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Abstract
Construction drawings are frequently stored in undigitised formats and consequently, their analysis requires substantialmanual
effort. This is true for many crucial tasks, including material takeoff where the purpose is to obtain a list of the equipment and
respective amounts required for a project. Engineering drawing digitisation has recently attracted increased attention, however
construction drawings have received considerably less interest compared to other types. To address these issues, this paper
presents a novel framework for the automatic processing of construction drawings. Extensive experiments were performed
using two state-of-the-art deep learning models for object detection in challenging high-resolution drawings sourced from
industry. The results show a significant reduction in the time required for drawing analysis. Promising performance was
achieved for symbol detection across various classes, with a mean average precision of 79% for the YOLO-based method
and 83% for the Faster R-CNN-based method. This framework enables the digital transformation of construction drawings,
improving tasks such as material takeoff and many others.

Keywords Deep learning ·Digitisation · Symbol detection · Engineering drawings ·Convolutional neural networks ·Artificial
intelligence

1 Introduction

Construction drawings are essential documents as they show
what will be built for a project. These drawings are still
frequently stored in undigitised formats, and consequently,
retrieving information from them must be carried out man-
ually. This requires domain experts [1], and can be very
time-consuming [2] and costly.

One of the most important processes in a construction
project is material takeoff or quantity takeoff [1, 3]. The pur-
pose of this task is to create a list of the requiredmaterials and
quantities. The list is an essential document as it is used for
cost estimation [3]. It is important that it is accurate, as any
errors can impact the project budget and schedule [4, 5]. The
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takeoff is traditionally carried out through manual drawing
analysis. However, this can be time-consuming and prone to
counting errors, particularly for large projects [2]. Further-
more, the results are dependent on individual interpretations
[4].

Artificial Intelligence (AI) based methods can augment
employees’ capabilities by simplifying time-intensive and
repetitive tasks [6]. The use of state-of-the-art digital tech-
nologies to transform traditional industry practices into
autonomous systems has been referred to as Industry 4.0,
or the fourth industrial revolution [7]. The number of pub-
lications that discussed AI applications in the construction
industry has increased in recent years [8]. Within this, one
of the main research topics was computer vision [8], where
the applications mainly focussed on the monitoring of con-
struction sites and structural health. However, the current
adoption of AI-based applications in the building and con-
struction industry is relatively low [7], and lags behind that
in other industries [8, 9].

Across a range of sectors, there has recently been an
increasing demand to create methods to digitise engineer-
ing diagrams [10, 11]. This involves extracting all diagram
components, which are the symbols, text and lines. Although
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published research on this topic dates back to the 1980s [12,
13], as stated in a recent review by Moreno-Garcia et al.
[14], digitising complex engineering diagrams is still consid-
ered challenging. For instance, deep learning methods were
used for symbol digitisation in other types of engineering
diagrams [15, 16]. This was considered a difficult task for
multiple reasons, including the numerous symbols present in
each diagram [15], relatively small symbol sizes [15, 16] and
use of non-standard symbols [17, 18].

Although construction drawings are more complex com-
pared to other types of engineering drawings, methods for
their digitisation have received considerably less attention
than those for other engineering drawing types, such as
Piping and Instrumentation Diagrams (P&IDs) [10, 15–17,
19–21]. One reason that construction drawings are more
complex is that they are typically composed of multiple
drawing layers. These organise graphical elements by type
[22], and can be shown overlapping each other. This means
that symbols are typically shown on a highly complex back-
ground. Additionally, these drawings contain a significant
amount of visually similar shapes. Furthermore, they are typ-
ically grayscale and thus, no colour information is available
to help distinguish between components.

This paper presents a novel deep learning framework to
process construction drawings automatically. It should be
noted that engineering diagrams are generally unavailable in
the public domain [11, 14] due to confidentiality reasons.
Therefore, in this experiment, a dataset was obtained from
an industry partner to ensure that the research is relevant to
a real-world scenario. Multiple building systems are repre-
sented, including plumbing and Heating, Ventilation and Air
Conditioning (HVAC). The drawings are very complex and
contain various symbol classes, typically shown on a clut-
tered background, as shown in Fig. 1.

