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Abstract: As an emerging research hotspot in contemporary remote sensing, hyperspectral change 
detection (HCD) has attracted increasing attention in remote sensing Earth observation, covering 
land mapping changes and anomaly detection. This is primarily attributable to the unique capacity 
of hyperspectral imagery (HSI) to amalgamate both the spectral and spatial information in the scene, 
facilitating a more exhaustive analysis and change detection on the Earth’s surface, proving to be 
successful across diverse domains, such as disaster monitoring and geological surveys. Although 
numerous HCD algorithms have been developed, most of them face three major challenges: (i) 
susceptibility to inherent data noise, (ii) inconsistent accuracy of detection, especially when dealing 
with multi-scale changes, and (iii) extensive hyperparameters and high computational costs. As 
such, we propose a singular spectrum analysis-driven-lightweight network for HCD, where three 
crucial components are incorporated to tackle these challenges. Firstly, singular spectrum analysis 
(SSA) is applied to alleviate the effect of noise. Next, a 2-D self-attention-based spatial–spectral 
feature-extraction module is employed to effectively handle multi-scale changes. Finally, a residual 
block-based module is designed to effectively extract the spectral features for efficiency. 
Comprehensive experiments on three publicly available datasets have fully validated the 
superiority of the proposed SSA-LHCD model over eight state-of-the-art HCD approaches, 
including four deep learning models. 

Keywords: hyperspectral imagery (HSI); hyperspectral change detection (HCD); deep learning; 
singular spectral analysis (SSA); residual block 
 

1. Introduction 
As a pivotal task in remote sensing (RS) Earth observation, change detection (CD) 

facilitates the discernment of disparities in bitemporal RS imageries [1], especially using 
hyperspectral imagery (HSI). Actually, hyperspectral change detection (HCD) has 
numerous advantages over conventional color and multispectral images. The first is a 
higher spectral resolution and a wider spectral range spanning from visible near-infrared 
to short-wave infrared, resulting in hundreds of continuous spectral bands, offering a 
detailed understanding of the spectral characteristics of the observed object [2]. The 
second is the higher spatial resolution, which empowers it to capture intricate details, 
including object boundaries, texture features, and subtle surface changes [3]. As a result, 
HCD has emerged as a prominent area of research, proving to be successful across diverse 
domains, such as disaster monitoring [4], geological surveys [5], precision agriculture [6], 
and quality control [7]. 
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In the last few decades, substantial progress has been achieved in the advancement 
of HCD tasks, including both unsupervised and supervised algorithms, as detailed below. 

1.1. Unsupervised HCD Algorithms 
In general, conventional methods for unsupervised HCD can be primary categorized 

into image algebra-based and image transformation-based approaches, depending on 
whether the raw data or the data in the transformed domain are used. Often the pixel-
wise difference or spectral similarity is calculated first, followed by a thresholding- or 
clustering-based classification to determine the changed pixels. For instance, in image 
algebra-based methods, change vector analysis (CVA) [8] differs the magnitudes for 
calculating the Euclidean distance between each pair of spectral vectors, whilst spectral 
angle mapping (SAM) [9] measures the angular difference between the paired spectral 
vectors. Although these methods are straightforward and entail a relatively low 
computational cost, they tend to be noise sensitive and can hardly achieve satisfactory 
accuracy. 

By converting the raw spectral data to a different domain, image transformation-
based methods enhance the changed features, while reducing the data dimension and 
redundancy, before calculating the pixel difference or similarity. Typical methods include 
principal component analysis (PCA) [10] and linear discriminant analysis (LDA) [11], 
where the original high-dimensional HSI data are converted into a lower-dimensional 
representation, whilst preserving the key information to a generate difference image with 
a much-reduced data redundancy. Multivariate alteration detection (MAD) [12], 
developed on the basis of canonical correlation analysis [13], maximizes the correlation 
between the spatial bands and employs statistical methods, e.g., the chi-squared 
distribution, to determine significant changes. To further improve the detection accuracy, 
an iteratively reweighted (IR) MAD method [14] was proposed, determining changed and 
unchanged pixels with weights being updated during iterations. In [15], slow feature 
analysis was proposed to extract the most temporally invariant component from 
bitemporal images. As the unchanged features should be spectrally invariant and vary 
slowly, the differences in between are suppressed and easily separated from the changed 
pixels. Despite their effectiveness in reducing the dimension and redundancy of the 
spectral data, image transformation-based methods often fail to preserve spectral 
continuity, and hence damage the similarity between adjacent pixels during the 
transformation. 

In addition, many advanced methods were proposed for unsupervised HCD, 
including unmixing-based [16,17], low-rank, and sparse representation-based [18,19] 
methods. In [20], a novel three-order Tucker decomposition and reconstruction detector 
was proposed for tensor processing across different domains and mitigating the impact 
of diverse factors present in the multi-temporal dataset, followed by spectral angle-based 
change detection. In [21], a sparse representation-based HCD method was proposed, by 
joint considering the background dictionary and the neighboring pixels around the test 
pixel. In [22], the kernel density estimation-based spectral distribution difference of 
adaptive regions after band selection is used to measure the change magnitude for HCD. 
In [23], a novel accumulated band-wise binary distancing method was proposed, where 
binary distancing only indicated whether a pixel was changed or not in a certain band, 
which could alleviate the adverse effect of a noise-induced inconsistency of 
measurements. The band-wise binary distance map is then created to form a grayscale 
change map, on which the simple k-means was applied for final binary decision making. 
Although these advanced unsupervised HCD methods can achieve good detection 
accuracy, they have high sensitivity and poor versatility regarding data pre-processing 
[24] and are lacking when considering prior spectral information in the settings [25]. 
Therefore, further efforts are needed to enhance the discriminability between changed 
pixels and the background and improve the accuracy in detecting multi-scale changed 
regions. 
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1.2. Supervised HCD Algorithms 
With the wide application of machine learning techniques, they have been 

successfully applied in HCD, using spatial or spectral feature extractions and 
representations. Among these, one of the most commonly used is the support vector 
machine (SVM), where the binary classifier can be trained to detect changed pixels in 
bitemporal images [26–28]. 

