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Abstract. Evidence-based medicine (EBM) represents a cornerstone in
medical research, guiding policy and decision-making. However, the ro-
bust steps involved in EBM, particularly in the abstract screening stage,
present significant challenges to researchers. Numerous attempts to auto-
mate this stage with pre-trained language models (PLMs) are often hin-
dered by domain-specificity, particularly in EBMs involving animals and
humans. Thus, this research introduces a state-of-the-art (SOTA) trans-
fer learning approach to enhance abstract screening by incorporating
domain knowledge into PLMs without altering their base weights. This
is achieved by integrating small neural networks, referred to as knowl-
edge layers, within the PLM architecture. These knowledge layers are
trained on key domain knowledge pertinent to EBM, PICO entities, Pub-
medQA, and the BioASQ 7B biomedical Q&A benchmark datasets. Fur-
thermore, the study explores a fusion method to combine these trained
knowledge layers, thereby leveraging multiple domain knowledge sources.
Evaluation of the proposed method on four highly imbalanced EBM ab-
stract screening datasets demonstrates its effectiveness in accelerating
the screening process and surpassing the performance of strong baseline
PLMs.

Keywords: Pre-trained Language Models · Domain Integration · Trans-
fer Learning · Evidence-Based Medicine · Abstract Text Classification.

1 Introduction

Evidence-Based Medicine (EBM) presents the highest form of reliable evidence
in shaping healthcare policies and decision-making [1]. Generally, the process
involves (i) formulating a protocol, (ii) defining the research question using entity
frameworks such as PICO3 to encapsulate the inclusion and exclusion criteria,

3 where PICO denotes Population, Intervention, Comparison, Outcome
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(iii) searching, (iv) screening abstracts, (v) extracting and analysing data from
pertinent articles, and (vi) interpreting and publishing the findings. This process
although structured is labour-intensive, further exacerbated by the daily increase
in published articles. It is reported that the typical time frame for completing
an EBM is approximately 15 months [1]. Thus, most EBMs become outdated
before completion, needing major revisions.
Among all the stages in EBM, abstract screening has been reported to be the
most challenging stage [2]. For example, research indicates that an experienced
researcher typically spends 30-90 sec screening a single abstract, and estimated
that 5,000 publications usually require 8-125 hrs[2]. Numerous methodologies for
automating this stage have been proposed [2] ranging from traditional machine
learning (ML) models to advanced PLMs, where they are fully fine-tuned (FFT)
on EBM abstract datasets. However, most of these approaches are hindered by
domain specificity, especially in highly imbalanced studies involving humans and
animals [3]. Furthermore, PLMs comprise an extensive number of parameters;
thus, in FFT, the parameters of the PLMs are updated whenever a new EBM
dataset is introduced, resulting in increased computational costs and memory
requirements. To tackle these issues, this paper investigates a SOTA method to
integrate domain knowledge into PLMs for abstract screening tasks 4.

2 Related work

Many methods have been proposed for abstract screening, from traditional ML
algorithms like Support Vector Machine (SVM) and Naive Bayes (NB) to SOTA
PLMs. Timsina et al. [4] proposed using ULMS as a feature extraction technique
and a softMax SVM classifier for abstract classification. Almeida et al. [5] also
suggested the addition of MeSH and keywords to the abstracts for training a
decision tree classifier. Similarly, Kontonatsios et al. [6] presented using MesH
heading to train a neural network, and [7] proposed using Latent Dirichlet Al-
location (LDA). With the rise of PLMs, medical domain knowledge PLMs such
as SciBERT, PubMedBERT (PMBERT), BioBERT and CBERT (CBERT) have
been proposed. For example, for this task, Hasny et al. [8] proposed using variants
of BERT base models such as BERT-Meduim, SciBERT, BioBERT and CBERT.
Ofori-Boateng et al. [2] also presented attention mechanisms with LSTM and Bi-
LSTM. Moreno et al. [9] presented a zero-shot classification method for abstract
screening. Similarly, [10] also proposed using GPT. Despite their advancements,
these PLMs were originally trained on unstructured corpora, lacking the struc-
tured domain knowledge essential for biomedical tasks. As such, these PLMs
treat biomedical concepts as conventional tokens, limiting their effectiveness [3].