The main contributions of this paper are outlined as fol-
lows:

• A novel framework for the automatic processing of
construction drawings is presented. This automatically
detects symbols for the material takeoff, resulting in
significant time-saving compared to manual drawing
analysis.

• Extensive set of experiments has been carried out using
a large dataset of challenging high-resolution drawings
of different qualities. Various symbol classes were used,
which have high levels of intra-class variability and inter-
class similarity. This is believed to be the first example of
these experiments using complex construction drawings
from industry.

• Two state-of-the-art deep learning models were utilised
for symbol detection in construction drawings. This
allows for a comparative analysis of the performance and

speed between two object detection architecture types,
one-stage and two-stage.

The rest of this paper is structured as follows. Section2
critically discusses the related work in symbol digitisation
in complex engineering drawings with a focus on construc-
tion drawings. Next, the proposed methods are discussed in
Sect. 3. The experiments and results are presented in Sect. 4.
Finally, the conclusion and future direction are provided in
Sect. 5.

2 Related work

Methods to automate engineeringdiagramanalysis havebeen
presented since the 1980s [13, 23]. Most of these methods
were based on traditional image processing approaches [14].
These rely on pre-established rules, which results in weak
generalisation capability [10, 24]. Such approaches struggled
to performwell across the wide range of variations present in
engineering drawings, including image quality [25], object
orientations [14], and overlapping objects [14].

More recently, Convolutional Neural Network (CNN)
based deep learning models have significantly improved
on traditional computer vision methods, including object
detection, segmentation and classification [26]. Significant
improvement has been seen since 2012 when the AlexNet
[27] CNN-based classification model was shown to out-
perform previous methods by a large margin. Since then,
method improvements have been facilitated by algorithm
developments, together with an increase in data and com-
puting power.

Despite this progress, deep learningmethods for engineer-
ing diagram digitisation were only proposed very recently.
Symbol digitisation methods were mostly based on object
detection models, which predict the class and bounding box
of target objects in an image. Most research focussed on one
type of object detector, such asYouOnlyLookOnce (YOLO)
[28] based approaches [11, 15, 24, 29–32] or Faster Region-
based Convolutional Neural Network (Faster R-CNN) [33]
based approaches [2, 6, 34, 35, 55]. Other approaches were
based on Fully Convolutional Network (FCN) [37] segmen-
tation models [38, 39] or graph-based methods [40–42].

Deep learning methods generally showed improvements
compared to traditional approaches, although it is clear from
the published literature that there are remaining challenges
[43]. For instance, due to the lack of real world engineering
drawing datasets in the public domain, much of the exist-
ing research has been carried out using small datasets or
simplified drawings [43]. Furthermore, deep learning mod-
els typically require a large annotated dataset which is very
time-consuming to obtain for these drawings [44]. Another
challenge is that of imbalanced datasets, which results in the
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Fig. 1 Section of an ‘HVAC’
drawing. This is challenging to
digitise for multiple reasons,
including the dense
representation of equipment,
overlapping components, and
complex background

class imbalance problem [45].Additional challenges that still
require further research are evaluation of drawing digitisation
methods and contextualisation [43].

The literature on symbol digitisation in engineering draw-
ings covers a range of drawing types, with a particular focus
on P&IDs [10, 15–17, 19–21]. For instance, Elyan et al. [15]
created a YOLO-based method to detect symbols in P&IDs.
They reported high performance overall with an accuracy of
95%, although the results varied across the symbol classes.
Meanwhile, Gao et al. [16] presented a Faster R-CNN-based
symbol detection method. On a dataset of publicly avail-
able nuclear power plant drawings, they reportedmAPvalues
of 92% and above for three separate groups of symbols. In
another example on P&IDs, Mani et al. [10] created a CNN-
based classification method for fixed size drawing patches.
They obtained promising results for two symbol classes,
however this method may be computationally slow when
scaled up for a larger number of classes.

