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In this paper, we propose an Attentional Concatenation Generative Adversarial Network (ACGAN) aiming at generating
1024×1024 high-resolution images. First, we propose a multilevel cascade structure, for text-to-image synthesis. During training
progress, we gradually add new layers and, at the same time, use the results and word vectors from the previous layer as inputs to
the next layer to generate high-resolution images with photo-realistic details. Second, the deep attentional multimodal similarity
model is introduced into the network, and we match word vectors with images in a common semantic space to compute a fine-
grainedmatching loss for training the generator. In this way, we can pay attention to the fine-grained information of the word level
in the semantics. Finally, the measure of diversity is added to the discriminator, which enables the generator to obtain more
diverse gradient directions and improve the diversity of generated samples. )e experimental results show that the inception
scores of the proposed model on the CUB and Oxford-102 datasets have reached 4.48 and 4.16, improved by 2.75% and 6.42%
compared to Attentional Generative Adversarial Networks (AttenGAN).)e ACGANmodel has a better effect on text-generated
images, and the resulting image is closer to the real image.

1. Introduction

In recent years, with the rise of artificial intelligence and
deep learning, natural language processing and computer
vision have become the hot research fields. )e text to image
as a basic problem in the field has also attracted the attention
and research of many scholars. Text to image is the gen-
eration of a realistic image that matches a given text de-
scription, requiring processing fuzzy and incomplete
information in natural language descriptions. Text to image
drives the development of multimodal learning and cross-
modal generation and shows great potential in applications
such as cross-modal information retrieval, photo editing,
and computer-aided design.

Since Goodfellow et al. [1] proposed Generative
Adversarial Networks (GANs) in 2014; the network model
has received extensive attention from academia and in-
dustry. With the continuous development of GAN, it has
been widely used to generate realistic high-quality images
based on text descriptions. )e commonly used method
[2–5] encodes the entire text description into a global
sentence vector, which is input to the generator as a con-
dition variable of GAN to generate an image. However, due
to the large structural differences between text and images,
the use of only word-level attention does not ensure the
consistency of global semantics, while it is difficult to
generate complex scenes; moreover, fine-grained word in-
formation is still not explicitly used for generating images.
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)erefore, the generated image does not contain enough
details and is still significantly different from the real image.

To address this issue, this paper proposes Attention
Cascade Generative Adversarial Networks (ACGAN). )e
network adopts multilevel cascade structure, the generator
and discriminator in each layer are composed of convolution
units, and a new network layer is added layer by layer during
the training process, and the generator and discriminator are
added for processing the details of the higher resolution
image. At the same time, the deep attentional multimodal
similarity model is introduced into the network, focusing on
the fine-grained information of the word level in the se-
mantics. )e word vector is used as the input of the gen-
erator, and through the constraint of the word vector, in the
case of ensuring that the overall shape of the image is un-
changed, the details of the generated image are emphasized,
the consistency of the image and the semantic cross-mo-
dality is maintained, and the generation process is smooth.
Finally, a measure of diversity is added to a layer of the
discriminator to influence the discriminator’s discriminant,
so that the generator can obtain more diverse gradient di-
rections, increase the diversity of generated samples, and
improve the quality of generated samples.

)e contribution of our method is threefold as follows:

(i) A multilevel cascade structure is proposed, which
improves the resolution of the generated image, and
can generate a high-resolution image of up to
1024×1024.

(ii) Introduce the attention mechanism model into the
network, and make the details of the generated
image richer by paying attention to the fine-grained
information of the word level in the semantics.

(iii) Add the measure of diversity to the discriminator,
increase the diversity of the generated samples, and
improve the quality of the generated samples.