2.1 Research Questions

We explore integrating essential domain knowledge into the models to address
these issues. Specifically, we focus on incorporating PICO entities along with two

4 For reproducibility, the source code and datasets are available on Github.
https://github.com/reginaofori/EBM-Domain-Integration-PLMs
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biomedical Q&A datasets, PubMedQA5 and BioASQ 7B6. PICO entities are
fundamental in EBM, while PubMedQA and BioASQ 7B offer formats similar
to the EMB abstract datasets (context/abstracts, question, and decision). To
this end, we ask the following RQs:

1. How can the diverse domain knowledge crucial for abstract screening tasks
be integrated into a base PLM without adjusting model parameters? We
insert small neural networks (knowledge layers) into the layers of a base
PLM, SciBERT, using the principle of adapters [11] and train on the domain
knowledge. Our choice of SciBERT is from a practical viewpoint as it was
trained to cover a broad biomedical domain, thus advantageous for this task.

2. What is the effect of different configurations of the knowledge layers (where
they are inserted) on the downstream task? We investigate and compare
three configurations of inserted networks to analyse their influence on the
downstream task.

3. Can adapter-based tuning perform better than SOTA FFT PLMs proposed
for EBM abstracts? We empirically compare the performance of the trained
knowledge layers with FFT SciBERT. Additionally, we examine the trans-
ferability and modularity of the method by inserting the already-trained
networks into variants; CBERT, PMBERT, and BioBERT, adapter-tuning
them, and comparing them against their FFT versions.

3 Methodology

3.1 Class Imbalance: Back translation

EBM abstract classification struggles with class imbalance, where the number
of excluded abstracts outweighs the included. Traditional methods have been
proposed, such as cost-sensitive classifiers and data resampling [4]. However, this
study proposes a SOTA data augmentation technique to address this issue called
Back-translation. It involves translating the original text into another language
and then back into the original language, generating a paraphrased version.
Despite potential inaccuracies that may be introduced during re-translation,
this method has demonstrated effectiveness in NLP tasks [8]. For this study, the
Google Translate API7 was utilised to translate English abstracts in the training
dataset into seven different source languages (Spanish, French, German, Italian,
Chinese (simplified), Chinese (traditional), and Irish), followed by re-translation
back to English. Notably, back translation was applied only to the minority class
(include). Further details on partitioning the downstream dataset for translation
are provided in Section 4.

5 https://pubmedqa.github.io/
6 http://participants-area.bioasq.org/datasets
7 https://translate.google.com/
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Fig. 1: Methodology for training the individual knowledge layers (PICO,
BioASQ, and PubMedQA). The training involves 1) where the knowledge layer
is inserted within the SciBERT PLM with frozen parameters and 2) where we
investigate training with three configurations, in (a) the Houlsby (H), (b) the
Pfeiffer, and in (c) the Compacter (C), a similar architecture of (a) but with a
modification.

3.2 Overview of Adapters/Knowledge Layers

Adapters, originally proposed by Rebuffi et al. [13], are small trainable neu-
ral networks integrated within the layers of PLMs. An adapter consists of four
main components: a FeedForward Linear Down Projection (FFD), FeedForward
Linear Up Projection (FFU), a non-linear activation function (LeakyReLU),
and a skip residual. The FFD and FFU reduce dimensionality, converting in-
put from the PLM’s high-dimensional space to a lower-dimensional one. For
example, the FFD of the adapter maps the input data from the original high-
dimensional space, dPLM, to a much lower-dimensional space, hadapter, where
typically hadapter≪ dPLM. Readers are referred to [11] for the detailed math-
ematical explanation. The LeakyReLU enables the adapter to handle negative
inputs, ensuring a more dynamic range for the activations. Lastly, the skip resid-
ual ensures the model doesn’t lose essential information during transformation.
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3.3 Approach–Training the Knowledge Layers

