
KABIRI, R., BAI V., R. and CHAN, A. 2013. Regional precipitation scenarios using a spatial statistical downscaling 
approach for Klang watershed, Malaysia. Journal of environmental research and development [online], 8(1), pages 

126-134. Available from: https://tinyurl.com/jerad-8-1-126 

 
 
 
 

This document was downloaded from 
https://openair.rgu.ac.uk 

Regional precipitation scenarios using a spatial 
statistical downscaling approach for Klang 

watershed, Malaysia. 

KABIRI, R., BAI V., R. and CHAN, A. 

2013 

https://tinyurl.com/jerad-8-1-126


J. Environ. Res. Develop. 
Journal of Environmental Research And Development             Vol. 8 No. 1, July-September 2013 

126 
 

REGIONAL PRECIPITATION SCENARIOS USING A SPA-
TIAL STATISTICAL DOWNSCALING APPROACH FOR 

KLANG WATERSHED, MALAYSIA 
Reza Kabiri*, Ramani Bai V. and Andy Chan 

Department of Civil Engineering, Faculty of Engineering, University of Nottingham, Malaysia 
Campus (MALAYSIA) 

 

Received April 05, 2013                                                            Accepted September 15, 2013 

ABSTRACT 
Climate change is a consequence of changing in climate on environment over the worldwide. 
Multi rain gauge stations have been selected to make a spatial downscaling. SDSM uses a multi-
regression method to link large scale climate variables as provided by Global Climate Models 
(GCMs) simulations with daily climatic data at local site using the SDSM.  The aim of study is 
to assess the impact of climate changes on the future precipitation for three timeslices 2020’s, 
2050’s and 2080’s under A2 IPCC scenario. To estimate rainfall trend over Klang catchment it 
was attempted to establish a spatial rainfall analysis of the 10 selected rainfall stations using 
Geo-statistical function in GIS. The watershed seems to experience increased rainfall towards 
the end of the century. However, the analysis indicates that there will likely be a negative trend 
of mean precipitation in 2020s and with no difference in 2050s. The precipitation experiences a 
mean annual decrease amount by 7%, 0.6% and 0.9 % for A2 scenario in 2020s, 2050s 
respectively and an increase by 12.4% in 2080s. It can be concluded which days with heavy 
precipitation will occur more frequently causing a higher frequency of high river flow events. 
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INTRODUCTION 
Climate is one of the most important 
components in the physical environment and 
can reflect the statistical characterizations of the 
average weather over a period of time. Then any 
changes in the mean or the variability of its 
properties throughout the longtime can be 
defined as climate change. Intergovernmental 
Panel on Climate Change, IPCC,1 defines 
climate change as a change of climate which is 
attributed directly or indirectly to human 
activity that alters the composition of the global 
atmosphere and which is in addition to natural 
climate variability observed over comparable 
time periods.  Many investigations have been 
conducted to estimate the variability in 
precipitation considering the  climate change 
impacts for demonstration of the probability of 
extreme precipitation in the future.2-6 Malaysia 
situated in equatorial region which is considered 
as sensitive region by IPCC.   It has been facing 
many flooding events which are originated by 
convectional    storms   causing   intensive    and  

localized rainfall.  The watershed has been 
facing often flash floods rising out of an intense 
rainfall in a short time.   

AIMS AND OBJECTIVES 
The study aims to demonstrate the rainfall 
pattern based on the climate change scenarios 
in the future. It has been attempted to evaluate 
spatially the impact of climate changes on the 
future precipitation for three time slices 
2020’s, 2050’s and 2080’s. The simulation of 
climate change model using A2 scenario as the 
worsen IPCC scenario was run to project the 
mean and maximum precipitation of in the 
Upper Klang watershed, Malaysia. 

METHODOLOGY 
Study area 
Catchment description  
Klang watershed locates on the west coast of 
Peninsular Malaysia. Klang is situated in Kuala 
Lumpur, Selangor province in Malaysia. The 
region experiences heavy precipitation due to 
located  in  an equatorial zone particularly during  *Author for correspondence 
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the Northeast and Southwest monsoon. The 
Northeast monsoon is strengthened by pressure 
surge from South China Sea. To estimate rainfall 
trend over Klang catchment it was attempted to 

establish a spatial rainfall analysis of the 10 
selected rainfall stations using GIS system. The 
Fig.1 shows the selected rainfall stations over the 
scope of study. 