2. Related Works

Generative image modeling is a fundamental problem in
computer vision. )ere has been remarkable progress in this
direction with the emergence of deep learning techniques.
Variational Auto Encoders (VAEs) [6, 7] is aimed to
maximize the lower bound of the data likelihood. Autore-
gressive models (e.g., PixelRNN) [8] that utilized neural
networks to model the conditional distribution of the pixel
space have also generated appealing synthetic images. Re-
cently, Generative Adversarial Networks (GANs) have
shown promising performance for generating sharper im-
ages and video [9–11]. For example, Eghbal-zadeh et al. [12]
proposed a Mixture Density Generative Adversarial Net-
works to improve the clarity and quality of generated images.
Gecer et al. [13] combined the generated confrontation
network with a deep convolutional neural network to re-
construct a 3D facial structure from a single face image. But
training instability makes it hard for GAN models to gen-
erate high-resolution images. A lot of work has been pro-
posed to stabilize the training and improve the image quality
[14–19].

Generating high-resolution images from text descrip-
tions, though very challenging, is important for many
practical applications such as art generation and computer-
aided design. Lyu et al. [9] learn joint embedding to establish
the relationship between natural language and real images,
and then train GAN to generate 64× 64 images that are
conditional on text descriptions. Cao et al. [10] proposed a
Stacked Generative Adversarial Networks, which decom-
pose the complex problem of generating high-quality images
into some subproblems with better control and generate
256× 256 high-resolution images.

Recently, attention models have been widely used in
computer vision and natural language processing, for ex-
ample, object detection [20, 21], video subtitle [22], and
visual question answer [23, 24]. Xu et al. [25] introduced the
attention mechanism into the GAN network and proposed
Attentional Generative Adversarial Networks, which in-
struct the generator to focus on different word-level
fine-grained information when generating different image
subregions. Qiao et al. [26] proposed a global-to-local col-
laborative attention module that uses word attention and
global sentence attention to enhance the consistency of
generated images and semantics.

2.1. 4e Proposed Model. )e Attentional Concatenation
Generative Adversarial Networks model proposed in this
paper consists of two parts: attentional concatenation
generative adversarial networks and deep attentional mul-
timodal similarity model. As shown in Figure 1, the At-
tentional Concatenation Generative Adversarial Networks
model is divided into multiple levels; each layer contains a
generator G and a discriminator D, using a multilevel
cascade structure, increasing generators and discriminators
layer by layer, and continuously adds a new residual network
layer during the training process, corresponding to the
generation from low-resolution to high-resolution images.
)eDeep Attentional Multimodal Similarity Model contains
a common semantic space, mapping the subregions of the
image and the word vector of the sentence into one of the
semantic spaces, and measuring the word-level image and
text similarity. Instead of adopting a one-step approach, the
entire model’s training process tries to generate low-reso-
lution images, then continuously increase the resolution,
and finally generate high-resolution and high-quality
images.

2.2. Concatenation Generative Adversarial Networks. )e
generative network has k generators (G0, G1, ..., Gk−1), which
take the hidden states (h0, h1, ..., hk−1) as input to the gen-
erator (G0, G1, ..., Gk−1), generating images of different
resolutions.

Specifically,

h0 � F0 z, F
ca

cs( ( ,

hi � Fi hi−1, F
atten
i cw, hi−1(  , i � 1, 2, . . . , k − 1,

xi � Gi hi( .

(1)
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Here, z is a noise vector usually sampled from a standard
normal distribution. cs is a global sentence vector, and cw is a
word vector. Fca represents the Conditioning Augmentation
[10] that converts the sentence vector cs to the conditioning
vector. Fatten

i is the proposed attention model at the ith stage
of the attention model. )e attention model Fatten(c, h) has
two inputs: the word features c ∈ RD×T and the image

features h ∈ RD×N from the previous hidden layer.
Training starts with both the generator G and dis-

criminator D having a low spatial resolution of 64× 64
pixels. As the training advances, we incrementally add layers
to G and D, and all existing layers remain trainable
throughout the process.When doubling the resolution of the
generator G and discriminator D we fade in the new layers
smoothly. During the transition, we treat the layers that
operate on the higher resolution like a residual block, whose
weight increases linearly from 0 to 1.

)en we add a new residual layer and transform word
features into semantic space of image features. Based on the
hidden feature h of the image, a word context vector is
calculated for each subregion of the image.

