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Abstract—Stroke poses a significant global health challenge,
contributing to widespread mortality and disability. Identifying
predictors of stroke risk is crucial for enabling timely interven-
tions, thereby reducing the increasing impact of strokes. This
research addresses this imperative by employing Explainable
Artificial Intelligence (XAI) techniques to pinpoint stroke risk
predictors. To bridge existing gaps, six machine learning models
were assessed using key performance metrics. Utilising the Syn-
thetic Minority Over-sampling Technique (SMOTE) to minimize
the impact of the imbalanced nature of the dataset used in
this research, the Random Forest algorithm emerged as the
most effective among the algorithms with an accuracy of 94.5%,
AUC-ROC of 0.95, recall of 0.96, precision of 0.93, and an F1
score of 0.95. This study explored the interpretation of these
algorithms and results using Local Interpretable Model-agnostic
Explanations (LIME) and Explain Like I’m Five (ELI5). With
the interpretations, healthcare providers can gain insight into pa-
tients’ stroke risk predictions. Key stroke risk factors highlighted
by the study include Age, Marital Status, Glucose Level, Body
Mass Index, Work Type, Heart Disease, and Gender. This research
significantly contributes to healthcare and healthcare informatics
by providing insights that can enhance strategies for stroke
prevention and management, ultimately leading to improved
patient care. The identified predictors offer valuable information
for healthcare professionals to develop targeted interventions,
fostering a proactive approach to mitigating the impact of strokes
on individuals and the healthcare system.

Index Terms—Explainable Artificial Intelligence (XAI), Ex-
plain Like I’m Five (ELI5), Local Interpretable Model Agnostic
Explanation (LIME), Machine Learning

I. INTRODUCTION

As described by Walter et al. [1] cerebrovascular disease,
commonly known as stroke, occurs when arteries carrying
oxygenated blood to the brain become damaged, resulting in
reduced blood supply to various brain regions and eventual
impairment of blood vessels within the brain. The World

Health Organisation recognises stroke as a substantial global
health concern, implicated in approximately 17.5 million fa-
talities worldwide ranking among the principal contributors
to mortality associated with non-communicable diseases. Ad-
ditionally, stroke has been identified as a leading cause of
disability and the second leading cause of death globally
[2]. A study by Feign et al. [3] highlights that the global
population of stroke survivors exceeds 30 million, with an
estimated 8.8 million stroke-related fatalities occurring annu-
ally. A substantial portion of these figures involves males and
females aged 35 years and older. The burden of stroke lies
both in its high mortality and morbidity where about half of
its survivors become chronically disabled. Although stroke is a
disease of public health importance, its escalating prevalence
has received inadequate attention, particularly in the United
Kingdom, where over 115,000 individuals annually experience
strokes, leading to profound socioeconomic implications.

According to Derek et al. [4] the 2022 global stroke
factsheet reveals a significant increase in the lifetime risk of
stroke, reflecting a 50% rise over the past 17 years, projecting
that approximately 1 in 4 individuals will likely experience a
stroke during their lifetime. From 1990 to 2019, there has been
a substantial 70% surge in stroke incidence, resulting in a 43%
increase in stroke-related fatalities, a 102% upturn in stroke
prevalence, and a remarkable 143% rise in Disability Adjusted
Life Years (DALY). Notably, the global burden of stroke is
concentrated, with 86% of stroke-related deaths and 89% of
DALYs situated in low and lower-middle-income countries.

Based on the findings of Patel et al. [5] anticipating the
potential epidemiological and socioeconomic consequences
of strokes lays the groundwork for the early identification
of risk factors, prevention, treatment, and provision of sup-
port services. Also, Johnston et al. [6] study emphasises



the significance of implementing proactive interventions that
strategically target modifiable risk factors, including hyper-
tension, elevated lipid levels, and diabetes. Simultaneously,
addressing risks associated with lifestyle choices such as
smoking, sedentary behaviour, poor dietary habits, and obesity
has demonstrated considerable success in reducing mortality
rates attributed to stroke.

