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Abstract—This study delves into the realm of Underwater 

Wireless Sensor Networks (UWSN) and explores contemporary 

methods of ocean exploration. It provides an extensive 

background on UWSN, detailing existing approaches to 

underwater localization. The study then introduces a novel 

contribution to this domain by leveraging advanced satellite 

technology. Employing a pre-trained deep learning model from 

ArcGIS, static ships within the study area are identified using 

C-band Synthetic Aperture Radar (SAR) satellite imagery. The 

identified ship locations serve as reference nodes for underwater 

localization. Utilizing range-based multilateration in the 

UnetStack environment, the study achieves precise localization 

of underwater nodes. The proposed approach demonstrates an 

error of less than 1% when compared to the actual positions of 

the underwater nodes, showcasing its effectiveness in enhancing 

the field of underwater exploration and localization. 

Keywords—Underwater Localization, SAR data, Dynamic 

underwater Localization. 

I. INTRODUCTION 

Despite water covering 71% of Earth's surface, only 5% of 
the ocean has been explored. Traditional exploration involves 
Remotely Operated Vehicles (ROVs) and Automated 
Underwater Vehicles (AUVs), but these technologies face 
limitations in precise positioning due to challenging 
underwater conditions, speed, and tether restrictions [1]. 
ROVs, in particular, are constrained in their movement and 
range, which limits their depth and increases the risk of cable 
entanglement [1]. Subsea nodes are essential in overcoming 
these challenges by serving as communication hubs and data 
collection points in underwater environments. They facilitate 
real-time data transmission, enable accurate positioning 
through acoustic signals, and expand the range and efficiency 
of underwater exploration and monitoring efforts. Subsea 
nodes play a vital role in enhancing our understanding of the 
ocean and its ecosystems, as well as supporting various 
industries such as oil and gas, marine research, and 
environmental monitoring. The localization of these 
underwater nodes is essential for various underwater 
applications. Underwater localization is the process by which 
the location of a node is obtained with respect to a known 
reference point [2].  

Underwater localization currently relies on slow propagating 
acoustic signals as other conventional signals such as radio 
and optical are severely attenuated underwater [2]. Acoustic 
communication, despite propagation delays, is preferred for 

medium to long-range underwater transmission [3, 4]. 
Underwater acoustic localization faces many challenges 
which includes complex propagation of acoustic signals 
influenced by factors such as temperature, pressure, salinity, 
sensor drifting, and multipath effects [5] leading to 
inaccuracies in range measurements. These inaccurate range 
measurements produce inaccurate localization results. Despite 
diverse attempts to underwater localization, precise 
localization of a network of mobile nodes in specific area 
remains difficult. To set up a 3D network of mobile nodes in 
specific area, there is a need for fixes reference node. 
Synthetic Aperture Radar (SAR) data is widely used for ocean 
monitoring and target detection. Based on statistics from the 
United Nations Conference on Trade and Development 
(UNCTAD), there are roughly 100,000 oceangoing ships (100 
gross tons and above) worldwide, spread across an ocean area 
of approximately 360 million km² [6]. This equates to an 
average density of approximately one ship per 3600 km². 
Analysis of SAR data over a period of time reveals that some 
of these ships remain stationary in North Sea. The location of 
these stationary ships can be compared to the location of the 
area of interest and the closes ones can be used as reference 
nodes for an active dynamic network of subsea nodes. The 
contribution of this paper is concluded as follows. 

• The utilization of pretrained ArcGIS deep learning model 
to detect static ships using  SAR satellite imagery around 
the local area of interest ( in this case Scottish harbour) . 
The closes static items ( in this case ships)  to our area of 
interest will serve as reference nodes for localization of a 
network of dynamic nodes.  

• The simulation in UnetStack uses the location of these 
reference node for localization of subsea floating nodes 
in that area. conventional acoustic range based estimation 
and multilateration will be employed to precisely localize 
the underwater nodes. 

The remainder of this article is organized into four sections. 
Section II discusses advances in subsea localization 
techniques, while section III introduces ship detection using 
SAR data. In section IV, the proposed approach to enhance 
subsea localization accuracy is presented along with results 
while Section V concludes the study.  

