Spectroscopic and theoretical studies of small molecules.

FERGUSON, A.M.

1986

The author of this thesis retains the right to be identified as such on any occasion in which content from this thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any original images only – re-use of any third-party content must still be cleared with the original copyright holder.

This document was downloaded from https://openair.rgu.ac.uk

SPECTROSCOPIC AND THEORETICAL STUDIES OF SMALL MOLECULES

ALLAN M FERGUSON

A thesis submitted for the Council for National Academic Awards degree of Doctor of Philosophy.

ROBERT GORDON'S INSTITUTE OF TECHNOLOGY

(Collaborating Establishment: Aberdeen University)

December 1986

PREFACE

This thesis is a record of research carried out by the author in both the School of Chemistry, Robert Gordon's Institute of Technology and in the Department of Chemistry, Aberdeen University between October 1983 and December 1986. It has not previously been submitted for any degree and is believed to be wholly original except where due reference is made.

I am particularly indebted to my supervisory team - Drs. J. Harper and K. Tonge (R.G.I.T.), and Dr. J. L. Duncan (A.U.) for their excellent guidance and constant encouragement throughout.

I should like to thank R.G.I.T. Computer Services Unit staff for allocation of substantial computing time and space, which my research demanded.

I am grateful to Prof. D. C. McKean for use of facilities at A.U., to Dr. A. R. Morrisson for quality infrared spectra and to Dr. I. Torto for helpful advice.

I wish also to extend my appreciation to my fellow research colleagues at R.G.I.T. for encouragement and useful discussions. I should like to thank the Science and Engineering Research Council for the provision of a research studentship.

Finally I wish to acknowledge the untiring support and encouragement of my parents and family during my education, and accordingly dedicate this thesis to them.

KEP

ABSTRACT

SPECTROSCOPIC AND THEORETICAL STUDIES OF SMALL MOLECULES

Allan M Ferguson

This thesis is concerned with two contrasting molecules - ketene (H₂CCO) and methylene chloride (CH₂Cl₂). High resolution (~ 0.05 cm⁻¹) infrared studies of ketene were carried out and complete analyses performed to the A1 species vibrations $v_1 - v_4$, allowing the determination of revised vibrational frequencies and rotational parameters. Perturbations found to be present in all bands were elucidated and identified with the aid of H₂C¹³CO, H₂¹³CCO and D₂CCO isotopic species. Approximate analyses on these species also permitted the determination of revised $D_2CCO A_1$ vibrational frequencies and ¹³C frequency shifts. Preliminary analyses were also performed to the two B1 species vibrations, v_5 and v_6 , and two of the three B_2 vibrations, v_7 and v_8 in order to determine precise 13 C frequency shifts for use in force field calculations.

Subsequent empirical harmonic force field studies for ketene were carried out and 16 out of 19 force constants were determined. Owing to inaccuracies in a large number of the A_1 vibrational frequencies and shifts arising through perturbations, the corresponding force constants were poorly defined. Complementary and supplementary ab initio force field studies were also carried out. The well-defined empirical constants were found to be in excellent numerical agreement with their corresponding ab initio values. For the inadequately described empirical CH₂ symmetric stretch interaction constants, the ab initio values were preferred, and were included in what is considered to be the best compromise force field for ketene, in the absence of accurate unperturbed data.

Empirical force field studies of methylene chloride suffered none of the set-backs encountered for ketene and thus a complete set of accurate force constants was determined. Complementary ab initio force field studies were carried out and found to be in good overall agreement with those of the empirical studies.

CONTENTS

Page No.

1.	VIBR	ATION -	ROTATION THEORY, HARMONIC	
	FORC	E FIELD	AND AB INITIO FORCE FIELD	1
	1.1	Vibrat	ion - Rotation Spectra of	
		Asymme	tric Top Molecules	2
		1.1.1	Factorisation of Molecular	
			Kinetic Energy	2
		1.1.2	Vibration - Rotation	
			Hamiltonian	3
		1.1.3	Solutions to the Vibrational	
			Hamiltonian	4
		1.1.4	Rotational Hamiltonian and	
			Eigenvalues	5
		1.1.5	Vibrational and Rotational	
			Selection Rules and Band	
			Structure of Asymmetric Top	
			Molecules	10
			(a) Vibrational Selection	
			Rules	10

Page	No.
the second s	the second se

	(b) Rot	ational Selection	
	Rul	es	10
	(c) Bar	nd Structures	13
	1.1.6 Perturbati	lons	15
.2	Empirical Harmoni	c Force Field	18
	1.2.1 Vibrationa	al Kinetic Energy	18
	1.2.2 Vibrationa	al Potential Energy	21
	1.2.3 Secular De	eterminant for	
	Vibrations	5	22
	1.2.4 Selection	of Internal	
	Coordinate	es	23
	1.2.5 Sources of	Information	24
	(a) Frequenc	cy Data	24
	(b) Coriolis	Coupling Constants	27
	(c) Centrifu	gal Distortion	
	Constant	Saturation	27

	1.2.6 Force Constant Calculations	27
	(a) Non Linearity	29
	(b) Singularity	29
	(c) Multiple Solutions	30
1.3	Ab Initio Force Field	31
	1.3.1 Introduction	31
	1.3.2 Ab Initio Molecular Orbital	
	Methods	32
	1.3.3 Orbital Representation	35
	1.3.4 Selection of Theoretical Model	
	and Basis Functions	38
	1.3.5 Molecular Energy	
	Differentiation	40
	1.3.5.1 The Force Method	41
	Receive and Crapping toro of Latin Wind	
	1.3.5.2 Evaluation of Force	
	Constants	42

		Page	No.
	1.3.5.3 Theoretical Equilibrium		
	Configuration	43	
	1.3.6 Selection of Reference		
	Geometry	45	
HIGH	RESOLUTION INFRARED STUDIES OF KETENN	E 47	
2.1	Introduction	47	
2.2	Experimental Procedure	49	
	(a) Synthesis of ketene	49	
	(b) Spectra	50	
2.3	Method of Analysis of Rotational		
	Structure	50	
	(a) A-type	50	
	(b) B and C-type	52	
2.4	Results and Discussion of Individual		
	Band Analyses	53	

2.

Page	No.
	-

- (a) v_1 , CH₂ symmetric stretch, 3070cm⁻¹ 53
- (b) v_2 , CCO asymmetric stretch, 2152cm⁻¹ 62
- (c) v_3 , CH₂ deformation, 1387cm⁻¹ 68
- (d) v_4 , CCO symmetric stretch, 1116cm⁻¹ 77
- (e) $2v_5$, CCO deformation overtone, 1189 cm^{-1} 85
- (f) $2v_6$, CH_2 wagging overtone, 1060 cm⁻¹ 87
- (g) $2v_8$, CH_2 rocking overtone, 1952cm⁻¹ 90
- (h) v_7 , CH_2 asymmetric stretch, 3165cm⁻¹ 92
- (i) v_8 , CH₂ rocking, 978cm⁻¹ 96
- (j) v_5 , CCO deformation, 587 cm⁻¹ and v_6 wagging, 528 cm⁻¹ 102

Page	No.

	2.5	Conclu	sions	107
3.	AB II	NITIO A	ND EMPIRICAL FORCE FIELD	
	STUD	IES OF :	KETENE	113
	3.1	Introd	uction	113
	3.2	Symmet	ry Coordinates	115
	2 2			
	3.3	Ab Ini	tio Geometry and Force Field	110
		Scuare	S OI Receile	119
		3 3 1	Hardware and Software	119
		5.5.1		115
		3.3.2	Selection of the Basis	
			Functions	120
		3.3.3	Ab Initio Studies of the	
			Equilibrium Geometry of	
			Ketene	123
		3.3.4	Ab Initio Force Field Studies	
			of Ketene	129

3.4	Empiri	cal Harmonic Force Field of	
	Ketene		141
	3.4.1	Experimental Data and their	
		Assessment	141
	(a) Vibration Frequencies	141
	(b) Coriolis Interaction	
		Constants	142
	(c) Quartic Distortion	
		Constants	144
	3.4.2	Anharmonic Corrections	145
	3.4.3	Uncertainties allowed in Data	147
	3.4.4	Force Constant Calculations	148
	3.4.5	Joint Empirical and Ab	
		Initio Calculations	154
	3.4.6	Effect of Molecular Structure	
		on Force Constant	
		Calculations	157

3.5	Scal	ed Ab Initio Force Constants	158
3.6	Spec	troscopic Data For Isotopic Ketenes	164
	(a)	Frequency Data	164
	(b)	Quartic Distortion Constants	167
	(c)	Coriolis Constants	167
4.	EMPI	RICAL AND AB INITIO STUDIES OF	
	METH	YLENE CHLORIDE	171
	4.1	Introduction	171
	4.2	Symmetry Coordinates	172
	4.3	Empirical Force Field Studies	174
		4.3.1 Assimilated Experimental Data	174
		4.3.2 Anharmonicity Corrections and	
		allowed Uncertainties	175

	4.3.3	Force Constant Calculations	176
4.4	Ab Ini	tio Studies of Methylene	
	Chlori	de	180
	4.4.1	Basis Sets	181
	4.4.2	Equilibrium Geometry	
		Predictions for Methylene	
		Chloride	183
	4.4.3	Ab Initio Force Field Studies	
		of Methylene Chloride	184
	4.4.4	Scaled Ab Initio Force Field	187
4.5	Calcul	ated Spectroscopic Parameters	190
4.6	Joint	Empirical/Ab Initio GHFF for	
	Methyl	ene Chloride	197

REFERENCES 199

CHAPTER 1

VIBRATION - ROTATION THEORY, HARMONIC FORCE FIELD AND AB INITIO FORCE FIELD

The theoretical background to this thesis will be outlined in this first chapter. It is divided into three sections each dealing with distinct topics.

In the first section, a concise description of relevant vibration - rotation theory is given, in which quantitative expressions for molecular vibrational and rotational energies are introduced. These are then used to describe the observed structure of high resolution infrared bands of gas phase asymmetric top molecules.

The second section gives a brief account of the theoretical background to harmonic force constant calculations, in which expressions relating vibrational energies to force constants are derived. Various aspects relevant to the application of the harmonic force constant calculations are also considered.

In the final introductory section, an ab initio quantum

mechanical approach to obtaining molecular force constants is described. The section begins with a concise summary of relevant underlying quantum mechanical theory and then details various aspects relevant to the determination of ab initio force constants.

More detailed accounts of these topics can be found in several texts and review articles (1-12).

1.1 VIBRATION-ROTATION SPECTRA OF ASYMMETRIC TOP MOLECULES

1.1.1 FACTORISATION OF MOLECULAR KINETIC ENERGY

An understanding of molecular motions can be developed by regarding a molecule as consisting of a number of atomic nuclei, held together in a well defined configuration, by a potential generated by its constituent electrons. In terms of this model, the molecular kinetic energy T, can be expressed as the sum of the kinetic energies of constituent atoms, which factorises as follows:-

T = T(translation) + T(rotation) + T(vibration)
+ T(vibration-rotation) 1.1

It can be seen from equation 1.1 that whilst the translational energy can be considered separately, the vibrational and rotational terms are not completely

separable. This is a consequence of the last term T(vibration-rotation), which arises from the interaction of vibrational and rotational motions.

1.1.2 VIBRATION - ROTATION HAMILTIONIAN

Vibrational and rotational energies are calculable in terms of quantum mechanics, where the energy levels are the eigenvalues of the appropriate Schrödinger equation:

$$\hat{H}_{V,R} \Psi = E_{V,R} \Psi$$
 1.2

The $\hat{H}_{V,R}$ term of equation 1.2 is the quantum mechanical Hamiltonian of the system and can be derived from the classical vibrational and rotational kinetic energies (13,14) of equation 1.1, which are expressed in terms of linear and angular momenta. In addition, the vibration – rotation Hamiltonian also contains the potential energy. By defining a set of internal coordinates called normal coordinates to describe vibrational motion, the Hamiltonian potential and kinetic terms are diagonalised. Normal coordinates define a set of mutually independent normal vibrations, in each of which the nuclei oscillate in simple harmonic motion about their equilibrium positions.

After simplification (15), through introduction of a number of approximations, $\hat{H}_{V,R}$ is given in its simplest form as the sum of independent vibrational and rotational Hamiltonians and can be solved in terms of the Schrödinger

equation. The solutions to these will now be discussed separately.