There is also published research on symbol digitisation in
architectural floor plans [6, 46]. For instance,Rezvanifar et al.
[46] presented a YOLO-based method for symbol detection.
They evaluated the method on a private dataset aswell as the

public Systems Evaluation SYnthetic Documents (SESYD)
dataset. On the latter, they showed that their method out-
performed traditional symbol spotting approaches. In the
same domain, Jakubik et al. [6] presented a human-in-the-
loop approach for the detection and classification of symbols.
They used a Faster R-CNN-based symbol detection method
that was trained using a synthetic dataset created using a data
augmentation approach.

However, there was a lack of research on construction
drawings, as there are only a few recent works that presented
deep learning methods for generating a list of materials from
construction drawings [2, 5]. Joy and Mounsef [2] presented
a Faster R-CNN [33] based method to automate material
takeoff from electrical engineering plans. They used a dataset
of five drawings. Training data was generated using symbols
extracted from the legend and image processing-based data
augmentation. Whilst the method did not require extensive
manual annotation, it relied on a legend being available. Prior
to testing, the background and text strings were removed.
Thismay be particularly important here, as these components
were not included in the testing data.
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Chowdhury and Moon [5] presented a Mask R-CNN [47]
based method to automatically generate the bill of materials
(BoM), which is a list of the required item quantities and
costs, from 2D images of concrete formwork. Mask R-CNN
is an object segmentation model, which predicts pixel-level
object masks rather than bounding boxes. They created 206
drawings from 3D models, which were relatively clean with
few components. On the validation data, an mAP of 98%
was reported. The method showed promising results on the
test drawings, however detailed metrics were not presented.
On an actual construction shop drawing, the increased com-
plexity meant that preprocessing was required to remove
unnecessary elements. The solution relied on the manual
selection of relevant items within a cost database to produce
the BoM.

In a related area, published work discussed automated
quantity takeoff fromBuilding InformationModelling (BIM)
models [1, 48]. BIM has played the leading role in digitis-
ing the construction industry [8], and it concerns the creation
of a 3D model to manage building data. The drawback of
BIM-based takeoff approaches is that considerable time and
resources are needed to create the BIM. Furthermore, errors
in the BIM impact the accuracy of the quantity takeoff [48].

The literature shows that although deep learning has sig-
nificantly improved computer vision methods, there is a lack
of progress in construction drawing digitisation methods.
Deep learning methods for engineering diagram digitisation
were proposed only very recently, and these were primar-
ily focussed on other engineering diagram types [10, 15–17,
19–21]. Moreover, there was a lack of research showing how
different deep learning object detection models performed
on complex real-world construction drawings.

3 Methods

This section discusses themethods used in the proposed sym-
bol detection framework for complex construction drawings.
This includes a discussion of the real-world dataset used for
evaluation purposes.

3.1 Dataset

3.1.1 Overview

A dataset of 198 PDF construction drawings was obtained
from an industrial partner. It contains three unequally repre-
sented types, as there are 92 ‘plumbing’, 103 ‘HVAC’ and 3
‘other’ drawings. To prepare the dataset for the experiment,
the PDFs were converted to high-resolution 14, 042× 9, 934
pixel PNG images at 300 dpi, as shown in Fig. 2.

The diagrams contain numerous symbol classes, 13 of
which were selected for the experiment. These were chosen

as they are required in the takeoff, and are shown in mul-
tiple building systems. The ‘Detail Legend’ and ‘Direction
of Flow’ symbols were also included, as detecting them can
help to determine links between diagrams or flow direction
[44].

The symbols of interest are represented by various shapes,
as shown in Fig. 3. It should be noted that these examples
were cropped from the legend, and are thus displayed on a
white background, unlike typically seen within a diagram.
The symbols are challenging for a model to detect for sev-
eral reasons. Each symbol is only represented by a few lines
or shapes and thus there are only a few features available for a
model to learn from. They are commonly represented in dif-
ferent orientations, with different shading and often overlap
other shapes. Intra-class variability in the graphical notations
was also seen, as shown in Fig. 4. Furthermore, there is high
inter-class similarity, for instance, the shape that represents a
GateValve is also part of theAutomaticControlValve (ACV)
and the Valve and Capped (V&C) Provision.