II. SUBSEA LOCALIZATION 

Underwater localization remains a challenging frontier, 

necessitating continual advancements to meet the demands of 



exploration, surveillance, and environmental monitoring in 

the underwater environments. This section provides a 

comprehensive overview of recent advancements from 

Centralized Localization techniques to distributed techniques, 

A. Centralized Localization 

This refers to a localization approach where the processing 

and decision-making tasks are performed at a central node or 

a central processing unit [7]. In centralized localization, 

techniques are further classified into estimation-based and 

prediction-based techniques. 

i. Estimation-Based Centralized Localization 

This localization focuses on the precise determination of 

object positions through the aggregation and analysis of 

sensor-derived data. Researchers have proposed various 

centralized estimation-based methods for underwater target 

localization. These include wideband Direction of Arrival 

(DoA) estimation in [8], sensor fusion with Kalman filtering 

in [9], and optimized anchor node selection for Unmanned 

Underwater Vehicle (UUV) localization in [10]. These 

techniques aim to enhance accuracy and reduce energy 

consumption utilizing centralized estimation techniques. 

Additionally, other approaches such as underwater 

localization in Visible Light Communication (VLC) systems 

in [11] have also been proposed. Despite their effectiveness, 

centralized estimation-based localization faces challenges 

like scalability issues and communication overhead, which 

may hinder efficiency in large-scale networks. 

 

ii. Prediction-Based Centralized Localization 

Predictive-based centralized localization predict the positions 

of nodes based on location information or models [12]. The 

node entity uses predictive algorithms to estimate node 

positions, which can be affected by inaccuracies in the current 

model or variations in environmental conditions. In [12]the 

authors propose collaborative localization for underwater 

drifters, optimizing swarm configurations to minimize 

position estimation errors. The study achieved considerable 

performance gains; however, prediction-based centralized 

localization faces similar issues with estimation-based 

centralized localization. 

B. Distributed Localization 

Distributed localization refers to a localization technique 

where each node independently performs calculations 

without the need to send information to a central node for 

processing [12]. Distributed Localization is also divided into 

estimation-based and prediction-based. 

i. Estimation-Based Distributed Localization 

Estimation-based distributed localization refers to a 

localization approach where each node in a network 

independently estimates its own position based on available 

information from neighboring nodes or beacon nodes. In [13], 

estimation-based technique calculates the target node 

coordinates using geometrical relationship without needing 

the exact reference node positions, thus reducing 

computational complexity arguably at the expense of 

accuracy. Researchers in [14] introduces a virtual node-

assisted algorithm which improves accuracy but susceptible 

to environmental conditions and range estimation errors. [15] 

focuses on range-based estimation technique, utilizing 

improved algorithms to enhance accuracy, error variance, and 

coverage. In [2], a hybrid optimization technique considers 

anchor node hops, Time of Arrival (ToA) and range 

estimation errors to aid precise localization. Additionally, 

[16] addresses challenges in underwater node localization by 

improving node mobility models and introducing a 

frequency-based anchor node prediction algorithm. [17] 

proposes a hybrid algorithm based on Doppler Shift and 

Angle of Arrival (AoA) for underwater mobile nodes, 

estimating positions and velocities of mobile nodes, while 

[18] presents a localization scheme using dive and rise mobile 

beacons, achieving high coverage at the expense of energy 

consumption. 

ii. Prediction-Based Distributed Localization 

This is a localization approach where nodes in a network 

predict their future positions based on mobility patterns or 

models. In this method, nodes collaborate with each other in 

a decentralized manner to estimate their locations using 

predicted future positions and information exchanged among 

neighboring nodes. The authors in  [19] leveraged a node 

motion model based on tidal mobility, and predicts and 

updates node positions, enabling precise localization in large 

scale networks with mobility. 

