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Abstract — Cyber-physical system (CPS) represents the 

integration of digital technologies with physical processes to 

revolutionize Industry 4.0 by optimizing the industrial 

processes. However, due to the integration of interconnected 

devices, the internet, and physical processes, CPS is more 

susceptible to cyber and physical anomalies. Anomaly detection 

systems can be implemented to enhance CPS security by actively 

identifying both physical and cyber irregularities through 

continuous data monitoring. To this end, this study proposes a 

two-level detection strategy to secure CPS from all types of 

anomalies. The first level uses a hybrid Convolutional Neural 

Network and Long Short-Term Memory to perform the binary 

classification. Whereas the second level uses a Gradient 

Boosting Machine to detect the exact type of anomaly. The 

proposed methodology is evaluated on the physical and network 

hardware-in-the-loop dataset obtained from a Water 

Distribution Testbed. The evaluation results demonstrated a 

high F1-score of 100% and 97.3% on network and physical data 

respectively, exhibiting its efficiency in accurately predicting 

anomalies while capturing the most relevant instances to achieve 

high accuracy.  

Keywords — Anomaly Detection System, Convolutional 

Neural Network, Cyber-Physical Systems, Gradient Boosting 

Machine, Long Short-Term Memory 

I. INTRODUCTION  

Cyber-physical systems (CPS) form an important 
component of the Industrial Internet-of-Things (IIoT) that are 
believed to play a key role in Industry 4.0 [1]. In CPS, shown 
in Fig. 1, the cyber and physical parts work together. The 
cyber side handles computing, networking, and control 
structures, making sure industrial systems can operate, 
connect, and work smartly. The physical part includes the 
manufacturing and automation systems by using industrial 
devices to do specific production and automation jobs [2]. Due 
to the technological growth over the last decade, CPSs have 
become hugely popular and are now embraced by major 
industries like smart grids [3], oil and natural gas pipelines [4], 
and wastewater treatment plants [5], among others. 

The complex nature of CPS and the widespread 
connectivity of the interconnected devices to cyberspace make 
it more susceptible to threats. These threats can be physical in 
the form of faults such as broken values or pumps [6], or can 
be cyber security threats such as Man-in-the-Middle attacks 
(MitM), scanning attacks, Denial of Service (DoS) attacks, 
and more. This could cause problems like service disruptions, 
damage to equipment, and environmental pollution, among 
other consequences [7]. To protect the CPS against all types 
of anomalies, recently researchers have made efforts to 
propose reliable intrusion detection systems (IDS) for the 
CPS. An IDS can be deployed as an extra security shield to 
protect the CPS from different types of anomalies by constant 
monitoring of the data for any suspicious or abnormal 
behavior to detect anomalies. IDS can be categorized based on 

how they are deployed as host-based IDS or network-based 
IDS. They can also be categorized based on their detection 
strategy as signature-based, anomaly detection-based, 
specification-based, or hybrid detection-based [8]. 

Over the past decade, anomaly detection-based IDS 
(AIDS) using AI techniques become hugely popular due to the 
ability of machine learning (ML) and deep learning (DL) 
methods to efficiently process data to learn important patterns 
for the correct prediction. In traditional ML, valuable data 
features are extracted through feature engineering. In contrast, 
the complex deep architecture of DL enables automatic 
learning of essential features, eliminating the need for human 
input or explicit feature engineering. This makes both ML and 
DL an ideal tool that can be integrated within AIDS to enhance 
anomaly detection in a CPS environment. To this end, this 
study considers both DL and ML-based approaches employed 
in two levels to propose an effective AIDS strategy for CPS. 

The main contributions of this research are 3-fold. (1) To 
extensively discuss the state-of-the-art AI-based AIDS 
methodologies proposed for the CPS. (2) To propose an 
effective two-level anomaly detection strategy for the CPS 
employing a hybrid model of Convolution Neural Network 
(CNN) and Long Short-Term Memory (LSTM) in the first 
level and the Gradient Boosting Machine (GBM) in the 
second level. (3) To evaluate the performance of our proposed 
methodology on the Physical and Network hardware-in-the-
loop dataset obtained from a Water Distribution Testbed 
(WDT) [7] and compare the performance of our proposed 
solution against different AI-based AIDS methodologies. 

