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Abstract: In our preliminary study, the reflectance signatures obtained from hyperspectral imaging
(HSI) of normal and abnormal corneal epithelium tissues of porcine show similar morphology with
subtle differences. Here we present image enhancement algorithms that can be used to improve
the interpretability of data into clinically relevant information to facilitate diagnostics. A total of
25 corneal epithelium images without the application of eye staining were used. Three image feature
extraction approaches were applied for image classification: (i) image feature classification from
histogram using a support vector machine with a Gaussian radial basis function (SVM-GRBF);
(ii) physical image feature classification using deep-learning Convolutional Neural Networks (CNNs)
only; and (iii) the combined classification of CNNs and SVM-Linear. The performance results indicate
that our chosen image features from the histogram and length-scale parameter were able to classify
with up to 100% accuracy; particularly, at CNNs and CNNs-SVM, by employing 80% of the data
sample for training and 20% for testing. Thus, in the assessment of corneal epithelium injuries, HSI
has high potential as a method that could surpass current technologies regarding speed, objectivity,
and reliability.

Keywords: corneal epithelium; hyperspectral imaging; support vector machine; convolutional neural
networks; image enhancement

1. Introduction

Visual impairment and blindness can occur as a result of various circumstances, which can broadly
be categorised into infectious and non-infectious causes [1]. It is estimated that about 285 million people
worldwide are either visually impaired or blind, and approximately 80% of these are thought to be due
to preventable causes [1]. Blindness inflicted by diseases of the cornea, which is the outermost layer of
the eye, plays a significant role in these statistics, second only to cataracts in overall importance [2].

The diagnosis of corneal diseases can pose a challenge, even amongst eye specialists. The advance
of new assistive tools to aid both the specialist and non-specialist is an essential step towards reducing
the problem of blindness worldwide. Hyperspectral imaging is a relatively new yet advancing
technology that combines imaging with spectroscopy, which has made a gradual change in biomedical
applications. Initially developed for use in Earth remote sensing [3], the technology underwent major
advances to conform to different challenges across various industries, including space exploration [4],
food safety and quality control [5–9], archaeology for conservation and authentication [10], and more
recently, in the area of healthcare in clinical diagnostics and surgical guidance.
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An excellent example of the viability of this technology in biomedicine is HELICoiD, a European
collaborative project, co-funded by the European Union, established to support hyperspectral imaging
technology in real time cancer detection of malignant primary brain tumours during surgery [11].
HSI has also been adopted at a research level in quantifying degrees of skin burns [12], with the added
potential of providing clinicians with useful information in monitoring the healing process during
treatment. Surgically, HSI has been trialled to assist visualisation during surgery by enhancing tissue
visibility [13,14], as well as the local detection of pathological tissues, without the need for invasive
tissue biopsies [14,15].

2. Related Works

When designing a device for the assessment of the human eye, it is advantageous for it to be
non-invasive, user-friendly, and contactless. These features often influence its role in clinical use.
Below are brief descriptions of assistive diagnostic tools commonly employed in a clinical setting for
the examination of the cornea.

Ophthalmologists widely use a slit lamp that combines microscopy with different illumination
techniques for a detailed examination of the eye. Gulstrand is credited with this invention in 1911 [16],
although the device has subsequently undergone numerous advances and modifications over the
decades. The modern day slit lamp enables the ophthalmologist to examine the living eye and
is equipped with various adjustable controls for alteration of magnification, level and angle of
illumination, beam width and height with multiple light filters. Despite this versatility, its limitations
lie in its inability to provide objective measures in the presence of pathology.

Aspects of eye examination (adjuncts to slit lamp examination) such as the ultrasound
pachymetry [17] for measurements of corneal thickness, gonioscopy [18] for evaluation of drainage
angles, and tonometry [19] for intraocular measurements, often require prolonged contact with the
patient’s eye and can be poorly tolerated in the paediatric group and among some adults.

As a result, there is a push in the bioengineering [20] sector to develop technology that could avoid
physical contact and improve patient tolerability. Some examples include specular microscopy [21] for
corneal thickness measurements and endothelial layer analysis, Schiempflug imaging [22] technology
combined with the pentacam [23] allows the cross-section of the anterior segment to be visualised and
measured as well of corneal curvature to be mapped topographically for refractive surgical planning.

In recent years, Optical Coherence Tomography (OCT) [24] has been employed for routine clinical
use due to its ability to produce accurate B-scan images of the posterior and more recently the anterior
segment of the eye. Infrared light of wavelength 800 nm and 1310 nm [25] is used to allow precise and
detailed cross-sectional inspection of ocular tissues in the anterior and posterior segment, respectively.