To address RQ1 and RQ2, Figure 1 illustrate the training of the three do-
main knowledge layers/adapters (PICO, PubMedQA, and BioASQ). We employ
a comprehensive method in two phases: In Phase 1, the knowledge layers are
integrated within every layer of the base SciBERT PLM to ensure a granular
capture of information. In Phase 2, to examine the effect of different adapter con-
figurations, we experiment with three distinct existing configurations in train-
ing the knowledge layers: (a) the Houlsby Configuration (H) [11], where the
adapters modules are placed before the multi-head attention mechanism and
the FeedForward layer of the SciBERT model as seen in Figure 1, (b) The Pfeif-
fer Configuration (Pf) [15], where the adapter modules are placed exclusively
after the FeedForward layer and (c) The Compacter Configuration (C) similar
to the Houlsby configuration, but replaces the standard linear FFD and FFU
with a more intricate Parameterised Hypercomplex Multiplication (PHM) layer
[14]. The PHM layer uniquely determines its weights by computing the Global
Multiplier of the Kronecker Product (GMKP) between two concise matrices.
Readers are referred to the work done by [14] for a detailed explanation of how
the GMKP and PHM work in the compacter. During the training of the knowl-
edge layers, the integrated layers introduce trainable parameters, denoted by Φn

which are only updated, while the core weights of the base SciBERT, Θ, remains
static. This strategy accelerates the training process.
Training the Q&A Knowledge Layers–PubMedQA and BioASQ. The
main goal of training a Q&A knowledge layer is to facilitate efficient transfer
learning for our downstream abstract classification task, capitalising on the ca-
pabilities of SciBERT. PubMedQA and BioASQ, the two Q&A datasets used for
training, are described in Table A2 in the appendix. In refining the training qual-
ity for PubMedQA (made up of three labels; yes/no/maybe), the“maybe” labels
are excluded from both training and validation sets, ensuring a focus on clear-cut
include (“yes”) or exclude (“no”) decisions to avoid potential ambiguities during
training and in real life cases. Thus given the classification task (predicting “yes”
or “no”), SciBERT is initialised with a binary sequence classification head, while
the adapter module explained in Section 3.3 is introduced for training, keeping
the main parameters of the SciBERT model frozen. The raw text Q&A data
is tokenized using SciBERT’s tokenizer, combining questions with their corre-
sponding contexts e.g., “[CLS] question [SEP] context [SEP] and the label “yes”
is mapped to the label 1, while “no” is 0. Given our binary classification task,
the cross-entropy loss function for optimisation is mathematically given as:

LQ&A = −
N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (1)

where LQ&A is the loss for the Q&A datasets, N is the total number of samples
in each datasets, yi denotes the actual label of the i-th sample, and ŷi represents
the predicted probability for the i-th sample being labelled as “yes”.
Training EBM-PICO Knowledge Layer. The PICO framework is a fun-
damental structure for formulating clinical questions in EBM. In training the
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Table 1: Summary of results on the LN 19 (1) and AH 19(2) datasets.8

DB Methods Precision Recall F1 WSS@95 AUC PR ROC

1

Know. Int.
Baselines

KRISSBERT 0.9957 0.9957 0.9949 0.9465 0.82 0.97
CODER-BERT 0.9948 0.9948 0.9935 0.9474 0.72 0.97

FFT SciBERT 0.9953 0.9957 0.9853 0.9448 0.79 0.95

Modif.
SciBERT

FPBPA(H) 0.9957 0.9957 0.9949 0.9465 0.87 ↑ 0.05 0.99
FPBPA(Pf) 0.9931 0.9931 0.9903 0.9491 0.85 0.87
FPBPA (C) 0.9845 0.9922 0.9884 0.9500 0.86 0.99

FFT PMBERT 0.9940 0.9942 0.9920 0.9483 0.47 0.92

Modif.
PMBERT

FPBPA(H) 0.9948 0.9958 0.9935 0.9474 0.81 0.99
FPBPA(Pf) 0.9966 ↑ 0.09 0.9970 ↑ 0.13 0.9963 ↑ 0.14 0.9591 ↑ 1.26 0.79 0.97
FPBPA(C) 0.9942 0.9938 0.9935 0.9474 0.77 0.99

FFT BioBERT 0.9932 0.9934 0.9923 0.9483 0.57 0.98

Modif.
BioBERT

FPBPA(H) 0.9943 0.9940 0.9920 0.9483 0.66 0.99
FPBPA(Pf) 0.9952 0.9957 0.9949 0.9481 0.75 0.99
FPBPA(C) 0.9934 0.9931 0.9903 0.9442 0.67 0.98