 

Fig. 1 :  Location of the rainfall and river flow stations used in Klang watershed, Malaysia 

Data used in SDSM 
Predictand data 
Predictand data includes rainfall gauge stations 
in Klang. A gap of data may affect on SDSM 
results and it is important to run statistical 
downscaling with a reliable results and 
minimum uncertainty. Then 10 rainfall stations 
were selected based on high quality with no 
gap or a minimum of daily time series which 
spatially distributed in the scope of the study 
covering the whole of watershed.  
Large scale predictor NCEP/NCAR Re-
analysis data 
NCEP is a joint product with the National Center 
for Atmospheric Research (NCAR) involves all 
the gridded predictor variables to use in 
calibration and validation in SDSM. The 
horizontal grid resolution in NCEP atmospheric 
predictors is 2.5°, 2.5°. NCEP/NCAR provided a 
40-year record of global analysis of atmospheric 
predictors. The 26 predictor variables are 
produced by state-of-art assimilation of all 
available observed weather data into a global 
climate forecasting model that produces 
interpolated grid output of many weather 
variables. The data can be obtained from 
httt://www.cics.uvic.ca/ scenarios/index.cgi.  
HadCM3 model 
Hadley Centre Third Generation (HadCM3) 
Model was used as the GCM model downscaling 
which is a couple oceanic - atmospheric general 
circulation     model.   Hadley   Centre    Coupled  

Model, HadCM3, is a coupled Atmosphere- 
Ocean  General Circulation Model  (AOGCM). 
It composed of the atmospheric model, 
HadAM3, and the ocean model, HadOM3. The 
model was developed for the whole of the world. 
The high quality of simulation of current 
climate using HadCM3 model, made it one of 
the most efficient and reliable model in climate 
change studies. It still ranks highly compared 
to other models in this respect.7  
Statistical Down Scaling Model (SDSM) 
Statistical Down-Scaling Model (SDSM) was 
developed by Wilby and Dawson8 was used to 
construct climate change scenarios for the 
catchment of Klang in Malaysia. Downscaling is 
a technique of changing in climate data 
resolution of a coarse resolution into a fine 
resolution.  SDSM as a statistical tool was 
adopted due to several advantages such as low 
cost and user friendly of using over dynamical 
methods.  There are many studies which used of 
SDMS in climate change impact assessments.9-11 
Regression method establishes a linear or non-
linear regression between predictands and 
predictors. Therefore, this method is highly 
depends on the empirical statistical relationships 
was made. The main advantage of it is simplicity 
and less computationally demanding of running 
the   regression statistical method. However it is 
limited to the locations where good regression 
results could be found.  
Selection of predictor variables is the most 
important  steps  in  the   statistical   downscaling  
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processes because it largely affects the character 
of the generated scenarios. The predictor 
variables were selected based on the criteria such 
as physically related to the predict and, produce 
the highest explained variance (r2) and the lowest 
Standard Error (SE). Obviously, the high 
correlation values indicate a strong relationship 
of two data series (predictand and predictors) of 
all the twelve months. The correlation analysis is 
carried out to screen all the 26 predictor variables 
(NCEP Re-Analysis) for predictand data.  A 
monthly regression of the relationship is 
constructed. A correlation matrix and explained 
variance are the outputs of the monthly 
regression. To find the most correlated predictor 
variables with the predictand the Significance 
Level of p<0.05 (5%) is defined to test the 
significance of predictor–predictand correlations. 
Then, the values of less than significance level 
indicate the high correlation of data. 
Generally, Statistical downscaling implements 
a quantitative relationship between large scale 
atmospheric variable (predictors) and local 
surface variable (predictands). In its most 
general form the downscaling model is 
 ܴ௧ =  ௫௧ for T≤ t                          (1)ܨ          ௫௧ܨ 
Where, ܜ܀: the local scale predictand at single 
or multiple sites at time t, XT: the predictor 
data of large- scale atmospheric variables, and 
F:  the techniques used to quantify the 
relationship between two disparate spatial 
scales.  
The conditional method in precipitation 
downscaling consists of two steps: the first 
step is the probability of occurrence and the 
second is to estimate the amount of 
climatologic parameters. Probability of 
precipitation is modeled by 
ω୧ = α୭ + ∑ α୨μ୧

୨୬
୨ୀଵ                                       (2) 

Where, ωi is the conditional probability of 
precipitation occurrence on day i, μi are the 
normalized predictors. Wet/dry spell length are 
estimated stochastically by comparing ωi with 
the output of a linear random-number 
generator, ri, the precipitation occurs, (ωi ≤ ri). 
The predictand (precipitation) amount at the 
site on the large-scale atmospheric circulation 
is modeled by 
Z୧ = β୭ + ∑ β୨μ୧