In recent years, there has been a growing trend toward employing DL-based methods 
for supervised HCD that train the networks based on the true label information that comes 
from the ground truth map, because of their strong capability of adaptive feature 
extraction and thus more accurate HCD. In [29], an end-to-end 2-D convolutional neural 
network (CNN) was proposed that performs spectral unmixing on the input HSIs to 
obtain a mixed affinity matrix, followed by CNN-based feature mining. In [30], Recurrent 
3-D CNNs are proposed to extract spatial–spectral features, incorporating a combined 
long short-term memory (LSTM) module to capture bi-temporally changed features. In 
[31], an end-to-end bilinear CNN (BCNN) was proposed with two symmetric CNNs for 
learning feature representations from bitemporal images. In [3], a multi-scale diff-changed 
feature fusion network was proposed to enhance feature representation by learning 
refined changing components between bitemporal HSIs at different scales. In [32], a dual-
branch difference amplification graph convolutional network was proposed that fully 
extracts and effectively amplifies the difference spatial features of bitemporal images. 

More recently, as the self-attention mechanism can focus on key information and its 
powerful modeling capabilities, it has been widely employed with deep learning [33]. It 
allows the DL network to independently learn a set of weighting coefficients, dynamically 
emphasizing the regions of interest within the data [34]. Therefore, the self-attention 
mechanism is widely used in HCD tasks. In [35], the cross-temporal interaction symmetric 
attention (CSA) network was proposed, where a self-attention module was employed for 
supporting the extraction and integration of joint spatial–spectral–temporal features to 
enhance feature representation. In [36], a joint spectral, spatial, and temporal transformer 
(SST-Former) was proposed for feature integration and the extraction of relevant change 
detection features from bitemporal HSIs. In [37], a new gate spectral–spatial–temporal 
attention network was proposed with a spectral similarity filtering module to reduce 
spectral redundancy whilst capturing intra-image spatial features and extracting inter-
image temporal changes. In [38], a domain adaptive and interactive differential attention 
network was proposed that incorporated domain adaptive constraints to mitigate the 
pseudo-variation interface by mapping bitemporal images to a shared deep feature space 
for alignment. The proposed differential attention module could effectively improve 
feature representation and promote the interactive coupling of differential discriminant 
information. 

Despite the remarkable efficacy in general, supervised-based algorithms often rely 
on a substantial volume of training data, which may not be readily available in real-world 
scenarios. In addition, these models typically entail high computational costs and have a 
large number of hyperparameters [39]. Therefore, how to address the lingering concerns 
regarding data scarcity and the substantial computational load remains the major 
challenges within existing DL-based models. 

1.3. Remaining Challenges and Our Contributions 
Although various models and approaches have been proposed with certain progress, 

HCD tasks still face major challenges as summarized below. 
• Encompassing atmospheric effects and sensor limitations, HSI frequently contains 

various forms of noise and interference, which have a significant impact on the image 
quality and accuracy of change detection, especially for unsupervised algorithms 
[40]. 
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• Existing deep learning (DL)-based HCD models often suffer from a considerable 
number of hyperparameters and highly redundant information in both the spatial 
and spectral domains, resulting in substantial computational costs [39]. 

• Existing models often fail to detect multi-scale changed regions, especially when 
sparsely distributed [41]. 
To tackle these challenges, a new, lightweight DL-based HCD model, SSA-LHCD, is 

proposed, which can produce higher CD accuracy, but has fewer hyperparameters, by 
combining singular spectrum analysis (SSA) and the change detection (CD) task. The 
major contributions of our work are summarized as follows. 
(1) To apply the 1-D SSA for spectral domain denoising and mitigating the effect of noise 

on the tasks of feature extraction and change detection [42]; 
(2) To propose an efficient spectral feature-extraction module, which utilizes a residual 

block and an extra 1 × 1 convolutional layer to restrict the gradient propagation range 
via skip connections, and to adeptly capture the spectral features with instance 
normalization, further benefiting the greatly increased non-linear characteristics with 
fewer hyperparameters and computational costs [43]; 

(3) To employ a 2-D self-attention module to capture local spatial–spectral features. By 
dynamically adjusting the attention across diverse positions with multi-scale 
changing areas [44], feature representation and discrimination capability are 
improved through strategic weight allocation, resulting in significantly enhanced 
module reliability. 
This paper is organized as follows. Section 2 elucidates the particulars of the 

proposed SSA-LHCD model. Section 3 discusses the experimental results for three 
publicly available datasets. Section 4 discusses the ablation experiment results regarding 
the parameter setting of the SSA-LHCD model. Then, a comprehensive discussion on the 
benchmark methods and all experiment results is summarized in Section 5. Finally, some 
concluding remarks are presented in Section 6. 

2. Methodology 
The SSA-LHCD network was designed in four main steps: (1) SSA-based pre-

processing for noise removal; (2) spectral feature-extraction module, (3) 2-D self-attention 
based local spatial–spectral feature-extraction module, and (4) decision making. The 
details of the SSA-LHCD network are presented in Figure 1 and are further discussed in 
the following subsections. 

