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Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine
learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based
nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically
modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield
probabilistic output for SVMand facilitate soft decisionmaking. In total four groups of data are used for evaluations, covering sonar,
vehicle, breast cancer, and DNA sequences.The data samples are characterized in terms of Gaussian/non-Gaussian distributed and
balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined
SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions.

1. Introduction

Maximum likelihood classification (MLC) is one of the
most commonly used approaches in signal classification and
identification, which has been successfully applied in a wide
range of engineering applications including classification
for digital amplitude-phase modulations [1], remote sensing
[2], genes selection for tissue classification [3], nonnative
speech recognition [4], chemical analysis in archaeological
applications [5], and speaker recognition [6]. On the other
hand, support vector machines (SVM) have attracted much
increasing attention, which can be found in almost all areas
when prediction and classification of signal are required,
such as scour prediction on grade-control structure [7], fault
diagnosis [8], EEG signal classification [9], and fire detection
[10] as well as road sign detection and recognition [11].

Based on the principles of Bayesian statistics, MLC
provides a parametric approach in decision making where
the model parameters need to be estimated before they
are applied for classification. On the contrary, SVM is a
nonparametric approach, where the theoretic background is

supervised machine learning. Due to the differences of these
two classifiers, their performance appears to be much differ-
ent. Taking the application in remote sensing, for example,
in Pal and Mather [12] and Huang et al. [13], it is found
that SVM outperforms MLC and several other classifiers. In
Waske and Benediktsson [14], SVM produces better results
from SAR images, yet in most cases it generates worse results
than MLC from TM images. In Szuster et al. [15], SVM only
yields slightly better results thanMLC for land cover analysis.
As a result, detailed assessments as on what conditions SVM
outperforms or appears inferior to MLC are worth further
investigation.

Furthermore, there becomes a trend to combine the
principle of MLC, Bayesian theory, with SVM for improved
classification. In Ren [16], Bayesian minimum error clas-
sification is applied to the predicted outputs of SVM for
error-reduced optimal decision making. Similarly, in Vong
et al. [17], Bayesian decision theory is applied in SVM
for imbalance measurement and feature optimization for
improved performance. In Vega et al. [18], Bayesian statis-
tics are combined with SVM for parameter optimization.
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In Hsu et al. [19], Bayesian inference is applied to estimate
the hyperparameters used in SVM learning to speed up the
training process. In Foody [20], relevance support machine
(RVM), a Bayesian extension of SVM, is proposed which
enables an estimate of the posterior probability of class mem-
bership where conventional SVM fail to do so. Consequently,
in-depth analysis of the two classifiers is desirable to discover
their pros and cons in machine learning.

In this paper, analysis and evaluations of SVM and MLC
are emphasized, using data from various applications. Since
the selected data satisfy certain conditions in terms of specific
sample distributions, we aim to find out how the performance
of the classifiers is connected to the particular data distribu-
tions. As a consequence, thework and the results shown in the
paper are valuable for us to understand how these classifiers
work, which can then provide insightful guidance as how to
select and combine them in real applications.

The remaining parts of the paper are organized as follows.
Section 2 introduces the principles of the two classifiers.
Section 3 describes data and methods that have been used,
where experimental results and evaluations are analyzed and
discussed in Section 4. Concluding remarks are given in
Section 5.

2. MLC and SVM Revisited

In this section, the principles of the two classifiers, SVM
and MLC, are discussed. By comparing their theoretic back-
ground and implementation details, the two classifiers are
characterized in terms of their performances during the
training and testing processes.This in turn has motivated our
work in the following sections.