3.1.2 Data annotation

The diagrams were manually annotated to create a symbol
dataset, which can be a very time-consuming and demanding
task [29, 44, 49]. The process includes drawing bounding
boxes closely around each target symbol. For the purpose
of the experiment, the diagrams were manually annotated
using Sloth 1. This is an open source tool which allows for
object annotation. It should be noted that the annotations are
exported to one output file per diagram. These record the
labelled symbol information, including the class and bound-
ing box coordinates. In total, the symbol dataset consists of
6231 symbols from 13 classes.

3.2 Data exploration and pre-processing

Different equipment items are shown with various frequen-
cies within construction diagrams, therefore the symbol
dataset is highly imbalanced, as shown in Fig. 5. Class imbal-
ance is a major problem in both machine and deep learning
[50–52] and is when algorithms trained on an imbalanced
dataset are biased towards the majority class. It was observed
that the Ball Valve symbol is significantly overrepresented,
as it constitutes 35.3% of the dataset. In contrast, the four
least represented classes each constitute less than 1%.

The problemof small object detectionwas also seen in this
experiment. This is considered a problem due to reasons such
as limited context information and indistinguishable features
[53, 54]. For example, on the COCO dataset [54], the Aver-
age Precision (AP) of YOLOv7 for small objects was lower,
35.2%, compared to that for medium objects, 56.0%, and

1 https://sloth.readthedocs.io/en/latest/.
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Fig. 2 Data preparation steps. The dataset of undigitised construction diagrams was pre-processed by firstly converting the PDF to PNG. Next, the
image files were annotated with the target symbol classes. Finally, the drawing border was removed using a Connected Components algorithm

Fig. 3 Symbol legend

Fig. 4 Examples of intra-class
variability. The symbols in each
group represent the same class,
which are a ACVs, b Ball valves
and c Detail legends

large objects, 66.7% [55]. In this paper the COCO definition
of object size was used. This classifies objects as small if
their area was less than 32 × 32 pixels, medium if between
32 × 32 pixels and 96 × 96 pixels, and large if more than
96 × 96 pixels [56]. Most of the symbols here are small or
medium sized using this criteria.

The diagrams were pre-processed to reduce false posi-
tives, as shown in Fig. 2. This was done by removing the
diagram border, which contains text and no target symbols.
A Connected Component (CC) algorithm was used to locate
the largest CC of white pixels, which was considered to be

the background of the main diagram area. In this calculation,
the pixels were defined as connected to each other if they
had four-way connectivity. An image mask was then applied
to replace the pixels outwith the bounding box of the largest
CC with white pixels.

3.3 Symbol detection

Two state-of-the-art object detection models were used in
the experiment. These are YOLOv7 [55] and Faster R-CNN
[33]. YOLOv7 [55] is a variant from the YOLO series [28,
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Fig. 5 The left image shows the class distribution across the whole symbol dataset. The right image shows the distribution amongst those classes
with fewer than 100 instances in more detail

55, 57–62]. It is a one-stage model, that predicts objects’
locations and classes using a single CNN. It is known for its
fast performance, for instance YOLOv7 had improved speed
and detection accuracy on the COCO dataset [54] compared
with other object detectors in the range 5 FPS to 160 FPS
[55]. Additionally, YOLO also performs well across differ-
ent types of diagrams [15]. Faster R-CNN [33] is known to be
accurate, with state-of-the-art performance on the PASCAL
VisualObject Classes (VOC) benchmarks [63].Whilst Faster
R-CNN [33] improved on the speed of earlier relatedmodels,
Fast R-CNN [33] and R-CNN [64], its separate region pro-
posal stage results in slower speeds compared to one-stage
models.