Finally, the image features and corresponding word
context features are combined to generate an image in the
next stage. In order to generate a real image with multiple
levels (sentence level and word level) of conditions, the final
objective function of the attention generation network is
defined as

L � LG + λLDAMSM,

LG � 
k−1

i�0
LGi

.
(2)

Here, λ is a hyperparameter to balance the two terms of
equation (2). )e first term is the GAN loss that jointly
approximates conditional and unconditional distributions.
At the ith stage of the ACGAN, the adversarial loss for is
defined as

LGi
� −

1
2
Exi ∼PGi

log Di xi( (   −
1
2
Exi ∼PGi

log Di xi , cs( (  ,

(3)
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Figure 1: Attentional Concatenation Generative Adversarial Networks Model. Our training starts with both the generator and dis-
criminator having a low spatial resolution of 64× 64 pixels. As the training advances, we incrementally add layers to G and (D), thus
increasing the spatial resolution of the generated images.
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where the unconditional loss determines whether the image
is real or fake, while the conditional loss determines whether
the image and the sentence match or not.

As shown in Figure 2, for unconditional image gener-
ation, the discriminator is trained to distinguish between
real images and forged images. For conditional image
generation, images and variables are input to the discrim-
inator to determine if the image matches the condition, and
the bootstrap generator approximates the conditional image
distribution. Discriminator Di is trained to classify the input
into the class of real or fake by minimizing the cross-entropy
loss defined by

LDi
� −

1
2
Exi ∼Pdatai

log Di xi( (  

−
1
2
Exi ∼PGi

log 1 − Di xi( (  +

−
1
2
Exi ∼Pdatai

log Di xi, cs( (  

−
1
2
Exi ∼PGi

log 1 − Di xi, cs( (  ,

(4)

where xi is from the true image distribution pdatai at the ith

scale, and xi is from the model distribution PGi
at the same

scale. Discriminators Di of the ACGAN are structurally
disjoint, so they can be trained in parallel and each of them
focuses on a single image scale.

2.3. Deep Attentional Multimodal Similarity Model. )e
Deep Attentional Multimodal Similarity Model [25] learns
two neural networks that map subregions of the image and
words of the sentence to a common semantic space, thus
measuring the image-text similarity at the word level to
compute a fine-grained loss for image generation.

)is paper first uses a standard convolutional neural
network to transform an image into a set of feature maps.
Each feature map represents some subregions of the image.
)e dimension of the feature map is equal to the dimension
of the word vector, and they are treated as equivalent en-
tities. Next, based on each token in the text, attention is
applied to the feature map and their weighted averages are
calculated. Finally, the DAMSM is trained to minimize the
difference between the attention vector and the word vector
described above.

L
w
1 � − 

k

i�1
logP Si|Mi( , (5)

where “w” stands for “word”.
Symmetrically, we also minimize

L
w
2 � − 

k

i�1
logP Mi|Si( , (6)

where P is the posterior probability that sentence Si is
matched with its corresponding image Mi.

Finally, the DAMSM loss is defined as

LDAMSM � L
w
1 + L

w
2 . (7)

Using attention mechanism, the DAMSM is able to
compute the fine-grained text-image matching loss
LDAMSM. And LDAMSM is only applied to the output of the
last generator, because the ultimate goal of this paper is to
generate high-resolution images through the last generator.
If LDAMSM is applied to the images generated by all gen-
erators (G0, G1, ..., Gk−1), the computational cost will in-
crease greatly and the performance will not improve.

2.4. StandardDeviationofMeasuringDiversity. GAN usually
tends to capture only the changes found in the training data.
In order to obtain more training data, this paper has greatly
simplified this approach and has also improved the change
based on “minibatch discrimination”. Not only can feature
statistics be calculated from a single image, but they can also
calculate feature statistics for the entire small batch, thereby
encouraging the generation of images and training images to
display similar statistics. By adding a small batch layer at the
end of the discriminator, the layer learns a large tensor and
converts the input into a set of statistics. Finally, each in-
stance is generated with a separate set of statistics and
connected to the output of the layer so that the discriminator
can use the statistics internally.