୨୬
୨ୀଵ +  (3)                               ߝ 

Where Z୧ is the z-score for day t, β୨ are 
estimated regression coefficients for each 
month, and ε is a normally distributed 
stochastic error term, and 
 Z୲  = ϕିଵ[ܨ (ݕ௜)]                                         (4) 
Where ϕିଵis the normal cumulative 
distribution function, ܨ (ݕ௜) is the empirical 
distribution function of ݕ௜, the daily 
precipitation amounts. 
Spatial mapping of downscaled precipita-
tion  
The interpolation processes employed the 
Inverse Distance Weighting (IDW) method in 
GIS to estimate spatial mean of precipitation as 
the downscaled precipitation data of 
distributed rain gauges in Upper Klang and 
also long time series used. IDW, developed by 
U.S. National Weather Service in 1972, is 
based on the distance weighting. Many studies 
have been used this method for a long time 
precipitation.12-14 The amount of rainfall at the 
non-sample location is then estimated by 
interpolation with IDW. The IDW formula is 
given below: 

ܘ܀   =  ∑ ( ܑ܌
షહ

∑ ܑ܌
షહܖ

ܑస૚

ܖ
ܑୀ૚              (5)                               ܑ܀(

Where, R୮is the unknown rainfall data (mm), 
R୧ is the rainfall value at the known location 
(mm), di is the distance from each Rainfall 
Station to unknown site, n is the number of 
rainfall gauge station and α is the coefficient 
value which is assumed equal to 2.15-18 

RESULTS AND DISCUSSION 
To set up the statistical downscaling, the value 
of 0.3 mm/day was used as threshold value in 
precipitation data specifying the threshold 
value is useful to trace the rainy days in 
calibration and validation in SDSM. And also, 
bias correction to value of 1was selected to 
demonstrate that the process will be run 
without any bias correction. The bias 
correction is able to moderate for any tendency 
to over or underestimate the mean of 
conditional processes by the downscaling 
model (Table 1). 
Selection of predictors 
A multiple linear regression equation is 
constructed via an optimization algorithm 
(dual  simplex/ordinary  least squares) between  
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predictands and the predictors which are 
determined through the screening variables 
step. Screening variables in SDSM shows a 
linear  regression  between  gridded predictors 
and predictands which is the most significant 
phase to the statistical downscaling method to 
choose appropriate downscaling predictor 
variables which largely affects on the 
generated scenarios. SDSM generates a 
correlation matrix and explained variance 
reveals the correlations between the predictand  

and predictors.  The predictors are the high 
correlated with the predict and (p<5%) are 
chosen for the future processes. The selected 
large scale predictors for all the local 
predictands are listed in Table 2. For 
precipitation, mean sea level pressure, 850 hPa 
Geopotential height, 500 hPa Geopotential 
height, Near surface relative humidity, Surface 
specific humidity and Mean temperature at 2m 
were chosen as the predictors provide a good 
correlation to the rainfall gauge stations. 

Table 1 : The climatological stations used for the downscaling in Klang watershed, Malaysia 

Id Station name Station 
no. 

Longitude 
(degree) 

Latitude 
(degree) 

Period 
(year) 

1 Taman maluri 3116005 101.65 3.2 1977-2001 

2 Edinburgh 3116006 101.63 3.18 1977-2001 

3 Pusat penyelidekan 3117070 101.75 3.15 1972-2001 

4 Pemasokan ampang 3118069 101.79 3.16 1972-2001 

5 Kg. Sg. Tua 3216001 101.69 3.27 1973-2001 

6 Ibu bekalan km 3217001 101.73 3.27 1975-2001 

7 Empangan genting klang 3217002 101.75 3.23 1975-2001 

8 Ibu bekalan km 3217003 101.71 3.24 1975-2001 

9 Kg.kuala sleh 3217004 101.77 3.26 1975-2001 

10 Genting sempah 3317004 101.77 3.37 1975-2001 

Table 2 : Large scale predictor variables selected for predicting daily precipitation 