2.1.TheMaximum Likelihood Classifier (MLC). Let x
𝑖
= (𝑥
𝑖,1,

𝑥
𝑖,2, . . . , 𝑥𝑖,𝑁)

𝑇, 𝑖 ∈ [1,𝑀], be a group of N-dimensional
features, derived from 𝑀 observed samples, and 𝑦

𝑖
∈ [1, 𝐶]

denotes the class label associated with x
𝑖
; that is, in total we

have 𝐶 classes denoted as 𝜔
𝑐
, 𝑐 ≥ 2. The basic assumption

of MLC is that for each class of data the feature space
satisfies specified distributions, usually Gaussian, and also
the samples are independent of each other. To this end, the
likelihood (probability) for samples within the kth class, 𝜔
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,

is given as follows:
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For a given sample x
𝑖
, the probability it belongs to class𝜔

𝑐

can be denoted as 𝑝(𝜔
𝑐
| x
𝑖
). The class 𝑐 that x
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to be within is then decided by
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Since 𝑝(x
𝑖
) is a constant in (4) when x
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rewritten as
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Applying logarithm operation to the right side of (5), also
letting 𝑔
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(x) = ln𝑝(x | 𝜔

𝑐
) + ln𝑝(𝜔
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) be the discriminating

function, (5) becomes
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Again we can ignore the constant in (7) and simplify the
discriminating function as
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As can be seen, 𝑔
𝑐
(x) is now a quadratic function

of x depending on three parameters, that is, u
𝑐
, S
𝑐
, and

𝑝(𝜔
𝑐
). When the class 𝑐 is specified, these parameters are

determined; hence the quadratic function only depends on
the class 𝑐 and the input sample x. Also it is worth noting that
the third item 𝜂

𝑐
is actually a constant.

In a particular case when 𝑝(𝜔
𝑐
) is a constant for all 𝑐,

that is, the prior probability that a sample belongs to one of
the classes is equal, ln𝑝(𝜔

𝑐
) in (8) can be ignored; hence the

discriminating function is rewritten as
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where the scalar 1/2 is also ignored as it makes no difference
when (6) is applied for decision making. However, such sim-
plification cannot be made unless we have clear knowledge
about the equal distribution of the samples over the𝐶 classes.

Based on (9), the decision function can be further
simplified if the total number of classes is reduced to two,
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where the two classes are denoted as −1 and 1 and the sign
function is introduced for simplicity:

𝑓MLC (x𝑖) = sign (𝑔MLC (x𝑖))

=
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Moreover, in a special case when S
+
= S
−
= S, the quad-

ratic decision function in (10) becomes a linear one as
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2.2. The Support Vector Machine (SVM). SVMwas originally
developed for the classification of two-class problem. In
Cortes and Vapnik [21], the principles of SVM are compre-
hensively discussed. Let the two classes be denoted as 1 and−1,
similar to the decision function for MLC in (10); the decision
function for linear SVM is given by

𝑦
𝑖
= 𝑓SVM (x

𝑖
) =

{

{

{

1, if 𝑔SVM (x
𝑖
) ≥ 1,

−1, if 𝑔SVM (x
𝑖
) ≤ −1,

𝑔SVM (x
𝑖
) = w𝑇x

𝑖
+ 𝑏,

(12)

where 𝑦
𝑖
denotes the labeled value for the input sample x

𝑖
; w

and 𝑏 are parameters to be determined in the training process.
Note that the decision function in (12) is actually equiva-

lent to the one in (10) if we adjust the scalar for 𝑏, yet (12) is
more feasible as it has increased the decisionmargin between
the two classes from near zero to 2|w|−1. By multiplying 𝑦

𝑖

to both sides of the discriminating function 𝑔, this can be
further simplified as 𝑦

𝑖
𝑔SVM(x𝑖) ≥ 1, that is,

𝑦
𝑖
(w𝑇x
𝑖
+ 𝑏) ≥ 1. (13)