1.1.3 SOLUTIONS TO THE VIBRATIONAL HAMILTONIAN

Assuming that the vibrational motion can be regarded as a simple harmonic motion, then the vibrational potential energy can be expressed as

$$V(Q_r) = \sum_{r} \frac{1}{2} \lambda_r Q_r^2$$
1.3

where $\lambda_{\rm r}$ is the force constant associated with normal coordinate $\rm Q_r$. The eigenvalues for a harmonic oscillator r are given by

$$E_{vr}/hc = \omega_r(v_r + 1/2)$$
 ($v_r = 0, 1, 2, ...$) 1.4

where $v_{\rm r}$ is the vibrational quantum number and $\omega_{\rm r}$ is the frequency of vibration, expressed in terms of wavenumbers (cm^{-1}) and is defined as

$$\omega_{\rm r} = \frac{1}{2\pi c} \left(\lambda_{\rm r}\right)^{1/2}$$
 1.5

In practice however, this model is too approximate since vibrations of nuclei are never strictly harmonic - the stretching of the oscillator is not perfectly elastic and so the vibrations are anharmonic. Harmonic vibrational energies are corrected in terms of perturbation theory (16-18), which gives the following energy expression:

$$E_{v}/hc = \sum_{r} (v_{r} + 1/2) \omega_{r}$$

+ $\sum_{r} \sum_{s \ge r} (v_{r} + 1/2) (v_{s} + 1/2) x_{rs} - \dots 1.6$
r s \gencer r

where the x_{rs} are anharmonicity constants.

1.1.4 ROTATIONAL HAMILTONIAN AND EIGENVALUES

In dealing with the solutions to the rotational Hamiltonian of a molecular system, it is advantageous to classify the molecule in terms of moments of inertia. These are defined with respect to the three "principal" inertial axes of the molecule, x, y and z.

The current studies are concerned with vibration - rotation spectra of asymmetric top molecules, for which $I_x \neq I_y \neq I_z$. Clearly, the extent of asymmetry is dependent on the actual values of I_x , I_y and I_z . For "slightly asymmetric" molecules, such as ketene (H₂CCO), the arrangement of rotational energy levels would not be expected to differ too much from that of a symmetric rotor. It is therefore instructive to commence discussion of rotational models by firstly considering the symmetric rotor model, since the asymmetric rotor Hamiltonian can be organised to take advantage of any near-symmetric top character present in the molecule. This facilitates the determination of quantitative expressions for the rotational levels of asymmetric rotors.

In the case of a symmetric rotor, where $I_x = I_y \neq I_z$, the resulting rotational energies or eigenvalues are given (in cm⁻¹ units) by

$$E_{(J,k)} = \frac{h}{8\pi^{2}c} \left\{ \frac{1}{I_{x}} J(J+1) + \left[\frac{1}{I_{z}} - \frac{1}{I_{x}} \right] k^{2} \right\}$$
 1.7

where J is the total angular momentum quantum number which can have values of 0, 1, 2, 3, ... and k is a quantum number which represents the projection of the total angular momentum on the internal z axis i.e. it governs the axial angular momentum. Its value is such that $-J \leq k \leq J$.

In spectroscopy, it is more usual to label the inertial axes as a, b and c such that $I_a \leq I_b \leq I_c$ (19). In terms of this convention, the following rotational constants are defined:

$$A = h/8\pi^2 cI_a \qquad B = h/8\pi^2 cI_b \qquad C = h/8\pi^2 cI_c$$

This gives rise to two possibilities for symmetric rotors. For a prolate symmetric rotor, where $I_a < I_b = I_c$, equation 1.7 becomes

$$E_{(J,K)} = BJ(J+1) + (A - B)K^2$$
 1.8

For an oblate symmetric rotor where $I_a = I_b < I_c$, the rotational energies are described by

$$E_{(J,K)} = BJ(J+1) + (C - B)K^2$$
 1.9

In expressions 1.8 and 1.9, K is the modulus of k of equation 1.7. This implies that energy levels with K > 0 are doubly degenerate.

For asymmetric rotors, unlike symmetric rotors, the component of the total angular momentum is not rigorously quantised; therefore, no definitive quantum number other than J is available to characterise the rotational energy states, and no simple analytical expression, such as 1.7, is available for the energy levels.

This problem can be overcome however, by rearranging the asymmetric rotor Hamiltonian to be expressed in terms of a symmetric rotor basis and an asymmetry parameter which is defined in terms of the molecular rotational constants. The Wang asymmetry parameter (20), can assume a value between 0, which represents the prolate symmetric rotor limit, and -1 TR for the oblate symmetric rotor limit, the in representation (19). By using symmetric (+) and antisymmetric (-) linear combinations of degenerate symmetric top functions (the Wang basis), the rotational Hamiltonian factorises into four symmetry blocks for each value of J ($J \ge 2$), giving four sets of energy levels on diagonalisation. These are labelled E^+ , E^- , O^+ and O^- , where E and O refer to the parity of K, and + and - refer to the Wang basis functions.

The arrangement of the resulting asymmetric rotor rotational energy levels is such that for a given value of J, high K levels approximate more and more closely to the

limiting symmetric rotor approximation, and K^+ and K^- levels for the same value of K become degenerate.

The asymmetric rotor energy levels are usually designated by J_{KaKc} , where K_a and K_c apply to the limiting prolate and oblate symmetric rotors respectively. Figure 1.1 illustrates the correlation for some of the lower levels of an asymmetric rotor, where it can be seen that for given values of J, energy levels increase as K_a goes from 0 to J and K_c goes from J to 0.

The above rotational energy expressions for symmetric and asymmetric rotors are derived in terms of a rigid rotor. These are not, however sufficient to describe adequately high resolution vibration – rotation spectra. In real molecules, the effect of rotation on the molecule is to cause small changes in the structure parameters from their equilibrium values as a result of centrifugal forces on the atoms. In an analogous fashion to anharmonicity corrections for the harmonic oscillator, this can be corrected for by application of perturbation theory (13,21). For asymmetric top molecules, the effect can be expressed, in the first approximation by five quartic centrifugal distortion coefficients Δ_J , Δ_{JK} , Δ_K , δ_J and δ_K (22,23), which can be introduced into the diagonalisation procedure outlined above.

Ь

Figure 1.1.

Correlation diagram illustrating the energy level pattern for asymmetric rotors. b is the Wang asymmetry parameter in the I^R representation.

1.1.5 VIBRATIONAL AND ROTATIONAL SELECTION RULES AND BAND STRUCTURE OF ASYMMETRIC TOP MOLECULES.

(a) VIBRATIONAL SELECTION RULES.

The selection rule for absorptive vibrational transitions, in terms of the harmonic oscillator is $\Delta v = +1$. However, there are certain restrictions dependent on the molecular symmetry which limit the vibrational states between which transitions may occur, to give rise to the necessary oscillating dipole moment. In terms of the infrared spectrum, transitions from the ground vibrational state give rise to what are termed "fundamental" vibrational absorptions or "fundamental bands".

For real molecules, where vibrations are anharmonic, transitions involving $\Delta v = +2$, +3, etc. may also occur, although with decreasing probability. Symmetry restrictions still apply. In consequence, infrared absorptions attributable to "overtone" and "combination" vibrations can also occur, where the latter involve the simultaneous change in vibrational quantum numbers of two or more different vibrational modes.

(b) ROTATIONAL SELECTION RULES

For fundamentals, the rotational selection rules governing the associated rotational transitions depend on

the nature of the vibration - in particular, the direction of the oscillating dipole moment. If only asymmetric top molecules of sufficient symmetry are considered, then infrared vibration - rotation bands are classified as type-A, type-B or type-C, corresponding to the direction of the oscillating dipole being parallel to the a, b or c inertial axis respectively.

The associated rotational selection rules are summarised in table 1.1. The way in which the selection rules of table 1.1 dictate the associated asymmetry split K_a^+ and $K_a^$ transitions for the three band types is schematically represented in figure 1.2. This diagram, in conjunction with figure 1.1 is of assistance in understanding the band structures and in the assignment of transitions to the observed spectrum.

Table 1.1. Rotational selection rules for the most intense transitions in the infrared bands of asymmetric top molecules.

Ground rotational state	J	Ka	K c
Type-A K _a = 0	<u>+</u> 1	0	<u>+</u> 1
K _a ≠0	0, +1	0	<u>+</u> 1
Type-B K > 0	0, <u>+</u> 1	<u>+</u> 1	± 1
Type-C $K_{c} = 0$	<u>+</u> 1	+ 1	0
K _C ≠ 0	0, ' 1	+ 1	0

Figure 1.2.

Transitions involving the asymmetry split rotational levels for type-A, -B and -C bands.

(C)

For molecules such as ketene, type-A bands arise from vibrations which produce oscillating dipole moments along the 'top' axis, that is, the a axis. The structure of a type-A band consists of a series of K_a subbands superimposed on each other. Each K_a subband, other than $K_a = 0$ consists of P($\Delta J = -1$), Q($\Delta J = 0$) and R($\Delta J = +1$) branches, whilst the $K_a = 0$ subband contains only P and R branches. A convenient notation for designating a particular branch of a subband within a band is ${}^{Y}X_{Ka}$, where

X = R, Q or P corresponding to $\Delta J = 1, 0, -1$ y = r, q or p corresponding to $\Delta K_a = 1, 0, -1$ $K_a = K_a$ value of the subband.

As a result of asymmetry, for $0 \leq K_a \leq 2$, the separation between lines is no longer approximately constant (see figure 1.2) and consequently, two subbands for each value of K_a (>0) occur. These correspond to transitions between both K_a^+ and K_a^- levels. A typical type-A band for a near-prolate symmetric rotor molecule such as ketene is given at the top of figure 1.3.

Type-B and type-C bands of a near-prolate symmetric top molecule, such as ketene, arise from oscillating dipole moments perpendicular to the top axis, that is along the b and c directions. These band types have very similar structures for $K_a > 2$, but differ in the region of the band

top molecule ($\Delta A = -0.02$, $\Delta B = -0.0002$, $\Delta C = -0.0003$ cm⁻¹).

centre - the ${}^{r}Q_{0}$ and ${}^{p}Q_{1}$ branches characteristically degrade away from and towards the band centre in type-B and type-C bands respectively. Type-B and type-C bands of the type found in ketene may also be found in figure 1.3, where it can be seen that even K_a subbands are at one third of the intensity of odd K_a subbands. This is attributable to nuclear spin statistical weights arising from the symmetrically equivalent hydrogen atoms.

1.1.6 PERTURBATIONS

Essentially, there are two mechanisms by which two or more vibrational states can interact - by Coriolis (rotational) coupling and by Fermi (vibrational) resonance.

Coriolis coupling interactions occur between vibrational states belonging to different symmetry species of the molecular point group. These are the vibration - rotation interactions which derive from the last term of equation 1.1. The interaction is subject to Jahn's rule (24) which states that the product of the symmetry elements of the interacting species must be equal to the symmetry species of one of the molecular rotations. The effects of Coriolis coupling are generally accounted for in terms of contributions to the upper vibrational state rotational constants by application of second-order perturbation theory. A number of rotational selection rules govern the possible interactions. These are given in table 1.2 together with the contributions to ΔX , which is defined as

(X' - X"), where X = A, B or C rotational constants and '
and " represent the upper and ground vibrational states
respectively.

Differences in the relevant energy level separations \triangle can lead to significant variation in the values of $\triangle X$ throughout a band. When the interacting levels are sufficiently close, the interactions must be treated explicitly in order to fit the observed effects.

In addition to these selection rules of table 1.2, weak asymmetry allowed Coriolis interactions are also possible between levels differing by a further 2 units in K_a (25) and would be expected to give rise to localised perturbations, affecting a limited number of transitions only.

Table 1.2. Coriolis selection rules and second order resonance contributions to the rotational constants of asymmetric top molecules.

