 0.012 Y 0.002 Y 0.002 Y 

Balance 0.004 Y 0.002 Y 0.002 Y 0.008 Y 0.002 Y 0.002 Y 

Banana 0.131 N 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Biodeg 0.002 Y 0.002 Y 0.002 Y 0.037 Y 0.002 Y 0.002 Y 

Blood 0.002 Y 0.027 Y 0.051 N 0.082 N 0.002 Y 0.002 Y 

Chess-Krvk 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Contraceptive 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Led7digit 0.098 N 0.012 Y 0.904 N 0.357 N 0.002 Y 0.002 Y 

Letter 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Libras 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Marketing 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Nursery 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Optdigits 0.049 Y 0.002 Y 0.004 Y 0.002 Y 0.002 Y 0.002 Y 

Penbased 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Phoneme 0.002 Y 0.064 N 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Poker 0.002 Y 0.049 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Ring 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Satimage 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Segment 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Skin-NonSkin 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Sonar 0.002 Y 0.002 Y 0.051 N 0.008 Y 0.002 Y 0.002 Y 

Spambase 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Texture 0.002 Y 0.002 Y 0.084 N 0.084 N 0.002 Y 0.002 Y 

Tic-Tac-Toe 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Titanic 0.055 N 0.678 N 0.041 Y 0.006 Y 0.063 N 0.002 Y 

Wine-Red 0.566 N 0.002 Y 0.492 N 0.049 Y 0.002 Y 0.002 Y 

Wine-White 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Yeast 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 0.002 Y 

Zoo 0.109 N 0.002 Y 0.078 N 0.002 Y 0.002 Y 0.002 Y 

  
Y:25 

 
Y: 28 

 
Y: 23 

 
Y: 26 

 
Y: 29 

 
Y: 30 

  
N: 5 

 
N: 2 

 
N: 7 

 
N: 4 

 
N: 1 

 
N: 0 

*’Reject?’ column means whether the null hypothesis is rejected (Y) or not (N) 
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TABLE A2. THE RUN TIME IN SECONDS OF OVIG AND THE BENCHMARK 

ALGORITHMS 

Dataset OVIG ONBG OBHT AROW SCW OGD PA 

Abalone 0.28 1.39 0.43 0.08 0.13 0.03 0.05 

Appendicitis 0.00 0.02 0.03 0.00 0.00 0.01 0.00 

Balance 0.02 0.12 0.02 0.01 0.01 0.00 0.00 

Banana 0.22 0.48 0.13 0.07 0.07 0.03 0.03 

Biodeg 0.14 1.07 0.17 0.01 0.01 0.01 0.00 

Blood 0.03 0.10 0.02 0.01 0.01 0.00 0.00 

Chess-Krvk 3.23 38.89 3.41 0.52 0.44 0.22 0.33 

Contraceptive 0.11 0.54 0.25 0.04 0.02 0.01 0.02 

Led7digit 0.04 0.42 0.06 0.01 0.01 0.00 0.00 

Letter 1.83 107.67 8.28 0.44 0.28 0.15 0.21 

Libras 0.28 5.76 0.52 0.05 0.02 0.00 0.00 

Marketing 1.01 10.10 1.17 0.14 0.10 0.05 0.07 

Nursery 0.52 6.55 0.65 0.21 0.19 0.08 0.14 

Optdigits 1.08 45.05 3.14 0.28 0.13 0.03 0.05 

Penbased 0.44 23.38 1.73 0.18 0.12 0.07 0.09 

Phoneme 0.19 1.09 0.39 0.08 0.05 0.04 0.02 

Poker 93.25 1220.00 81.93 21.60 16.65 7.18 10.49 

Ring 0.18 3.99 0.47 0.11 0.08 0.04 0.03 

Satimage 0.77 17.64 1.48 0.26 0.18 0.05 0.07 

Segment 0.16 4.69 0.62 0.03 0.03 0.02 0.02 

Skin-NonSkin 4.26 28.20 3.01 3.12 1.84 1.18 0.84 

Sonar 0.07 0.47 0.09 0.00 0.00 0.00 0.00 

Spambase 0.90 6.47 0.72 0.08 0.04 0.04 0.02 

Texture 0.40 32.85 2.90 0.18 0.08 0.04 0.05 

Tic-Tac-Toe 0.05 0.23 0.03 0.01 0.01 0.01 0.00 

Titanic 0.08 0.25 0.02 0.03 0.02 0.01 0.01 

Wine-Red 0.16 1.63 0.36 0.03 0.02 0.01 0.02 

Wine-White 0.51 5.68 0.58 0.11 0.07 0.04 0.05 

Yeast 0.15 1.37 0.08 0.03 0.04 0.01 0.01 

Zoo 0.01 0.16 0.03 0.00 0.00 0.00 0.00 

Average 3.68 52.21 3.76 0.92 0.69 0.31 0.42 
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