The rest of the paper is organized as; Section II provides 
the state-of-the-art relevant work on AIDS methodologies for 
CPS. Section III details the preliminary concepts and the 

 

Fig. 1.  Cyber Physical System 
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proposed methodology. Section IV presents the dataset, 
experimental results, and the discussion. Finally, section V 
concludes this article. 

II. RELATED WORK 

The researchers have widely explored ML and DL 
techniques to propose effective anomaly and fault detection 
methodologies for the CPS over the last decade. This section 
discusses some of the notable methodologies proposed in the 
literature. 

Farmondi et al. [9] provided a comparative study of the 
performance of the ML-based detection methodologies on 
three different publicly available CPS datasets. They tested 
ML methodologies to find the effectiveness of these 
methodologies in efficiently detecting cyber and physical 
anomalies, finding the specific type of anomaly, and detecting 
unseen threats.  

Sayegh et al. [10] proposed a specialized Intrusion 
Detection System (IDS) tailored for SCADA systems. This 
IDS operates by detecting SCADA attacks by analyzing 
network traffic behavior, specifically focusing on the temporal 
behavior of prevalent patterns within SCADA protocols. 
When it detects abnormal behavior, the IDS triggers alarms. 
The study results indicated that the IDS exhibited a high 
detection rate for attacks while maintaining a low false alarm 
rate. 

Feng et al. [11] introduced an anomaly detection 
framework designed for Industrial Control Systems (ICS). 
This framework involved Bloom filter package-level anomaly 
detectors alongside an LSTM network-based softmax 
classifier. The goal was to effectively learn the normal 
behavioral patterns and subsequently detect anomalies within 
the system. 

Zho et al. [12] proposed a methodology to exploit 
correlations between sensors to help detect anomalies for 
predictive maintenance in CPS. They demonstrated the 
effectiveness of their proposed methodology on electric 
generators by predicting the failures earlier to reduce 
maintenance and downtime costs. 

Ding et al. [13] proposed an efficient DL-based online 
error detection and its mitigation using LSTM and LSTM 
autoencoder. They used the LSTM model for single-step 
prediction to demonstrate the model efficiently in detecting 
sensor data spikes, offsets, computing errors, and packet loss.  
to propose an efficient online error detection and mitigation 
model.  They used the LSTM autoencoder for the multistep 
prediction to show the model's effectiveness in detecting the 
long-duration sensor errors faults caused by network delays 
etc. They also proposed an online error mitigation to replace 
the faulty values with predicted values to prevent system 
failures. 

Paredes et al. [14] proposed a detection model using the 
one-dimensional (1D) CNN to detect the DoS and integrity 
cyber-attacks. Their proposed solution exhibited a high true 
positive rate to demonstrate the ability to detect and isolate 
cyber-attacks efficiently.  

Du et al. [15] also used the LSTM autoencoder network 
and the Generative Adversarial Network (GAN) to detect 
anomalies using the cyber-physical fusion features. Their 
proposed methodology improved the recall of anomaly 

detection to overcome the challenges of insufficient labeled 
samples and unbalanced datasets. 

This study takes a slightly different approach by proposing 
a hybrid approach of detecting anomalies in two levels using 
DL and ML to prevent CPS. 

III. PROPOSED SOLUTION 

This section discusses the preliminary concepts followed 
by the details of the proposed two-level AIDS for CPS. 