-			and all strength the product of the Party	ment of the sector of the sect		
	Rotn.				Interacting	Second Order Resonance
	Axis	∆J	∆Ka	∆K _c	levels	Contribution to ΔX
		-, 11	î.	, I. C. (197		ferrer al a brittan al
	R _a =R _z	0	0	+ 1	$E^+ \leftrightarrow E^- O^+ \leftrightarrow O^-$	$\Delta A = 4 (A\zeta^{a})^{2} / \Delta$
	₽ _b =₽ _x	0	+ 1	1	$E^+ \leftrightarrow O^+ E^- \leftrightarrow O^-$	$\Delta B = 4 (B\zeta^{b})^{2} / \Delta$
	R _{c=Ry}	0	±1	0	E ⁺ ↔O [−] E [−] ↔O+	$\Delta C = 4(C\zeta^{C})^{2}/\Delta$

Anharmonic or Fermi resonance interactions occur between vibrational states of the same symmetry species, in which interactions occur between rotational levels with the same value of J_{KaKc} (i.e. $E^+ \leftrightarrow E^+$, $E^- \leftrightarrow E^-$, $0^+ \leftrightarrow 0^+$ and $0^- \leftrightarrow 0^-$). These arise through the existence of cubic and higher (anharmonic) terms in the expansion of the molecular potential energy in terms of the normal coordinates, in addition to the purely harmonic terms of equation 1.3.

Where only two levels are in Fermi resonance, the perturbed energies of the states are given by

$$E^{\pm} = 1/2 (E_{m}^{\circ} + E_{n}^{\circ}) = 1/2 (d_{o}^{2} + 4W_{mn}^{2})^{1/2}$$
 1.10

where E_m° and E_n° are the unperturbed energies; $d_o = E_m^{\circ} - E_n^{\circ}$

and W_{mn} is the Fermi resonance interaction parameter.

Interactions involving more than two interacting levels are more complex and require full matrix diagonalisation.

In terms of the rotational constants of the interacting vibrations, the perturbation is manifested as a degree of mixing of the unperturbed constants. In the event of exact degeneracy of the two states, a fifty - fifty mixture occurs.

EMPIRICAL HARMONIC FORCE FIELD

From section 1.1.3, it can be seen that molecular normal vibrations and harmonic vibration frequencies are described in terms of a set of harmonic force constants or a force field. The determination of these force constants will now be considered.

1.2.1 VIBRATIONAL KINETIC ENERGY

It has previously been stated in section 1.1.1 that the total molecular kinetic energy T, can be expressed as a sum of the kinetic energies of N constituent atoms. This premiss also forms the basis for the determination of the empirical harmonic force field.

The N atomic kinetic energies can be defined in terms of atomic masses and the time derivatives of the 3N Cartesian displacement coordinates. According to classical mechanics, this can be expressed as a matrix product:

$$2T = \dot{X}^{+}M\dot{X}$$
 1.11

X is a single column matrix whose elements are the time derivatives of the 3N displacement coordinates and M is a diagonal matrix of the nuclear masses, each of which appear three times.

As established in section 1.1, for the treatment of

18

1.2

vibrations, it is advantageous to introduce a set of internal coordinates to describe the relevant motions of the nuclei, defined such that they are independent of the translational and rotational motions. These are defined in terms of the Cartesian displacements X of the nuclei and the overall molecular geometry, such that,

where $B_{ir}^{x} = (\delta S_{i} / \delta x_{r})_{xs,...}$ and is readily calculable.

Clearly, for non-linear molecules, B will have 3N-6 rows and 3N columns and by attaching a further 6 rows, a square matrix may be constructed. The attached 6 X 3N matrix designated B_o contains six orthogonal coordinates which relate to the translational and rotational motions and are usually referred to as "external" coordinates. Hence equation 1.12 becomes:-

Since the matrix partitioned into B and B is square then it will, in general have an inverse consisting of A and A for which the following must be true:-

Hence X can be substituted for in equation 1.11 to give

$$2T = \dot{s}^{\dagger}A^{\dagger}MA\dot{s} + \dot{s}^{\dagger}A^{\dagger}MA_{o}\dot{s}_{o} + \dot{s}^{\dagger}A^{\dagger}MA\dot{s} + \dot{s}^{\dagger}A^{\dagger}MA_{o}\dot{s}_{o}$$
 1.15

Of these four terms, the second and third are zero, the first relates to internal molecular vibration, and the last to the molecular translational and rotational motions. Once the molecular axis system is associated with the translating - rotating molecule, such that the Eckart conditions (26) are obeyed, the purely vibrational kinetic energy is given by the first term of 1.15,

$$2T = \dot{s}^{\dagger}A^{\dagger}MA\dot{s} = \dot{s}^{\dagger}G^{-1}\dot{s}$$
 1.16

where G^{-1} is the (symmetric) kinetic energy matrix in terms of the defined coordinates S. This expression assumes that the vibrations are harmonic.

The purely vibrational kinetic energy defined in the above equations involves evaluation of the A matrix, which is difficult. The matrix G however, is easy to calculate, being given by

$$G = BM^{-1}B^{+}$$
 1.17

where B is the matrix inverse to A, and is defined by 1.12. (Being rectangular, neither A nor B can be inverted directly.) It is this G matrix which is required for the

force constant calculations.

1.2.2 VIBRATIONAL POTENTIAL ENERGY

The total potential energy of a molecule is a function of the internal coordinates only and is thus dependent on vibrational motions only. If the molecule is in its equilibrium configuration, then the total potential energy V is defined as

$$V = 1/2(\delta^2 V/\delta S_1^2)_0 \cdot S_1^2 + 1/2(\delta^2 V/\delta S_2^2)_0 \cdot S_2^2 + \cdots$$

$$1.19$$

$$+ (\delta^2 V/\delta S_1 \delta S_2)_0 \cdot S_1 S_2 + (\delta^2 V/\delta S_2 \delta S_3)_0 \cdot S_2 S_3 + \cdots$$

in which the quadratic force constants are defined as

$$F_{11} = (\delta^{2} V / \delta S_{1}^{2})_{o}, \qquad F_{22} = (\delta^{2} V / \delta S_{2}^{2})_{o}, \text{ etc.}$$

and
$$F_{12} = (\delta^{2} V / \delta S_{1} \delta S_{2})_{o}, \qquad F_{23} = (\delta^{2} V / \delta S_{2} \delta S_{3})_{o}, \text{ etc.}$$

The vibrational potential energy equation 1.19 can be expressed simply in terms of the force constant matrix F, and the internal coordinate matrix S in an analogous fashion to that for the kinetic energy:

$$2V = S^{+}FS$$
 1.21
1.2.3 SECULAR DETERMINANT FOR VIBRATIONS

The classical equations of motion can be expressed in terms of internal coordinates and have the form

$$(\delta V / \delta S_{i}) + d/dt.(\delta T / \delta S_{i}) = 0$$
 1.22

Expansion of equations 1.16 and 1.21 for kinetic and potential energies respectively followed by insertion into equation 1.22 gives rise to the following expression for non-linear molecules,

$$\sum_{\substack{\Sigma \\ i \ge j=1}}^{3N-6} (F_{ij}) S_{j} + \sum_{\substack{\Sigma \\ i \ge j=1}}^{3N-6} (G_{ij}^{-1}) S_{j} = 0 \qquad 1.23$$

where F_{ij} and G_{ij} represent elements of the matrices, F and G. In solving the classical equations for non-linear molecules, internal coordinates of the following form are sought

$$S_{i} = A_{i} \cdot \cos(\lambda^{1/2}t + e)$$
 1.24

where A_i is the amplitude of vibration, e is the phase angle and $\lambda = 4\pi^2 c^2 \omega^2$, in which ω is the harmonic frequency (in cm⁻¹) of a normal vibration. This form of solution requires that

$$\ddot{S}_{i} = -\lambda S_{i} \qquad 1.25$$

Substituting for \ddot{S}_i , then for S_i in equation 1.23 followed by division by $\cos(\lambda^{1/2}t + e)$ gives a series of amplitude equations:

$$3N-6$$

 Σ (F_{ij} - G_{ij}⁻¹)A_j = 0 1.26
 $i \le j=1$

These amplitude equations simultaneously hold if the determinant of the coefficients is equal to zero. This can be expressed briefly in terms of a secular equation:

$$\left| \mathbf{F} - \lambda \mathbf{G}^{-1} \right| = 0 \qquad 1.27$$

Equation 1.27 is usually converted into two other, entirely equivalent forms, which are more convenient. This is done by either pre- or post-multiplying by the G matrix to give

$$|\mathbf{GF} - \lambda \mathbf{E}| = 0 \qquad 1.28$$

and

$$|\mathbf{F}\mathbf{G} - \lambda \mathbf{E}| = 0 \qquad 1.29$$

where E is the unit matrix. Solutions of the above determinantal equation allows the calculation of force constants from a knowledge of the normal vibrational frequencies, atomic masses and geometrical parameters. Collectively, these force constants are referred to as a force field, and when obtained in this fashion may be designated as an empirical harmonic force field.

1.2.4 SELECTION OF INTERNAL COORDINATES

An important step towards the determination of the empirical harmonic force field is the selection of the

internal coordinates. It is customary to define these as linear combinations of valence coordinates involving bond stretching, angle deformation and torsion according to the symmetry properties of the molecule. Where possible, they are chosen to approximate to the expected normal coordinates of the molecule. These steps ensure the factorisation of the secular determinant into symmetry blocks with dominant diagonal valence force constants.

Care must be taken in the definitions whenever the interbond angles around an atom exceed the number of independent deformations, as redundancy will occur. This leads to indeterminacies in the associated valence force constants. In many cases, the problem of redundancies can be avoided mathematically by defining coordinates that avoid the redundancy. The indeterminacies remain, however.

1.2.5 SOURCES OF INFORMATION

(a) Frequency data

Frequency data constitute the most abundant source of information available for force field determination through equations 1.28 and 1.29.

For a molecule which has n normal modes of vibration, there are n(n + 1)/2 independent force constants. Hence, n frequency data for a single isotopic species of a molecule are insufficient to determine the full valence force field.

The number of frequency data may be increased by use of frequency data from isotopically substituted molecules. The usual H, D data are generally not of great discriminatory value in the calculation. Chalmers and McKean (27) have demonstrated that the uncertainty in a small frequency shift, accurately measured and corrected for anharmonicity (see below), is very much smaller than the cumulative uncertainties in the two independently treated frequencies, and can be of great value in the calculation.

The force field of a molecule may not, however, be determinable from frequency data alone. This is because often the frequencies are almost insensitive to certain force constants, but is aggravated by other factors.

Firstly, force field calculations are performed in terms of the harmonic oscillator approximation, whilst vibrational frequencies are anharmonic. Hence corrections have to be made. For most polyatomic molecules, only approximate corrections for anharmonicity can be made. These are usually based on the equations of Dennison's rule for diatomic molecules:

$$\omega_{i} = v_{i} / (1 - x_{i})$$
 1.30

and

$$x_{i}^{*} = x_{i} v_{i}^{*} / v_{i}$$
 1.31

where ω_{i} is the harmonic frequency,

 v_i is the anharmonic frequency,

x, is the anharmonicity constant and

* refers to isotopically substituted species.

Secondly, many observed vibrational frequencies are appreciably affected by Fermi resonance interactions which should be corrected for. However, this is often not possible. Thus reduced reliability is placed on such data by effecting an attendant increase in the associated vibrational uncertainties.

Thirdly, for force field calculations, gas-phase data should ideally be used, where the molecules are considered to be mutually non-interacting. Condensation to the liquid or crystal phase may cause quite large shifts in vibrational frequency, though these are less severe for small frequency shifts. Data accumulated from different phases, if used, usually leads to reduced sensitivity.

In addition to vibrational frequencies, other parameters, particularly centrifugal distortion constants and Coriolis coupling constants can be determined from infrared and microwave studies. The former depend on the compliance (inverse force) constants (21), whilst the latter depend on the relative atomic displacements in the vibrations concerned (18), hence on the precise forms of the normal vibrations.

(b) Coriolis Coupling Constants

Approximate Coriolis coupling constants are obtained by dividing experimentally determined values of $(X\zeta_{r,s}^{X})$ by the rotational constant X (X = A, B, or C). However, precise evaluation of the Coriolis coupling constants is difficult since the vibrational dependence of $(X\zeta_{r,s}^X)$ is not a readily observed quantity (18). In addition, for strict comparison with calculated force constant values, it is the hypothetical equilibrium constants which are required. Nevertheless, experimentally determined constants are still of considerable assistance in the force field determination, particularly in calculating interaction force constants and in discriminating between alternative mathematical solutions (see section 1.2.6).