The role of hyperspectral imaging on the eye has been explored in the literature, although many
approaches currently remain in the research domain. Reynaud et al. [26] studied the spectral response
on the rabbit cornea using hyperspectral imaging interfaced with the confocal microscope, and were
able to isolate individual cells and structures based on their spectral signatures. They found that
corneal stroma and the endothelial layer generated a specific spectral response in the range 440 nm to
730 nm [26]. No other hyperspectral imaging related work on the porcine cornea has been published to
our knowledge. Attempts to employ hyperspectral imaging technology for assessment of the posterior
segment of the eye (retina) has seen more progress, particularly in measuring relative changes in
oxygen saturation of the retina [27], as well as abnormalities in oxygen saturation in the optic nerve
head of early glaucoma sufferers [28]. Li et al. [29] performed a study on 40 healthy Wistar rats, divided
into normal control, diabetic, and erythropoietin (EPO) groups. Upon examination of the retinae,
their team found the inner and outer nuclear and inner plexiform layers to be distinguishable using
various spectral bands.

The study of corneal pathologies, attempts to quantify and assess the cornea objectively, and are
seeing encouraging progress through different technologies such as OCT, which can produce detailed
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cross-sectional tissue information, but not in front surface view. Fukuda and Sasaki [30] attempted to
quantify corneal epithelium injury by measuring electrical corneal resistance with some success.

In summary, various solutions have been offered in the pursuit of an ideal and robust tool
for corneal assessments, with some related examples discussed briefly above. Here we provide an
alternative way by combining hyperspectral imaging with image processing analysis. The objectives
of this study are to (1) investigate the ability of a hyperspectral device to extract data from corneal
epithelium tissues by analysing spectral signatures; (2) predict the potential for clinical diagnostics,
by simplifying the clinician's methods of examination, in detecting corneal epithelium injuries;
(3) visualise and analyse the spatial and spectral features; and (4) classify injured and healthy corneal
epithelium using an SVM with GRBF kernel and CNNs.

The significant contribution in this paper is the fusion of hyperspectral imaging with image
process analysis (Figure 1) as a way to appraise and visualise the cornea/injury in detail, particularly
the corneal epithelium without eye fluorescein stain.

Figure 1. Corneal epithelium appraisal using hyperspectral imaging and image processing analysis.

3. Materials and Methods

3.1. Experimental Set-Up

Hyperspectral image acquisition is performed through the HSI system as illustrated in Figure 2.
The line scanning also known as the pushbroom [31] method was used for image collection in the
series of experiments, detailed in Table 1.

Figure 2. Column 1: Experimental setup. (1) CCD Camera; (2) Spectrograph; (3) Lens; (4) Translation
stage; (5) Left and right halogen lamp; (6) Frame; (7) Spectralon/white panel; (8) Sample/porcine eye,
Column 2: (9) Staining process, Column 3: (10) Blue lamp illumination source for stained eye.
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Table 1. List of experimental works.

Lab Quantity Camera Type Image Scanned Remarks

Lab 1 Supplier A
5 Pigs Eyes

VIS-NIR
(400 to 1000 nm) 6 Scanned (3 injured 3 healthy)

Pilot test [34] Image
Dimension after binning:
1200 to 1300 × 804 × 604
302 spectral bands.

Lab 2 Supplier A
30 Pigs Eyes

VIS-NIR
(400 to 1000 nm)

17 Scanned (from 8 Eyes) (5
injured + 7 Stained 1 Healthy + 1
Stained 3 No Intact Epithelium)
22 Eyes Rejected

Apply stains Image
Dimension after binning:
500 to 700 × 336 × 256
256 spectral bands

Lab 3 Supplier B
12 Pigs Eyes

VIS-NIR
(400 to 1000 nm)

26 Scanned (8 injured + 10
stained 4 healthy + 4 stained)

Apply stains Image
Dimension after binning:
250 to 400 × 336 × 256
256 spectral bands

The porcine eye is anatomically and biochemically similar to the human eye and is a common
alternative used in wet lab-based research and surgical training [32,33]. Corneal abrasion resulting in
partial loss of the outermost corneal layer (called the epithelium) was chosen as the clinical problem
to be studied. The loss of the epithelial layer is frequently undetected by assessors, and is often only
visible when the corneal surface has been treated with diluted 1% fluorescein drops and viewed
under cobalt blue lighting. This is possible because the abraded areas of the cornea retain the dye and
fluoresce brightly in cobalt blue light.

During this work, all ethical obligations were complied with, and the lab work sessions were
carried out according to the rules set out by the governing organisations. All porcine eyes were
resourced as by-products of the food industry. The details about sample preparation used have been
previously reported [34].

3.1.1. Hyperspectral Cornea Image Collections

A total of 25 hyperspectral images are shown in Figure 3 and consist of the following: 14 with
corneal epithelium injury (abnormal), and 11 with completely intact corneal epithelium (normal).
All eyes were included for further analysis in this work.