 
Figure 1. The architecture of the proposed end-to-end SSA-LHCD network. 
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2.1. SSA-Based Pre-Processing 
In the conventional task of land-mapping, SSA was used to extract the representative 

spectral information from the HSI data [42]. For this purpose, each spectral profile was 
decomposed into several independent components, including the trend, oscillations, and 
noise [19], followed by spectral reconstruction using selected components whilst 
discarding the noisy ones. In HCD, a pair of bitemporal hypercubes, 𝑇 ∈ ℜ ∗ ∗  and 𝑇 ∈ ℜ ∗ ∗ , are presented, where 𝑊 and 𝐻 denote the width and height in the spatial 
domain, respectively, and 𝐵 is the number of spectral bands. SSA is applied to reduce 
the inheritable noise in each hypercube, aiming to mitigate the noise caused by outliers in 
the differentiation process, as detailed below. 

2.1.1. Embedding 
Let 𝑥 = 𝑥 ,𝑥 , … , 𝑥  denote a pixel-wise spectral vector; it will be firstly embedded 

to form a trajectory matrix, 𝑋, by an embedding window, 𝐿, 𝐿 𝜖 1,𝐵 . 

𝑋 =  𝑥1𝑥2⋮     𝑥2 … 𝑥𝐾𝑥3 … 𝑥𝐾+1⋮ ⋱ ⋮𝑥𝐿 𝑥𝐿+1  … 𝑥𝐵   (1)

where 𝐾 = 𝐵 − 𝐿 + 1, and each column of 𝑋 is a lagged vector that can be considered as 
a Hankel matrix as it has equal values along the antidiagonals. 

2.1.2. Eigen Decomposition 
The singular value decomposition (SVD) is applied for eigen decomposition on the 

matrix x, where the eigenvalues and eigenvectors of 𝑋𝑋  are denoted as  λ , λ , … , λ   
and (U , U , … , U ), respectively. The trajectory matrix can be reconstructed as the sum of 
elementary matrices as follows. 𝑋 = 𝑋 +  … + 𝑋 + ⋯+ 𝑋 , 𝑋 = λ 𝑈 𝑉 ,𝑉 = 𝑋 𝑈 / λ   (2)

2.1.3. Grouping and Projection 
By dividing the total set of 𝐿  components into 𝑀  disjoint subsets (𝐼 , 𝐼 , … , 𝐼 ) , 

where ∑|𝐼 | =  𝐿  and 𝑚 𝜖 1,𝑀 .  Let 𝐼 = [𝑖 , 𝑖 , … , 𝑖 ]  represent a divided subset as 𝑋 =  𝑋 +  𝑋 + ⋯+ 𝑋 . Then, the trajectory matrix is represented by: 𝑋 = 𝑋𝐼1 + 𝑋𝐼𝑖 +⋯+𝑋𝐼𝑀  (3)

Let 𝑍 = [𝑍 ,𝑍 , … ,𝑍 ] 𝜖 ℜ  denote the 1-D signal projected from 𝑋 , which 
can be obtained via the diagonal averaging of each 𝑋 . Finally, the original 1-D signal, x, 
can be reconstructed using its eigenvalues in one or more principal groups, with highly 
noisy and less significant components discarded by: 𝑆𝑆𝐴( ) = 𝑧 + 𝑧 + ⋯ , +𝑧 = ∑ 𝑍   (4)

An example of a 1-D SSA application is shown in Figure 2, which shows a pair of 
corresponding non-changed pixels from the bitemporal images on the River dataset, 
including the original spectral vectors and their difference, as well as the SSA-smoothed 
results and the new difference. As can be seen, both the original corresponding spectral 
signals and the differential spectral signal preserve the basic trend of the profile whilst 
smoothing out the noise and thus the outliers in the difference signal for more robust 
change detection. 
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(a) (b) (c) 

Figure 2. Examples showing a pair of unchanged pixels from the River dataset, where the outliers 
in the difference signal have been mitigated via SSA-based noise removal from the original profiles. 
(a) Original T1/SSA T1, (b) original T2/SSA T2, and (c) original difference/SSA difference. 

2.2. Spectral Feature Extraction 
From the SSA-smoothed hypercubes of 𝑇  and 𝑇 , their absolute difference can be 

obtained as a new hypercube, 𝑇 : 𝑇 = |𝑆𝑆𝐴 − 𝑆𝑆𝐴 |  (5)

where 𝑇 ∈ ℜ ∗ ∗  . To produce more training samples, 𝑇   is divided into 3-D 
overlapped patches, 𝑃( , ) 𝜖 ℜ ∗ ∗  , with a window size, 𝑂 ; (𝛼,𝛽)  denote the 
coordinates of the patch center in the spatial domain, where 𝛼 𝜖[1,𝑊],𝛽𝜖[1,𝐻], and the 
truth label is decided by the centered pixel. In our experiments, 20% of pixels from both 
the changed and unchanged regions were randomly selected for training, while the 
remaining were used for testing. 

The spectral feature-extraction module is structured into two main components. The 
initial part is a residual block composed of 𝐶( ) and 𝐶( ), aiming to extract features in the 
spectral domain. 𝐶( ) is constructed with a 1 × 1 convolutional layer, serving as an initial 
extraction for spectral features, followed by an instance normalization (IN) layer and the 
rectified linear unit (ReLU) activation function. The incorporated IN layer [45] 
independently normalizes each pixel rather than the entire batch, thereby ensuring that 
the features of each sample have similar means and variances, which aids in speeding up 
the convergence and enhancing the model’s generalization capability. Additionally, the 
non-linear properties of the ReLU [46] activation function foster the acquisition of more 
intricate functions and alleviate the issue of vanishing gradients, consequently amplifying 
the model’s capacity for non-linear representation. 