(c) Centrifugal Distortion Constants

Infrared and microwave analyses allow the determination of ground state centrifugal distortion constants. Again, in order to be compatible with the force field calculation, these constants should be equilibrium values. However, the differences are generally small, although these may lead to problems.

1.2.6 FORCE CONSTANT CALCULATIONS

Most methods are based on an iterative computational procedure. Initially, this involves inputing the atomic

internal valence displacement coordinates, usually represented as symmetry coordinates, where the vibrations are classified according to their symmetry. Also input are the atomic masses and their cartesian coordinates, the latter being calculated from a predetermined molecular geometry. In terms of equations 1.12 and 1.17, these quantities permit the determination of the G matrix and moments of inertia for any isotopic species, the latter being necessary for calculation of centrifugal distortion constants.

Next, for each isotope, the atomic masses and complete set of frequencies are input. Coriolis coupling constants and centrifugal distortion constants are also included when available. Individual frequencies, Coriolis constants and distortion constants have associated uncertainties which are also input. From these, relative weightings of the data can be calculated.

Values for the observed data (ω 's, $\Delta \omega$'s, ζ 's and distortion constants) are then calculated from a set of trial force constants, which are often chosen to be those determined from earlier work.

The associated Jacobian matrix J, which consists of the following terms

 $(\delta \omega / \delta F)$, $(\delta [\Delta \omega] / \delta F)$, $(\delta \zeta / \delta F)$ and $(\delta D / \delta F)$,

is also calculated for the initial estimate force constants. These are used to calculate the first order

corrections to the trial force constants to minimise the difference between observed and calculated data according to the following expression

$$\delta F = (J^+ W J)^{-1} J^+ W e \qquad 1.32$$

where W is the weighting matrix and e is the observed minus calculated error vector. This process is repeated using the revised set of force constants until the correction, δF becomes sufficiently small.

Several mathematical problems may arise using this procedure.

(a) Non linearity.

This can occur if the initial force matrix estimate is a poor one. It can cause the refinement to oscillate wildly and can even result in divergence instead of convergence. The most common solution to the problem is to damp the corrections to the force constants by a predetermined factor.

(b) Singularity.

If the matrix (J^+WJ) is nearly singular, large rounding errors may result from taking its inverse, causing large

errors in the calculated correction δF . This problem may occur when insufficient experimental data are available to define the force constants. Apart, obviously, from introducing more experimental data into the refinement, the problem can also be solved by constraining those force constants which are least sensitive to the data to fixed values.

(c) Multiple solutions.

The possibility that more than one solution to the force field can satisfactorily reproduce all the available data has been discussed in detail by McKean and Duncan (28). Many of the solutions may, however, be physically unreasonable and can be immediately discounted. Those which cannot be overlooked at this stage may only be distinguishable by introduction of additional experimental data. Distortion constants and Coriolis constants have been demonstrated to discriminate between alternative force field solutions in most cases.

1.3.1 INTRODUCTION

1.3

For the purpose of discussion in this section, vibrations of a molecule can be regarded as taking place on a multidimensional potential surface. When displacements around a reference geometry are small, the potential energy can be expanded as a power series. The coefficients arising from the expansion are the energy derivatives with respect to the nuclear displacement coordinates. The negative of the first derivatives are referred to as "forces" or "gradients", whilst the second derivatives are usually designated as (harmonic) "force constants". The latter relate to molecular bonding properties and the main interest here lies in their determination.

A set of molecular force constants, or force field, can be determined empirically from a knowledge of molecular geometry and spectroscopic parameters. This approach has been dealt with in the previous section. However, for all but a few small molecules, there are difficulties in accumulating sufficient experimental data to calculate all the force constants.

An alternative approach is to derive these force constants (and molecular properties in general) from fundamental principles through ab initio quantum mechanical calculations. This is a completely independent route to

obtaining molecular force fields and is both supplementary and complementary to empirical harmonic force field studies.

Prior to dealing specifically with ab initio force constant evaluation however, a brief description of underlying theoretical models upon which their determination is based will be given.

1.3.2 AB INITIO MOLECULAR ORBITAL METHODS

In theoretical chemistry, a central objective has long been to derive quantitative molecular property expressions from the underlying interaction between constituent nuclei and electrons. Molecular properties can in general, be related to fundamental principles through quantum mechanics, in which the distribution and motion of the electrons and nuclei is governed by a wavefunction. This wavefunction is obtained from the well-known Schrödinger equation.

The term "ab initio" implies that the molecular orbital (MO) treatments are rigorous and do not involve parameterisation. Apart from exceptionally simple systems however, there are too many degrees of freedom to permit exact solutions and this necessitates the introduction of approximations.

A pre-requisite assumption is generally made with regard to the separability of the vibrational and electronic wavefunctions, in accordance with the Born-Oppenheimer

approximation (29). This allows electronic properties to be dealt with at fixed molecular geometries.

The simplest molecular orbital approximation methods are of the Hartree-Fock (HF) type, in which solutions to the electronic Schrödinger equation are found by a self-consistent field (SCF) method. In the HF method, an n electron wavefunction Ψ , is approximated as a single determinant according to the following expression:

$$\Psi = (n!)^{-1/2} \det |x_1 x_2 \cdots x_n|$$
 1.33

The χ_i term is a one-electron function, known as a spinorbital, which describes the distribution of a single electron. Each χ_i is a function of four coordinates - one spin coordinate (s) and three cartesian coordinates for the electron (x, y and z). In addition, each spinorbital χ_i is further approximated as a linear combination of basis functions (30) ω_m

$$\chi_{i}(s, x, y, z) = \sum_{m}^{N} C_{mi} \omega_{m}$$
 1.34

The basis functions are normally spatial functions, (multiplied by a spin factor), which are centred at the nuclear position and depend principally on the nature of the nucleus and not the chemical environment. If the basis functions ω_m are approximated to the atomic orbitals for the constituent atoms, then equation 1.34 is normally described as a linear combination of atomic orbitals (LCAO). Basis

functions will be considered in more detail in section 1.3.3.

It is also required to fix the unknown expansion coefficients C_{mi} of 1.34 to specify the HF wavefunction completely. These are determined by the variational method such that the expectation energy,

$$E = \int \Psi \hat{H} \Psi dr \qquad 1.35$$

is as low as possible (within boundary restrictions). The energy E, obtained from equation 1.33 represents the closest approximation to the exact Schrödinger energy within the restriction of the single determinant wavefunction and infinite basis set approximation in the HF method.

HF energies are typically in error by about 1%. A large part of this error is attributable to the treatment of electronic interactions: the HF SCF wavefunction takes interactions into account only in average way. A more correct description would include the mixing of instantaneous electron correlation or electronic configurations. This is most commonly achieved by carrying out post-SCF calculations known as "configuration interaction" (CI) calculations, which involves swapping electrons between orbitals (usually taken to be the SCF MO's) to produce different electronic states. Symmetry restrictions limit the number of states which need to be considered since only those of the same symmetry as the

ground (reference) state contribute to the wavefunction. Nevertheless, even for small molecular systems there may still be a very large number of contributary electronic states and calculations soon become out of hand. The number of states considered is therefore usually limited to the two or three most important ones. For closed shell molecules, for example, only the ground and two excited states are most commonly used to define the wavefunction.

1.3.3 ORBITAL REPRESENTATION

The spatial part of the basis functions $\omega_{\rm m}$ of equation 1.32 in single centre (atomic) calculations are most conveniently represented as Slater type atomic orbitals (STO) (31), which have simple exponential terms of the form,

$$\theta = \exp(-\zeta r)$$
 1.36

These STO are good approximations to true atomic orbitals. However, in multicentre (molecular) systems integration in equation 1.35 is mathematically difficult to achieve if STO functions are used. Consequently, calculations are computationally difficult, particularly for larger molecular systems.

Alternatively, gaussian functions can be used (32). Indeed, nearly all modern ab initio MO calculations use gaussian basis functions. These have exponential parts of the form

and can be integrated much more readily. Although gaussian functions give an inferior description of atomic orbitals, especially for small values of r, a linear combination of gaussians can be used to represent a STO function:-

$$\exp(-\zeta r) \rightarrow \frac{K}{k} d_{ik} \exp(-\gamma_{ik} r^2)$$
 1.38

Such linear combinations may be referred to as "contracted gaussian functions" when the coefficients d_{ik} are fixed in proportion to each other. The larger the number of gaussians used, the closer the approximation to the STO. Detailed studies indicate that three gaussians per STO (i.e. STO-3G) are sufficient to reproduce the results from an STO (33).

These STO-nG are the smallest type of basis and are referred to as a "minimal basis" since only one basis function is used to represent each orbital. Thus, hydrogen for example, would have only one 1s function, whilst carbon would have 5 functions (1s, 2s, $2p_x$, $2p_y$ and $2p_z$). Although minimal basis sets of the STO-nG type are computationally inexpensive, they are deficient in that the same size of basis function is used for all chemical environments.

Increased flexibility can be achieved by doubling the number of basis functions in the valence shell. Such basis

may be described as "split-valence" and a number of these have been developed for first and second row elements (34-40). The 3-21G basis (37,39) is computationally the most inexpensive. For first row elements, this basis set consists of 3-gaussian core functions, 2-gaussian functions for the inner valence region and a single (uncontracted) gaussian for the outer valence region. Thus a 3-21G basis set for carbon for example, would contain a core (1s) function, 2s and 2p inner valence functions and also 2s and 2p outer valence functions, giving a total of 9 basis functions. Other split-valence basis sets of this type differ only in the number of gaussian functions used to represent each orbital.

In addition to doubling the number of valence functions, the number of core functions can also be doubled. Such basis sets are referred to as "double-zeta" basis sets since there are two exponential (zeta) functions per atomic orbital. Further improvements in the description of the orbitals may be achieved by using three basis functions per orbital, which defines a "triple-zeta" basis set.

Generally, basis functions are energy-optimised in terms of atomic orbital functions. For molecular systems, the molecular orbitals may differ significantly from their atomic orbital equivalents, particularly in the valence shell. These differences can be accounted for by scaling the atomic orbital function $\exp \left(\frac{1}{2} \right)$ according to equation 1.39

$$\zeta_{i} (molecule) = \alpha^{3/2} \zeta_{i} (atom)$$
 1.39

where α is a scaling factor. The scaling factors are generally determined from a set of "standard" molecules and have been found to depart significantly from unity for hydrogen functions. For larger centres, the effects of molecular environment are less pronounced and are reflected in scaling factors closer to unity.

Better quality wavefunctions can be generated by supplementing basis sets with higher angular momentum terms known as "polarisation" functions. The first row 6-31G* basis set as defined by Hariharan and Pople (41,42), for example, consists of a 6-31G split-valence set (35) plus a set of 6 second order uncontracted gaussian functions (which incorporate the complete set of atomic d functions). A more extensive basis set is the 6-31G** (41,42), which also contains a set of p-type polarisation functions on each hydrogen. Large basis sets such as the 6-31G** are very flexible and begin to approach the HF limit which is a limiting model for a HF wavefunction.

1.3.4 SELECTION OF THEORETICAL MODEL AND BASIS SETS

There are a considerable number of ab initio routines both published and being developed. They range from simple HF models to highly sophisticated packages incorporating CI and more sophisticated corrections. The selection of a

particular routine is determined by two key factors:

(1) The host system. This is of prime importance since the type of computer system will dictate the feasibilities of the calculations. Specifically, limitations on computer time and space and its overall efficiency must be taken into consideration.

(2) The type of calculations to be performed. Obviously, an investigator will choose an appropriate ab initio model specific to his research interests, but he will also have to consider the accuracies required. Generally, as the degree of complexity of the ab initio package increases, so too does the sophistication of the calculations. This leads to better quality results but is offset by a corresponding increase in computational expense.