Figure 3. Twenty five hyperspectral images sliced at band-100. All images were normalised and resized
to 100 by 100 pixels. (a) Rows 1 and 2 are images of healthy corneas; (b) Rows 3 and 4 are images of
corneas with induced epithelial injuries; (c) Row 5 are ground truth images.
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All 25 eyes were scanned without any fluorescein staining. Of the 14 eyes with abnormal
epithelium, four eyes were chosen at random for application of fluorescein stain and repeated scanning.
Images from the stained eyes formed the control group (ground truth images).

3.2. Image Enhancement

Image enhancement is a process that allows for the transformation of an original image when
contrast is insufficient, or when the image has a high level of noise to be converted to an image that
can be utilised for further analysis [35]. The methods used for enhancement vary according to the
chosen imaging modality. For example, the methods used to enhance MRI images are unlikely to
represent the best approach to enhance hyperspectral images taken in the visible near infrared band of
the electromagnetic spectrum [36].

There is no universal enhancement algorithm that is effective for all types of images. The ultimate
goal of enhancement algorithms is to increase the contrast between structures of interest and their
surroundings, as well as to reduce noise. In addition, enhancement also improves and refines image
segmentation, especially in images where the distinction between normal and abnormal tissue is
unclear, for human interpretation as well as automatic systems [35,37]. The following section describes
the HSI image pre-processing and enhancement applied in this paper.

3.2.1. HSI Data Normalisation

An essential step in HSI imaging, before image acquisition, is a flat-field correction for data
normalisation. A white balance and dark current measurements [38] were used to acquire relative
reflectance from the sample. The dark current of the sensor was recorded with the sensor being protected
from incoming light. This step is required to measure the actual dynamic range of the sensor. Together with
the white balance step, both measures were also used to identify corrupted or defected pixels in the
pushbroom sensor of the hyperspectral camera. The white balance material was calibrated at regular
intervals by comparing its reflectance properties with those of a spectralon probe to compensate ageing or
usage degradation of white balance quality. Data from black current and white balance measurements
were used to correct the measured material image. The main purpose of this correction is to eliminate
artefacts and noise effects on the sample [39], computed with the following equation [31]:

Rs(λ) =
Is(λ)− Id(λ)
Ir(λ)− Id(λ)

× 100% (1)

where Rs(λ) is the relative reflectance of the sample object, Is(λ) is the sample or measured image, Id(λ)
is the dark image acquired when the light is absent by closing the lens with cap, Ir(λ) is the image
obtained from the spectralon white bar, and λ is the wavelength.

3.2.2. Brightness and Contrast Adjustment

Most of the captured images appeared relatively dark due to exposure attained during image
acquisition by the hyperspectral imaging system. This low-contrast dark image requires brightness
and contrast adjustment for better visibility of the image details. Gamma correction or power-law
transformation, s = rγ is essential for contrast manipulation when the image is likely to be too dark [36].
The transformation can be obtained simply by varying the value of γ, according to the power-law
curves, by setting γ > 1 to make an image darker, and vice versa.

3.2.3. Morphological Transformation

The mathematical morphological (MM) technique is widely used in shape-based image processing
for region segmentation, threshold processing, noise elimination, and hole filling [35]. MM is
particularly useful in describing shapes using set theory by a structuring element (SE). Typically, SE is
chosen with the same size and shape as the objects to be processed in the input image. For example,
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to find lines in an image, create a linear SE. There are two categories of SE in gray-scale morphology:
flat and non-flat [36]. Flat is 2-dimensional and non-flat is 3-dimensional. SE consists of a matrix of 0s
and 1s, typically much smaller than the image being processed. The origin, which is a centre of the SE,
will identify the pixel of interest and define the neighbourhood used in the processing of each pixel.

These SEs are also considered in the primitive operations, namely erosion and dilation processing.
The following explanation will focus on the erosion operator as it is used in this research. Erosion was
applied to two sets of matrices: gray-level image matrix A(x,y), and the structural element matrix
B(u,v). Erosion of A by B is the set of all points z in B, translated by z, is comprised of A, written
AθB = {z|Bz ⊆ A} [36].

A spherical or ball shape non-flat SE was used to probe the image, which was constructed in 3D
structure and consisted of the radius in the x-y plane and added z value to define the third dimension.
Spherical SE was used with radial decomposition [40] to accelerate such operations as the top hat and
rolling ball transformations [41]. This non-flat SE also improved the performance of morphological filtering
in terms of the smooth opening and closing of electrocardiogram (ECG) signals [42]. Although disk SE is
commonly used for medical images [43], it is unlikely to work well in this study (Figure 4b). In contrast, the
spherical shape (Figure 4c) had removed the glare with preservation of vital image features (boundary of
abnormal tissue). This is because it has been eroded by a spherical SE about the size of the glare. This glare
must be removed from the image for further processing.