For 𝐶( ), it also has a 1 × 1 convolutional layer and an IN layer for deep spectral 
feature extraction, enhancing the network’s representation capacity. Unlike 𝐶( ),  the 
difference lies in the absence of a ReLU activation function, aiming to preserve the feature 
information for compatibility with the residual connection. The incorporated skip 
connections facilitate the addition of input features to the output features. This design 
enables the network to effectively capture the residual information between the input, 𝑃( , ), and output, 𝐹 , as follows. 𝐹 = 𝐶( ) 𝐶( ) 𝑃( , ) + 𝑃( , )  (6)

Utilizing the 1 × 1 convolution operation on the input layer enables the linear 
combination of features across different channels, resulting in the generation of novel 
feature representations. This process enhances the network’s representational capacity 
and the overall performance by extracting more expressive features. The subsequent 
component is a profound spectral feature-extraction layer, denoted as the 1 × 1 
convolutional layer, 𝐶( ), accompanied by the batch normalization (BN) [47] and ReLU 
functions. 𝐶( )  is adept at adjusting the number of convolutional kernels, thereby 
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effectively reducing the number of spectral channels. This dimensionality reduction 
serves a dual purpose, i.e., trimming down the number of parameters and computational 
complexity, whilst simultaneously preserving crucial spectral features. The outcomes are 
the improved computational efficiency of the network and dimension reduction-
mitigated challenges associated with gradient vanishing, fostering improved information 
propagation within the network [48]. In other words, the combination of these features 
has not only refined the network’s efficiency, but also addressed key issues related to 
gradient flow and parameter optimization. 

2.3. Spatial–Spectral Feature Extraction 
Inspired by the work in [44], here we integrate a 2-D self-attention module into the 

proposed SSA-LHCD model, serving local spatial–spectral feature extraction [49], aiming 
to boost the stability of the feature extractor within the model. 

Taking the output of the spectral feature extractor as the input, after traversing 
through three successive 2-D convolutional layers of 𝑆( ),𝑆( ), and 𝑆( ), it can generate a 
novel spatial–spectral feature map. By converting the feature map into a 2-D attention 
matrix, it can facilitate the creation of a refined spatial–spectral feature representation. 
This multi-step process enriches the model’s ability to capture intricate relationships and 
latent dependencies within the input. This comprehensive representation encapsulates 
both spatial and spectral information, offering a robust foundation for subsequent stages 
of the model. Upon completing the deep spatial–spectral feature extraction, the final 
extracted feature map is derived as 𝐹( ) as follows: 𝐹( ) =  (𝑆( )(𝑍( , ))) × 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑆( )(𝑍( , ))) × 𝑆( )(𝑍( , ))  (7)

Incorporating the self-attention module empowers the SSA-LHCD model to capture 
intricate spatial–spectral dependencies, fostering enhanced stability and robustness in 
feature extraction for a diverse range of applications. 

2.4. Decision Making 
Change detection can be regarded as a binary classification problem for 

distinguishing changed and unchanged pixels. Firstly, the spatial–spectral features, 𝐹( ), 
obtained from the previous spatial–spectral feature-extraction stage are flattened into a 
one-dimensional vector. This transformation prepares the features for input into a fully 
connected neural network suitable for decision making. The flattened feature vector is 
then fed into a series of fully connected layers. Each layer performs linear transformations, 
followed by nonlinear activations to learn complex patterns and relationships within the 
input features, 𝐹( ). Subsequently, the final layer of the fully connected network employs 
a SoftMax activation function, which converts the network’s outputs into a probability 
distribution over two classes. The final classification decision is made by selecting the class 
with the highest probability, thus achieving a binary classification. 

The selected optimizer is adaptive momentum (Adam) [50] and the selected loss 
function is cross-entropy [51], with the initial learning rate of 0.0001. The specific details 
of each layer in the end-to-end SSA-LHCD model are summarized in Table 1. 

Table 1. Architecture details of each layer in the SSA-LHCD model. 

Layers Type Channels Kernel 𝑇  SSA Pre-processing B - 𝑇  SSA Pre-processing B - 𝑇  Difference B - 𝐶  Conv2D + IN + Relu B 1 × 1 𝐶  Conv2D + IN B 1 × 1 𝐶  Conv2D + BN + Relu 64 1 × 1 
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𝑆  Conv2D + BN 32 3 × 3 𝑆  Conv2D + BN 32 3 × 3 𝑆  Conv2D + BN 32 3 × 3 
Flatten Flatten 288 - 𝐹𝐶  Linear (Dropout = 0.4) 64 - 𝐹𝐶  Linear (Dropout = 0.4) 8 - 𝐹𝐶  Linear (Dropout = 0.4) 2 - 

3. Experiments 
3.1. Dataset Description 

The datasets utilized in our experiments were obtained from the Hyperion sensor 
installed on the Earth Observing-1 (EO-1) satellite, which offers a total of 242 bands in the 
range of 0.4–2.5 µm, with a spatial resolution of 10 m [52]. The three datasets used are 
River [53], Yancheng [54], and Hermiston [55]. The pseudo-colored images and detailed 
information about these datasets are presented in Figure 3 and Table 2, respectively. 

(a) (b) (c) (d) (e) (f) (g) (h) (i) 

Figure 3. Pseudo-colored and ground truth images of the three datasets. (a) River on 3 May 2013. 
(b) River on 31 December 2013. (c) Ground truth of River. (d) Yancheng on 3 May 2006. (e) Yancheng 
on 23 April 2007. (f) Ground truth of Yancheng. (g) Hermiston on 1 May 2004. (h) Hermiston on 8 
May 2007. (i) Ground truth of Hermiston. 

Table 2. Details of the datasets used in our experiments. 