Hence, the optimal hyperplane to separate the training
data with a maximal margin is defined by

w𝑇
𝑜
x + 𝑏
𝑜
= 0, (14)

where w
𝑜
and 𝑏

𝑜
are the determined parameters, and the

maximal distance becomes 2|w
𝑜
|

−1.
To determine this optimal hyperplane, we need to max-

imize 2|w|−1, or equivalently to minimize 2−1|w|2, subject to
∀x
𝑖
, 𝑦
𝑖
(w𝑇x
𝑖
+ 𝑏) ≥ 1. Using the Lagrangian multipliers, this

optimization problem can be solved by
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Eventually, the parameters w
𝑜
and 𝑏
𝑜
are decided as
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For any nonzero 𝜆
𝑖
, the corresponding x

𝑖
is denoted as

one support vector which naturally satisfies 𝑦
𝑖
(w𝑇x
𝑖
+ 𝑏) = 1.

Therefore,w
𝑜
is actually the linear combination of all support

vectors. Also we have ∑𝜆
𝑖
𝑦
𝑖
= 0.

Eventually if we combine (16) with (12), the discrimina-
tion function for any test sample x becomes

𝑔SVM (x) =
𝐿

∑

𝑖=1
𝜆
𝑖
𝑦
𝑖
x𝑇
𝑖
x + 𝑏 (17)

which solely relies on the inner product of the support vector
and the test sample.

For nonlinear problems which are not linearly separable,
the discrimination function is extended as

𝑔SVM (x) =
𝐿
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(18)

where 𝜙 aims tomap the input samples to another space, thus
making them linearly separable.

Another important step is to introduce the kernel trick
to calculate the inner product of mapped samples, that is,
⟨𝜙(x
𝑖
), 𝜙(x)⟩, which avoids the difficulty in determining the

mapping function 𝜙 and also the cost for calculation of the
mapped samples and their interproduct. Several typical ker-
nels including linear, polynomial, and radial basis function
(RBF) are summarized as follows:

𝐾(x
𝑖
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𝑗
) =

{
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2

2𝜎2
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(19)

where optimal values for the associated parameters 𝑝 and 𝜎
are determined automatically during the training process.

Though SVM is initially developed for two-class prob-
lems, it has been extended to deal with multiclass classifi-
cation based on either combination of decision results from
multiple two-class classifications or optimization on multi-
class based learning. Some useful further readings can be
found in [22–24].

2.3. Analysis and Comparisons. MLC and SVM are two
useful tools for classification problems, where both of them
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rely on supervised learning in determining the model and
parameters. However, they are different in several ways as
summarized below.

Firstly, MLC is a parametric approach which has a basic
assumption that the data satisfy Gaussian distribution. On
the other contrary, SVM is a nonparametric approach and
it has no requirement on the prior distribution of the data,
yet various kernels can be empirically selected to deal with
different problems.

Secondly, for MLC the model parameters, 𝜇
𝑐
and S

𝑐
,

can be directly estimated using the training data before they
are applied for testing and prediction. However, SVM relies
on supervised machine learning, in an iterative way, to
determine a large amount of parameters including w

𝑜
, 𝑏
𝑜
, all

nonzero 𝜆
𝑖
, and their corresponding support vectors.

Thirdly, MLC can be straightforward applied to two-class
and multiclass problems, yet additional extension is needed
for SVM to deal with multiclass problem as it is initially
developed for two-class classification.

Finally, a posterior class probabilistic output for the pre-
dicted results can be intuitively generated from MLC, which
is a valuable indicator for classification to show how likely a
sample belongs to a given class. For SVM, however, this is not
an easy task though some extensions have been introduced
to provide such an output based on the predicted value
from SVM. In Platt [25], a posterior class probability 𝑝

𝑖
is

estimated by a sigmoid function as follows:

𝑝
𝑖
= 𝑃 (𝑦= 1 | x

𝑖
) ≈

1
1 + exp (𝐴𝑔SVM (x

𝑖
) + 𝐵)

. (20)

The parameters 𝐴 and 𝐵 are determined by solving a
regularized maximum likelihood problem as follows:
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))) ,
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{
{
{

{
{
{

{

(1 + 𝑁1)