FFT CBERT 0.9945 0.9948 0.9935 0.9474 0.62 0.98

Modif.
CBERT

FPBPA(H) 0.9953 0.9957 0.9961 0.9448 0.68 0.99
FPBPA(Pf) 0.9939 0.9936 0.9934 0.9405 0.77 0.99
FPBPA(C) 0.9931 0.9930 0.9903 0.9491 0.67 0.98

2

Know. Int.
Baselines

KRISSBERT 0.9745 0.9777 0.9728 0.9388 0.46 0.82
CODER-BERT 0.9428 0.9710 0.9567 0.9500 0.61 0.88

FFT SciBERT 0.9539 0.9725 0.9600 0.9555 ↑ 0.55 0.69 0.93

Modif.
SciBERT

FPBPA(H) 0.9821 0.9821 0.9754 0.9299 0.70 ↑ 0.24 0.95 ↑ 0.13
FPBPA(Pf) 0.9832↑ 0.87 0.9829 ↑ 0.52 0.9794 ↑ 0.66 0.9433 0.52 0.92
FPBPA(C) 0.9715 0.9762 0.9713 0.9388 0.57 0.85

FFT PMBERT 0.9682 0.9657 0.9675 0.9433 0.50 0.96

Modif.
PMBERT

FPBPA(H) 0.9775 0.9769 0.9694 0.9433 0.58 0.91
FPBPA(Pf) 0.9650 0.9739 0.9633 0.9500 0.41 0.82
FPBPA(C) 0.9719 0.9754 0.9691 0.9388 0.47 0.87

FFT BioBERT 0.9662 0.9721 0.9680 0.9188 0.60 0.88

Modif.
BioBERT

FPBPA(H) 0.9728 0.9756 0.9695 0.9433 0.69 0.93
FPBPA(Pf) 0.9650 0.9739 0.9633 0.9500 0.41 0.82
FPBPA(C) 0.9663 0.9747 0.9659 0.9433 0.57 0.86

FFT ClincalBERT 0.9439 0.9699 0.9519 0.9478 0.33 0.76

Modif.
CBERT

FPBPA(H) 0.9532 0.9717 0.9584 0.9478 0.52 0.94
FPBPA(Pf) 0.9427 0.9688 0.9556 0.9478 0.34 0.95
FPBPA(C) 0.9458 0.9677 0.9567 0.9411 0.20 0.82

PICO adapter, the objective was to capture the inherent relationships embed-
ded in PICO tags shown in Table A2 in the appendix. Thus, we implemented a
token classification methodology, on the EBM PICO data tags. To mitigate train-
ing bias, the zero entity class was strategically excluded from the EBM-PICO
dataset, creating an effective learning environment for the remaining relevant
classes. Each relevant token is encoded with SciBERT into which the adapter
module is integrated for training the EBM-PICO. After this encoding process,
the token is directed to a classification layer to be classified into one of the
three distinct PICO tags. The training objective for this is optimised using the
cross-entropy loss function:

LPICO = −
N∑
i=1

[
yPAR
i log(ŷPAR

i ) + yINT
i log(ŷINT

i ) + yOUT
i log(ŷOUT

i )
]

(2)

where yPAR
i , yINT

i , yOUT
i , ŷPAR

i , ŷINT
i , ŷOUT

i represent the ground-truth labels and
the corresponding predicted probability distributions for the i i-th token, re-
spectively, within the categories of Participants, Intervention/Comparison, and
Outcome, and N encapsulates the cumulative count of tokens within the dataset.

3.4 Fusing the trained Knowledge Layers/Adapters

To address RQ3, we integrate and tune the trained adapters in SciBERT, PM-
BERT, BioBERT and CBERT to show transferability. The individually trained
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adapters for PICO, PubMedQA, and BioASQ encapsulate different facets of
information, each with its relevance to the downstream abstract task. Thus, to
leverage the variability in the information stored by each trained adapter, we em-
ploy AdapterFusion [15]. AdapterFusion functions analogously to the attention
layer in a standard transformer model, where the primary output from the PLM
operates as the query. In contrast, the outputs from the various adapters act as
keys and values. Readers are referred to the work done by [15] for further details.
For clarity in this work, the combination of the trained PICO, PubMedQA and
BioASQ is referred to as FPBPA.