In conclusion, estimation-based distributed localization (or 

hybrid which combines prediction and estimation) offers 

scalability, robustness against failures, and energy efficiency 

by allowing nodes to autonomously estimate their locations 

without centralized coordination, making it a popular choice 

for large-scale deployments. Despite massive effort, accurate 

localization of mobile and static nodes remains a challenging 

task that requires advancement in localization technique. 

C. Acoustic Range Estimation 

Acoustic range estimation refers to the use of acoustic energy 
to estimate the distance between nodes by sending an acoustic 
signal from one node to the other [20], then measuring the 
time of travel of the signal. Despite propagation delays, 
acoustic signal is preferred for medium to long-range 
underwater transmission [3, 4]. This because other signals 
such as optical and radio frequency signal are highly 
attenuated underwater [2]. Conventional ranged-based 
localization techniques are considered superior to range-free 
localization techniques due to their ability to provide more 
precise and reliable estimation of a node’s location[21] In 
contrast, range-free localization depends on node’s proximity, 
and provides only a probable area where a node could be 
located. [22].   

To estimate the range between reference node and target node, 
this study designated three ships as reference nodes above the 
water surface in Unetstack [22] simulation environment, and 
a sensor was placed beneath the fourth ship at a depth of 20m 
to aid depth estimation for target node as shown in Fig. 5. 
Unetstack two-way acoustic ranging between reference and 
target nodes was performed to determine the range to the 
target node according to (1). The target node is the node of 
interest whose position we need to determine.: 

   � = 0.5(�� ∗ 
�)   (1) 

Where � = range, 
� = two-way time of flight of the acoustic 

signal, ��= velocity of sound. 



Depending on the environment, the velocity of sound 
according to (2) is evaluated as 1500 m/s approximately. 

 

Where c is the speed of sound in meters per second, t is the 
temperature in degree Celsius, s is the salinity in parts per 
thousand, d is the depth in meters. 

D. Localization of Static Underwater Node 

Having established the range of the target node, range based 
multilateration was conducted to calculate target node 
coordinates according to (3). 

  �(�— ��)� � (�— ��)� � (�— ��)� = ��      (3) 

Where �, �, and � are the cartesian coordinates of the target 

node, �� , �� , ��  are the cartesian coordinates of the ��� 
reference node, and ��  is the measured range between the 
target node and the reference node. Equation (3) enables the 
accurate determination of the underwater target node's 
position by solving the system of equations derived from the 
multilateration process. 

i. Multilateration: 

This is an extension of the trilateration technique, it employs 
multiple reference nodes to estimate the position of a target 
node. Trilateration estimates the position of a target node by 
measuring the distances from three reference nodes [23]. This 
involves intersecting circles whose center is each reference 
node and have equal radii. The point of intersection of these 
three circles provides an estimate of the probable location of 
the node being localized. Multilateration is preferred for its 
high precision in estimating the location of an object in a 
three-dimensional space. 

E. Localization of MobileUnderwater Node 

For mobile localization, the target node was set in motion at 
various speeds, at an angle �  which can be estimated by 
Pythagoras theorem using the range and horizontal distance 
information, assuming a constant depth of target node. 

The target node is localized at intervals, and the horizontal 

distance traveled by the target node can be estimated using 

the relationship between two points in a straight line as shown 

in (4). 

 

                � = �(��— ��)� � (��— ��)�                         (4) 

 
Where (��, ��), and (��, ��) are respectively the previous and 
current coordinates of target node E, and �  is the distance 
travelled. Equation (4) assumes a constant depth for the target 
node. 

This distance travelled and time can be used in estimating the 
velocity ( � ) of the node, using the relationship between 
distance, change in time (∆ ), and velocity. 

The �  and �  components of the velocity ( !"  and 

!# respectively) can be estimated from the overall velocity of 

the node, as shown in (5) and (6).  

!" = �%&'�                             (5) 

!# = �'�(�                             (6) 

The next location of the target node (E) can then be estimated 

using (7) and (8) [24]: 

 

)* =  )+ � ∆  x !"(-)        (7) 

.* =  .+ � ∆  x !#(-)       (8) 

Where )*  and .*  are the current position of node E along � 
and � axis respectively. )+ and .+ are the previous position of 

node E along x and y axis respectively,   is the localization 
time. 