There are a very large number of basis sets in the literature and their production is also an on-going process. Selection of the basis functions for a particular calculation requires careful prior consideration. The adopted ab initio package can largely dictate and reduce the number of available basis functions. The choice however, may still be large. An investigator has therefore to choose a basis set which represents a compromise in terms of complexity of calculation and amount of computing effort in a similar fashion to that for the selection of an ab initio package. Larger basis sets naturally take longer to evaluate. (The computing time rises approximately as the

fourth power of the number of basis functions (43).) An understanding of the relative merits of different sets of functions must be ascertained in advance so that an appropriate basis set is selected for a particular task. Furthermore, the investigator must exercise caution when interpreting ab initio results since inherent trends and anomalous values may be attributable to the basis set and not to some physical process. For example, there is a tendency for HF bondlengths to be considerably less than experimental equivalents. Whilst it could be inferred that the experimental bondlengths are in error, it is more likely that the HF bondlengths are too short owing to deficiencies associated with the HF model.

1.3.5 MOLECULAR ENERGY DIFFERENTIATION

Ab initio force constants F_{ij} , can be determined by double differentiation of the total ab initio molecular energy with respect to a set of nuclear coordinates q_i (i=1,2,...,n) and q_j (j=1,2,...,n), in the equilibrium configuration according to the following expression:

$$F_{ij} = (\delta^2 E / \delta q_i \delta q_j)_0 \qquad 1.40$$

There are three methods by which the differentiation of the molecular energy can be accomplished:

(a) Twice numerically,

(b) Twice analytically

and (c) First analytically and then numerically.

Method (a) had been originally adopted for force constant evaluation. This method requires the detailed calculation of a potential surface in terms of q_i and q_j , which necessitates a considerable amount of computing effort. In addition, method (a) leads to significant numerical inaccuracies, particularly beyond the first derivative (44).

For method (b) calculation of the double differential is performed in terms of variational parameters (44). In MO-SCF calculations, these parameters are generally difficult to obtain. In fact, they can be determined numerically by carrying out a series of calculations with different nuclear coordinates. Similarly to method (a) though, this requires a considerable degree of computing.

The third method, advocated by Pulay (45) and called the "force method" is generally accepted as the most economical and practical route to obtaining ab initio force constants. Furthermore, it makes possible an efficient iteration procedure to determine equilibrium nuclear configurations. This force method shall now be considered in more detail.

1.3.5.1 THE FORCE METHOD

The key feature of the force method is the calculation of the first (analytical) derivative f_i , referred to as the gradient or force, in terms of nuclear coordinate q_i (i=1,2,...,n) such that,

$$f_{i} = -(\delta E / \delta q_{i})$$
 1.41

The variational parameters are determined so that they minimise the total energy. For the first derivative however, it is not necessary to know how the variational parameters change with the nuclear coordinates in computing the gradients. This is in contrast to method (b) where the variational parameters for the second derivative need to be obtained.

The gradients are best calculated in terms of cartesian coordinates. In subsequent calculation of the equilibrium geometry and force constants however, gradients in internal coordinates are more advantageous. Thus transformation of the two sets must be carried out in terms of the B matrix and using the relations given in section 1.2.1.

1.3.5.2 EVALUATION OF FORCE CONSTANTS

To determine the ab initio quadratic force constants F_{ij} , the gradients f_i and f_j , must be differentiated numerically, in terms of the internal coordinates q_i and q_j (36). This may be done by applying distortions Δ_i along respective internal coordinates and then calculating F_{ij} according to the following,

$$F_{ij} = [f_{j}(ref) - f_{j}(\Delta_{i})] / \Delta_{i}$$
$$= [f_{i}(ref) - f_{i}(\Delta_{j})] / \Delta_{j}$$
1.42

These equations can be referred to as "one-sided displacement" equations, which include the inherent assumption that cubic terms can be neglected. This is a reasonable assumption provided that the displacements are chosen to be very small. However, the effects of cubic anharmonicity can be eliminated completely, and hence more reliable force constant values obtained, if the gradient is evaluated for two displacements (i.e. ${}^{\pm}\Delta_{i}$, etc.) along each coordinate. In addition to similar quadratic force constant expressions, i.e.,

$$F_{ij} = [f_{j}(-\Delta_{i}) - f_{j}(+\Delta_{i})] / 2\Delta_{i}$$
$$= [f_{i}(-\Delta_{j}) - f_{i}(+\Delta_{j})] / 2\Delta_{j}$$
1.43

the "two-sided distortion" scheme allows the calculation of dominant diagonal and semi-diagonal cubic force constants F_{ij} from the following expression:

$$F_{iij} = [2f_{j}(ref) - f_{j}(+\Delta_{i}) - f_{j}(-\Delta_{i})] / \Delta_{i}^{2}$$
 1.44

1.3.5.3 THEORETICAL EQUILIBRIUM CONFIGURATION

The theoretical potential surface for a molecule defined in terms of internal coordinates, will in general have a global energy minimum which constitutes its equilibrium nuclear configuration.

If an approximate force constant matrix is known and the surface is approximately quadratic, then a linear

convergence method called the "force relaxation method" (45) can be used to determine the equilibrium configuration. In this method, an initial estimate of the internal coordinates is calculated, usually from experimental geometry parameters. An SCF calculation is then performed at the point on the potential surface corresponding to the initial (experimental) geometry. The gradients f_i are then evaluated in terms of equation 1.41. From a knowledge of these gradients, a better estimation of the theoretical internal coordinate vector Q_{i+1} and hence theoretical equilibrium can be obtained from the following expression:

$$Q_{i+1} = Q_i + \Delta Q_i = Q_i + F_o^{-1} f_i \qquad 1.45$$

where F_0 is the estimated force constant matrix. If F_0 is equal to its true value and the potential surface is quadratic, then convergence on equilibrium can theoretically be achieved in one step. In practice however, this is not usually the case. Nevertheless, the final equilibrium configuration is usually reached after only a few iterations. It should be noted however, that in the linear convergent relaxation method the force constant matrix only determines the rate of convergence.

An extension to the relaxation method to include force constant matrix corrections can result in more rapid attainment of equilibrium.

Adoption of a theoretical nuclear configuration as a

reference geometry in order to calculate ab initio force constant may not be automatic. The choice of reference geometry will be dealt with in the following section.

1.3.6 SELECTION OF REFERENCE GEOMETRY

Selection of the reference geometry requires careful consideration prior to performing ab initio force constant calculations. Bond stretching force constants, in particular are very sensitive to the reference geometry (43).

If calculations are carried out using a theoretically determined geometry then force constant evaluation is performed relative to a minimum on the theoretical potential energy curve.

Alternatively, if the experimental geometry is used to calculate ab initio force constants, then this is equivalent to adding an empirical linear term to the theoretical potential function, shifting the position of the minimum to the experimental value. The introduction of these empirical elements can easily be justified (43) since the HF model is unable to calculate accurately the core-core repulsion interaction term. This leads to erroneous HF interatomic distances. This discrepancy is larger than errors resulting from adoption of r_0 , r_z or other experimental geometry parameters which represent deviations from equilibrium.

Use of an experimental geometry in ab initio calculations however, can affect quadratic and higher force constants. Specifically, addition of linear geometric corrections, when curvilinear valence coordinates are used can produce pseudo-quadratic and higher terms.

A systematic approach to empirically corrected theoretical geometries has been outlined by Blom et al. (46) and advocated by Pulay et al. (36). Their method is to apply empirical corrections to the theoretical geometries for a given basis set. The corrections have been established for small molecules and for the most part apply to bond lengths only.

CHAPTER 2

HIGH RESOLUTION INFRARED STUDIES OF KETENE

2.1 INTRODUCTION

The molecule ketene $(H_2^{12}C^{12}C^{16}O)$ is classified as an asymmetric rotor belonging to the C_{2v} point group. If the molecular axis convention recommended by Mulliken and Herzberg is adopted (xyz $^{\circ}$ cba), then the nine fundamental vibrations factorize such that the totally symmetric vibrations $\nu_1 - \nu_4$ belong to the A_1 species, the out-of-plane vibrations ν_5 and ν_6 to the B_1 species, and the in-plane vibrations $\nu_7 - \nu_9$ to the B_2 species. This numbering follows the convention used in publications over the past 15 years, but differs from that used in earlier work where the B_1 and B_2 labels are interchanged, with a consequent renumbering of $\nu_5 - \nu_9$.

Infrared studies of ketene date back to 1937 (47), although it was not until post-1950 that rotational structure in gas phase spectra was analysed at low resolution (48-53). Subsequent study at medium resolution has been restricted to the region below 1050cm⁻¹ (54), which

contains v_5 , v_6 , v_8 and v_9 , whilst at high resolution only the region above 3100 cm^{-1} containing v_7 and the v_2 + v_8 combination (55) has been studied. Very recently, an analysis of the region below 900 cm^{-1} of D_2CCO has been made at high resolution (56).

The studies reported here deal principally with the four A-type $v_1 - v_4$ fundamentals. The two C-type vibrations v_5 and v_6 and two of the three B-type vibrations v_7 and v_8 were also reexamined. In addition to these, three overtone levels $2v_5$, $2v_6$, and $2v_8$ were also studied.

On account of the wide spread of individual bands in the gas phase spectrum, arising principally from the very large A rotational constant, the possibility of perturbation within the bands was anticipated. Indeed, a-axis Coriolis interactions affecting v_5 , v_6 , v_8 and v_9 have most recently been studied by Nemes (54) and a probable Fermi resonance interaction between v_7 and $v_2 + v_8$ was reported by Johns et al. (55). In order to assist in the elucidation of these perturbations, the spectra of $H_2^{13}CCO$, $H_2C^{13}CO$ and D_2CCO have also been studied.

From the above studies, H_2CCO and D_2CCO frequencies and ^{13}C frequency shifts were collected to be used to calculate a revised force field for ketene. The ^{13}C shifts in particular were anticipated to be invaluable in helping to distinguish between alternative force field solutions to the B_1 symmetry block and also to define the A_1 block more

accurately.

2.2 EXPERIMENTAL PROCEDURE

(a) Synthesis of ketene

Ketene was prepared by hot wire pyrolysis of acetone under high vacuum (54). The ketene produced was separated from most other products by repeated fractional distillation through a series of low temperature baths and condensed at -154[°]C. After each distillation, preliminary low resolution infrared scans ($_{\circ}1$ cm⁻¹) in the region 4000 - $400\,\mathrm{cm}^{-1}$ of the distillate in a gas cell at 25torr were carried out to check purity. Fractional distillation was repeated until impurity absorptions were removed from the spectrum. However, a small trace of CO2 always remained in the distillate, its condensation temperature being close to that of ketene. CO2 absorptions were anticipated to interfere only in the v_5 and v_6 region of the spectrum and since these vibrations were only to be examined superficially, further purification was deemed unnecessary. Samples of H₂CCO, H₂C¹³CO, H₂¹³CCO and D₂CCO were obtained in this manner from the relevant isotopically substituted acetones.

(b) Spectra

Spectra were recorded on the Nicolet 7199 FTIR at maximum resolution ($\sim 0.05 \text{ cm}^{-1}$), using 20cm and multireflection cells of up to 9m pathlength, with gas pressures of up to 2torr. Liquid N₂ cooled In-Sb (> 2000 cm⁻¹) and Hg-Cd-Te (< 2000 cm⁻¹) detectors were used and any interference from atmospheric CO₂ and H₂O was minimised by computer subtraction of background spectra. Calibration was effected in terms of the internal He-Ne laser and the highly accurate CO fundamental absorption frequencies, giving an estimated internal accuracy of measurement of $\pm 0.002 \text{ cm}^{-1}$.

2.3 METHOD OF ANALYSIS OF ROTATIONAL STRUCTURE

(a) A-type

Assignments in the A-type bands of ketene were greatly simplified by calculation of the appropriate ground state combination differences (GSCD) from the precisely known ground state rotational constants given in table 2.1. These were determined from a combination of microwave and infrared studies by Johns et al. (55).