The construction diagrams are significantly larger com-
pared with the typical image input size for deep learning
object detection models. For example, the diagrams are
14, 042 × 9, 934 pixels whereas the YOLOv7 input size is
640× 640 pixels [55]. Using the whole diagrams as training
images would require considerable computing resources and
therefore, a patch-based approach was used. This involves
splitting high-resolution images into smaller patches [15, 65,
66]. In this experiment, the patch size was set at 640 × 640
pixels. Note that the diagrams cannot be split exactly by the
patch size, and the patches cropped at the edges of each dia-
gram overlap each other. Only the symbols that appeared
completely within a patch were used for training purposes.
Note that the drawings were annotated prior to being split
into patches, therefore these symbols were determined auto-
matically.

Due to the limited size of the dataset, transfer learning
was used. This technique improves a learner by transferring
information from one domain to another [67]. Both models
were pre-trained on a large-scale object detection dataset,
2017 Microsoft Common Objects in Context (COCO) [54].
All model layers were fine-tuned during training.

4 Experiment and results

4.1 Experiment setup

The experiment can be divided into two phases. The first is
the Deep LearningModel Training on Construction Symbols
and second is theMethod Evaluation, as shown in Fig. 6. The
input to the first phase is the pre-processed diagram dataset
that was the output from the Data Preparation phase shown
in Fig. 2.

The pre-processed dataset of 198 diagrams was split into
training, validation and test sets. These contained 168, 15
and 15 diagrams respectively. Each subset contained all three
diagram types and instances of each symbol class. As the
classes were unevenly distributed across the diagrams, there
was a different proportion of each class across the subsets,
as seen in Fig. 5.

Following the patch-based approach described above, the
168 training diagrams were split into 59, 136 patches. Of
these, 1633 contained at least one annotated symbol. Patches
not including symbols of interest were also included in the
training data, in equal ratio to labelled patches. This may
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Fig. 6 Experiment steps. In deep learning model training on construc-
tion symbols, the pre-processed diagram dataset was split into training,
validation and test sets prior to being split into patches. This is followed
bymodel training. InMethod Evaluation, the methodwas tested and the

predictions on individual patches were combined using Non-Maximum
Suppression. Next the predictions were visualised to create the pro-
cessed test diagrams and the predictions were compared to the ground
truth

help to reduce false positives occurring due to similar shapes
in the diagrams. To select the more cluttered patches, these
were randomly sampled from those which contained over
15% black pixels. The 15 validation diagrams were split into
5280 patches, of which 94 were annotated. Again, patches
without symbols of interest were included in equal amounts
to the labelled patches.

YOLOv7 was trained using a batch size of eight as initial
experiments showed improved results compared with larger
batch sizes. The momentum was set to 0.937. To help pre-
vent overfitting,mosaic data augmentation, whichmixes four
images [59]was used on all the training images. The idea is to
show extra symbol contexts to the model, and it also reduces
the requirement for a large mini-batch size [59]. The proba-
bility of a left-right flip was set at 0.5, and an up/down flip
was set at 0.0. The image translation factor was set at± 0.2.

The Faster R-CNN batch size was set at four due to mem-
ory requirements. The momentum was set at 0.9, and the
probability of a horizontal flip was set at 0.5. Following the
original baseline model, a ResNet-50 backbone was used
[33]. Note that as the aim was to compare the methods based
on the two models, the data augmentations used in each
approach were kept as is standard in each implementation.

Each model was trained for 100 epochs which took 2.92
hours for the YOLO-based method, and 40.86 hours for the
Faster R-CNN-based method. Note that the official imple-
mentations were used 2. [68]. The experiments were carried

2 https://github.com/WongKinYiu/yolov7.

out using an NVIDIA Quadro RTX5000 16GB GPU with
256GB RAM.