A. Hybrid CNN-LSTM Model 

In this study, we adopted the approach of integrating the 
LSTM layers in the CNN (CL model) for binary classification. 
CNN is a popular supervised DL method that has shown 
effectiveness in handling data stored in matrices or arrays. In 
this study, the CNN model comprises an input layer, a series 
of convolutional layers (CoL) with activation functions and 
pooling layers (PoL), followed by an LSTM layer, and then an 
output classification layer. The combination of CoL and PoL 
layers works to extract important features from the sequences, 
the LSTM layer captures temporal relationships, and lastly, a 
dense layer is used for making predictions. This study uses the 
1D CNN approach, which is typically used for sequential data 
like time series or text. 

The CoL is the heart of the CNN. It takes sequential data 
represented in the form of a 1D array e.g., the time-series data, 
and applies convolution kernels (filters) to learn features, 
creating a feature map. This map goes through a Rectified 

Linear Unit (ReLU) activation to produce the layer's output 𝐿𝑖 

as [8], 

𝐿𝑖 = 𝑚𝑎𝑥(0, 𝑏 + ∑ (𝑥𝑖+𝑗 ∗ 𝑘𝑗)𝑗 )                     () 

where 𝑏  is the bias term to the input sequence, 𝑥  is the 
input. 𝐾𝑗 is the convolutional kernel. The symbol * represents 

the convolution operation.  

Passing the output feature map of the CoL layer through 
the PoL reduces its size by selecting the maximum value 
within nonoverlapping subsets. This process aims to enhance 
memory efficiency and prevent overfitting. The output of PoL 
is then processed through an LSTM layer to learn long-term 
dependencies from the learned local features. The LSTM 
utilizes four components: an input gate 𝑖𝑡, an output gate 𝑜𝑡, a 
forget-gate 𝑓𝑡  and a cell gate 𝑔𝑡  with a self-recurrent 
connection [16] as given mathematically for time step 𝑡 as,  

𝑖𝑡 = 𝜎(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 + 𝑊ℎ𝑖ℎ(𝑡−1)+𝑏ℎ𝑖)              () 

𝑓𝑡 = 𝜎(𝑊𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 + 𝑊ℎ𝑓ℎ(𝑡−1)+𝑏ℎ𝑓)             () 

𝑔𝑡 = tanh(𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 + 𝑊ℎ𝑔ℎ(𝑡−1)+𝑏ℎ𝑔)          () 

𝑜𝑡 = 𝜎(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 + 𝑊ℎ𝑜ℎ(𝑡−1)+𝑏ℎ𝑜)             () 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑔𝑡                          () 

ℎ𝑡 = 𝑜𝑡  tanh (𝑐𝑡)                         () 

Where 𝑐𝑡 and ℎ𝑡 represent the cell and hidden state, while 
W and b weights and biases for different gates and operations. 
Also, 𝜎 represents the sigmoid activation function, and tanh 
denotes the hyperbolic tangent function. 



The output of this layer is then passed through the output 
classification layer which employs a sigmoid activation layer 
for binary classification. Mathematically, the output layer 
activation functions for any input 𝑥 are given, 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =
1

1+𝑒−𝑥                             () 

The architecture of the CL model adopted in this study is 
sequential. The CoL is configured with 64 filters and a kernel 
size of 3, utilizing the ReLU activation function and padding 
to maintain the input shape of (45, 1). Then the PoL reduces 
the spatial dimensionality by a factor of 2. The LSTM layer, 
comprising 70 units, processes the sequential information 
obtained from the CNN layers. A Dropout regularization with 
a rate of 0.1 is applied to mitigate overfitting. Finally, the 
classification layer is the Dense layer with a sigmoid 
activation function, to predict normal and anomaly instances. 