Figure 4. Eroded Image. (a) Original image; (b) Eroded with ‘disk’ SE; (c) Eroded with ‘spherical’ SE.

3.2.4. Laplacian of Gaussian Filter (LoG)

One of the earliest edge detectors was introduced by Marr-Hildreth [44] and is also known as the
Laplacian of Gaussian. LoG has the ability to detect boundaries or edges at different scales while dealing
well with intensity changes from surface disruptions, reflectance, or illumination. The combination of a 2D
Gaussian function (image smoothing), G = (exp− (x2 + y2/2σ2)), and a Laplacian operator (edge detection),
∇2 = (d2/dx2 + d2/dy2), gives the expression: ∇2G(x,y) = [x2 + y2 − 2σ2/σ4] exp− (x2 + y2/2σ2) [36].
By applying LoG to hyperspectral images, a variety of images were generated, subject to alterations
in its parameters. Larger values of sigma caused the edges to blur, while smaller values led to detailed and
sharp detectable edges but prone to noise.

3.2.5. Principal Component Analysis (PCA)

One of the issues with hyperspectral imaging is that it generates huge data sets, much of which
are redundant. PCA [45] is a popular image transformation method that we have used to resolve
this issue and provide uncorrelated data (transform high to low dimensional). Several principal
components with maximum variability were selected for subsequent processing stages. This algorithm
is well described previously in hyperspectral image classification [46]. The method includes mean
subtraction, computation of covariance matrix, calculation of eigenvectors and eigenvalues, selection
of components and forming feature vectors to derive a new data set.

In this work, PCA was applied to the hyperspectral images. The background of mathematical
expression used was previously described [46,47]. Each image in spatial dimension m × n pixels
was transformed into an image vector, consisting of spectral wavelength N-dimensional samples,
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into one image matrix M, [ImgVec1: . . . : ImgVecN]. The mean vector (2) for every image vector,
xi = [x1, x2, . . . , xN ]T was computed and transformed into covariance matrix (3). The covariance
matrix was then used to generate eigenvectors (e1, . . . , en) and corresponding eigenvalues (λ1, . . . , λn).
The eigenvectors were then arranged in higher to a lower order of eigenvalues to form the principal
components that correspond to the number of hyperspectral bands. The mean vector and covariance
matrix are computed as follows:

Mean vector:

m =
1
M

M

∑
i=1

[x1, x2, · · · , xN ]
T (2)

Covariance matrix:

Covx =
1
M

M

∑
i=1

(xi −m)(xi −m)T (3)

where M is an image dimension, x is image pixel, and T denotes transpose operation.

3.2.6. Image Subtraction

The image subtraction in this work was performed on images extracted from PCA. Let g(x,y) denote an
image difference by the subtraction of PC1 f (x,y) from PC10 h(x,y) or vice versa; forming, g(x,y) = f (x,y)−
h(x,y) or h(x,y)− f (x,y). The image differences were enhanced, with details previously described [36].

3.3. Support Vector Machine-Gaussian Radial Basis Function (SVM-GRBF)

SVM is preferred commonly used classifier for machine learning applications due to its capability
to work with different types of kernel or covariance function [48] by dot product rule. Based on
the 2D-image feature distribution obtained from the histogram, it was not possible to separate the
two classes of image data by a linear transformation in input space. Therefore, a non-linear SVM
classifier was employed with Gaussian radial basis function kernel, as its performance in hyperspectral
remote sensing classification was better than either SVM-linear, K-NN classifier, or standalone of RBF
classifier [49]. The linear and non-linear SVM is represented by Equations (4) and (5), respectively:

f (x)linear = ∑
i∈sv

αiyi
(
xi, x′

)
+ b (4)

f (x)non−linear = ∑
i∈sv

αiyiK
(

xi, x′
)
+ b (5)

where αiyi is a data point, K(xi, x′) is a kernel, and b is a bias.
Then the GRBF kernel which is represented as K(xi, x′) in Equation (5) is denoted as:

KGRBF
(

xi, xj
)
= exp

(
−|x− xi|2

2σ2

)
(6)

where σ is the width of the radial basis function, and different values of width will affect the boundary
of classification between normal and abnormal classes.

Before training the model, data normalisation is carried out. This is to ensure that all attributes
have the same importance. In this paper, each column of the feature vector in both the training
and testing sets was normalised to a length of 1. The MATLAB function ‘normc’ was used for data
normalisation to preserve the relationship between the vector components.