The methods were evaluated using a test set, which con-
tains 15 drawings split into 19, 995 patches, as seen in Fig. 6.
Here an overlapping patches strategy was used to ensure all
symbols fully appeared within a patch. This means that over-
lapping predictions can occur. Non-Maximum Suppression
(NMS) was used to handle this, as shown in Fig. 7. It should
be noted that the overlap thresholdwas set at 0.3, and the con-
fidence thresholdwas set at 0.005. It isworth pointing out that
the testing took 0.09 hours using the YOLO-based method,
and 2.72 hours using the Faster R-CNN-based method. Note
that this was for the whole test set of 15 drawings. This is
significantly less than the time required for manual draw-
ing analysis, which can take hours of work per drawing and
requires subject matter specialists.

4.2 Evaluationmetrics

The methods were evaluated using multiple metrics, includ-
ing Precision, Recall, and F1-score. The Precision is the ratio
of True Positives to predicted positives (Eq. 1). The Recall is
the ratio of True Positives to the actual positives (Eq. 2). The
F1-score is the harmonic mean of Precision and Recall (Eq.
3). The Intersection Over Union (IOU) defines the overlap
between the predicted and the ground truth bounding boxes
(Eq 4). For a True Positive, the IOU threshold was set at
0.5 in accordance with the PASCAL evaluation metric [69],
and the model confidence threshold was set at 0.25. The lat-
ter setting should ensure an appropriate trade-off between
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Fig. 7 Non-Maximum
Suppression was used to handle
the overlapping predictions.
Initial predicted bounding boxes
are shown in red (left image).
The results following
Non-Maximum Suppression are
shown in green (right image)
(color figure online)

obtaining true positives and reducing false positives.

Precision = True Posi tives

True Posi tives + False Posi tives
(1)

Recall = True Posi tives

True Posi tives + False Negatives
(2)

F1 score = 1
1
2 (

1
Precision + 1

Recall )
(3)

I ntersection Over Union = Area of Overlap

Area of Union
(4)

The method was also evaluated using the mean Average
Precision (mAP) at IOU threshold of 0.5 (mAP@0.5). The
AP of each class, the area under the Precision-Recall curve,
was determined using the all-point interpolationmethod as in
PASCAL VOC 2010 [63]. In addition, the AP@[0.5 : 0.05 :
0.95], APsmall, APmedium and APlarge were reported [54].
An open-source toolkit for object detection metrics created
by Padilla et al. [56] was used to perform this calculation.

4.3 Results

The results were initially evaluated by visual inspection with
help from domain experts in order to understand the model
performance. As shown in Fig. 8, this was facilitated by
drawing bounding boxes around the ground truth in red,
YOLO-based method correct predictions in orange and by
the FasterR-CNN-basedmethod in purple. The incorrect pre-
dictions by the YOLO-based method are shown in dark blue
and those by the Faster R-CNN-based method in light blue.
For in-depth analysis, the model confidence and the IOU
were also shown. This suggested that various symbol classes
were detected well, even with multiple overlapping compo-
nents. It was also observed that where a correct prediction
was recorded by both methods, the difference in predicted
bounding box locations was small and most visible on the
larger symbols, refer to patches a and b in Fig. 8.

The results on the whole dataset were assessed using sev-
eral metrics, as shown in Table 1. The mAP@0.5 of the
YOLO-based method was 79%, whilst that of the Faster
R-CNN-based method was 83%. Out of the 665 symbols,
637 were correctly detected by the YOLO-based method and
636 by the Faster R-CNN-based method, equivalent to an
accuracy of 95.8% and 95.6%, respectively. In terms of the
AP@[0.5 : 0.05 : 0.95], both methods performed equally
with a score of 0.50. The results were also evaluated accord-
ing to symbol size. This shows that both methods perform
better the larger the symbol size is. This is likely due to more
information being present in the larger symbols compared
to the smaller ones. Both methods performed equally on the
medium sized symbols, as shown in Table 1. It is also evi-
dent that the YOLO-based method performs slightly better
on the small symbols than the Faster R-CNN-based method,
with a value of 0.27 compared to 0.19 obtained for APsmall.
Similarly, the YOLO-based method performs slightly better
on the large symbols than the Faster R-CNN-based method,
with the values of APlarge being 0.68 and 0.64 respectively.
These results suggest that although the YOLO-based method
outperforms the Faster R-CNN-basedmethod on certainmet-
rics, both methods have performed well on this challenging
dataset.