III. SHIP DETECTION USING SAR DATA 

In this study, the Sentinel-1 SAR scenes over the Scottish 
harbour (Fig. 1) were used in single-polarimetric (VV), 
Ground Range Detected (GRD) product, interferometric wide 
(IW) swath imaging mode from October 1 to 22, 2023 from 
the Copernicus Data Hub. The image was processed with 
ArcGIS Pro software [25]  with a pre-trained deep learning 
model to detect static ships over a three-week period. The deep 
learning model successfully detected multiple ships, and four 
ships with a confidence value exceeding 80% were selected 
and their coordinates recorded. The confidence value indicates 
the degree of certainty of detection by the deep learning 
model. The area of interest is highlighted by the yellow 
polygon in Fig. 1. The red and yellow polygons indicate the 
available satellite image for the chosen area. 

A. Ship Detection Performance 

The deep learning model successfully identifies ships 
within the target region, delineating them with rectangular 
bounding boxes and assigning confidence values indicative of 
detection accuracy. Three ships, each exhibiting confidence 
values of 84% and above, were selected as reference nodes 
due to their consistent positions over a one-week period as 
shown in Fig 2.  

Continuing the study, the ship detection was systematically 
repeated for the second and third weeks, each iteration 
revealing consistent results as shown in Fig 3 and 4. The 
analysis demonstrates that the ships within the targeted harbor 
area remained stationary over the observed period, reinforcing 
their suitability as reference nodes. 

 

Fig. 1: Designated Study Area in Scotland. 

 

Fig. 2: Detected Ships in the first week of study 



 

Fig. 3: Detected Ships in the Second week of study 

 
Fig. 4: Detected Ships in the Third week of study 

This persistence in location, coupled with the robust 
confidence values obtained from the deep learning model, 
further solidifies the selection of these vessels as reliable 
reference nodes for the specified three-week duration. This 
detection showcases the practical application of satellite 
imagery and ArcGIS Pro in monitoring maritime dynamics 
and establishing dependable reference points for navigational 
and research purposes. 

B. Reference Node Selection 

Leveraging the identified stable ships as reference nodes, 

the coordinates of ships numbered 1, 2, and 9 as shown in Fig 

2-4 were chosen to establish the three surface reference 

nodes. These surface reference nodes are equipped to 

communicate with GPS signals for self-localization as GPS 

signal is available on the surface of the water. The criteria and 

factors including stability, geographic location, cost, and 

signal limitations, guided the reference node selection 

process. 

 

In addition to these three nodes, a fourth reference node was 

strategically placed at a depth of 20m directly beneath ship 

number 10, as illustrated in Fig. 2-4. The deliberate 

arrangement of these reference nodes ensures they are non-

coplanar, enhancing the accuracy of the localization system. 

With these reference nodes in place, the target node to be 

localized is positioned within the geographical coverage of 

the four reference nodes, facilitating precise localization 

through the integration of both surface and underwater 

reference points.  

 

To facilitate the identification of reference nodes, ships 1, 2, 

9, and 10 are assigned labels A, B, C, and D, respectively. 

Node A is designated as the origin (0,0,0). The target node, 

denoted as E, is positioned 400 meters east and 700 meters 

south of the origin at a depth of 15 meters. This labeling and 

positioning system simplifies the coordination and 

calculation processes, streamlining the localization efforts 

through a clear and structured reference point system. 

IV. PROPOSED APPROACH 

Fig. 5 shows a 3D representation of the nodes placement in 
the study area. While reference node A, B, C are on the surface 
of the water, node D is located 20m below the water surface, 
and node E is located at a depth of 15m at the stated 
coordinates in fig. 5. 