 River  Yancheng Hermiston  
Date for 𝑇  3 May 2013 3 May 2006 1 May 2004 
Date for 𝑇  31 December 2013 23 April 2007 8 May 2007 

Location Jiangsu, China Yancheng, China Oregon, US 
Spatial Size 463 × 241 420 × 140 390 × 200 

Bands 198 154 242 
Unchanged Pixels 101,885 40,417 68,014 

Changed Pixels 9698 18,383 9986 

3.2. Evaluation Criteria 
By considering the change detection task as a binary classification problem, where 

changed and unchanged pixels are denoted as 1 (positive) and 0 (negative), respectively, 
the overall accuracy ( 𝑂𝐴 ) and Kappa coefficient ( 𝐾𝑃 ) are used for quantitative 
performance evaluations. 𝑂𝐴 here indicates the percentage of correctly classified pixels 
as defined below: 𝑂𝐴 =    (8)

where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁  denote the correctly detected changed pixels, correctly 
detected unchanged pixels, incorrectly detected changed pixels, and incorrectly detected 
unchanged pixels, respectively. 
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The 𝐾𝑃  is used to measure the inter-rater reliability as the degree of similarity 
between the change map and the ground truth: 𝐾𝑃 =    𝑃𝑅𝐸 = (𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑁)(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)  

(9)

Recall (Re) represents the ratio of the number of TP observations to the total number 
of actual positives. 𝑅𝑒 =    (10)

The F1 score (F1) defines a balanced index that can be considered as the harmonic 
mean of precision (Pre) and Re, where Pre is defined as the ratio of the number of TP 
observations to the total number of predicted positive observations. 𝑃𝑟𝑒 =    (11)

𝐹1 =  2 × 𝑃𝑟𝑒 × 𝑅𝑒𝑃𝑟𝑒 + 𝑅𝑒 (12)

3.3. Results and Comparison 
In this section, we assess the efficacy of the proposed method by comparing it with 

three state-of-the-art unsupervised change detection methods, as well as five supervised 
methods. A brief summary of these compared approaches is presented as follows. 
• AD [41]: The absolute difference between spectral values is accumulated as the 

change map, followed by the k-means binary classification. 
• CVA [13]: The Euclidean distance between two spectral vectors is calculated, 

followed by OTSU thresholding to determine the change map. 
• PCA-KM [15]: PCA to reduce the data dimension and redundancy, followed by k-

means clustering for the binary classification of changed pixels. 
• SVM [26]: Supervised machine learning-based method that extracts pixel-wise 

spectral information as feature vectors, with the raw SVM used as the binary 
classifier. 

• Two-dimensional CNN [42]: Deep spatial feature extracted by using multi-layer and 
multi-scale 2-D CNNs. 

• CSANet [30]: Self-attention-based method that extracts and integrates joint spatial-
spectral–temporal features by incorporating a traditional self-attention module to 
enhance feature representation within each temporal one. 

• ML-EDAN [56]: A two-stream encoder–decoder model to integrate hierarchical 
features from convolutional layers in bitemporal images, enhanced by a contextual 
information-guided attention module for improved spatial–spectral feature transfer 
and an LSTM subnetwork to analyze temporal dependencies. 

• CBANet [12]: Self-attention-based method integrating a cross-band feature-
extraction module and a 2-D self-attention module, thereby enhancing the feature 
representation and discrimination capability. 
The benchmarks are established according to the specified parameters in the default 

settings, where DL-based methods are trained using PyTorch on NVIDIA RTX A2000, 
with a batch size of 32 and 200 training epochs. For training, 20% of pixels from both 
changed and unchanged regions are randomly selected, while the remaining pixels are 
used for testing. To ensure fairness and reliability, each supervised method is repeated 
ten times in our experiments, and the averaged results of OA and KP are reported for 
comparison. In addition, comparisons of the resulting change maps as well as quantitative 
evaluations using Pre, Re, and F1 for all supervised methods are conducted. In the 
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resulting change maps, false alarms and missing pixels are highlighted in red and green, 
respectively, while correctly detected changed areas are presented in white, and true 
negatives are depicted in black for an easy visual comparison. 

3.3.1. Results of the River Dataset 
The extracted change maps and quantitative results from the River dataset for all 

benchmarks are shown in Figure 4 and Table 3, respectively. Although all three 
unsupervised algorithms achieve Re values no less than 99.5%, they exhibit quite a low 
Pre, i.e., excessive false alarms. These false alarms are visibly concentrated in the upper 
and lower left corners of the change maps, as seen in Figure 4a–c, due to the 
misclassification of subtle sporadic change pixels in the River dataset. Consequently, the 
Pre of all unsupervised algorithms drops to below 66%, where all KP values fall below 
0.75. For the supervised methods, however, the extracted maps exhibit much less false 
alarms, yet there is a prevalent issue of missing detections, especially for 2-D CNN and 
ML-EDAN approaches. These results demonstrate a relatively low detection accuracy, as 
indicated by OA values below 97% and KP values hovering around 0.80. Interestingly, the 
SVM performs marginally better than the 2-D CNN and ML-EDAN, with the OA boosted 
to 97.02% and KP to 0.8109. However, the SVM has the highest standard deviation of 
0.0078 in OA among all supervised methods. Not surprisingly, thanks to the SSA pre-
processing and proposed feature-extraction modules, our SSA-LHCD model outperforms 
all benchmarks on the River dataset, surpassing the CBANet by 0.24% in the OA and 
0.0144 in the KP. 

    
(a) (b) (c) (d) (e) 

    
(f) (g) (h) (i) (j) 

Figure 4. Extracted change maps on the River dataset from different methods of AD (a), CVA (b), 
PCA (c), SVM (d), 2-D CNN (e), CSANet (f), ML-EDAN (g), CBANet (h), and SSA-LHCD (i) in 
comparison to the ground truth map (j), where the false alarms and missing pixels are labelled in 
red and green. 
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Table 3. Quantitative assessment of different methods on the River dataset. 