3.4. Convolutional Neural Networks (AlexNet)

A standard neural network known as AlexNet [50] consists of 1.2 million high-resolution
images and can be used to classify 1000 different classes. It comprises millions of parameters,
hundreds thousand neurons, five convolutional layers (some of which consist of max-pooling layers),
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and three fully-connected layers with a 1000-way SoftMax (Figure 5). The motivation of using AlexNet is
that it has been used on small data for fingerprint detection [51] on a pretrained model with good results.
Furthermore, AlexNet has been trained on rich feature representations for a wide range of images. In this
paper, we have applied 25 images obtained from PC subtraction consisting of the normal and abnormal
cornea. To enrich the training data, we employed image flipping and rotation for data augmentation in
order to increase classification accuracy [51]. In total, we used 94 images after image augmentation for
classification. All images were transformed into image vectors and randomly split into two sets for training
and testing. The ratio of training to testing was varied across the following values: 0.1(10% for training, 90%
for testing), 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 in order to determine the optimal accuracy. The time
consumed using a single CPU for every distribution was also recorded.

As AlexNet was designed to classify 1000 images, it not suitable (overfitting concerns) for use directly
with very small data set and only two classes that we have. Therefore, we applied two approaches to
classify the data into two classes, healthy and injured, by using transfer learning [52] and deep feature
extraction [53,54] on a pretrained AlexNet model. These approaches explained as follows:

Figure 5. AlexNet Architecture.

3.4.1. Transfer Learning Using Pretrained AlexNet with a Fine-Tuned Model on the Cornea Images

The last three layers were configured for 1000 classes of the original trained network. In this work,
these layers plus some others layers were fine-tuned (see Table 2, underlined-bold items) for the new
classification cornea problem.

Table 2. AlexNet parameters with fine-tuned network for transfer learning on cornea images.

No Layer Type Parameters

1 Data Image Input
Layer1: Convolution layer Input image size: 227 × 227 × 3 with zero
centre normalisation No. of filters: 96 Filter size: 11 × 11 × 3 Stride:
[4 4] Output: 224/4 × 224/4 × 96 (because of stride 4)
Train Network with a CPU2 Conv1 Convolution

3 Relu1 Relu Rectified linear units
4 Norm1 Cross channel normalisation Cross channel normalisation with 5 channels per element

5 Pool1 Max pooling
Layer2: Max pooling followed by convolution Input: 55 × 55 × 96 Max
pooling: 55/2 × 55/2 × 96 = 27 × 27 × 96 No. of filters: 256 Filter size:
5 × 5 × 48 Stride: [2 2] Output: 27 × 27 × 256
Train Network with a CPU6 Conv2 Convolution

7 Relu2 Relu Rectified linear units
8 Norm2 Cross channel normalisation Cross channel normalisation with 5 channels per element

9 Pool2 Max pooling
Layer3: Max pooling followed by convolution Input: 27 × 27 ×
256 Max pooling: 27/2 × 27/2 × 256 = 13 × 13 × 256 No. of filters: 384
Filter size: 3 × 3 × 256 Stride: [2 2] Output: 13 × 13 × 384
Train Network with a CPU10 Conv3 Convolution
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Table 2. Cont.

No Layer Type Parameters

11 Relu3 Relu Rectified linear units

12 Conv4 Convolution
Layer4: Convolution layer Input: 13 × 13 × 192No. of filters: 384 Filter
size: 3 × 3 × 192 Stride: [1 1] Output: 13 × 13 × 384
Train Network with a CPU

13 Relu4 Relu Rectified linear units

14 Conv5 Convolution
Layer5: Convolution layer Input: 13 × 13 × 192 No. of filters: 256 Filter
size: 3 × 3 × 192 Stride: [1 1] Output: 13 × 13 × 256
Train Network with a CPU

15 Relu5 Relu Rectified linear units
16 Pool5 Max pooling 3 × 3 max pooling with stride [2 2]

17 Fc6 Fully connected Layer6: Fully connected layer Input: 13 × 13 × 128 is transformed into
a vector Output: 4096-dimensional feature with 2048 in each vector

18 Relu6 Relu Rectified linear units
19 Drop6 Dropout Reducing overfitting with probability 0.5

20 Fc7 Fully connected Layer7: Fully connected layer 4096-dimensional feature with 2048 in
each vector

21 Relu7 Relu Rectified linear units
22 Drop7 Dropout Reducing overfitting with probability 0.5

23 Fc8 Fully connected Layer8: Fully connected layer 2 number of classes

24 Prob SoftMax Reducing overfitting
25 Output Classification output Classify 2 image: Healthy and Injured

The input image was resized to 227 × 227 × 3, and the network was trained with a single
CPU. The layers other than the last three were transferred directly (keeping the layer weights of the
pretrained network) to the new classification task, whilst the final three layers were replaced with a
fully connected layer, a softmax layer, and a classification output layer. The new fully connected layer
was trained to classify the cornea images into just two classes. To increase the learning rate in the new
layers, we set values for both the weight learn rate factor and the bias learn rate factor to 20, with the
small initial learning rate to 0.001, and the number of epochs to five. Finally, the cornea images were
trained in a network consisting of the transferred and the new layers. As a result, the validation images
were classified using the fine-tuned network, and the accuracy was computed from the fraction of
labels that the network correctly predicted.