(2 + 𝑁1)
, if 𝑦

𝑖
= 1,

1
(2 + 𝑁

−1)
, if 𝑦

𝑖
= −1,

(21)

where 𝑁1 and 𝑁
−1 denote the number of support vectors

labeled in classes 1 and −1, respectively.
In addition, in Lin et al. [26] Platt’s approach is further

improved to avoid any numerical difficulty, that is, overflow
or underflow, in determining 𝑝

𝑖
in case 𝐸

𝑖
= 𝐴𝑔SVM(x𝑖) +𝐵 is

either too large or too small:

𝑝
𝑖
=

{

{

{

(1 + 𝑒−𝐸𝑖)
−1

, if 𝐸
𝑖
≥ 0,

𝑒

𝐸
𝑖
(1 + 𝑒𝐸𝑖)

−1
, otherwise.

(22)

Although there are significant differences between SVM
and MLC, the probabilistic model above has uncovered the
connection between these two classifiers. Actually, in Franc
et al. [27] MLC and SVM are found to be equivalent to each
other in linear cases, and this can also be convinced by similar
decision functions in (10) and (12).

3. Data and Methods

In this paper, analysis and evaluations of SVM and MLC are
emphasized, using data from various applications. Since the
selected data satisfy certain conditions in terms of specific
sample distributions, we aim to find out how the performance
of the classifiers is connected to the particular data distribu-
tions. As a consequence, thework and the results shown in the
paper are valuable for us to understand how these classifiers
work, which can then provide insightful guidance as how to
select and combine them in real applications.

3.1. The Datasets. In our experiments, four different datasets,
SamplesNew, svmguide3, sonar, and splice, are used. Among
these four datasets, SamplesNew is a dataset of suspi-
cious microclassification clusters extracted from [16] and
svmguide3 is a demo dataset of practical SVM guide [28],
whilst sonar and splice datasets come from the UCI reposi-
tory of machine learning databases [29]. Actually, two prin-
ciples are applied in selecting these datasets: the first is how
balanced the samples are distributed over two classes, and
the second is whether the feature distributions are Gaussian-
alike. As can be seen, the first two datasets are severely
imbalanced, especially the first one, as there are far more data
samples in one class than those in another class. On the other
hand, the last two datasets are quite balanced. Regarding
feature distributions, SamplesNew and svmguide3 are appar-
ently non-Gaussian distributed, yet the other two, sonar and
splice, show approximately Gaussian characteristics when the
variables are separately observed.This is also validated by the
determined Pearson’s moment coefficient of skewness below
[30], where 𝜇

𝑖
and 𝜎

𝑖
are the mean and standard deviation

for the 𝑖th dimension of the dataset and 𝐸(⋅) refers to
mathematical expectation. When the skewness coefficients
are determined for each data dimension, the maximum, the
minimum, and the average skewness coefficients are obtained
and shown in Table 1 for comparisons:

𝑆
𝑖
=

𝐸 (𝑥
𝑖
− 𝜇
𝑖
)

3

𝜎

3
𝑖

. (23)

3.2. The Approach. In our approach, a combined classifier
using SVM andMLC is applied, which contains the following
three stages. In Stage 1, SVM is used for initial training
and classification. For the correctly classified results in SVM,
these are employed in Stage 2, where MLC is applied for
probability-based modeling. The probability-based models
are then utilized in Stage 3 for improved decisionmaking and
better classification. Details of these three stages are discussed
as follows.

Stage 1 (SVM for initial training and classification). The open
source library libSVM [28] is used for initial training and
classification of the aforementioned four datasets, and both
the linear and the Gaussian radial basis (RBF) kernels are
tested. For each group of datasets, all the data are normalized
to [−1, 1] before SVM is applied. Through 5-fold cross
validation, the best group of parameters, including the cost
and the gamma value, are optimally determined. Eventually,
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Table 1: Four datasets used in our experiments.