Gianfrancesco et al. [7] propose the integration of XAI
to clarify the outcomes of machine learning algorithms in
predicting strokes. This approach demonstrates substantial
potential for mitigating mortality, morbidity, and the incidence
of strokes. However, Gawsalyan et al. [8] suggest that min-
ing large volumes of electronic medical record (EMR) data
can help identify trends and patterns in patient information.
Analysing these trends and patterns from EMRs assists medi-
cal practitioners in developing models for the early detection,
prevention, and treatment of various illnesses. Scho¨nberger’s
[9] study argues that despite recognizing the importance of AI
and machine learning in healthcare, challenges persist in their
widespread adoption, attributed to their inherent opacity and
limited ability to explain results to human experts. These chal-
lenges are addressed using XAI methodology which creates
a traceable link between model predictions and clinical out-
comes. XAI promotes interpretability and model transparency
while supporting diagnostics and analytics processes.

Overall, the need to understand machine learning models’
predictive results gave birth to XAI. In this research, XAI is
deployed to enhance the understanding and interpretation of
the variables that lead to stroke outcomes prediction, fostering
trust, confidence, and informed decision-making in healthcare.

II. LITERATURE REVIEW

Machine learning has experienced substantial growth and
attained widespread acceptance, particularly in the medical
field, where it plays a critical role in advanced stroke predic-
tion. By leveraging sophisticated algorithms, machine learning
is substantially improving the accuracy and efficiency of
predicting stroke risk. Most research on stroke risk prediction
has focused predominantly on using conventional quantita-
tive and qualitative methods to analyse factors influencing
susceptibility to strokes. In a study by Kim et al. [10] the
authors investigated the use of natural language processing
(NLP) and machine learning algorithms to categorise brain
MRI radiology reports. Their systematic approach involved
random partitioning, tokenization, and bias correction through
cross-validation. The meticulous manual annotation process
used to identify clinical notes related to arterial ischemic stroke
(AIS) significantly enhanced the methodological robustness of
the study. While a key strength of the research lies in the
comprehensive comparison of multiple binary classifiers, with
a focus on the F1 measure as the primary evaluation metric,
the exclusive emphasis on a limited set of classifiers may
potentially limit the generalizability of the findings.

Monteiro et al. [11] explored Decision Trees, Random
Forests, and Multi-layer Perceptron algorithms to train a stroke
prediction model. The accuracy values for these approaches

were 74.31%, 74.53%, and 75.02%, respectively, with the
Multi-layer Perceptron demonstrating a better accuracy. The
study’s reliance on accuracy as a performance metric is
questionable. Concerns emphasise the overlooking of model
interpretability and the clinical significance of accuracy values.
Also, the study lacks a comprehensive examination of dataset
imbalances and does not address the impact of false positives
and false negatives in stroke prediction, which are crucial
considerations for medical applications.

Qiu et al. [12] demonstrated the efficacy of promptly
discerning stroke risk through the utilization of five classifiers
and 12 clinical characteristics. Random Forest and XG-Boost
demonstrated significant predictive capabilities, identifying a
sedentary lifestyle as a primary predictor. However, it is crucial
to acknowledge certain limitations in the study, including the
inability to differentiate between ischemic and haemorrhagic
strokes. Also, findings may have limited generalizability given
they were derived from a region in China.

Lumley et al. [13] developed a 5-year stroke prediction
model using the Cox proportional hazard model, yielding
commendable results. Concerns arose about its reliance on
preselected features and sensitivity to variable selection. Sim-
ilarly, Khosla et al. [14] predicted stroke outcomes using the
Cox model with a novel feature selection algorithm combined
with a Support Vector Machine (SVM), showing promise but
faced challenges with model performance. Dritsas and Trigka
[15] study conducted a comprehensive evaluation of seven
machine learning models, including stacking, random forest,
majority voting, and 3-NN, for stroke prediction. Stacking
and random forest exhibited superior performance, with both
models achieving AUC and Accuracy values of 98% and
97%, respectively, indicating strong discrimination capability.
Nevertheless, the study is subject to limitations concerning op-
timisation, cross-validation, missing data handling, and model
interpretability assessments, as well as the need for further
validation of real clinical data before these models could be
clinically useful.