For subbands, where the effects of asymmetry are slight at the resolution available ($K_a > 2$, and $K_a = 2$, J < 15), transitions were analysed in terms of a symmetric rotor

energy expression with corrections for asymmetry made in terms of the second-order expressions of Polo (57). This method, first employed by Lafferty et al. for diborane (58), involves essentially the plotting of $[{}^{q}R_{Ka}(J-1) + {}^{q}P_{Ka}(J+1)]/2$ against J^{2} to yield a subband origin, $v_{Ka}{}^{0}$, and $\Delta \bar{B}_{Ka} = (\bar{B}'_{Ka} - \bar{B}'')$ for the subbands in question. The method makes the assumption that $A_{J}' = A_{J}''$ and $A_{JK}' = A_{JK}''$, which was found to be perfectly reasonable for the quality of the spectra. The subband origins, corrected if necessary to an averaged value of $\Delta \bar{B}$, were then fitted to a quadratic equation in K_{a}^{2} ,

$$\nabla_{Ka}^{0} = \nabla^{0} + [(A' - \overline{B}') - (A'' - \overline{B}'')]K_{a}^{2} - (\Delta_{K}' - \Delta_{K}'')K_{a}^{4}$$

= $\nabla^{0} + \Delta(A - \overline{B})K_{a}^{2} - (\Delta_{K}' - \Delta_{K}'')K_{a}^{4}$ 2.1

from which the vibrational band origin v° , and rotational ΔA and $(\Delta_{K}' - \Delta_{K}'')$ values can be determined.

Table 2.1. Ground state parameters^a for H₂CCO, cm⁻¹.

A	9.40921(40)
В	0.343370(1)
С	0.330737(1)
$\Delta_{\mathbf{J}}$	1.13(1) X 10 ⁻⁷
∆ _{JK}	1.588(1) X 10 ⁻⁵
$^{\Delta}\mathrm{K}$	7.85(29) X 10 ⁻⁴
τ ^δ	4.8(1) X 10 ⁻⁹
δĸ	1.10(1) X 10 ⁻⁵

a I^r representation

Refinements made in terms of the full quartic asymmetric rotor model have been performed to both ground and upper state combination differences (USCD) for transitions involving $K_a < 2$, where possible. These enable values for ΔB , ΔC and $(\Delta_J' - \Delta_J'')$ to be determined. In cases where perturbations appeared to have little effect on the upper state constants, higher (and hence unsplit) K_a transitions could be included in this refinement. In other cases, the effects of perturbations precluded this.

(b) B and C-type bands

For B and C-type bands, only preliminary studies of the Q branch structures have been made, primarily to determine 13 C frequency shifts. This has been achieved through simple contour comparisons where assignments to the $^{p}Q_{Ka}$ and $^{r}Q_{Ka}$ structure were aided by the nuclear spin statistical weights which render even K_a transitions at a third of the intensity of odd K_a transitions in H₂CCO species. Lower $^{p}Q_{Ka}$ and $^{r}Q_{Ka}$ transitions, especially $^{p}Q_{1}$ and $^{r}Q_{0}$ were principally used to determine shifts since these are least affected by isotopic changes in the major a-axis rotational resonances which are present. An analysis of the effects of these resonances in terms of Q branch structures has previously been reported for the B and C-type vibrations lying below 1000cm⁻¹ (54).

2.4 RESULTS AND DISCUSSION OF INDIVIDUAL BAND ANALYSES

For all the fundamentals and overtones studied, the spectra of three isotopomers were available for examination, namely H_2CCO , $H_2C^{13}CO$ and $H_2^{13}CCO$, and for the A_1 fundamentals, D_2CCO spectra were also available. Instrumentation limitations prevented examination of the low-lying v_9 vibration in any isotopomeric form.

Individual bands are discussed below roughly in order of decreasing degrees of complexity and thoroughness of investigation. The A-type vibrations $(\nu_1, \nu_2, \nu_3, \nu_4, 2\nu_5, 2\nu_6 \text{ and } 2\nu_8)$, and in particular the fundamentals were most comprehensively studied and are discussed first. The contour comparison analyses of two of the B-type vibrations $(\nu_7 \text{ and } \nu_8)$ are then discussed and finally, similar contour comparisons made of the C-type vibrations $(\nu_5 \text{ and } \nu_6)$ are considered.

(a) v_1 , CH₂ symmetric stretch, 3070cm⁻¹

Two features are immediately apparent from inspection of the central Q structure of this band, shown in figure 2.1. Individual ${}^{q}Q_{Ka}$ branches are sharp features indicating that $\overline{B}' \approx \overline{B}''$, whilst a marked subband degradation to lower frequency infers that the A constant decreases significantly from its ground state value. This marked degradation pattern is a common feature of A-type bands in ketene spectra.

Assignments to the Q structure are straightforward due to the nuclear spin statistical weights which result in odd K_a levels having three times the weighting of even K_a levels.

Over 300 unambiguous assignments have been made for $J \leq 36$ and $K_a \leq 7$, with the aid of GSCD calculated from the rotational constants in table 2.1. Assignments to $K_a = 2^{\pm}$ and 6 series were somewhat tentative and were excluded from upper state refinements. Insufficient intensity and severe overlap of transitions prevented assignment to $K_a > 7$ structure. (The v_1 rotational assignments, together with those for v_2 , v_3 and v_4 for ketene are listed in appendix A).

Subband structure belonging to $K_a \ge 3$ and $K_a = 2$ (low J) was analysed to give the subband origins and ΔB values in table 2.2. Sets of 192 GSCD and 175 USCD were formed for $0 \le K_a \le 7$ in order to check the ground state constants obtained against the values in table 2.1, and to obtain individual ΔB_1 and ΔC_1 values as listed in table 2.2. From the results, the ground state B, C and Δ_J are found to agree satisfactorily with those in table 2.1, whilst the corresponding upper state constants exhibit fairly minimal perturbation effects. However, individual subband origin frequencies are somewhat erratic. The v_{Ka}^{0} values of table 2.2 give a rather poor fit to equation 2.1 such that extrapolation to a reliable vibrational band origin is difficult, and the best fit parameters predict a change in

		Ζ		
ĸ	a	∆₩ X 10 ⁴	v _{Ka} o	
2		-3.68(11)	3069.779(2)	
3		-3.27(4)	69.073(2)	
4		-3.70(2)	67.914(1)	
5		-4.18(2)	66.616(1)	
6		-4.14(38)	64.962(7)	
7	с. 19. а. но 1	-3.72(9)	63.179(4)	
	Average	-3.78(17)		
	GS	constants	US constants	US – GS

Table 2.2. Results of analysis of v_1 fundamental of H_2CCO , cm^{-1} .

	GS constants	US constants	US – GS
В	0.343436(33)	0.343096(43)	-0.000340(77)
С	0.330616(32)	0.330199(42)	-0.000418(74)
ΔJ	1.0(1) X 10 ⁻⁷	0.9(2) X 10 ⁻⁷	$-0.1(3) \times 10^{-7}$
No. of dat	a 192	175	
		$\Delta \overline{B}$	-0.000379(76)

 $\boldsymbol{\Delta}_{\rm K}$ of about 30%, which seems very large.

Spectra of the corresponding vibration in $H_2C^{13}CO$ and H_2^{13} CCO were examined carefully to try to elucidate the origin of this behavior. As expected, both bands have the same overall structural appearance as that for ordinary ketene, and assignment to the very sharp Q branch features for 2 $\leq K_a \leq 7$ is straightforward. For ketene itself, the observed Q branch maxima and Q branch origins of table 2.2, determined from observed J structure, are almost identical, so the observed Q branch maxima in v_1 of $H_2C^{13}CO$ and $H_2^{13}CCO$ were subjected to analysis in terms of equation 2.1. The results for all three isotopic species are collected in table 2.3, where it will be seen that both 13 C species, particularly H₂¹³CCO, exhibit even more erratic behaviour than ordinary ketene. It appears that in H₂CCO, there is a small perturbation localised around $K_a = 3$ and 4, whereas in both $H_2C^{13}CO$ and $H_2^{13}CCO$ there is a considerably larger perturbation localised around $K_a = 2$ and 3. This can readily be seen in figure 2.2, where the spectra are compared.

Table 2.4 lists a number of combination levels likely to be either in Fermi resonance or a-axis Coriolis resonance with v_1 and thus cause or contribute to the observed perturbations to the v_1 spectrum. The v_4 + $2v_8$ level (A₁), calculated to lie almost coincident with v_1 in H₂CCO, and which can be in a Fermi resonance with v_1 , seems the most probable source of perturbation. However, by itself this
ketenes

	Ka	H	2CCO
		OBS	0 – C
	2	3069.779	-0.029
	3	69.073	0.050
	4	67.914	-0.030
	5	66.616	0.025
	6	64.962	-0.027
	7	63.179	0.009
	8		
	0		(10)
	Ņ	3070.44	(10)
∆(.	A−Ē)	-0.1600(96)
(∆ _K ' -	∆ _K ")	-0.00024	(18)
	vo	3070.40	(36)
△(A-Ē)	-0.1579(245)
(∆ _K '-	∆ _K ")	-0.00021	(37)

analyses for v_1 fundamental of isotopic cm⁻¹.

н ₂ с ¹³ со	H ₂ ¹³	³ cco	D ₂ CCO		
OBS O – C	OBS	0 – C	OBS	0 – C	
3069.707 0.101	3064.252	0.221	2267.093	0.003	
68.680 -0.151	62.965	-0.248	66.794	-0.006	
67.775 0.017	62.018	-0.073	66.396	0.001	
66.424 0.023	60.735	0.046	65.880	0.005	
64.801 0.027	59.085	0.048	65.242	-0.001	
62.879 -0.018	57.210	0.038	64.498	-0.002	
	55.099	-0.038	63.649	0.001	
3070.23(24)	3064.70	(35)	2267.32	3(8)	
-0.1569(238)	-0.1672(2	264)	-0.05820	(65)	
-0.00015(44)	-0.00028	(38)	-0.00001	2(10)	
'Best fit'	estimates				
3070.18(6)	3064.62	(9)			
-0.1510(40)	-0.1597(4	45)	as above		
-0.00043(62)	-0.00172	(50)			

Figure 2.2

Comparison of the Q branch structures in v_1 fundamentals of H₂CCO, H₂C¹³CO, H₂¹³CCO and D₂CCO.

	v_1 , cm^{-1} .		
Vibration	Wavenumber ^a	Symmetry Typ	e of interaction
$v_2^{+v}5^{+v}9$	3178.8	A2	a-axis
V7	3165.3	B ₂	c-axis
$v_2 + v_8$	3130.3	^B 2	c-axis
^v 2 ^{+ v} 6 ^{+ v} 9	3119.8	A ₂	a-axis
$v_3 + v_4 + v_5$	3091.3	B ₁	b-axis
$v_4 + 2v_8$	3071.6	A ₁	Fermi
v ₁	3070.4	A ₁	ich - hag vasta désid
$v_3 + v_4 + v_6$	3032.3	B ₁	b-axis
v ₂ +2v ₉	3030.5	^A 1	Fermi

Vibrational levels in the vicinity of

Table 2.4.

a Sum of the observed fundamental frequencies with no corrections for anharmonicity.

seems insufficient to explain the observed effects. $v_4 + 2v_8$ is predicted to have a value of ΔA of about $\pm 1.5 \text{ cm}^{-1}$ (which is calculated from Coriolis contributions to ΔA , see table 1.2, determined from force field calculations (59)). The interacting vibration would thus exhibit a very large upward subband degradation, but should experience downward ¹³C frequency displacements in the region of 20 cm^{-1} in both ¹³C species. This should lead to perturbations in v_1 of higher K_a levels in the ¹³C species than in ketene itself, since the vibrational separations are larger but decrease with increasing K_a. This is the opposite effect to that observed, and also cannot explain why the perturbation effects appear to increase markedly in the order

$$H_2 CCO < H_2 C^{13} CO < H_2^{13} CCO.$$

The fundamental v_4 (see section 2.4(d)) is highly perturbed by Fermi resonance itself, which thus casts doubt on the reliability of the harmonic predictions for $v_4 + 2v_8$. Less likely, but possible contributary sources of perturbation in table 2.4 are the inactive A_2 combinations $v_2 + v_5 + v_9$ and $v_2 + v_6 + v_9$, which could Coriolis interact locally with v_1 through rotation about the a-axis. In spite of not knowing their anharmonicity corrections, both levels seem too far separated from v_1 in all isotopic species to be a contributary factor to the observed effects.

The 'best estimate' vibration frequencies of v_1 in H_2CCO , $H_2C^{13}CO$ and $H_2^{13}CCO$, have been extrapolated from the

least perturbed Q branches observed to obtain the parameters in the lower half of table 2.3. The band origin of v_1 for H_2CCO is not well defined. The values of $(\Delta_K' - \Delta_K'')$ have little physical significance, being simply the mathematical values to improve the quality of the fit.