4 Experimental Setup

Downstream SR Datasets for evaluation. The proposed model was evalu-
ated on four complex highly imbalanced EBM abstract datasets. One of these
datasets, the Aceves-Martins 2022 dataset (AM 22) [16], is private focusing on
oral health in children and nutritional disparities among prisoners. The re-
maining datasets; Appenzeller-Herzog 2019 (AH 19), Van-Dis 2019 (VD 20) and
Leenars 2019 (LN 19) are publicly available on Github9. Each study’s research
question and inclusion/exclusion criteria were combined to form the “question”
and the abstract was the “context”. A summary of the datasets is provided in
Table A3.
Implementation and Hyperparameters. The AdapterHub10, HuggingFace
library11, and the PyTorch framework were employed for training the knowl-
edge adapters evaluation. Our experimental setup was done with Nvidia 2080Ti
GPUs. To ensure uniform input dimensions during the training of the knowl-
edge layers, we truncated/pad sequences to a consistent length of 512 tokens.
We split each of the datasets in Table A2 into 90% train and 10% validation
split, to find the optimal hyperparameters. In training the PICO adapter, we
deployed the following hyper-parameters; warmup step: [0,500, 1000], epochs:
[3,5, 10, 20], batch size: [8,16, 64, 256], weight decay: [0.0, 0.1, 0.01, 0.001] and
learning rate: [1e−4, 3e−5, 1e−5] with the AdamW as the optimizer. Similarly, the
same hyper-parameters were in training in PubMedQA and BioASQ adapters.
However, the best-performing batch size and epochs for the PubMedQA were 64
and 3, whereas the best-performing learning rate for the BioASQ was 3e−5. We
modulated three random seeds (42, 10 and 50) and reported on the aggregated
results over the iterations to ensure robustness.
9 https://github.com/asreview/synergy-dataset

10 https://adapterhub.ml/
11 https://huggingface.co/docs/transformers/index
12 Similar to 9, but here ↑ denotes the % increment of the best results compared to the

strongest baseline (CODER-BERT).
12 The Bold values represent scenarios where the FPBPA method outperforms the

FFT PLMs baselines within its category (SciBERT, BioBERT, PMBERT, CBERT)
for the dataset. Bold also denotes the overall best value for each metric e.g precision,
recall, and F1 in each dataset (LN 19, AH 19). The ↑ denotes the % increment of
the best results compared to the strongest baseline (KRISSBERT).
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Table 2: Summary of results on the VD 20 (1) and AM 22 (2) datasets.12

DB Methods Precision Recall F1 WSS@95 AUC PR ROC

1

Know. Int.
Baselines

KRISSBERT 0.9717 0.9785 0.9741 0.9417 0.29 0.91
CODER-BERT 0.9792 0.9829 0.9743 0.9428 0.36 0.87

FFT SciBERT 0.9718 0.9735 0.9783 0.9456 0.26 0.62

Modif.
SciBERT

FPBPA(H) 0.9760 0.9813 0.9750 0.9464 0.31 0.8
FPBPA(Pf) 0.9787 0.9818 0.9786 0.9302 0.31 0.85
FPBPA(C) 0.9725 0.9702 0.9714 0.9467 0.31 0.89

FFT PMBERT 0.9670 0.9685 0.9677 0.9329 0.35 0.95 ↑ 0.08

Modif.
PMBERT

FPBPA(H) 0.9735 0.9779 0.9753 0.9379 0.30 0.87
FPBPA(Pf) 0.9716 0.9791 0.9739 0.9434 0.27 0.89
FPBPA(C) 0.9695 0.9768 0.9725 0.9412 0.18 0.75

FFT BioBERT 0.9675 0.9618 0.9657 0.9461 0.35 0.76

Modif.
BioBERT

FPBPA(H) 0.9741 0.9807 0.9743 0.9461 0.24 0.76
FPBPA(Pf) 0.9809 ↑ 0.17 0.9873↑ 0.44 0.9772 ↑ 0.29 0.9472 ↑ 0.44 0.25 0.77
FPBPA(C) 0.9742 0.9807 0.9735 0.9461 0.38 ↑ 0.02 0.89