B. Gradient Boosting Machine 

Gradient Boosting Machine (GBM) is a powerful ML 
technique that obtains predictions by boosting through the 
sequential approach in building trees [17]. In GBM, the 
decision tree (DT) predicts the error of the previous DT to 
boost the gradient (error). The iterative process involves 
minimizing a predefined loss function by sequentially adding 
weak learners to an ensemble. The updated prediction 𝑃𝑖+1(𝑥) 
at the stage 𝑖 is mathematically given as [18], 

𝑃𝑖+1(𝑥) = 𝑃𝑖(𝑥) + 𝑟𝑤𝑖(𝑥)                         () 

Where, 𝑃𝑖  represents the current prediction, 𝑟  is the 
learning rate while 𝑤𝑖  is the contribution of the new weak 
learner. The contribution of the new learner is found by fitting 
it to the negative gradient of the loss function 𝐹 for 𝑃𝑖  as, 

𝑤𝑖(𝑥) = argmin
𝑤

∑ 𝐹 (𝑦𝑗 , 𝑃𝑖(𝑥𝑗))𝑁
𝑗=1                 () 

Where 𝑦𝑗  is the actual target for the 𝑗 th sample in the 

dataset while 𝑥𝑗 is the 𝑗th feature of the sample. The process 

iterates by sequentially adding weak learners while adjusting 
the predictions toward minimizing the loss function. This 
stepwise optimization process enables GBMs to gradually 
improve the model's predictive performance by focusing on 
the residuals or errors of the previous models. 

For this study, we utilized the GBM classifier with 
parameters configured as follows: 100 estimators, a learning 
rate of 0.05, and a maximum depth of 3 for each individual 
tree. 

C. Methodology 

In this study, we proposed an AIDS model based on CL-
GBM for the CPS, as depicted in Fig. 2. The proposed model 
consists of two main phases, (1) Data collection and 
Preparation phase and (2) Anomaly detection phase.  

(1) Data collection and Preparation phase 

This is the first phase of CL-GBM which performs the 
important tasks of the data collection followed by its 
preparation to make it suitable to be used for the ML process. 
The different steps performed in this phase are, 

Step-1: The raw data from different sensors will be collected 

and stored in the CPS dataset.  

Step-2: The collected data undergoes a cleaning process by 

initially eliminating redundant instances containing infinite 

or empty fields. Afterward, categorical features are encoded 

through one-hot encoding. Subsequently, each feature is 

normalized based on its values, scaling them between 0 and 

1 using Min-Max scaling. 

Step-3: The pre-processed and normalized CPS dataset is 

split into two datasets: CPS-B and CPS-M. In the CPS-B 

dataset, we combined various anomaly types into a single 

category named “Anomaly”. Additionally, we removed the 

feature that originally labeled the specific types of anomalies. 

In CPS-M, we excluded all instances labeled as “Normal” and 

retained only the instances representing specific anomalies. 

Subsequently, both CPS-B and CPS-M datasets were divided 

into corresponding 75% training data and 25% testing data 

for model development and evaluation. 

(2) Anomaly Detection Phase 

This phase is the main anomaly detection phase for the 
CPS, employing a two-level approach. Level-1 prediction 
involves using the DL-based CL model. Level-2 prediction is 
executed using the ML-based GBM model. This dual-level 
approach helps enhance anomaly detection within the CPS by 
leveraging the strengths of both deep learning and gradient-
boosting techniques. The different steps performed in this 
phase are, 

Step-4: The CL model is trained using the CPS-B Train 
dataset, while the GBM model is trained with the CPS-M 
Train dataset. After training, the best-performing models for 
each approach are saved as trained models for subsequent use 
in the anomaly detection process. 

Step-5: First the CL model is tested using the CPS-B Test 
dataset. If “Normal” is predicted, no further action is taken. 
However, upon detecting an anomaly, an alarm signal is 
triggered to notify the administrator for necessary actions. 
Simultaneously, the identified anomaly is sent to Level-2 for 

 

Fig. 2.  Proposed CL-GBM 



precise anomaly-type detection. All classified anomalies are 
then forwarded to the trained GBM model, which further 
categorizes the anomalies into specific types. This multi-level 
process allows for a more granular identification of anomalies 
within the CPS. 

IV. EXPERIMENTAL RESULT AND ANALYSIS 

This section details the dataset, evaluation metrics, 
experimental configurations, and a comprehensive analysis of 
the obtained results. 