3.4.2. Feature Extraction with Pretrained AlexNet on Cornea Images

Feature extraction is the easiest and fastest way exploit the representational power of pretrained deep
networks. The network produces a hierarchical representation of input images. We used activations on the
fully connected layer ‘fc6’ for feature extraction of the training and test images (Figure 6).

Figure 6. Feature extraction with pretrained AlexNet on cornea images classification using SVM.
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The class labels from the training and test data were extracted. Then, the features extracted from
the training images were used as predictor variables and trained using linear support vector machine
(SVM). The test images were classified using the trained SVM model based on the features extracted
from the test images.

3.5. Mixture AlexNet and SVM-Linear

The fusion of AlexNet and SVM-linear classifier was used for comparison. Due to the complex
architecture involved in AlexNet, the learning process can be very time-consuming. This disadvantage
could potentially be resolved by the use of a graphics processing unit (GPU). However, GPU
is less readily used or available, thereby limiting future applicability. Therefore, for central
processing unit (CPU) users, the combination of AlexNet and SVM-linear denoted in (4) is more
than sufficient, where AlexNet performs the high-level feature extraction while SVM-linear carried out
the classification (Figure 6).

Figure 7 depicts samples of features extracted from convolution 1, convolution 5, and fully-connected
8 (FC8). There are three possible layers of feature extraction output in AlexNet, namely FC6 (layer 17), FC7
(layer 20), and FC8 (layer 23) consisting of 4096, 4096, and 1000 feature dimensions respectively. Any one
of these three layers can be used as feature representation entries to the SVM classifier. In this combination,
convolutional layers were used to learn a better representation of the input image, and SVM classification
was performed on the fc output during training and testing with such automatically extracted features.
This is the reason AlexNet-SVM runs much faster than a standalone AlexNet.

Figure 7. Sample of features extraction. (a) Conv1 (56 channels); (b) Conv5 (30 channels); and (c) FC8
layer (channel 1).
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4. Results and Discussion

The captured HSI images were divided into healthy, injured, and injured eye with stain as a
control image for analysis. For spectral analysis, ten squares size 5 × 5 were randomly cropped from
each image. Five of the squares were used to represent normal (line) and another five were used
for abnormal (dotted line) tissues. The mean of the reflectance was then plotted to gain the spectral
signature. Figure 8 shows a mean reflectance signature for a healthy eye: there was no difference in
spectral signatures taken from different locations. In contrast, Figures 9 and 10 show the difference
between normal and abnormal tissues from different injured eyes.

Figure 8. Reflectance signatures of healthy eye.
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Figure 9. Reflectance signature of injured eye without stain.
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Figure 10. Reflectance signature of injured eye with stain (control image).

The image pre-processing and enhancement described in Section 3.2 were chosen to improve
distinction and visualisation of normal and abnormal corneal epithelium.

In Figure 11, eleven eyes were transformed using PCA before using image enhancement. It is
shown that all the eyes which were without stained appear similar between normal and abnormal cornea.
In contrast, all the eyes which were stained gave clear clinical information from the injury area. The image
enhancement algorithms for the hyperspectral image of the porcine cornea can be summarised as follows:
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Figure 11. Ten principal components (PC) of eleven eyes transformed with PCA. The clinical
information appears in several PC for EYE8 until EYE11 as these images were stained. In contrast,
EYE1 to EYE7 which were without stained appear similar even though EYE4 to EYE7 had abnormal
corneal epithelium.
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Step 1. A full band of a hyperspectral image was loaded, Input = M*N*λ.
Step 2. Select a region of interest (cornea) using template matching method (FFT-based correlation),

see Figure 12.

Figure 12. Template matching-FFT based correlation. (a) input image; (b) template image; (c) correlation
plot, and (d) template matched.

Step 3. The image was resized to 100 by 100, A ε RM*N*λ.
Step 4. Contrast transformation was applied to all selected bands (i.e., band 50 to band 100).
Parameter setting: clip pixel level, and gamma.
The bands were selected using spatial entropy based mutual information [55] of the spectral

image in range 0 to 50,50 to 100, 100 to 150, 150 to 200, and 200 to 250. As a result, the image at
wavelength 503 nm to 625 nm was selected for further processing (Figure 13).