Dataset Features Balance status Distribution of feature values Number of samples (class 0/class 1) Skewness coefficients
Max Min Mean

SamplesNew 39 Unbalanced Non-Gaussian Approx. 748 (115/633) 7.577 −3.063 2.343
svmguide3 21 Unbalanced Non-Gaussian Approx. 1284 (947/337) 10.074 −4.653 2.181
Sonar 31 Balanced Approx. Gaussian 209 (97/102) 1.123 −1.019 0.214
Splice 60 Balanced Approx. Gaussian 1269 (653/616) 0.672 −0.490 −0.016

70
75
80
85
90
95

SampleNew Sonar Splice svmguide3Tr
ai

ni
ng

 ac
cu

ra
cy

 (%
)

80% SVM
80% SVM + MLC
65% SVM

65% SVM + MLC
50% SVM
50% SVM + MLC

(a)

65
68
71
74
77
80
83
86
89

Te
sti

ng
 ac

cu
ra

cy
 (%

)

SampleNew Sonar Splice svmguide3

80% SVM
80% SVM + MLC
65% SVM

65% SVM + MLC
50% SVM
50% SVM + MLC

(b)

Figure 1: Comparing training (a) and testing results (b) using linear SVM and the combined classifier for the four datasets under three
different training ratios.

the optimal parameters are used for classification of our
datasets.

In our experiments, the training ratios are set at three
different levels, that is, 80%, 65%, and 50%. Basically, there
is no overlap between training data and testing data. At a
given training ratio, the training data is randomly selected
and repeated five times, which leads to 5 groups of test results
generated. Finally, the average performance over these five
experiments is used for comparisons.

Stage 2 (using MLC for probability-based modeling). For
those correctly classified samples, which lie in two classes,
that is, class 0 and class 1, they are taken to decide two
probability-based models, in a way as discussed in MLC. In
other words, for samples correctly classified in class 0, they
are used to determine themean vector and the corresponding
covariance matrix within class 0. On the other hand, samples
which are correctly classified in class 1 are used to determine
the mean vector and the corresponding covariance matrix
within class 1. Note that not all samples in class 0 or class 1 are
used in calculating the related MLC models, as those which
cannot be correctly classified by SVM are treated as outliers
and ignored in MLC modeling for robustness.

After MLC modeling, for each sample x, the associated
likelihoods that it belongs to the two classes are recalculated
and denoted as 𝑝0(x) and 𝑝1(x). As a result, the decision for
classification is simplified as

𝑓MLC (x) =
{

{

{

1, if 𝑝1 (x) − 𝑝0 (x) > 𝜏,

0, otherwise,
(24)

where 𝜏 is a threshold to be optimally determined to generate
the best classified results. Please note that the likelihoods (or
probability values) here can also be taken as a probabilistic
output of the SVM.

Stage 3 (improved classification). With the estimated MLC
models and the optimal threshold 𝜏, all samples are then
rechecked for improved classification, using (23) and the
determined likelihoods 𝑝0(x) and 𝑝1(x), accordingly. Inter-
esting results on these four datasets are given and analyzed in
detail in the next section.

4. Results and Evaluations

For the four datasets discussed in Section 3, the experimental
results are reported and analyzed in this section. Firstly,
we discuss results from a combined classifier of MLC and
a linear SVM. Then, results from MLC and RBF based
SVM are compared. In addition, how different rebalancing
strategies affect the performance of unbalanced datasets is
also discussed.

4.1. Results from a Linear SVM and the MLC. In this group
of experiments, a combined classifier using a linear SVM and
the MLC is employed, and the relevant results are presented
in Figure 1. In Figure 1, we plot the classification rate as the
prediction accuracy with the change of training ratio, that is,
the percentage of data used for training. Three training
ratios, 80%, 65%, and 50%, are used. Please note that,
due to degradation of the covariance matrix, the MLC
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Figure 2: Comparing training (a) and testing results (b) using RBF-kernelled SVM and the combined classifier for the four datasets under
three different training ratios.

cannot be used to improve the results for the SampleNew
dataset. Consequently, the results from the SVM are taken
as the output of the combined classifier. For the other
three datasets, the results are summarized and compared as
follows.