A. Dataset Description 

To evaluate the performance of the CL-GBM, we used the 
publicly available physical and network data of the WDT 
dataset [7]. The dataset is obtained from the water distribution 
testbed that emulates water flowing between eight tanks 
through 22 solenoid valves, 6 pumps, 8 pressure, and 4 flow 
sensors. The dataset contains both cyber-attacks (DoS, MitM, 
Scanning) and physical faults (Tank water leak and Sensors 
and pump breakdown) [9]. The physical dataset is provided in 
CSV format with 41 features while the network dataset is 
provided in both PCAP and CSV formats with 14 features. For 
this study, we used the instances of each category extracted 
after 0.1 seconds from the main dataset. The physical and 
network data instances for different categories considered in 
this study are detailed in Table I. Also, for this study, the level-
1 of the CL-GBM is trained in a binary fashion. So, all the 
instances of DoS, MitM, Scanning attacks, and Physical faults 
are combined into one anomaly class. 

TABLE I.        DATASET DISTRIBUTION 

Class Network dataset Physical dataset 

Normal 44461 7498 

DoS 1005 157 

MitM 3554 743 

Scanning  - 7 

Physical Fault 4168 552 

 

B. Evaluation Metrics 

In this study, the performance evaluation metrics include 
F1-score, Precision, Recall, and Accuracy, calculated from 
various elements of the confusion matrix [8] and are given as;   

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                  () 

Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                 () 

F1 score =  
2(Precision)(Recall)

Precision+Recall
                   () 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                    () 

Where, TP and TN represent the True Positive and True 
Negative and signify correctly predicted Anomaly and 
Normal samples, respectively. Whereas FN and FP represent 
the False Negative and False Positive respectively and denote 
misclassifications as Normal and Anomaly samples.  

C. Experimental Setup 

All performance evaluation experiments were conducted 
on an HP laptop featuring an Intel Core i9-10885H processor, 
32GB RAM, and a 64-bit Windows 10 operating system. 
Python (version 3.10.12) served as the primary programming 
language to implement and evaluate all IDS methodologies 
within the Google Colab environment using the Keras library. 

D. Results and Discussion 

In this research, the performance of the CL-GBM is 
compared with five supervised ML approaches such as DT, 
Naïve Bayes (NB), Support vector machines (SVM), GBM, 
and Random Forest (RF). Also, CL-GBM performance is 
compared with three DL approaches CNN, LSTM, and CL. 
For DL, the adjusted hyperparameters included a batch size of 
32, a learning rate of 0.01 with Adam optimizer, binary cross-
entropy for binary classification, categorical cross-entropy for 
multiclass classification, ReLU for hidden layers, and 
sigmoid/softmax for output layers in binary and multiclass 

scenarios, respectively. The softmax activation function for 

any input 𝑥 is mathematically given as, 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)𝑘 =
𝑒𝑥𝑘

∑ 𝑒𝑥𝑖𝑁
𝑖=1

 for 𝑘 = 1, ⋯ , 𝑁        () 

Table II presents the comprehensive performance 
evaluation scores, expressed as percentages, achieved by CL-
GBM alongside all the ML/DL models considered for both 
physical and network datasets. Notably, our proposed model 
outperforms alternative methodologies across all considered 

TABLE II.        PERFORMANCE EVALUATION METRIC SCORE [%] 

 Network dataset Physical dataset 

Model F1-score Recall Precision     Accuracy F1-score Recall Precision     Accuracy 

DT 71.91 75.00 94.50 98.11 55.60 57.79 93.66 97.46 

NB 98.55 97.81 99.40 99.83 51.16 66.47 60.83 91.43 

SVM 71.82 74.83 94.45 98.07 72.85 72.88 92.84 98.21 

GBM 99.97 99.94 99.90 99.99 86.75 81.60 96.59 98.84 

RF 95.22 91.91 99.28 98.35 77.33 75.38 99.88 99.50 

CNN 96.15 98.82 94.21 97.68 72.16 69.34 77.44 98.30 

LSTM 89.33 89.18 92.07 97.20 65.06 67.42 65.18 96.96 

CL 90.79 90.20 92.17 97.33 65.55 64.13 73.83 98.13 

CL-GBM 100.00 100.00 100.00 100.00 97.35 93.75 99.86 99.72 

 