To localize the target node E, our study implemented the 
concept of multilateration, a technique based on the 
intersecting spheres principle. In this approach, the range 
between the target node E and each of the four reference nodes 
(A, B, C, and D) was measured utilizing the two-way ranging 
of acoustic signal in Unetstack simulation environment. Given 
that the coordinates of each reference node are known, the 
position of the target node was estimated using the calculated 
ranges, by employing (3). In localizing the target node E, the 
GPS coordinates of the reference nodes (A, B, C, and D) were 
transformed into local Cartesian coordinates, as outlined in 
Table 1. The measured range from each of the reference nodes 
to the target node was estimated using the two-way acoustic 
ranging technique, with the results presented in Table 1 as 
well. 

TABLE 1: RANGE BETWEEN TARGET NODE AND REFERENCE 

NODES 

Node ) (m) . (m) / (m) Range to E 

(m) 

A 0 0 0 806 

B 131 -1708 0 1043 

C 810 -1244 0 681 

D 688 -302 -20* 491 

E (actual) 400 -700 -15* 0 
(*The negative value in Z column indicates depth below sea level, and while  ) and . Column 

shows local coordinates with respect to node A.) 

The estimated location of the target node E using the above 

(3) was determined to be: )  = 399.99m, .  = 700m, /  = -

14.97m. 

Notably, this solution demonstrated an estimation error of 

less than 1%, underscoring the high accuracy achieved in the 

localization process. These findings affirm the reliability of 

the approach, showcasing its effectiveness in accurately 

determining the underwater position of the target node. 

 

 
Fig. 5: Nodes Placement in the Study Area 

A (0, 0, 0) 

B (131, -1708, 0) 

C (810, -1244, 

0) 

E (400, -700, -15) 

D (688, -302, -20) 



A. Mobile Target Localization 

Assuming a scenario where the target node is allowed to 

freely drifts underwater only in the � and � direction and is 

localized at intervals of time (t), the study set the target node 

E in motion at a constant velocity of 0.1m/s at -60.25° 

towards reference node A. The target node was localized 

every 60 seconds, and the result is shown in fig. 6. 

It should be noted that multiple studies  [26] [27] have placed 

the mean velocity of normal underwater current between 0.02 

to 0.73 m/s, and this informed the choice of velocity for the 

simulations in this study. 

 

Fig. 6 shows the predicted and the actual path of target node 

E moving at a speed of 0.11/', and the prediction is nearly 

identical to the actual path with average location error of 

0.3m. Localization error is defined as the Euclidean distance 

between the actual and predicted location  [28] of the node. 

Fig. 7 shows a plot of the localization error at each instance 

of localization. At this velocity of 0.1 m/s, this method 

achieved nearly accurate localization with an error of less 

than 0.6 meters. Fig. 8 shows the localization error when the 

node speed is 0.2m/s. The localization error increased 

significantly at speed of 0.2m/s as shown in fig. 8, with errors 

reaching 200m. The speed of the node was further increased 

to 0.5m/s and the result is shown in fig 9.  

 
Fig. 6: Predicted vs Actual Path of Target Node E 

 
Fig. 7: Localization error per unit time at velocity of 0.1 m/s 

 
Fig. 8: Localization error per unit time at velocity of 0.2 m/s 

 
Fig. 9: Localization error per unit time at velocity of 0.5 m/s 

The result showed a significant increase in error, with peak 

error reaching 145m. 

This study has demonstrated promising results in the 

localization of underwater nodes, achieving nearly accurate 

predictions at node speed of 0.1m/s. However, it is crucial to 

acknowledge the challenges encountered when operating at 

higher speeds, where the algorithm faced an increased level 

of location error. While our current findings highlight the 

effectiveness of the algorithm within a specific speed range, 

future research endeavors could delve into the optimization 

and adaptation of the algorithm to address challenges posed 

by higher speeds. 

V. CONCLUSION 

The integration of satellite imagery analysis, ArcGIS deep 

learning model, and acoustic multilateration presents a 

comprehensive and effective approach to underwater 

localization. Leveraging stable ships as reference nodes, we 

successfully demonstrated the accuracy of this methodology 

in pinpointing the location of a target node in an underwater 

environment. The careful selection of reference nodes, along 

with the systematic application of multilateration principles, 

allowed for precise localization of the target node in both 

stationary and mobile state. 
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