The literature review sheds light on several studies utilising
machine learning to analyse risk factors contributing to stroke
occurrence. However, a challenge persists due to the multi-
tude of risk factors associated with stroke. To enhance the
prediction performance, it is crucial to carefully select relevant
risk factors, eliminate misleading and overfitting attributes and
reduce data noise. Zihni et al. [16] research is a pronounced
recognition of the indispensability of XAI in the development
of Clinical Decision Support Systems (CDSS). This integration
aims to enhance the effectiveness and efficiency of medical
diagnosis and treatment. The synergistic fusion of XAI and
CDSS not only furnishes clinicians with a heightened under-
standing but also simplifies intricate models, thereby benefiting
both healthcare practitioners and patients.

III. METHODOLOGY

This section elucidates the methodology and approach em-
ployed to attain the research objective. The study unfolded



across three pivotal phases: Data Profiling, Machine Learn-
ing Algorithms, and Explainable Artificial Intelligence, each
furnishing unique perspectives on stroke risk prediction. The
research flow chart as shown in Figure 1 illustrates methodical
steps and systematic progression used in the research.

Fig. 1. Research Process Flow Chart

A. Data Description

The stroke dataset utilised in this study is open-sourced
from Kaggle [17]. The data contains numeric and categorical
variables with 5110 rows and 11 columns. The target variable
of the dataset (i.e., ’stroke’) shows the presence (’1’- 249) or
absence (’0’- 4861) of a stroke. Thus, indicating that 95%
of patients had ’no-stroke’ and 5% were ’stroke’, thereby
creating a data imbalance leading to algorithm bias. To rectify
this imbalance and augment the credibility of results for
predictive models, data pre-processing techniques, such as
the Synthetic Minority Over-sampling Technique (SMOTE),
are implemented in the training set to increase and equalize
under-represented classes. The incorporation of synthetic data
through the SMOTE technique substantially contributes to at-
taining a balanced distribution of classes, thereby augmenting
the model’s capacity to effectively learn from the minority
class and mitigating prediction bias thereby enhancing the
overall predictive capabilities of machine learning models [18].
Table I describes the various attributes used for stroke risk
prediction in the dataset.

B. Results and Discussion of Findings

A comprehensive evaluation has been undertaken to ap-
praise the efficacy of six distinct models, utilizing a diverse
set of performance metrics including accuracy, precision,
recall, F1 score, and Area Under the ROC Curve (AUC-
ROC). Recognizing that reliance solely on accuracy as an
evaluation metric can be misleading, particularly in the context
of imbalanced datasets. The imbalanced data, with ”No-
Stroke” instances outweighing ”Stroke”, poses a challenge,
as high accuracy may not fully represent the model’s true
capabilities. Precision signifies the proportion of accurately
classified stroke cases among all predicted positives, while
recall indicates the proportion of correctly predicted strokes
among all actual positives. As the harmonic mean, the F1-
score furnishes a holistic measure of predictive performance.
AUC-ROC assesses classification accuracy by comparing pre-
dicted probabilities to actual outcomes, measuring the balance
between false positives and true positives, with values ranging
from 0 to 1. This multifaceted approach ensures a balanced
assessment of the model’s effectiveness while acknowledging
and mitigating the challenges of imbalanced data.

Precision =
TP

TP + FP
(1)

F-Measure =
2× (Precision × Recall)

Precision + Recall
(2)

Accuracy =
TN + TP

TN + TP + FN + FP
(3)

Recall =
TP

TP + FN
(4)

AUC ROC =

∫ 1

0

TPR d(FPR) (5)

C. Evaluation of the Predictive Models

Considering the skewed class distribution in the dataset,
utilising accuracy alone as an evaluation metric introduces
a risk for potential bias, which may not precisely reflect
an accurate model performance. Consequently, Recall, F1-
score, Precision, and AUC-ROC were incorporated to buffer
accuracy as key evaluation metrics for the assessment of the
model behaviour. However, before employing SMOTE the
machine learning models exhibited significant class imbalance,
this is reflected by the low recall, F1-scores, and precision
values shown in Table II. These stems directly from the bias
towards the majority class in the heavily skewed dataset.
The integration of synthetic minority class data via SMOTE
significantly contributes to achieving a more balanced class
distribution, thereby enhancing the models’ capacity to ef-
fectively learn from minority ’stroke’ cases and mitigating
prediction bias. Table II illustrates the performance of various
machine learning models before the application of SMOTE.