3. Experiments and Evaluation

3.1. Experimental Environment and Data. )e algorithm
uses the deep learning framework Tensorflow [27], and the
experimental environment is Ubuntu 14.04 operating sys-
tem, using four NVIDIA 1080Ti graphics processing unit
(GPU) to accelerate the operation. At the same time, all
models were trained on the CUB [28] and Oxford [29]
datasets. As shown in Table 1, the CUB data set contains 200

Real Fake

Upsampling

FC layer

c (sentence)

Unconditional loss

Conditional loss

Figure 2: Discriminator model.
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species of birds with a total of 11,788 images. In this paper,
8855 images are used as training datasets and 2933 images as
test datasets. Since the target area of 80% of the bird images

in the dataset is less than 0.5 [28], we preprocess all images
before training to ensure that the proportion of the bird
target area is greater than 0.75 of the image size. )e Oxford

Table 1: Datasets of experiment.

Dataset CUB CUB Oxford Oxford
— Train Test Train Test
Sample 8855 2933 7034 1155

Table 2: Inception scores and human rank scores for the five GAN models on the CUB and Oxford datasets.

Metric Dataset GAN-INT-CLS GAWWN StackGAN++ AttnGAN ACGAN

Inception score CUB 2.88 ± 0.04 3.62 ± 0.07 4.05 ± 0.05 4.36 ± 0.03 4.48 ± 0.05
Oxford 2.66 ± 0.03 — 3.74 ± 0.03 — 3.98 ± 0.05

Human rank CUB 2.81 ± 0.03 1.99 ± 0.04 1.37 ± 0.02 1.25 ± 0.03 1.17 ± 0.02
Oxford 1.87 ± 0.03 — 1.13 ± 0.03 — 1.06 ± 0.02

A yellow bird with brown 
wings and a pointed bill

This bird is blue and black 
in color, with a sharp beak 

and small eyes
A white bird with white 
feathers and gray wings

This small bird with a 
red belly, a pointed bill 

and red wingsInput

StackGAN++

AttnGAN

ACGAN
(256 × 256)

ACGAN
(1024 × 1024)

Figure 3: Images generated from descriptions using three GAN models trained on CUB test set.
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dataset contains 102 flower categories with a total of 8189
images.)is article uses 7034 pictures as the training data set
and 1155 pictures as the test data set.

3.2. Evaluation Metrics. For the evaluation of the GAN
model, qualitative evaluation is usually used; that is, the
visual fidelity of the image generated by manual inspection is
required.)is method is time-consuming and subjective and
is somewhat misleading. )erefore, this paper mainly uses
two evaluation criteria to evaluate the quality and diversity of
generated images.

3.2.1. Inception Score. We choose numerical assessment
approach “inception score” [16] for quantitative evaluation,

I � exp ExDKL(p(y | x)||p(y))( , (8)

where x denotes one generated sample, and y is the text label
corresponding to the sample, p(y) is the marginal distri-
bution, and p(y|x) is the conditional distribution. )e KL
divergence between the marginal distribution p(y) and the
conditional distribution p(y|x) should be large, so that a
variety of high-quality images can be generated. In the
experiments, an inception model was given to the CUB data
sets, and samples of each model were evaluated.

3.2.2. Human Rank. Human rank for qualitative assessment
50 text descriptions was randomly selected in the CUB and
Oxford test sets, and for each sentence, the generated model
generated 5 images. )e five images and corresponding texts
are described to different people to rank the image quality in
different ways, and finally the average ranking is calculated
to evaluate the quality and diversity of the generated images.

4. Experimental Result

)e comparisons between the inception score and human
rank results of various models on the CUB and Oxford
datasets are presented in Table 2. As can be seen from the
table, compared to the inception score of the AttnGAN
model, the inception score of the ACGAN model on the
CUB dataset has increased by 2.75% (Inception score in-
creased from 4.36 to 4.48). )rough the analysis of exper-
imental results, ACGAN scores higher in Inception score
than other GAN models; from an intuitive visual point,
Human rank score is lower than other GAN models. It
shows that the quality and diversity of the sample images
generated by the model in this paper have been enhanced,
and it is closer to the real image.