 𝑶𝑨 (%) 𝑲𝑷 Pre Re F1 
AD 94.31 0.7137 0.6108 0.9515 0.7440 

CVA 92.53 0.6528 0.5393 0.9635 0.6915 
PCA-KM 95.17 0.7478 0.6524 0.9506 0.7738 

SVM 97.02 ± 0.0078 0.8109 ± 0.0049 0.8358 0.8417 0.8387 
2-D CNN 96.82 ± 0.0007 0.7946 ± 0.0033 0.9073 0.8888 0.8978 
CSANet 97.43 ± 0.0012 0.8360 ± 0.0049 0.9130 0.9175 0.9152 

ML-EDAN 96.96 ± 0.0014 0.8009 ± 0.0049 0.9220 0.8975 0.9093 
CBANet 97.65 ± 0.0036 0.8526 ± 0.0036 0.9405 0.9119 0.9256 

SSA-LHCD 97.89 ± 0.0007 0.8670 ± 0.0026 0.9322 0.9343 0.9332 

3.3.2. Results of the Yancheng Dataset 
Similar to the results in the River dataset, the inadequate performance of all three 

unsupervised methods is evident, as shown in Figure 5a–c. The quantitative results on 
Yancheng dataset are shown in Table 4. These methods have a notable number of missing 
detection of pixels, coupled with the presence of false alarms, particularly in striped lines 
and other field regions. As a result, the KP values remain consistently low, hovering 
around 0.71, with the OA dropping below 90%; both Pre and Re are below 90%. Here, the 
SVM becomes the poorest performer among all supervised algorithms, with OA and KP 
values of only 94.87% and 0.8806, respectively, due mainly to the SVM’s limitation in 
pixel-wise learning without considering the spatial features. In contrast, deep learning-
based approaches have an OA exceeding 96% and a KP over 0.92. Nevertheless, our SSA-
LHCD model remains the best, showcasing the highest average values for both the KP and 
OA. Furthermore, the standard deviation of the KP is only 0.0012, the lowest among all 
supervised methods, along with the highest F1 score compared with all benchmark tests. 
These outcomes serve as compelling evidence, substantiating the effectiveness and 
robustness of our proposed SSA-LHCD model. 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 5. Extracted change maps of the Yancheng dataset from the different methods of AD (a), CVA 
(b), PCA (c), SVM (d), 2-D CNN (e), CSANet (f), ML-EDAN (g), CBANet (h), and SSA-LHCD (i) in 
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comparison to the ground truth map (j), where the false alarms and missing pixels are labelled in 
red and green. 

Table 4. Quantitative assessment of different methods on the Yancheng dataset. 

 OA (%) KP Pre Re F1 
AD 87.80 0.7074 0.8430 0.7494 0.7935 

CVA 87.55 0.7025 0.8327 0.7529 0.7908 
PCA 88.28 0.7180 0.8557 0.7519 0.8004 
SVM 94.87 ± 0.0013 0.8806 ± 0.0029 0.9063 0.9110 0.9086 

2-D CNN 96.67 ± 0.0014 0.9223 ± 0.0030 0.9608 0.9557 0.9582 
CSANet 97.15 ± 0.0009 0.9335 ± 0.0023 0.9658 0.9641 0.9650 

ML-EDAN 97.15 ± 0.0012 0.9316 ± 0.0034 0.9685 0.9517 0.9598 
CBANet 97.13 ± 0.0006 0.9332 ± 0.0014 0.9645 0.9633 0.9639 

SSA-LHCD 97.16 ± 𝟎.𝟎𝟎𝟏𝟏 0.9365 ± 𝟎.𝟎𝟎𝟏𝟐 0.9680 0.9701 0.9691 

3.3.3. Results of the Hermiston Dataset 
For the Hermiston dataset, the extracted change maps and quantitative assessment 

are shown in Figure 6 and Table 5, respectively. Due to the absence of scattered variation 
pixels and the distinct visibility of all changed features, the OA values of all benchmarks 
surpassed 97%, or are over 99% for all supervised methods, though the SVM remains the 
worst supervised model due to the lack of spatial features. Here, our SSA-LHCD model 
emerges as the second-highest performer among all deep learning models, while the OA 
is only 0.11% lower than the top-performing ML-EDAN, and the KP is merely 0.0067 lower 
than the leading CBANet. This is attributed to the relatively homogeneous change type in 
this dataset, limiting the prominence of deep spectral feature extraction. The primary 
disparity lies in the detected edges of changed regions. CBANet, with its incorporation of 
deep spatial feature learning and small kernels, accurately identifies pixels along the 
edges of each change region through spatial feature extraction. In contrast, our SSA-
LHCD model focuses solely on extracting spectral features by utilizing the 1 × 1 
convolutional layer and residual block and does not explicitly learn deep spatial features 
like the CBANet. As a result, the OA and KP of our model on the Hermiston dataset are 
slightly lower than those of the CBANet and ML-EDAN. 

Table 5. Quantitative assessment of different methods on the Hermiston dataset. 

 OA (%) KP Pre Re F1 
AD 97.28 0.8824 0.8625 0.9367 0.8981 

CVA 98.43 0.9035 0.8978 0.9351 0.9161 
PCA 97.89 0.9068 0.9060 0.9322 0.9189 
SVM 99.07 ± 0.0002 0.9581 ± 0.0012 0.9519 0.9759 0.9638 

2-D CNN 99.12 ± 0.0004 0.9662 ± 0.0077 0.9819 0.9779 0.9799 
CSANet 99.23 ±0.0006 0.9659 ± 0.0031 0.9822 0.9705 0.9763 

ML-EDAN 99.32 ± 𝟎.𝟎𝟎𝟎𝟏 0.9669 ± 0.0008 0.9806 0.9820 0.9813 
CBANet 99.28 ± 0.0010 0.9745 ± 𝟎.𝟎𝟎𝟑𝟎 0.9808 0.9883 0.9845 

SSA-LHCD 99.21 ± 0.0009 0.9678 ± 0.0008 0.9781 0.9909 0.9844 
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 6. Extracted change maps of the Hermiston dataset from the different methods of AD (a), 
CVA (b), PCA (c), SVM (d), 2-D CNN (e), CSANet (f), ML-EDAN (g), CBANet (h), and SSA-LHCD 
(i) in comparison to the ground truth map (j), where the false alarms and missing pixels are labelled 
in red and green. 