evaluation metrics. Specifically, on the network dataset, both 
GBM and CL-GBM demonstrate exceptional predictive 
accuracy and capture pertinent instances, yielding high 
accuracy. On the physical dataset, our model maintains 
superior performance by obtaining the F1 score of 97.3%, 
while GBM exhibits a slight decrease in performance. We also 
observe that in terms of precision, RF performed 0.02% better 
than CL-GBM. As a whole, the results underscore that 
employing CL and GBM in a two-level structure notably 
enhances overall evaluation metric scores for both dataset 
types. 

The percentage improvement in the performance of the 
CL-GBM over the other models on the network and the 
physical dataset is shown in Fig. 3 and Fig. 4, respectively. It 
is obvious that in dealing with the imbalance dataset, the CL-
GBM showcased F1-score enhancements ranging from 0.03% 
to 28.09% on the Network dataset and 10.61% to 46.20% on 
the Physical dataset comparing other AI-based AIDS 
methodologies for CPS.  

Fig. 5 and Fig. 6 depict the confusion matrix for the two-
level CL-GBM considering the Network and Physical 
datasets. The first level performed the binary classification 
task using the CL model, followed by the GBM model 
performing the multiclass classification on the predicted 
anomalies of the first level to find the exact anomaly type. It 
is obvious from the level-2 of Fig. 6, that the CL-GBM 
performed very well even in predicting the scanning anomaly 
which had very few instances in the dataset. CL-GBM 
correctly predicted 3 out of 4 scanning anomaly instances. 

Table. III details the comparison of results in this study 
directly with the results obtained on the Physical and Network 
dataset, detailed in [7], [9]  considering the F1-score as the 
evaluation metric. We noticed that the ML models used in 
those studies exhibited better performance on the Physical 
dataset compared to the Network dataset. However, it remains 
unclear how many instances of network flows were 
considered in [7] to evaluate the ML models on the Network 
dataset. In contrast, our two-level CL-GBM maintained 
consistent performance across both datasets. We also 
observed that both RF and CL-GBM exhibited similar 
performance in terms of F1 score on the Physical dataset. 

TABLE III.        COMPARISON OF F1-SCORE [%] 

Model  
F1-score [7] 

(Network dataset) 

F1-score [7], [9] 

(Physical dataset) 

RF 54 97 

SVM 20 75 

NB 27 77 

CL-GBM  
(This Study) 

100 97.35 

 

V. CONCLUSIONS 

This paper introduces a two-level detection method 
employing a hybrid approach involving CNN, LSTM, and 
GBM to efficiently detect cyber anomalies like DoS, MitM, 
and Scanning, as well as physical anomalies such as water 
leaks in tanks and breakdowns in sensors or pumps. The 
proposed solution utilizes a hybrid CL model for the effective 
classification of data into Normal and Anomaly categories in 
the first level. In the subsequent level, GBM predicts the exact 
types of classified Anomaly instances. The solution is 
evaluated using the network and physical data from the WDT 
dataset, showcasing its effectiveness through high evaluation 
metric scores achieved on both dataset types. 

For future research, we aim to extend this work by 
evaluating its performance in real-time CPS scenarios. 
Additionally, we plan to explore the concept of a two-level 

 

Fig. 4.  Performance improvement of CL-GBM over other ML/DL 

models (Physical dataset) 

 

Fig. 3.  Performance improvement of CL-GBM over other ML/DL 

models (Network dataset) 

   

                    Level – 1                                          Level – 2  

Fig. 6.  Confusion Matrix of CL-GBM (Physical dataset) 

   

                    Level – 1                                          Level – 2  

Fig. 5.  Confusion Matrix of CL-GBM (Network dataset) 
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anomaly detection approach employing unsupervised ML/DL 
methodologies.  
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