Firstly, for the three datasets, sonar, splice, and
svmguide3, apparently we can see that the combined solution
yield significantly improved results in training, especially for
the first two datasets. This demonstrates that the combined
classifier can indeed achieve more accurate modeling of
the datasets. In addition, possibly due to overfitting, the
experimental results show that a larger training ratio does
not necessarily improve the training performance.

However, the testing results are somehow different. For
the sonar dataset, which is balanced and appears nearly
Gaussian distributed, the combined classifier yields much
improved results in testing, especially when the training
ratios are 80% and 50%. Such results are not surprising as the
MLC is ideal to model Gaussian-alike distributed datasets.
For the splice dataset, which is balanced and also nearly
Gaussian distributed, slightly improved testing results are also
produced by the combined classifier at training ratios at 80%
and 50%, but the testing results at the training ratio of 65%
become slightly worse than those from the SVM. For the
more challenging svmguide3 dataset, which is unbalanced
and non-Gaussian distributed, although the combined clas-
sifier yields improved testing results at the training ratio of
50%, the results at the other two training ratios, perhaps
due to overfitting, seem inferior to the results from the
SVM. Actually, in nature the MLC has difficulty in modeling
non-Gaussian distributed datasets, and this explains where
the combined classifier makes less contribution to these
datasets.

4.2. Results from a RBF-Kernelled SVM and the MLC. In this
group of experiments, the RBF kernel is used for the SVM
in the combined classifier as it is popularly used in various
classification problems [16, 22]. For the four datasets we used,
again the training results and the testing results under three
different training ratios are summarized and given in Figure 2
for comparisons.

First of all, RBF-kernelled SVM (R-SVM) produces much
improved results compared to those using linear SVM, espe-
cially for the training results. In fact, the combined classifier
generates better results than the SVM only in the SampleNew
dataset, slightly worse results in sonar and splice datasets, and
much degraded results in the svmguide3 dataset.

Regarding testing results, although the combined clas-
sifier generates comparable or slightly worse results in the
SampleNewdataset and the svmguide3 dataset, R-SVMyields
better results in splice dataset and sonar dataset. The reason
behind that is that results from the nonlinear kernel in R-
SVM cannot be directly refined using MLC. Also, occa-
sionally the results from the combined classifier seem more
sensitive to the training ratio, especially for the splice dataset,
which is perhaps due to the threshold to be determinedwhich
depends more or less on the training data used.

4.3. Testing on Rebalanced Data. In this group of experi-
ments, using the challenging dataset svmguide3, how various
strategies to rebalance the unbalanced data may affect the
classification performance is analyzed. For the unbalanced
dataset, samples from one class may be overrepresented
compared to those in another class. As a result, we can either
oversample the data of minority or subsample the data of
majority to balance the number of samples represented in the
training set for better modeling of the data. On the other
hand, the test samples remain to be unbalanced as it is
assumed we have no label information for the test samples.

For oversampling, data samples which are in minority
class are randomly duplicated and inserted into the dataset.
The replication of data items continues until the entire
training set becomes balanced. Different from oversampling,
subsampling randomly discards samples from the majority
class until the training set achieves balanced. Since the per-
formancemay be affected by samples duplicated or discarded,
this process is repeated for over 10 times and the average
performance is then recorded for comparisons.

Using three different training ratios at 80%, 65%, and
50%, results of balanced learning for the svmguide3 dataset
are summarized in Figure 3. Under a given training ratio,
both training results and testing results are presented in
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Figure 3: Results of balanced learning for the svmguide3 dataset, using linear SVM (a) and R-SVM (b).

groups, where each group contains results from 6 different
experimental scenarios. In addition, the results from liner
SVM and RBF-kernelled SVM are shown for comparisons as
well.