4. Ablation Study 
To comprehensively validate the effectiveness of our proposed SSA-LHCD model, 

we conducted a series of experiments covering computational hyperparameters, the effect 
of modular block, and different numbers of spectral or spatial–spectral feature-extraction 
kernels. 

4.1. Hyperparameter Analysis 
In Table 6, we compare the numbers of hyperparameters and floating-point 

operations (FLOPs) and the overall running time in minutes (m), including both training 
time and testing time, for all the DL-based models, including ours, on the River dataset. 
For those using multi-layer CNNs, such as the 2-D CNN, CSANet, and ML-EDAN, the 
numbers are much higher, i.e., over two magnitudes, than ours. The inclusion of the 1 × 1 
convolutional kernel in the spectral feature module and the residual block contribute to 
the lightweight nature of our SSA-LHCD model, which also outperforms other 
benchmarking methods. 

Table 6. Complexity comparison of DL methods on the River dataset. 

 2-D CNN CSANet ML-EDAN CBANet SSA-LHCD 
Parameters (k) 607.43 2452.88 88,933.34 319.36 167.24 

FLOPs (M) 368.21 144.44 590.22 6.66 2.80 
Running Time (m) 35.42 53.43 76.27 18.53 14.21 

4.2. Effect of Modular Blocks and Patch Size 
In this section, we conducted three sets of experiments: (i) SSA-LHCD without SSA 

pre-processing, (ii) SSA-LHCD without the residual block, and (iii) SSA-LHCD with both 
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module blocks with different patch sizes on all three datasets. We tested five patch sizes 
of {3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11}, and the results are presented in Figure 7a–c, where 
the training ratio is set as 20%. First, the performance of the SSA-LHCD model degrades 
when either the SSA or the residual block is absent, showing their unique value to the 
proposed model. Second, with the increasing patch size, the KP values on the Hermiston 
dataset increase and reach 0.9697 at the patch size of 11 × 11. However, the varying trends 
of the KP on the River and Yancheng datasets are different, which show an initial increase 
followed by a decrease when the patch size exceeds 5 × 5. The observed phenomenon can 
be attributed to the abundance of sparsely distributed change or non-change pixels in the 
River and Yancheng datasets, whilst the Hermiston dataset only contains large, regular 
regions. Smaller patch sizes are better suited for extracting these scattered pixels 
effectively, and when using a large patch size, may lead to false alarms. However, in the 
case of the Hermiston dataset with distinct spectral features, the designed deep spectral 
feature module loses its advantage. Conversely, larger patch sizes encompass more spatial 
edge information, leading to improved edge detection accuracy for small changed areas. 
For balancing the detection accuracy and computational efficiency, we chose a patch size 
of 5 × 5 for our SSA-LHCD model. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 7. Ablation experiments and results of the SSA-LHCD model in different settings on the three 
datasets, including the Kappa values of different patch sizes on River (a), Yancheng (b), and 
Hermiston datasets (c); different kernel numbers of the spectral feature-extraction module (d); 
different kernel numbers of the 2-D self-attention module (e); and different training ratios of all DL-
based benchmarks on the River dataset (f). 

4.3. Number of Spectral Feature-Extraction Kernels 
To determine the optimal number of kernels in the spectral feature-extraction 

module, five different settings of 16, 32, 64, 128, and 256 were tested. As shown in Figure 
7d, the varying trends of the KP on the three datasets appear similar to those from 
increasing the patch size. When the kernel number of the spectral feature-extraction 
module is set to 64, the highest KP values can be achieved on the River and Yancheng 
datasets. It is worth noting that, when the kernel number is set to 128, the average KP 
value on the Hermiston dataset is 0.9735, which is very close to the KP value of the 
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CBANet. However, for the overall performance of the proposed network, we decided to 
set the kernel number of the spectral feature-extraction module to 64 for all datasets. 

4.4. Number of Spatial–Spectral Feature-Extraction Kernels 
We also evaluated the selection of the number of 2-D self-attention kernels by 

conducting experiments using five different settings, including 8, 16, 32, 64, and 128. The 
variation trend of KP on the three datasets is shown in Figure 7e. Similarly, the kernel 
number is set to 32 to balance the model’s parameters and robustness. 

4.5. Training Ratios 
To further validate the efficacy of our SSA-LHCD model, its performance is assessed 

on the River dataset, considering varying percentages of training ratios from 10% to 50%. 
As shown in Figure 7f, a larger training ratio generally leads to an improved detection 
accuracy, where our model consistently achieves the highest KP. Specifically, when the 
training ratio is 50%, our model can achieve a KP of 0.8843, surpassing the second best, 
CBANet, by a margin of 1.39%. 

5. Further Discussion 
The proposed SSA-LHCD network demonstrates significant advantages in terms of 

higher detection accuracy and fewer hyperparameters compared to the benchmarked 
state of the arts. This are mainly due to the residual block-based spectral feature-extraction 
module and the 2-D self-attention-based spatial–spectral feature-extraction module, as 
well as SSA-based pre-processing to effectively reduce noise whilst preserving valuable 
features, enabling our lightweight DL network to extract spectral and spatial–spectral 
features more effectively. 

As shown in the compared results for the three datasets, image algebra-based, CVA 
and AD and image transformation-based PCA are all noise sensitive. Furthermore, the 
threshold segmentation or clustering processes in these methods fail to accurately classify 
subtle changes, leading to numerous false alarms or missing pixels. The SVM, as a classical 
supervised binary classifier, is trained using pixel-wise spectral vectors. Consequently, its 
detection accuracy is significantly lower compared to methods based on spatial features 
and spatial–spectral feature extraction using deep learning models. This is due to the 
SVM’s inability to capture spatial features, which are crucial for precise classification. 