        Predictands     
 
Predictors 

ncep- 
mslpas 

ncep- 
mslpas 

ncep- 
mslpas 

ncep- 
mslpas 

ncep- 
mslpas 

ncep- 
mslpas 

3116005 * *    * 
3116006 * *  *  * 
3117070 * * * * * * 
3118069 * * * * * * 
3217001 * * * * * * 
3216001 * * * * * * 
3217002 *  * * *  
3217003 * * * *   
3217004  *  * * * 
3317004 *  * * * * 
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Model calibration and validation 
SDSM presents two kinds of model 
calibration based on the nature of climate 
data which are categorized into conditional 
and unconditional processes. A conditional 
process is defined for the precipitation as a 
dependency on the regional scale predictors. 
There  is an indirect link is assumed between 
them to predictors. Whereas an 
unconditional process can be established like 
the temperature data as a direct link to the 
predictors is assumed. Therefore, in 
conditional process some more local 
parameters of precipitation would estimate 

such as wet/dry-day occurrence. In order to 
run the calibration in SDSM, the NCEP-Re-
analysis data set is used in compliance with 
the specified year period for each predictand 
(Table 3) to identify the empirical linear 
regression of the large scale predictors with 
the local sites. The historical data of 
predictands are split in two parts, which the 
first part is used for calibration and the 
remaining of the data is used for validation 
as an independent dataset. The best 
performance of the calibration results is 
determined based on higher correlation and 
lowest standard errors for every month.  

Table 3 : The year period used for calibration and validation for downscaling in SDSM 

Id Station name Station no. Period 
(year) 

Calibra 
ted 

period 
(year) 

Validated 
period 
(year) 

1 Taman maluri 3116005 1977-
2001 

1977-
1990 

1991-
2001 

2 Edinburgh 3116006 1977-
2001 

1977-
1990 

1991-
2001 

3 Pusat penyelidekan 3117070 1972-
2001 

1972-
1990 

1991-
2001 

4 Pemasokan ampang 3118069 1972-
2001 

1972-
1990 

1991-
2001 

5 Kg. Sg. Tua 3216001 1973-
2001 

1973-
1990 

1991-
2001 

6 Ibu bekalan km 3217001 1975-
2001 

1975-
1990 

1991-
2001 

7 Empangan genting 
kelang 3217002 1975-

2001 
1975-
1990 

1991-
2001 

8 Ibu bekalan km 3217003 1975-
2001 

1975-
1990 

1991-
2001 

9 Kg.kuala sleh 3217004 1975-
2001 

1975-
1990 

1991-
2001 

10 Genting sempah 3317004 1975-
2001 

1975-
1990 

1991-
2001 

Table 3 shows the calibration and validation 
period lengths for the variety of predictands 
used in SDSM. The results reveal that the 
calibration can preserve the basic statistical 
properties and there in no significant varies of 
mean and variance of observed and calibrated 
precipitation.  To  evaluate      the     validation    

outputs the precipitation parameters as 
conditional variable, Dry spell and Wet spell 
length, of observed and validated were compa-
red. The results illustrate that the model run is 
satisfactory validated and it can be seen that there 
is a remarkable skill of simulation data in 
compare with observed (Table 4 and Table 5).  
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Table 4 :  R-Square of the calibration modelled for the downscaled rainfall,stations 

Predictand variables Mean 
(mm) 

Maximum 
(mm) 

Variance 
(mm) 

3116006  0.966 0.689 0.802 
3117070  0.884 0.121 0.907 
3118069  0.968 0.236 0.992 
3216001  0.99 0.12 0.993 
3217001 0.998 0.114 0.918 
3217002 0.996 0.78 0.914 
3217003 0.96 0.232 0.814 
3217004 0.92 0.632 0.853 
3317004 0.99 0.99 0.892 

Table 5 : Correlation of the validation modelled for the downscaled rainfall stations 

 Predictand 
Mean Maximum Variance 

(mm:precipitation)  

Dry 
Spell 
(day) 

Wet 
Spell 
(day) mm: precipitation  

3116005 0.47 0.27 0.62 0.65 0.41 
3116006 0.49 0.22 0.35 0.67 0.72 
3117070 0.87 0.54 0.72 0.78 0.69 
3118069 0.50 0.30 0.62 0.53 0.44 
3216001 0.68 0.16 0.05 0.64 0.48 
3217001 0.51 0.32 0.40 0.82 0.54 
3217002 0.20 0.11 0.40 0.75 0.56 
3217003 0.80 0.45 0.82 - 0.19 
3217004 0.72 0.35 0.43 0.51 0.67 
3317004 0.33 0.14 0.10 0.46 0.75 