Subjective visual comparisons between the three
models of StackGAN++, AttnGAN, and ACGAN on the
CUB dataset are presented in Figure 3. It can be seen that
the image details generated by StackGAN++ and AttnGAN
are lost, colors are inconsistent with the text descriptions
(1st and 2nd row), and the shape looks strange (2nd and 3rd
column) for some examples. ACGAN achieved better re-
sults with more details and consistent colors and shapes
compared to AttnGAN. For example, the wings are vivid in
the 3rd and 4th row. By comparing ACGAN with Attn-
GAN, we can see that ACGAN contributes to producing
fine-grained images with more details and better semantic
consistency. For example, the color of the bird in the 2nd
column was corrected to black. By comparing ACGAN
(256 × 256) with ACGAN (1024×1024), we can see that the
images generated by ACGAN (1024 ×1024) have higher
definition, more vivid colors, and more lifelike details.
Generally, content in the CUB dataset is less; therefore, it is
easier to generate visually realistic and semantically con-
sistent results on CUB. )ese results confirm that ACGAN

A yellow bird with brown 
wings and a pointed bill

This bird is blue and black 
in color, with a sharp beak 

and small eyes
A white bird with white 
feathers and gray wings

This small bird with a red 
belly, a pointed bill and 

red wingsInput

StackGAN++

AttnGAN

ACGAN
(256 × 256)

ACGAN
(1024 × 1024)

Figure 4: Details (beak, wings) comparison of the images generated from descriptions using three GAN models trained on CUB test set.
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is better than AttnGAN, and the generated image is closer
to the real image.

Detailed (beak, wings) comparisons of the results
between the three models of StackGAN++, AttnGAN,
and ACGAN on the CUB dataset are presented in
Figure 4. It can be seen that the beak, wings, and feet of

the bird are clearer, and the edges and details are more
realistic in the images generated by the ACGAN in this
paper. For example, the beak of a bird is more vivid and
conforms to the text description in the 4th column.
Compared with StackGAN++ and AttnGAN, it has
achieved better results.

A pink flower with 
raised yellow stamens

�is flower has long thin 
yellow petals with many deep 

yellow anthers in the center

�e petals of this flower 
are pink with white edges 

and pink stamensInput

GAN-INT-
CLS

StackGAN++

ACGAN
(256 × 256)

ACGAN
(1024 × 1024)

Figure 5: Images generated from descriptions using three GAN models trained on Oxford test set.
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Subjective visual comparisons between the three models
of GAN-INT-CLS, StackGAN++ and ACGAN on the Ox-
ford dataset are presented in Figure 5. Details (petals)
comparison of the results are presented in Figure 6. It can be
seen that the image details generated by GAN-INT-CLS and
StackGAN++ are lost, and the shape looks strange (1st and
2nd row) for some examples. ACGAN achieved better re-
sults with more details and consistent colors and shapes
compared to StackGAN++. For example, the overall shape of
the flowers is clearer, and the details of the petals are more
obvious in the 4th row.)ese results confirm that ACGAN is
better than StackGAN++, and the generated image is closer
to the real image.

5. Conclusions

)is paper adds attention mechanism and multilevel cascade
structure to generate adversarial network, uses attention
mechanism to pay attention to the fine-grained information
of word level in semantics, enriches the details of generated
images, and generates through cascade structure Higher
resolution images. Experiments have shown that, on the
same data set, the Attentional Concatenation Generative
Adversarial Networks have clearer edge details and local
textures against the image generated by the network, making
the generated image closer to the real image. Although this
method has achieved good results in generating images, it is
still difficult to model complex scenes in life. How to deal
with this problem needs further study. At the same time, the

generated image is similar to the training data, lacking di-
versity. )erefore, it is intended to combine the zero shot
learning and the generative adversarial networks to syn-
thesize the new category image, which will be the focus of the
next step.
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