In comparison to DL-based state-of-the-art approaches, our proposed SSA-LHCD 
method outperforms almost all of them, offering higher detection accuracy with reduced 
hyperparameters. The 2-D CNN method uses multi-layer 2-D convolutions with large 
kernels to extract local spatial features from input patches, yet it fails to account for 
spectral features. This limitation results in the lowest detection accuracy for the three 
datasets, especially the River dataset, which contains many sporadic pixels. The influence 
of neighboring pixels due to the large kernel used leads to the misclassification of many 
sporadic changed pixels as unchanged ones, resulting in a high number of missing pixels. 
Conversely, on the Yancheng and Hermiston datasets, which consist of connected regions, 
a large number of false alarms are detected at the edges of the connected areas. By using 
multi-level spatial–spectral feature extraction via encoder–decoder and LSTM 
subnetworks, the ML-EDAN becomes the most complex network among all the compared 
models, with the number of parameters and FLOPs being approximately 531-times and 
210-times greater than those of our proposed SSA-LHCD model, respectively. Based on 
the Siamese 2-D CNN structure, the CSANet extracts the joint spatial–spectral–temporal 
features of corresponding patches, along with the cross-temporal self-attention module 
utilized to integrate the jointed features oriented from each temporal embedding. 
Similarly, also as a self-attention-based network, the CBANet can effectively extract 
spectral and spatial–spectral features. The detection accuracy of the CSANet and CBANet, 
two self-attention mechanism-based algorithms, rank second and third, respectively, in 
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all benchmark tests on the River and Yancheng datasets. However, it is still inferior to our 
proposed SSA-LHCD model, due to the inability of the SSA module to mitigate noise for 
the effective extraction of spectral features. 

From the ablation experiments, as shown in Figure 7a–c, it can be found that the SSA 
pre-processing step and residual block-based spectral feature-extraction module 
significantly improve the detection accuracy under different patch sizes. For the River and 
Yancheng datasets with varying scales of change, a smaller patch size results in higher 
detection accuracy. However, for the Hermiston dataset, characterized by a regular 
change scale and single change type, larger patch sizes increase the detection accuracy. 
Regarding the kernel numbers of the spectral feature-extraction module and the spatial–
spectral feature-extraction module, the SSA-LHCD model achieves the best detection 
accuracy for the Hermiston dataset when set to 128 and 64, respectively. For a balanced 
performance across different datasets, we set the kernel numbers of these two modules to 
64 and 32, which yielded the best results for both the River and Yancheng datasets. 
Furthermore, the SSA-LHCD model can achieve the best detection performance across 
various training settings, indicating that a higher detection accuracy can be achieved with 
fewer training samples. 

In summary, DL-based methods tend to outperform SVM and unsupervised 
approaches in HCD. As shown in all the quantitative results, the three self-attention-based 
models, CSANet, CBANet, and our SSA-LHCD model, outperform the two models that 
only use multi-scale 2-D convolutional layers and the Siamese autoencoder-based 
network, as shown in both the visual map comparison results and quantitative results. 
Notably, when examining the change maps, the three self-attention-based models 
demonstrate a superior detection performance, particularly for sparsely distributed 
change regions. For the River dataset with many sporadic pixels, the SSA-LHAD model 
achieves the best detection accuracy. Overall, our approach exhibits significant 
advantages over other existing models, especially for detecting different scales of changes. 

There remain certain limitations to our proposed method. Currently, the difference 
of the presented HSI pairs after SSA pre-processing is taken as the input, followed by a 
single channel 1 × 1 convolutional layer for the deep extraction of the spectral features. In 
current implementations, only the trend signal of the SSA is used. Considering that the 
other components can also be potentially useful, their effects will be explored further in 
our future work. Although the proposed SSA-LHCD network has surpassed the state-of-
the-art benchmarks in overall accuracy when using fewer training samples, it still requires 
manually labeled data due to its supervised nature. This dependency on manual labeling 
is a significant limitation in practical applications. 

6. Conclusions 
In this paper, a novel, lightweight end-to-end DL-based network (SSA-LHCD) is 

proposed for HCD. First, bitemporal HSIs were pre-processed using SSA for noise 
reduction. Initial change features are then extracted through subtraction. Following this, 
a residual block-based spectral feature-extraction module is employed to refine these 
initial change features by effectively capturing spectral information. Subsequently, a 2-D 
self-attention mechanism is integrated to capture local spatial–spectral features, 
enhancing both feature representation and discrimination capabilities. Finally, a fully 
connected layer serves as the classifier, facilitating binary HCD decision making. 

SSA-based noise reduction, 1 × 1 convolutional layers, and the residual block 
significantly improve the model’s overall performance of change detection by enabling 
efficient spectral feature learning. Moreover, the inclusion of the 2-D self-attention module 
is crucial for capturing complex spatial–spectral features, further enhancing the model’s 
ability to discriminate changed regions, thus improving HCD accuracy. Comprehensive 
experiments demonstrate SSA-LHCD’s superiority over eight state-of-the-art methods on 
three publicly available datasets, highlighting its capability to produce higher detection 
accuracy with fewer hyperparameters. This innovative approach offers significant 
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advancements in HCD by enhancing noise reduction, multi-scale change handling, and 
computational efficiency, setting a new benchmark in supervised HCD. 

Our next step is to enhance the feature-extraction process by incorporating the 
features of the remaining principal components. By comparing different degrees of 
components, we aim to extract change features and generate pseudo-ground truths. Using 
the existing network as the basis, we will utilize these pseudo-labels to train the network, 
achieving self-supervised learning and thereby completely eliminating the need for 
manually labeled data. Additionally, we plan to enhance the SSA-LHCD model by 
incorporating other advanced techniques, such as multi-scale deformable attention 
modules and adaptive fusion [57], to cope with various sizes of changed regions. 
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