Furthermore, addressing the class imbalance with SMOTE
improves the overall predictive capabilities of the machine
learning models, as shown by the improved metrics illustrated
in Table III. Post-SMOTE retraining, these models exhibited
substantial improvements across all metrics compared to pre-
SMOTE results. The synthesis of additional stroke cases
through SMOTE is pivotal in overcoming the dominance
of the majority “non-stroke” class, enabling the models to
proficiently identify critical minority positive cases. Thus high-
lighting the significant positive impact of employing balancing
techniques such as SMOTE on the performance of machine
learning models. Through the synthesis of additional minor-
ity class instances, SMOTE augments the models’ capacity
to discern predictive patterns related to stroke risk, thereby
bolstering their proficiency in distinguishing between ’Stroke’
and ’Non-stroke’ outcomes. This advancement enhances the
models’ reliability and applicability within the healthcare
domain. The Random Forest Classifier and XG-Boost ex-
hibited superior performance across multiple metrics such as
Accuracy, AUC-ROC, F1-score, and Precision as illustrated in
Table III. However, Na¨ıve Bayes demonstrates a higher recall
for stroke prediction, with a value of 0.99 compared to 0.96
for Random Forest Classifier and XG-Boost. Despite Naive
Bayes’ leading recall for stroke prediction, Random Forest
Classifier and XG-Boost outperform other models in precision
and F1 scores, suggesting their efficacy in making highly



TABLE I
DESCRIPTION OF ATTRIBUTES

Attribute Description
GENDER Specifies the gender of the patient ({’Male’:0,’Female’:1})
AGE Age of the Patient
HYPERTENSION Indicates the presence or absence of hypertension ({’No’:0,’Yes’:1})
HEART DISEASE Indicates the presence or absence of heart disease ({’No’:0,’Yes’:1})
EVER MARRIED Indicates whether the patients are married or not ({’No’:0,’Yes’:1})
WORK TYPE Indicates the type of employment of the patient ({’Private’:0,’Self-employed’:1,’Govt job’:2,’children’:-

1,’Never worked’:-2})
RESIDENCE TYPE Indicates the type of residence where the patient lives ({’Rural’:0,’Urban’:1})
AVERAGE GLUCOSE LEVEL Indicates the patient’s average blood glucose levels.
BODY MASS INDEX Indicates the patient’s body mass index
SMOKING STATUS Indicates the patient’s smoking status ({’never smoked’:0,’smokes’:1,’formerly smoked’:-1,’Unknown’:-2})
STROKE Presence (1) or Absence (0)

TABLE II
SUMMARY OF MACHINE MODELS PERFORMANCE PRE-SMOTE APPLICATION

Results Random Forest Support Vector
Machine

Logistic
Regression

Decision
Tree

Naı̈ve
Bayes

XG
Boost

Accuracy 94.0% 93.9% 93.9% 91.5% 84.1% 93.7%
AUC-ROC 0.51 0.50 0.50 0.58 0.70 0.54
Recall 0.016 0.0 0.0 0.19 0.55 0.10
F1 Score 0.032 0.0 0.0 0.22 0.29 0.16
Precision 1.0 0.0 0.0 0.25 0.20 0.43

TABLE III
SUMMARY OF MACHINE MODELS PERFORMANCE POST-SMOTE APPLICATION

Results Random Forest Support Vector
Machine

Logistic
Regression

Decision
Tree

Naı̈ve
Bayes

XG
Boost

Accuracy 94.5% 82.7% 80.6% 90.5% 70.9% 94.4%
AUC-ROC 0.95 0.83 0.81 0.91 0.71 0.94
Recall 0.96 0.89 0.84 0.91 0.99 0.96
F1 Score 0.95 0.84 0.81 0.91 0.77 0.95
Precision 0.93 0.79 0.79 0.90 0.63 0.93

accurate positive predictions. Additionally, the Random Forest
Classifier achieves the highest accuracy rate, highlighting its
proficiency in identifying many positive instances correctly.
Despite a slightly lower F1-score and AUC-PR, Decision Tree
still exhibits commendable performance in accurate stroke
predictions.