FFT CBERT 0.9663 0.9624 0.9774 0.9445 0.29 0.71

Modif.
CBERT

FPBPA(H) 0.9771 0.9796 0.9782 0.9417 0.29 0.87
FPBPA(Pf) 0.9774 0.9818 0.9781 0.9447 0.30 0.79
FPBPA(C) 0.9707 0.9791 0.9732 0.9351 0.25 0.83

2

Know. Int.
Baselines

KRISSBERT 0.9935 0.9939 0.9936 0.9393 0.75 0.98
CODER-BERT 0.9953 0.9954 0.9953 0.9377 0.73 0.94

FFT SciBERT 0.9925 0.9931 0.9925 0.9210 0.64 0.89

Modif.
SciBERT

FPBPA(H) 0.9944 0.9946 0.9945 0.9370 0.77 0.97
FPBPA(Pf) 0.9956 ↑ 0.03 0.9959 ↑ 0.05 0.9959 ↑ 0.06 0.9485 ↑ 1.08 0.87 ↑ 1.14 0.99 ↑ 0.01
FPBPA(C) 0.9906 0.9916 0.9903 0.9385 0.73 0.92

FFT PMBERT 0.9905 0.9904 0.9877 0.9466 0.86 0.99

Modif.
PMBERT

FPBPA(H) 0.9938 0.9935 0.9936 0.9358 0.85 0.99
FPBPA(Pf) 0.9928 0.9927 0.9928 0.9366 0.73 0.98
FPBPA(C) 0.9920 0.9923 0.9910 0.9439 0.73 0.98

FFT BioBERT 0.9920 0.9927 0.9919 0.9420 0.80 0.99

Modif.
BioBERT

FPBPA(H) 0.9930 0.9935 0.9931 0.9397 0.64 0.92
FPBPA(Pf) 0.9944 0.9946 0.9945 0.9431 0.72 0.96
FPBPA (C) 0.9933 0.9931 0.9932 0.9362 0.84 0.99

FFT ClincalBERT 0.9941 0.9927 0.9932 0.9328 0.83 0.99

Modif.
CBERT

FPBPA(H) 0.9921 0.9925 0.9923 0.9397 0.82 0.99
FPBPA(Pf) 0.9948 0.9950 0.9948 0.9404 0.84 0.98
FPBPA (C) 0.9939 0.9943 0.9938 0.9389 0.78 0.93

Evaluation Metrics and Baselines.We report on the weighted average: preci-
sion and recall, AUC Precision-recall, AUC ROC and Work saved oversampling
(WSS@95%) [5] which measures how much human burden the model can re-
duce. During the evaluation, we split the downstream dataset into a 60/40 train
test set. We applied the back translation augmentation technique described in
Section 3.1 only to the minority (include) in the train set. Further, we parti-
tioned the final augmented and initial train sent into a 10% dev set whilst we
reported the average runs on the unaugmented test set. To compare the perfor-
mance of our method, we explore existing FFT proposed for abstract screening
tasks. As such, FFT-PMBERT, FFT-SciBERT, FFT-BioBERT and FFT-
CBERT. To further validate the performance of our model, we compare with
two SOTA knowledge integrated PLMsCODER-BERT 13, a UMLS triples em-
bedding integration via contrastive learning and KRISSBERT 14, a PMBERT
that utilises self-supervised learning for entity linking.

5 Results and Discussion

Tables 1 and 2 show the results obtained from evaluating the adapter-based
tuning against the FFT biomedical variants PLMs and existing strong knowledge
PLM integrated baselines (CODER-BERT and KRISSBERT). Generally, the