When linear SVM is used, as shown in the first row
of Figure 3, surprisingly, the results from unbalanced data
are much better than those from balanced data. Also in
majority cases, the combined classifier outperforms the SVM
classifier in both training and testing, even with balanced
learning introduced. The testing results from SVM for bal-
anced learning via oversampling seem better than those
from subsampling, yet it seems that the combined classifier
produces better results from subsampling based balanced
learning.

For RBF-kernelled SVM, apparently, the training results
from SVM via oversampling are among the best, though
the testing results are inferior to those from unbalanced
training. This indicates that the training process has been
overfitting in this context. In fact, testing results from the
combined classifier are slightly worse than those from the
SVMclassifier, that is, somedegradation. Again, this is caused
by the inconsistency of the nonlinear SVM and the linear
nature of the MLC.

5. Conclusions

SVM and MLC are two typical classifiers commonly used in
many engineering applications. Although there is a trend to
combine MLC with SVM to provide a probabilistic output
for SVM, under what conditions the combined classifier may
work effectively needs to be explored. In this paper, com-
prehensive results are demonstrated to answer the question
above, using four different datasets. First of all, it is found
that the combined classifier works under certain constraints,
such as a linear SVM, balanced dataset, and near Gaussian-
distributed data. When a RBF-kernelled SVM is used, the

combined classifier may produce degraded results due to
the inconsistency between the nonlinear kernel in SVM
and linear nature of MLC. In addition, for a challenging
dataset, balanced learningmay improve the results of training
but not necessarily the testing results. The reason behind
that is that the combined SVM-MLC classifier works on
three assumptions, that is, Gaussian distributed, interclass
separable, and model consistency between training data and
testing data. Although the third assumption is true in most
cases, the precondition of separableGaussian distributed data
is rather a strict constraint for data and is rarely satisfied. As a
result, this introduces a fundamental difficulty in combining
these two classifiers. However, under certain circumstances,
the combined classifier indeed can significantly improve the
classification performance. It is worth noting that when
more groups are introduced in modelling a given dataset the
efficacy can be severely degraded due to the inconsistency
of statistical distribution between groups. Future work will
focus on combining other classifiers such as neural network
for applications in medical imaging [31–33] and recognition
and classification tasks [34, 35].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] W. Wei and J. M. Mendel, “Maximum-likelihood classification
for digital amplitude-phasemodulations,” IEEE Transactions on
Communications, vol. 48, no. 2, pp. 189–193, 2000.

[2] K. Liu, W. Shi, and H. Zhang, “A fuzzy topology-based maxi-
mum likelihood classification,” ISPRS Journal of Photogramme-
try and Remote Sensing, vol. 66, no. 1, pp. 103–114, 2011.



8 Computational Intelligence and Neuroscience

[3] H.-L. Huang, C.-C. Lee, and S.-Y. Ho, “Selecting a minimal
number of relevant genes from microarray data to design
accurate tissue classifiers,” BioSystems, vol. 90, no. 1, pp. 78–86,
2007.

[4] X. He and Y. Zhao, “Prior knowledge guided maximum
expected likelihood based model selection and adaptation for
nonnative speech recognition,” Computer Speech and Language,
vol. 21, no. 2, pp. 247–265, 2007.

[5] M. Hall and S. Minyaev, “Chemical analyses of Xiong-nu
pottery: a preliminary study of exchange and trade on the inner
Asian steepes,” Journal of Archaeological Science, vol. 29, no. 2,
pp. 135–144, 2002.

[6] Q. Y. Hong and S. Kwong, “A genetic classification method
for speaker recognition,” Engineering Applications of Artificial
Intelligence, vol. 18, no. 1, pp. 13–19, 2005.

[7] A. Goel and M. Pal, “Application of support vector machines
in scour prediction on grade-control structures,” Engineering
Applications of Artificial Intelligence, vol. 22, no. 2, pp. 216–223,
2009.
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