Spatial analysis of downscaled rainfall 
stations to generate an average and 
maximum precipitation for the entire Klang 
watershed, Malaysia 
The scenario generator in SDSM produces 
ensembles of synthetic daily weather series for 
the current and future climate using NCEP re-
analysis and GCM model.  The simulation of 
HadCM3-GCM model using A2 scenario was 
run in SDSM to project the trend of future 
climate change variables in local scale.  To 
evaluate the future climate change, the long time 
period of the projection (to 2100) is divided to 
three parts (2020’s, 2050’s and 2080’s) to 
compare to the observed precipitation. Once all 
the precipitation data have been downscaled by 
SDSM, the spatial analysis needed to be 
conducted to achieve the average and maximum  

precipitation for the entire Klang watershed, 
Malaysia. It was accomplished using Geo-
statistical function in GIS. SDSM generated 
different scenarios for the individual precipitation 
station projecting the possible climate in the 
future in three time slices (2020’s, 2050’s and 
2080’s). The interpolation produced the monthly 
map by assuming the current and future 
downscaled data. So there have been produced 
the monthly maps of the downscaled scenarios. 
This method is applies for 50’s and 80’s A2 
scenario. GIS is able to estimate a mean value of 
each map as an average of all the point data 
values distributed over the whole of watershed. 
Table 6 to Table 8 show the monthly mean of 
Mean and maximum precipitation for the current 
and 2020’s, 2050’s and 2080’s for as an average 
value of precipitation variables for whole the 
watershed, respectively. 
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Table 6 : Average monthly of precipitation in the observed and projected precipitation for all the rainfall stations covering Klang watershed 

Mean 
precipitation(mm) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Observed 108.66 152.08 208.34 259.14 455.91 160.23 161.40 183.10 234.68 259.98 274.86 184.89 
2020s 94.37 166.92 186.62 277.87 346.25 116.95 159.11 159.43 291.31 234.04 265.48 135.43 
2050s 88.14 179.07 191.34 299.64 437.62 105.33 164.98 151.84 337.08 259.99 286.77 125.53 
2080s 81.93 192.27 196.49 336.86 601.70 110.19 169.75 135.42 441.34 270.53 321.68 111.92 

Table 7 : Maximum monthly of precipitation in the observed and projected precipitation for all the rainfall stations covering Klang watershed 

Maximum 
precipitation(mm) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Observed 140.16 194.44 256.84 297.22 2011.36 181.51 184.68 199.41 252.28 285.58 329.55 218.27 
2020s 149.54 217.06 203.69 369.45 739.82 202.96 192.52 192.16 357.16 344.46 336.62 152.81 
2050s 156.31 235.59 222.16 418.52 770.36 264.06 206.84 198.07 457.80 398.04 395.86 156.51 
2080s 162.29 301.72 234.76 469.58 893.68 395.48 224.97 211.77 678.35 520.59 471.84 166.13 

Table 8 :  Changes in precipitation variables in Klang Watershed relative to the observed data under A2 scenario 

Precipitation variable 2020s 2050s 2080s Observed Change 
in 2020s 

Change 
in 2050s 

Change in 
2080s 

Mean precipitation 
(mm) 202.81 218.94 247.5 220.27 -16.13 -1.33 27.24 

Max precipitation 
(mm) 288.19 323.34 394.3 202.17 -35.15 121.17 192.09 
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CONCLUSION 
In this research, the data screening procedure 
was carried out to check the homogeneity, 
consistency and stationary of the raw data. The 
10 rain gauge stations have been selected to 
make a spatial downscaling and in Klang area. 
Daily time series data was used to run the 
statistical downscaling in SDSM.  SDSM uses 
a multi-regression method to link large scale 
climate variables (predictors) as provided by 
Global Climate Models (GCMs) simulations 
with daily climatic data at local site 
(predictands) using the popular Statistical 
Downscaling Model (SDSM). The spatial 
interpolation employed the Inverse Distance 
Weighting (IDW) method to estimate spatial 
mean of precipitation as the available data of 
distributed rain gages in Klang and also long 
time series used.   
The fluctuated trend of each rainfall station 
modelled does not indicate a systematic 
increasing or decreasing trend. Finally the 
mean yearly of downscaled precipitation 
parameters were determined based on the 
relevant tables to indicate the mean of each 
precipitation variable by averaging of 12 
months. The Table 8 shows the average 
changes in mean and maximum precipitation 
for the entire Klang Watershed for the future 
corresponding IPCC scenario. 
The watershed seems to experience increased 
rainfall towards the end of the century. 
However, the analysis indicates that there will 
likely be a negative trend of mean precipitation 
in 2020s and with no difference in 2050s. The 
precipitation experiences a mean annual 
decrease amount by 7%, 0.6% and 0.9 % for 
A2 scenario in 2020s, 2050s respectively and 
an increase by 12.4% in 2080s. It can be 
concluded which days with heavy precipitation 
will occur more frequently causing a higher 
frequency of high river flow events. 
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