13 https://huggingface.co/GanjinZero/UMLSBertENG
14 https://huggingface.co/microsoft/BiomedNLP-KRISSBERT-PubMed-UMLS-EL
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tables demonstrate a consistent trend across various PLMs: tuning FPBPA (H,
Pf, or C) within the PLMs leads to notable metric improvements compared to
the baseline. This finding addresses RQ3 indicating the effectiveness of FPBPA
for the EBM abstract screening task. Further discussion is as follows:
Can adapter-based tuning perform better than SOTA FFT PLMs?Dis-
cussing Table 1 for the highly imbalanced ratio (IR) dataset LN 19 (IR 1:341),
FPBPA(Pf) consistently achieves high precision, recall, WSS@95, and F1 score
compared to the baselines, particularly in PMBERT. Additionally, FPBPA(H)
and FPBPA(C) also show competitive performance, especially in terms of pre-
cision and AUC PR. Similarly, for AH 19 (IR 1:98), SciBERT-FPBPA(Pf) con-
sistently outperforms the strongest baseline and FFT PLMs.
In Table 2, for the VD 20 (1: 126) dataset, BioBERT FPBPA(Pf) achieves higher
precision, recall, WSS@95 and F1 score compared to the strongest baseline and
FFT PLMs. Similarly, for AM 22 (1:188), SciBERT-FPBPA (Pf) outperforms
the FFT and the strongest knowledge-integrated baseline across all metrics.
What is the effect of the different configurations of Knowledge Lay-
ers? The different FPBPA configurations (H, Pf, C) exhibit variable impacts
on different datasets seen in Tables 1 and 2. To summarise the analysis, the
FPBPA(Pf) shows strength in the extremely imbalanced datasets compared to
the H and C. Thus, in practicality, the use of FPBPA(Pf) may be useful in
situations where the EBM to be done is broad and may lead to broad search
strings, hence encompassing lots of irrelevant literature compared to the number
of relevant as in the case of LN 19 and AM 22 dataset.

6 Conclusion and Future Works

This research explores a SOTA transfer learning method that infuses domain-
specific insights into PLMs using adapters. Utilizing the PICO framework along-
side resources like PubMedQA and BioASQ Q&A, our technique improves PLM
capabilities for EBM abstract screening, which is critical for enhancing clinical
decisions and policies. Through detailed experiments, we demonstrate that our
method delivers promising outcomes across various metrics, including precision,
recall, F1 score, and WSS@95. Looking ahead, we plan to incorporate addi-
tional domain-specific resources such as UMLS, DisGeNET, and the UNIPROT
knowledge database to broaden our approach’s relevance. Currently, our research
centres on the BERT model, but future investigations will include other SOTA
PLMs like GPT and LLaMA. Furthermore, a future work will be to conduct
a comparative analysis of our method against baseline models such as SVM
and NB +/- UMLS, employing keyword search techniques like cTAKES or a
MetaMap-based model using TF-IDF or n-gram analysis.
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7 Appendix

Table A1: Format of the EBM abstract screening dataset

Abstract (Abs) Research Question (RQ) Decision

1. Glycosylated haemoglobins
and weights were recorded for
200 consecutive diabetic. . .

What is the prevalence of
overweight and obesity among
imprisoned populations world-
wide?

Exclude

2. Childhood dental caries and
obesity are prevalent health
problems. Results from pre-
vious studies of the caries-
obesity...

Is there an association between
obesity or overweight and poor
oral health among Mexican
children and adolescents?

Include

Table A2: Statistics of datasets used to train the knowledge layers/adapters

Dataset Adapter Format Size

EBM-PICO13 PICO (I-INT, I-OUT, I-PAR)14 5000
PubMedQA P-QA (Context/Question/labels(yes/no/maybe)) 211.3K
BioASQ B-ASQ (Context/Question/labels(yes/no)) 6676

Table A3: Summary of the datasets ranging from human to animal study, where
IR = Imbalance Ratio, the variables used for each EBM dataset are in Table A1

.
Name of dataset Subject Total papers Relevant Irrelevant IR Abs Len (Avg)
Aceves-Martins 2022(AM 22) Nutritional status of prisoners 13022 69 12953 1:188 1765.37
Appenzeller-Herzog 2019(AH 19) Therapy for Wilson Disease 2873 29 2844 1:98 1282.35
Leenars 2019(LS 19) Animal to human translation 5812 17 5795 1:341 1458.40
Van Dis 2020(VD 20) Cognitive Behavioral Therapy 9128 72 9056 1:126 1473.08

13 https://github.com/bepnye/EBM-NLP
14 where Participants is (I-PAR), Outcome (I-OUT), and a combination of Interven-

tion/Comparison as (I-INT)
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