The spectrum of the v_1 fundamental of the D₂CCO presents similar sharp and readily assigned subband Q branches, supported by observed J structure, remembering that in this case the nuclear spin statistical weights are such that even K_a : odd K_a have weights in the ratio 2 : 1. In contrast to the hydrogenated ketenes, the subband structure analyses perfectly in terms of equation 2.1, as shown in table 2.3, yielding the parameters listed. This demonstrates the quality of fit that <u>can</u> be achieved, and confirms that the effects observed in H₂CCO ketenes are genuine. The spectrum around the band centre is included in figure 2.2 for comparison.

(b) v_2 , CCO asymmetric stretch, 2152cm⁻¹

In contrast with the other A-type bands of ketene, the Q structure of the v_2 band does not exhibit discrete, sharp ${}^{q}Q_{Ka}$ absorptions, but rather consists of overlapping structures resulting in an almost continuous overall Q branch, as shown in figure 2.3. Close inspection indicates a general downwards degradation of subbands with a downwards degradation of subbands with a subband, inferring that A" > A' and \overline{B} " > \overline{B} '. The large degree of

overlapping of structure inhibited assignment to most of the Q branch structure, except for the ${}^{q}Q_{3}$ absorption, which is characteristically the most intense feature of these A-type bands.

With the aid of GSCD, assignment to P and R branch structure for $J \leq 36$ and $K_a = 1^+, 2^+, 3, 4, 5$ have been made. Assignments to $K_a = 0^+$ and ≥ 6 structure were not possible due respectively to severe overlap and insufficient intensity in the spectra.

Analysis of structure for $K_a > 3$ and $K_a = 2$ (low J) subbands yields the subband origins and $\Delta \overline{B}$ values listed in table 2.5. The subband variation in the rather precisely defined $\Delta \overline{B}$ values and the observation that ${}^{q}Q_{5}$ lies <u>between</u> ${}^{q}Q_{2}$ and ${}^{q}Q_{3}$ is indicative that the ${}^{\vee}{}_{2}$ fundamental experiences perturbation to its K_a structure, which in turn appears to affect its J structure to a smaller extent. Individual B' and C' constants were determined from the $K_a = 1^{\pm}$ subband series. It will be observed in table 2.5 that the higher the subband origin lies, the more negative the B becomes, again indicative of perturbation.

From table 2.6 it may be seen that a number of overtone and combination levels lie in the vicinity of v_2 , but the most likely source of perturbation is $v_4 + v_5 + v_9 (A_2)$, calculated to lie at $v_2 142 \text{cm}^{-1}$ with a small upward degradation. This combination can Coriolis interact with v_2 through molecular rotation about the a-axis. Such an

Table 2.5. Results of analysis of v_2 fundamental of H_2 CCO, cm⁻¹.

v o Ka	∆B x 10 ³	Ka
2152.475(5)	-2.217(48)	1
2152.181(2)	-2.094(15)	2
2151.738(5)	-1.896(10)	3
2151.152(3)	-1.883(13)	4
2151.911(2)	-1.964(4)	5

Average -1.959(95)

	Best	estimate'	parameters
÷	vo	2152.56(5))
∆ (A	-B)	-0.092(8	3)

Table 2.6. Vibrational levels in the vicinity of v_2 , cm⁻¹.

Vibration	<u>Wavenumber</u> a	Symmetry	Type of interaction
$2v_4$	2232.0	^A 1	Fermi
v ₄ +v ₅ +v ₆	2231.6	A 1	Fermi
[∨] 4 ⁺² [∨] 6	2172.6	A 1	Fermi
v ₂	2152.6	A 1	
2v5+v8	2152.4	^B 2	c-axis
$v_4 + v_5 + v_9$	2142.3	^A 2	a-axis
$v_4 + v_8$	2093.8	^B 2	c-axis
^v 5 ^{+v} 6 ^{+v} 8	2093.4	^B 2	c-axis
$v_4 + v_6 + v_9$	2083.3	A2	a-axis

a Sum of the observed fundamental frequencies with no corrections for anharmonicity.

interaction is K_a -dependent and could manifest itself in an increasing upward displacement of K_a structure in v_2 as K_a increases, as observed. The effect is small, as is to be expected for interaction between a fundamental and ternary combination. It may also be seen from table 2.6 that the combination vibration $v_8 + 2v_5$ (B₂) also lies very close to v_2 . This combination should degrade very rapidly to higher frequencies ($\Delta A ~ + 3 \text{ cm}^{-1}$) and the c-axis Coriolis interaction possible here may contribute to the variation of the subband $\Delta \bar{B}$ values observed in v_2 . Approximate estimates of the v_2 vibrational frequency and $\Delta(A - \bar{B})$ value may be obtained by considering the $K_a = 1$, 2 and 3 subbands to be essentially unperturbed, giving the parameters at the bottom of table 2.5.

The v_2 fundamentals of $H_2C^{13}CO$ and $H_2^{13}CCO$ have also been studied. Although visually similar to the H_2CCO band, assignments can fairly readily be made for $H_2C^{13}CO$, but not at all for $H_2^{13}CCO$, where the rotational structure appears to be very confused. For $H_2C^{13}CO$, the v_2 vibration shifts downwards by some 56.5cm⁻¹, and now lies <u>below</u> both the probable perturbing levels. The shift for $H_2^{13}CCO$ is only 5.3cm⁻¹, and the perturbation present should be somewhat similar to those found in H_2CCO . For $H_2C^{13}CO$, assigned structure enables the $K_a = 1, 2, 3$, and 5 subband origins to be determined and analysed. Comparison of the results for H_2CCO and $H_2C^{13}CO$, shown in table 2.7, reveals a marked change in the $\Delta(A - \overline{B})$ constant. This is considered to be evidence of a small Fermi resonance with the lower lying

	Ka	H ₂	CCO	H ₂ C	¹³ CO	н ₂ ¹³ с	CO	D ₂ CC	CO
		OBS	0 – C	OBS	0 – C			OBS	0 – C
	1 :	2152.475	0.007	2095.924	-0.028	No		-	-
	2	2152.181	-0.011	2095.904	0.022	assignme made due to	nts	2120.346	-0.003
	3	2151.738	0.004	2095.780	0.014	confuse	d	2120.199	0.011
	4 (2152.152)) ^a -	- 1	-	Structu	Te	2119.980	-0.016
	5 (2151.911)) ^a –	2095.386	-0.007			2119.814	0.010
	6							2119.652	-0.002
	7							(2119.074)) ^a -
	8							(2118.137)) ^a –
	γO	2152.56	(5)	2095.97	(6)	2147.2 ^b		2120.49	(4)
	∆(A–Ē)	-0.092	2(8)	-0.02	33(45)	_		-0.0372(5	54)
(∆ ^K	[′] - Δ _K ″)	_				_		-0.00039	(13)

Table 2.7. Subband analysis for v_2 fundamental

of isotopic ketenes, cm^{-1} .

^a Values not used in estimates of vibration - rotation parameters.
^b Estimated from visual inspection of spectrum. See Figure 2.4.

level $2v_8$, which lies much closer to v_2 in $H_2C^{13}CO$ than in H_2CCO or $H_2^{13}CCO$, due to the large downward shift of v_2 in $H_2C^{13}CO$. $2v_8$ exhibits a very large upward subband degradation (see section 2.4(g)). For $H_2^{13}CCO$, only an approximate vibration frequency, estimated visually from the observed Q branch can be quoted. The central regions of all three spectra are compared in figure 2.4, where the different Q branch spacings in H_2CCO and $H_2C^{13}CO$ can readily be seen.

In the case of D_2^{CCO} , the subband Q branch structure is once again sharp and well-defined as shown at the bottom of figure 2.4. Subband origins for $K_a = 2 - 8$ are listed in table 2.7 and give evidence of a minor perturbation and a crossing of energy levels between $K_a = 6$ and 7. Subband origins appear to be pushed upwards for $K_a \leq 6$ and downwards for $K_a \geq 7$. Both $v_3 + v_5 + v_9$ (A_2) and $v_3 + 2v_6$ (A_1) lie close to v_2 and may contribute to the observed effects. By analysing only the least perturbed subband origins, the vibration frequency has been estimated and is given in table 2.7.

(c) v_3 , CH₂ deformation, 1387 cm⁻¹

Inspection of the central region of the v_3 fundamental of H₂CCO, shown in figure 2.5, reveals sharp individual ${}^{q}Q_{Ka}$ branches which possess neither a regular degradation pattern nor the expected intensity alternation arising from the nuclear spin statistical weights. In addition, a very

Figure 2.4 Comparison of the Q branch structures in v_2 fundamentals of H_2CCO , $H_2C^{13}CO$, $H_2^{13}CCO$ and D_2CCO .

WAVENUMBERS / CM⁻¹

intense sharp absorption occurs some 8cm^{-1} higher than the main Q branch structure. Clearly, the rotational energy levels of this vibration are subjected to significant perturbations, almost certainly through a Fermi resonance with $\nu_8 + \nu_9$ (A₁), which is calculated to lie at $\sim 1417 \text{cm}^{-1}$. This vibration is expected to exhibit a strong degradation of its K_a structure to lower wavenumbers, which will lead to a crossing of energy levels between ν_3 and $\nu_8 + \nu_9$.

Examination of the corresponding bands in the spectra of $H_2C^{13}CO$ and $H_2^{13}CCO$ support the identification of the perturbing level as $v_8 + v_9$. This should lie about $18cm^{-1}$ closer in $H_2C^{13}CO$ but about $4cm^{-1}$ further from v_3 in $H_2^{-13}CCO$. The spectrum of $H_2C^{13}CO$ exhibits no obviously assignable Q branch degradation pattern, but rather contains highly displaced Q branch features. These were eventually assigned with a high degree of confidence after careful studies. The v_3 spectrum of $H_2^{-13}CCO$ appears similar to, but somewhat less perturbed than, that of H_2CCO itself. Comparison of the central regions of all three bands is made in figure 2.6.

Assignment of P and R structure in v_3 of H_2CCO has been made for J \leq 36 in the $K_a = 1^{\pm}$, 3 and 5 subbands, and somewhat more tentatively to J \leq 20 in the $K_a = 2^{\pm}$ and 4 subbands with the aid of GSCD. No evidence of structure belonging to $K_a = 6$ could be found, but structure consistent with $K_a = 7$ could be found associated with the 1395cm⁻¹ Q branch. Results of the analysis of these assignments are

Figure 2.6

Comparison of band centre regions of v_3 fundamentals of H₂CCO, H₂C¹³CO, H₂¹³CCO and D₂CCO, with assignments to highly displaced subband Q branches.

given in table 2.8. These confirm the effects of a major resonance, causing different degrees of mixing of rotational levels for different K_a between the two vibrations concerned, which give rise to a large variation in the $\Delta \overline{B}$ values for different subbands.

The most acceptable explanation of the observed structure in v_3 would appear to be the following. The unperturbed ν_3 is considered to have a natural, small upward K_a degradation of its subbands; $v_{g} + v_{q}$, on the other hand, lies higher but has a very marked downward K degradation (AA % -1.0 cm⁻¹). In H₂CCO this causes the $K_a = 5$ energy level sets to be nearly coincident, such that a high degree of mixing and displacement occurs. The crossing of the energy levels between v_3 and v_8 + v_9 then leads to $K_a = 6$ and 7 energy level sets being displaced to higher frequencies in v_2 . The assignments which have been made in the v_3 bands of $H_2C^{13}CO$ and $H_2^{13}CCO$ qualitatively confirm this explanation. The effect is much more severe in $H_2 C^{13}CO$, with $v_8 + v_9$ some $18 cm^{-1}$ closer and less severe in $H_2^{13}CCO$, with $v_8 + v_9$ some $4cm^{-1}$ further, from v_3 . Without any assignable structure belonging to $v_8 + v_9$, it is not possible to quantify the resonance effects with any great accuracy. It is found that the observed Q branch positions cannot be reproduced with a common resonance parameter $W_{3,8,9}$ for all three isotopic species. However, the observed data listed in table 2.9 are reproduced remarkably well in terms of the approximately consistent parameters given. Two slightly unsatisfactory features of these

Table 2.8

Results of analysis of v_3 fundamental of H_2CCO , cm^{-1} .