However, compared to previous studies, a study conducted
by Dritsas and Trigka [15] comprehensively assessed seven
machine learning models, including ensemble models such
as stacking, random forest, majority voting, and k-nearest
neighbours for their effectiveness in predicting strokes. The
Stacking ensemble model, featured carefully selected base
models that exhibited superior performance across all eval-
uation metrics, including AUC, F-measure, precision, recall,
and accuracy, when compared to alternative models such as
random forest, 3-NN, and Decision Tree. Specifically, the
stacking ensemble achieved top-tier results of 99% AUC, 97%
F-measure, precision, recall, and 98% accuracy, indicating
exceptional discrimination between ’Stroke’ and ’Non-stroke’
classes. Although Random Forest also demonstrated strong
performance, it marginally trailed behind the Stacking ensem-
ble across the metrics. The high AUC values, approximately
99%, attained by both Stacking and Random Forest showcase

their robust predictive capabilities in distinguishing stroke
cases. Despite the comparatively lower performance, the 3-
NN and Decision Tree models still showcased utility for
stroke prediction, as evidenced by their reasonably high AUC
and F-measure scores. Nevertheless, the study is subject to
limitations concerning optimization, cross-validation, missing
data handling, and model interpretability assessments.

D. Application of XAI

This section examines the practical implementation of XAI
techniques, specifically LIME and ELI5, to elucidate the
critical factors driving stroke risk prediction. The application
of XAI serves to validate the basis for the model’s projected
appraisal of a patient’s stroke probability. The subsequent
tables delineate the LIME and ELI5 outcomes for all models,
utilising sample patient data for evaluation purposes. Table IV
provides a concise summary of the consistent results obtained
from LIME and ELI5 analyses across all models’ predictors
for stroke risk.

1) Local Interpretable Model-agonistic Explanation
(LIME): A LIME plot elucidates the impact of individual
features on predicting stroke risk, thereby augmenting
comprehension of the model’s decision-making process.
This visual representation utilises a diverging bar chart



TABLE IV
SUMMARY OF KEY CONTRIBUTORS TO STROKE RISK USING XAI

Machine
Learning
Models

LIME Features ELI5 Features

Random
Forrest

Age Age = 39%

Marital Status Smoking Status = 19.2%
Nature of Employment Marital Status = 14.75%

Average Glucose Level = 7.7%
Type of Residence = 5%

Logistic
Regression

Age Age = 22%

Marital Status Smoking Status = 3.5%
Average Glucose Level Average Glucose Level = 2.2%
Nature of Employment

BMI
Decision
Tree

Age Age = 44.4%

Marital Status Smoking Status = 21.3%
Nature of Employment Marital Status = 13.1%

Average Glucose Level= 4.8%
Type of Residence= 4.1%

Naı̈ve
Bayes

Age

Average Glucose Level
XG-Boost Age Age = 21%

Marital Status Nature of Employment = 12.6%
Nature of Employment Heart Disease = 12.3%

Gender = 10.3%
Average Glucose Level = 9.9%

format, with the most influential features for predicting stroke
positioned on the left and those for ’Non-stroke’ on the right.
The length of the bars, denoting higher values, corresponds
to the level of importance ascribed to the features in the
predictive model as shown in Figure 2. Figure 2 illustrates a
visual representation of key factors contributing to stroke risk
using a LIME plot.

Fig. 2. Visual Representation of a LIME Plot

The analysis of the LIME plots across machine learning
models demonstrates that ”Age” is a predominant factor
in determining stroke risk, suggesting a positive correlation
between advancing age and stroke probability. While Age
consistently exhibited significant influence, other attributes like
Glucose level, BMI, Marital status, and Employment type

also contributed to stroke prediction across models, though
with differing extents of impact. Specifically, for Logistic Re-
gression, key predictors were Age, Marital status, Work type,
Glucose level, and BMI, while Random Forest and XGBoost
highlighted age, marital status and work type. The Naive
Bayes model showed age and glucose level as most dominant,
though with stronger predictive power for non-stroke cases.
Decision Tree again emphasized age, marriage, and work type.
In addition to illuminating the most influential features, LIME
plots also revealed a nuanced interplay between diverse patient
risk factors highlighting the complexity inherent in stroke
risk prediction. Some attributes like ’Gender’, ’Hypertension’,
’Heart Disease’, and ’Smoking Status’ seemingly showed
reduced predictability for stroke likelihood across models.