Theprecision, recall andF1-scorewere calculated for each
class, as can be seen in Table 2. These results show that both
methods performed well for the detection of various sym-
bol classes. Although class imbalance can strongly effect
performance, other factors also influenced these results. For
instance, the highest F1-scorewas not obtained for themajor-
ity class, the Ball Valve. The recall was high indicating that
most instanceswere detected correctly. This included those in
different orientations, as shown in patches a, c and e in Fig. 8.
However, the precision was lower, which may be due to sev-
eral reasons, including model bias due to class imbalance.
Furthermore, similar shapes were very common, refer to the
incorrect predictions of Ball Valves shown in patches f, h
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Fig. 8 Examples of test patches. To facilitate visual inspection, bound-
ing boxes were shown around the ground truth in red, YOLO-based
method correct predictions in orange and by the Faster R-CNN-based
method in purple. The incorrect predictions by theYOLO-basedmethod

are shown in dark blue and those by the Faster R-CNN-based method
are in light blue. Themodel confidence, c, and the IOUwere also shown
(color figure online)
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Table 1 Method performance on the test set. The highest performing score for each metric is highlighted in bold

Method Accuracy mAP@0.5 AP@[0.5:0.05:0.95] APsmall APmedium APlarge

YOLO-based method 95.8 0.79 0.50 0.27 0.50 0.68

Faster R-CNN-based method 95.6 0.83 0.50 0.19 0.50 0.64

Bold values represent the highest values obtained for each metric

Table 2 Method performance on the test set per class. The highest recall, precision and F1-score for each symbol is highlighted in bold

Class Total No. Train No. Test No. YOLO Faster R-CNN
Recall Precision F1-score Recall Precision F1-score

Ball valve 2201 2088 89 0.99 0.69 0.81 0.97 0.70 0.81

Gate valve 1093 904 95 1.00 0.39 0.56 0.99 0.90 0.94

Direction of flow 668 430 186 0.99 0.94 0.96 0.98 0.89 0.93

CBV 656 577 78 1.00 0.77 0.87 1.00 0.85 0.92

Detail legend 504 414 31 0.97 0.38 0.55 1.00 0.69 0.82

ACV 308 237 55 1.00 0.87 0.93 1.00 0.98 0.99

Pipe down 279 246 21 0.90 0.59 0.71 0.90 0.58 0.71

Capped pipe 279 173 59 0.88 0.78 0.83 0.83 0.72 0.77

Check valve 95 71 16 0.88 0.67 0.76 1.00 0.80 0.89

Pump 61 44 15 1.00 1.00 1.00 1.00 0.58 0.73

V&C provision 47 41 5 0.00 0.00 0.00 0.00 0.00 0.00

Meter 21 10 9 0.78 0.64 0.70 1.00 0.82 0.90

Backflow preventer 19 12 6 0.00 0.00 0.00 0.33 0.22 0.26

Bold values represent the highest values obtained for each metric for each class

and i in Fig. 8. The highest performance by the YOLO-based
method was for the Pump and by the Faster R-CNN-based
method was for the ACV, even given that these were the sixth
and tenth most represented classes respectively. This indi-
cates that the results are impacted by other factors aswell as
class representation, such as similar shapes in the drawings.

The results also show that the lowest performance was
obtained for classes with very few instances. For example,
an F1-score of 0.00 was recorded by both methods for one
class, the V&C Provision, which had only 47 instances.
Although theMeter had fewer instances, 21, the performance
was higher, likely due to the relatively consistent appearance
of this symbol.

It can also be seen in Table 2 that there were higher levels
of recall compared to precision. This was due to false posi-
tives, of which there were 320 by the YOLO-based method
and 154 by the Faster R-CNN-based method. Only a few
of these were as a result of the inter-class similarity. There
was one prediction of a Meter as a Detail Legend by the
YOLO-based method, and one prediction of a Gate Valve
as a Check Valve by the Faster R-CNN-based method. The
other misclassifications between target classes were that all
V&C Provisions were predicted as two separate symbols, the
Gate Valve and Capped Pipe. An example of this is shown
in patch d in Fig. 8. This can be explained as the shapes that

constitute the V&C Provision are essentially a combination
of these two symbols, see Fig. 3.