Figure 13. Output image at band 1 to 50, 50 to 100, 100 to 150, 150 to 200, and 200 to 250. Image at row
2 column 3 is a ground truth image.

Step 5. Morphology operation using erosion was applied to all selected bands.
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Parameter setting: structure element (SE) ‘ball’size.
Step 6. Image filtering using Laplacian of Gaussian (LoG) was performed on all selected bands.
Parameter setting: filter size, and sigma.
The three-parameter setting (SE size, filter size, sigma) was selected based on visualise the spectral

image with four different parameter sets ([5,5], [3 3], 0.1), ([15,15], [5 5], 0.1), ([25,25], [7 7], 0.1),
and ([50,50], [9 9], 0.1). As a result, the image with parameters ([50,50], [9 9], 0.1) showed the injured
boundary (Figure 14).

Figure 14. Output image at four different parameter sets ([5,5], [3 3], 0.1), ([15,15], [5 5], 0.1), ([25,25],
[7 7], 0.1), and ([50,50], [9 9], 0.1). Image at row 2 column 2 is a ground truth image.

Step 7. Principal component analysis of all selected bands was computed, display 10 PCs only
which contains almost 100% of the variance. PCs with zero variance were neglected.

Step 8. Image subtraction was performed between PC2 (2nd largest variance) and PC1
(1st largest variance). Output result after enhancement is illustrated in Figure 15.

Figure 15. Image enhanced and ground truth image.

The comparison between the image before and after enhancement is shown in Figure 16.
The images show that after enhancement the boundary of the injury is visible and corresponds
to the ground truth image. The image enhanced look slightly larger due to the morphological process.
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Figures 17 and 18 show some result of images with contrast to noise ratio (CNR) [43] and the
histogram between healthy and injured corneas. It is shown that the CNR value for an enhanced image
is higher than the original image, making the injury easily detectable with human vision. Otherwise,
the lower CNR is making the injury more difficult to detect.

Figure 16. Image comparison before and after enhancement. (a) original without stain; (b) after enhancement
(without stain); and (c) ground truth with stain.

Figure 17. Image of healthy cornea with the histogram underneath respectively. Images were normalised
and resized to 100 by 100: (a) Original Image sliced at band-100 (CNR: 33.1256); (b) Image after PC subtraction
before enhancement (CNR: 27.276); (c) Image after PC subtraction and enhancement (CNR: 77.3276).

Figure 18. Image of injured cornea with the histogram underneath respectively. Images were normalised
and resized to 100 by 100: (a) Original Image sliced at band-100 (CNR: 46.4635); (b) Image after PC subtraction
before enhancement (CNR: 36.1354); (c) Image after PC subtraction and enhancement (CNR: 93.6535).
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Based on the histogram of the gray-scale image following the enhancement process, four features
were extracted, namely mean, standard deviation (square root of the variance), skewness, and kurtosis.
The results are shown in Table 3. These were calculated by using the probability distribution of the
intensity levels in the histogram bins [56]. The histogram of intensity levels is a simple summary
of the statistical information of the image, and individual pixels are used to calculate the gray-level
histogram. Therefore, the histogram contains first-order statistical (central moments) information
about the image values [57]. These statistics are defined by the following equations [58].

Table 3. 4-features computed from image histogram for 25 eyes.

EYE
Healthy

Mean
Healthy

Standard
Deviation
Healthy

Skewness
Healthy

Kurtosis
Healthy

EYE
Injured

Mean
Injured

Standard
Deviation
Injured

Skewness
Injured

Kurtosis
Injured

1 135.31 28.10 0.69 4.79 12 125.85 26.46 0.51 5.36
2 97.23 28.67 0.92 5.86 13 110.69 26.74 0.83 6.45
3 101.50 27.87 0.84 6.09 14 81.23 22.58 1.43 8.40
4 80.91 22.34 1.22 8.73 15 82.07 23.08 0.83 5.81
5 88.11 25.90 0.95 7.26 16 76.56 19.28 1.16 8.80
6 102.41 26.99 1.04 6.47 17 79.44 28.30 1.02 5.54
7 100.73 19.88 1.10 7.74 18 67.84 20.04 1.11 8.01
8 108.48 21.03 1.25 9.66 19 73.76 27.27 1.11 6.24
9 89.85 24.00 1.26 8.21 20 116.46 27.40 0.61 4.64

10 99.75 27.72 0.89 6.08 21 120.36 21.74 0.76 6.61
11 98.96 22.73 1.18 8.66 22 96.72 27.15 0.94 6.51

23 108.97 28.55 0.67 5.71
24 101.93 29.25 0.27 4.67
25 105.74 24.04 0.37 4.67

Let random variable I represents the gray-levels of image values. The first-order histogram P(I) is
defined as:

P(I) =
No. o f pixels with gray level I

Total No. o f pixels in the histogram
(7)

Based on the definition of P(I), the mean and central moments µk of I given by:
Mean:

Pm1 =
N−1

∑
I=0

I1P(I) (8)

Central moments:

uk =
N−1

∑
I=0

(I −m1)kP(I) (9)

where k = 2, 3, 4, and N is the number of possible gray levels.
The most frequently used central moments are variance, skewness and kurtosis given by u2, u3,

and u4 respectively [58]. The variance measures the deviation of gray-levels from the mean. Skewness is
an indicator of asymmetry around the mean whilst kurtosis is a function of the histogram sharpness.
Combinations of 2D-features were computed for both healthy and injured eyes. These features were
used as inputs to the binary classifiers. Table 4 shows the results of classification with SVM-GRBF
using four features extracted from the histogram for testing data (data were unseen during training).
It represents the number of iterations required for convergence, the accuracy, and the error during
testing for different sets of hyperparameters.

It was computed using LibSVM-MATLAB. The accuracy was calculated as the area under the
receiver operating characteristic (ROC) curve. The error refers to the generalisation error which is the
out-of-sample mean squared error. It measures how accurately a model is able to predict outcome
values for previously unseen data. The result shows that a combination of 2D features of mean and
skewness can yield 100% accuracy when C and Sigma are increased sufficiently. Its decision boundaries
and support vectors are illustrated in Figure 19.
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The performance of the classifier is measured using a confusion matrix as in Table 5. The ROC
curve for 2D feature classification is shown in Figure 20.

Table 4. Four features classification using SVM-GRBF.

Features
C = 1 C = 500 C = 500

Sigma = 1 Sigma = 1.658 Sigma = 2.658

10-Fold Cross Validation 10-Fold Cross Validation 10-Fold Cross Validation

Iterations Accuracy Error Iterations Accuracy Error Iterations Accuracy Error

Mean-Std. 13 0.2708 0.4545 81 0.5625 0.3636 578 0.4792 0.4545
Mean-Skew 13 0.8333 0.3636 148 0.9583 0.4545 412 1 0.4545
Mean-Kurt 6 0.7500 0.3636 169 0.8125 0.3636 189 0.5208 0.2727
Std.-Skew 10 0.6042 0.4545 161 0.2083 0.5455 207 0.1875 0.6364
Std.-Kurt 6 0.3750 0.1818 419 0.6875 0.6364 172 0.7083 0.4545
Skew-Kurt 12 0.6875 0 200 0.5833 0.1818 243 0.7292 0.0909
4-Features 11 0.4375 0.3636 38 0.7292 0.4545 86 0.4583 0.4545

Figure 19. Decision boundary and support vector for Mean vs Skewness (testing data).

Table 5. Confusion matrix.

Confusion Predict Predict
Matrix Healthy Injured

Actual True False
Healthy Negative (TN) Positive (FP)

Actual False True
Injured Negative (FN) Positive (TP)

The ROC is a metric used to check the accuracy of classifiers. By definition [59,60], a ROC curve
shows True Positive Rate (TPR) versus False Positive Rate (FPR) for different thresholds of the classifier
output. The maximum area under the curve (AUC) is 1, which corresponds to a perfect classifier.
Larger AUC values indicate better classifier performance. From the ROC curve, 2D features of mean
vs skewness yielded an optimal accuracy compared to other combinations of features. This ROC curve
can be used for feature selection to classify cornea images.

The results of the second and third approaches to classify physical images features according to
AlexNet and AlexNet-SVM linear, with respect to accuracy as in Figure 21 and the time consumed
in Figure 22. Both yielded 100% accuracy at 0.8 (80% training, 20% testing) image distribution,
although AlexNet performed poorly in-terms of computation time.
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Figure 20. ROC curve for 2D-features classification by SVM-GRBF with C = 500, and Sigma = 1.658.

Figure 21. The accuracy of AlexNet and AlexNet-SVM classifier.

Figure 22. The time consumption of AlexNet and AlexNet + SVM-linear classifiers.
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5. Conclusions

In conclusion, the uniqueness of the cornea with five layer tissues underneath lies mainly in its
transparency. This property in itself poses a huge challenge to clinicians due to changes, which are
often fine and subtle and serve as a barrier to diagnosis. Therefore, the combination of hyperspectral
imaging and image processing techniques has the potential to become a viable alternative solution
in the assessment of corneal epithelium injury without the need for traditional contacting methods.
When tested with the three classification approaches it showed promising results particularly when
AlexNet was combined with SVM-linear in terms of accuracy and time. Future developments in this
field could result in this work being translated for human use.
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