2) Explain Like I’m Five (ELI5): The ELI5 technique is
strategically utilised to augment the accessibility and com-
prehension of weighted factors produced by machine learning
algorithms for stroke risk prediction. The ELI5 analysis aims
to reflect the critical importance of certain features in the
hierarchical structure using the permutation importance of
relevant weighted factors. However, among the examined al-
gorithms; Logistic Regression, Decision Tree, Random Forest,
and XGBoost - there is a distinct emphasis on the significance
of specific integrated factors as shown in Figure 3. This reflects
the pivotal role of these elements in ensuring accurate stroke
risk prediction. Figure 3 illustrates a visual representation of
key features and their weighted permutation importance to
stroke risk using an ELI5 plot.

Fig. 3. Visual Representation of an ELI5 Plot

The ELI5 and LIME analysis of feature importance across
the Random Forest, Decision Tree, XGBoost, and Logistic
Regression models consistently identify Age as the most
influential factor for stroke prediction, with importance scores
ranging from 22% to 44.4% across models. Other top vari-
ables include ’Smoking status’, ’Ever married status’, ’Aver-
age Glucose level’, ’Work type’, ’Heart Disease’, ’Gender’,
and ’Hypertension’ though their significance varies between
models. Notably, ’Heart disease and Hypertension’ have low
importance in Random Forest and Decision Tree models.
The consistent emergence of Age as the dominant predictor
aligns with the insight that stroke risk rises with increasing
age. While specific variables differ in importance between
models, ELI5 and LIME collectively highlight Age, Smoking,
Marital Status, Glucose, Work Type, Heart Disease, Gender,



and Hypertension as key factors influencing stroke likelihood
predictions. The prominence of these features emphasizes their
significance and roles within the machine learning models for
assessing a patient’s cerebrovascular event risk. These tech-
niques not only identified but quantified the proportional con-
tributions of specific features, providing valuable insights into
the key factors that impact the likelihood of both stroke and
non-stroke occurrences. Understanding these insights enhances
the model’s decision-making process, empowering informed
decision-making and precise interventions by medical profes-
sionals in the realm of stroke prevention and management.

IV. CONCLUSION AND RECOMMENDATION

Predicting stroke risk remains a critical health concern for
healthcare professionals given the significant implications for
mortality and morbidity. This work enhances the timely iden-
tification of at-risk individuals, enabling prompt interventions
before exacerbation. The study acknowledges the potential of
machine learning algorithms and XAI techniques like LIME
and ELI5 for predicting stroke risk by uncovering pivotal
influential features for each model. A valuable recommen-
dation based on the findings would be integrating patient
CT scan image data. Deep learning has shown promise in
capturing intricate patterns for stroke risk prediction. Strategic
integration of brain CT scan images into EMR could:

• Harness the delicate structural and spatial information
inherent in these images by incorporating this rich dataset
into deep learning models.

• Enable comprehensive and multi-dimensional under-
standing of stroke risk, as these models may unveil subtle,
yet substantial correlations between image patterns and
the probability of stroke occurrence.

A notable constraint within this study is rooted in limitations
associated with the dataset. Although the dataset utilised for
analysis is diverse, it lacks the depth and intricacy typically
inherent in comprehensive hospital records. The augmentation
of more expansive records, particularly incorporating patient
imaging results, holds the potential to significantly enhance the
efficacy of analytical models aimed at evaluating stroke risk.
Another constraint of the study is that the data is specific to
a geographic region and therefore the observed outcome may
not be accurate in another geographic region. Therefore, data
from other regions would be useful in expanding the scope of
the study; however, this would be time and labour-intensive.
Further challenges of the study are about privacy and ethical
issues in accessing medical records.
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