The majority of the false positives were due to similar
shapes in the background of the drawing. The highest num-
ber of false positives for any symbol, 150, was for the Gate
Valve by the YOLO-based method. This was often due to
similar triangular shapes used to shade parts of the diagram,
as shown in patches f and h in Fig. 8. In contrast, the Faster R-
CNNmethodperformedbetter here andonly predicted 9 false
positives for the Gate Valve. Another noticeable difference
between the methods was in the number of false positives
recorded for theDetail Legend symbol, for which theYOLO-
based method predicted 47 whereas the Faster-RCNN-based
method predicted less at 14. Both methods predicted a simi-
lar number of false positives for the most represented symbol
in the dataset, the Ball Valve, with 39 false positives by the
YOLO-based method and 36 for the Faster R-CNN-based
method. Both of the methods predicted that similar shaped
components in the diagram were Ball Valves, see patch i of
Fig. 8. It should also be pointed out that there were no false
positives from similar shapes in the diagram border area, as
this section of the drawing was removed in the drawing pre-
processing, refer to Fig. 2. Overall, these results show that
both methods have high discriminative power between the
target classes, and that most incorrect predictions result from
the similar shapes that are used throughout the drawing.
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The YOLO-based method required less time for testing
compared to the Faster R-CNN-based method. However,
both methods substantially reduced the time required to pro-
cess a drawing compared to manual analysis. For instance,
using one test drawing as an example, the YOLO-based
method took 0.54minutes, whereas the Faster R-CNN-based
method took 18.17. Note that this time would be comple-
mented by that required for manual review to correct any
errors in the model output, which in this case took an addi-
tional 1.20 minutes. Contrast this with the much longer time
needed formanual analysis of thewhole drawing, which took
a subject matter expert 1.34 hours. These time savings would
be substantial, especially in projects with a large dataset of
complex drawings.

5 Conclusion and future direction

In this paper, we present a deep learning framework for the
automatic processing of construction drawings. This enables
symbol digitisation and can therefore automate tasks such as
material takeoff. Two state-of-the-art object detection mod-
els,YOLOandFasterR-CNN,were utilised.An extensive set
of experiments was carried out using a large dataset of chal-
lenging high-resolution drawings sourced from an industry
partner.

The results show significant time-saving compared with
manual drawing analysis. Although the highest accuracy was
obtained with the YOLO-based method, both methods were
shown to obtain high performance, for both recall and preci-
sion, for a range of symbols. This was obtained even with the
challenges posed by the dataset, such as relatively small sym-
bol size, different orientations and the presence of multiple
overlapping objects. One limitationwas that the performance
was inconsistent across the classes, due to factors including
the class imbalance, similar shapes and intra-class variations
such as size and orientation.

This work could be extended by improving the symbol
detection methods. For instance, further experiments could
assess the impact of various model backbones on the perfor-
mance. Another interesting idea that we aim to investigate is
how segmentationmodels such asMask R-CNN [47] or FCN
[37] would perform in this scenario. As segmentationmodels
predict a pixel-level outline of an object instead of a bound-
ing box, it may alleviate some of the errors that occur as a
result of drawing objects that are located in close proximity
to, or overlap the target object. Additionally, the challenge of
class imbalance could be addressed. One possible direction
is to create synthetic image patches to balance the dataset,
using generative deep learning models such as Generative
Adversarial Networks (GAN).

Future directions of this work also include automatically
processing the entire construction drawing. This involves

methods to digitise all components including the text and
lines. Extending this framework will enable the digital trans-
formation of the whole drawing. This will allow for the
extraction of vast amounts of valuable data, and addition-
ally will substantially reduce the manual effort required to
analyse construction drawings for a wide range of tasks.
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