ĸa	∆B x 10 ⁵	v _{Ka} o
1	-7.7(59) ^a	1386.71(1)
2	+1.4(13)	1387.010(2)
3	+4.3(1)	1387.433(1)
4	+10.4(3)	1387.725(2)
5	+63.5(4)	1386.499(3)
6	<u> </u>	1394.40 ^b
7	-15.4(7)	1394.731(3)

^a Obtained from upper state

	B = 0.3	343692(59),	C = 0.	33026	51(59)	cm ⁻¹	•
b	Visual	inspection	value.	See	figure	2.5	•

Table 2.9. Reproduction of observed Q branches in v_3 of H₂CCO, H₂C¹³CCO and H₂¹³CCO after correction for Fermi resonance perturbations with $v_8 + v_9$, cm⁻¹.

Ka	^H 2	H ₂ CCO		H ₂ CCO H ₂ C ¹³ CO		H ₂ ¹³ C	H ₂ ¹³ CCO	
	OBS	0-C ^a	OBS	0-C ^a	OBS	0-C ^a		
1	1386.71	0.0			1374.29	0.0		
2	1387.01	-0.1	1382.51	0.2	1374.61	-0.1		
3	1387.43	0.0	1380.24	-0.4	1375.15	-0.1		
4	1387.72	0.0	1392.35	-0.1	1375.72	0.1		
5	1386.50	0.0	1392.15	0.0	1375.72	0.1		
6	1394.40	-0.2	1392.95	0.3	?1382.63	0.0		
7	1394.74	-0.1	1394.30	0.2	1374.63	0.0		
^V 3	1387.5		1386.0		1375.1			
$\Delta(A_3 - \overline{B}_3)$) +0.14		+0.14		+0.13			
ν ₈ + ν ₉	1416		1398		1409			
∆(A-Ē)	-1.0		-1.0		-1.0			
W _{3,8,9}	5.0		7.0		5.2			

^a Since the calculations are at best only approximate, comparison with the accurately observed Q branch features is made only to the first decimal place. estimates are that $W_{3,8,9}$ is required to take significantly different values of 5.0 cm^{-1} (H₂CCO), 7.0 cm^{-1} (H₂C¹³CO), and 5.2cm-1 (H_2^{13} CCO), and that v_3 (H_2C^{13} CO) apparently lies $\sim 1.5 \text{ cm}^{-1}$ lower than \sim_3 (H₂CCO), when an unperturbed isotopic shift close to zero would be expected. However, it is anticipated that this cannot be improved upon without further information. Part of the problem is almost certainly due to the assumption that for each isotope $v_8 + v_9$ will degrade in a regular sense to lower frequencies, when it almost certainly will not, due to Coriolis effects on the subbands through resonances with $v_5 + v_8$ and $v_6 + v_8$. Nevertheless, the fact that the main features observed in the three spectra depicted in figure 2.6 are well reproduced in terms of the sets of almost consistent parameters in table 2.9 tends to indicate that the explanation is basically correct.

For D_2 CCO, the Q branch structure is compressed into a very small region of the spectrum around 1227cm⁻¹, as can be seen in the bottom spectrum in figure 2.6. It appears that a natural degradation to higher frequencies is present, but spacings and intensities are irregular, rendering assignment almost impossible. The same Fermi resonance interaction with $v_8 + v_9$ can occur in D_2 CCO as in H_2 CCO species, but here the vibration lies extremely close, with $v_8 + v_9$ calculated to lie at ~ 1223 cm⁻¹. The highly compressed subband structure in v_3 is consistent with that expected to arise through Fermi resonance with a vibration lying slightly lower, and with a marked degradation to lower

frequencies. The perturbations to the subbands in v_3 would then all be to higher frequency, but would diminish rapidly as K_a increases. If the natural subband degradation in v_3 is small and upwards (as in H₂CCO species) this would give rise to the highly compressed and confused structure which is observed. The resonance parameter $W_{3,8,9}$ will be smaller than that for H₂CCO species, so it is estimated that the unperturbed v_3 vibration frequency will be some 2 - 3cm⁻¹ below the observed band centre, at ca. 1225cm⁻¹.

(d) v_4 , CCO symmetric stretch, 1116cm⁻¹

This band is characterised by a distinctive Q branch degradation to higher frequency, as displayed in figure 2.7. Individual ${}^{q}Q_{Ka}$ branches are sharp, and can be assigned readily.

Unambiguous assignments to over 200 transitions in the P and R branches have been made in terms of the GSCD. Assignments for $J \leq 36$ in the $K_a = 2^{\pm}$, 3, 4, 5 subbands were certain, but assignments to the asymmetry split $K_a = 1^{\pm}$ series give indication of perturbations to both their expected absolute and relative positions. As in previous cases, severe overlapping and/or lack of intensity prevented assignment to $K_a = 0$ and $K_a \geq 6$ subband series.

Analysis of $K_a \ge 3$ and $K_a = 2$ (low J) subbands yield the results listed in table 2.10. No refinement to individual upper state B and C constants was possible since the $K_a = 1^{\pm}$

energy levels are clearly perturbed, and insufficient $K_a = 2^{\pm}$ assignments have been made. The subband $\Delta \overline{B}$ values in table 2.10 for $K_a = 2 - 5$ show reasonable consistency, but the subband origins give a poor fit to equation 2.1, and the parameters determined require that Δ_{K}' has a magnitude of nearly 6 times that of the ground state value. Clearly, once again, quite severe resonance perturbations are present.

Of possible interacting levels, the three nearest ones are $2v_5$, $v_5 + v_6$, and $2v_6$ (all A_1), all of which may be in Fermi resonance with v_4 . Of these, $2v_5$ lies higher, $v_5 + v_6$ almost coincident, and $2v_6$ lower than v_4 . Structure in $2v_5$ and $2v_6$ can be assigned and preliminary analyses have been performed (see 2.4(e) and 2.4(f)). However, assignment to the closer lying $v_5 + v_6$ vibration was not possible because of overlap with v_4 structure and lack of evidence of assignable structure. The resonance is considered to occur between all four levels, from the evidence presented by our observations on $H_2C^{13}CO$ and $H_2^{13}CCO$ spectra. Indeed, it is difficult to rationalise such a large $\triangle A$ value as found here with a vibration which would not be expected to involve major displacements of the hydrogen atoms. The observed degradation is considered to be attributable almost entirely to the resonances involved with three other vibration levels, two of which exhibit enormous upward K degradations due to the major Coriolis interactions which occur between v_5 , v_6 and v_9 .

Table	2.10.	Results	of	anal	lysis	of	$^{\nu}4$	
		fundamer	ntal	. of	H2CCC	Э,	cm ⁻	1.

Ka	∆B x 10 ⁴	v o Ka
2	+2.87(14)	1118.000(2)
3	+3.43(2)	1120.466(1)
4	+3.28(4)	1123.449(2)
5	+2.94(3)	1126.879(2)
6	_	1130.363 ^a
7	_	1133.388 ^a

Average +3.13(30)

vo		1115.96(10)
∆(A-B̄)		+0.5296(173)
$(\triangle_{\mathbf{K}}' - \triangle_{\mathbf{K}}'')$		+0.00373(58)
∆A		+0.5299(74)

^a Observed positions of sharp Q branch maxima. See figure 2.7. In table 2.11, the ${}^{q}Q_{Ka}$ frequencies for the v_4 fundamentals of H_2CCO , $H_2C^{13}CO$, $H_2^{-13}CCO$ and D_2CCO are listed, along with 'best estimate' parameters. These are only effective values, due to the major perturbations present, and the vibration frequencies cannot be accepted as those of the v_4 fundamental. Force constant calculations (see chapter 3) predict ${}^{13}C$ frequency shifts on v_4 of < 1cm⁻¹ for $H_2C^{13}CO$ and ${}^{v}16cm^{-1}$ for $H_2^{-13}CCO$, which may be compared with 'experimental' values of 7.9cm⁻¹ and 5.2cm⁻¹ respectively! Comparison of the central regions of all four bands is made in figure 2.8.

Collected in table 2.12 are the data which have been obtained from careful Q branch assignment of the spectra of v_5 , v_6 , $2v_5$, $2v_6$, and v_4 for H_2CCO , $H_2C^{13}CO$ and $H_2^{13}CCO$. The values for the levels in the 1100 cm^{-1} in the region are compared with the values expected using a simple harmonic oscillator approach, where the isotopic shift on an overtone, or combination level is simply twice, or the sum of the shift(s) on the constituent fundamental(s). It will be seen that almost all observations are at complete variance with expectation. The observed data on v_5 and v_6 should be accurate and reliable, since the vibrations are at low energy and suffer minimal vibrational resonance perturbations; the major rotational resonance perturbations to v_5 and v_6 do not affect their vibrational frequencies. Thus the anticipated isotopic shifts on $2v_5$, $2v_6$ and $v_5 + v_6$ should be quite reliable, and it is concluded from the evidence in table 2.12 that all four vibrations in the

Table 2.11. Subband analyses for v_4 fundamental

of isotopic ketenes, cm^{-1} .

	ł	X a	H ₂ CC	20	H ₂ C	¹³ co	н 13 Н2	CCO	D ₂ CC	CO
			OBS	0 – C	OBS	0 – C	OBS	0 – C	OBS	0 – C
		2	(1118.004)	a _	(1108.272) –	(1112.002)	_	925.122	-0.027
		3	(1120.485)	-	(1112.066) –	1114.734	-0.007	925.561	0.036
		4	1123.473	0.001	1115.432	0.003	1117.285	0.017	925.968	0.015
		5	1126.905	-0.002	1118.972	-0.008	1119.811	-0.015	926.301	-0.037
		6	1130.363	0.001	1122.774	0.006	1121.902	0.004	926.567	0.013
		7	1133.388	-0.001	1126.455	-0.002	(1124.556)	-	_	-
		0								
		ν	1116.013	3(12)	1108.10	8(46)	1110.804	(68)	924.737	(43)
	∆ (A	-Ē)	+0.52030	(78)	+0.4979(31)	+0.4805(7	0)	+0.1049(7	72)
Δ _K	'-∆	"") K	+0.003382	2(12)	+0.00252	(50)	+0.00478(15)	+0.00170	(24)

^a Data in parentheses were not used in least squares fit.

All data refer to observed subband Q branch maxima.

Figure 2.8

Comparison of band centre regions of ' v_4 fundamentals' of H₂CCO, H₂C¹³CO, H₂¹³CCO and D₂CCO, with assignments to subband Q branches.

Table 2.12. Vibrational data for v_4 , v_5 , v_6 , $2v_5$, $2v_6$, and v_5 + v_6 in isotopic ketenes, cm⁻¹.

	H ₂ CCO	н ₂ с ¹³ со	н ₂ ¹³ ссо
			<u></u>
	OBS PRED	OBS PRED	OBS PRED
ν 5	587.3 -	5.40 5.34 ^a	0.37 0.40 ^a
^V 6	528.4 -	9.68 9.73 ^a	5.52 5.75 ^a
² v ₆	1065.1 1056.8	8.6 19.4 ^b	11.09 11.1 ^b
ν ₅ + ν ₆	- 1115.7	- 15.1	- 5.9 ^b
$^{\vee}4$	1116.0 -	7.9 0.8 ^a	5.2 15.9 ^a
2v ₅	1187.5 1174.6	10.2 10.8	5.3 0.8 ^b

^a Predicted from force constant estimates.

See table 3.17.

^b Assuming $(2v_i) = 2 \times v_i$, $(v_i + v_j) = v_i + v_j$, using the observed data on v_5 and v_6 .

In dideuteroketene the interacting levels are further separated, with $2v_5$ lying $\sim 160 \text{ cm}^{-1}$ and $v_5 + v_6 \sim 50 \text{ cm}^{-1}$ higher than v_4 , with $2v_6 \sim 55 \text{ cm}^{-1}$ lower. Whilst still exhibiting an upward K_a degradation, as can be seen in figure 2.8 and table 2.11, this is much less extreme than in ketene, reflecting the decreased resonance effects in this case. The v_4 band is rather weak and badly overlapped by structure belonging to v_8 and $2v_6$.

(e) $2v_5$, CCO deformation overtone, 1189 cm⁻¹

Preliminary studies of the first overtone of v_5 , located $\sqrt{70}$ cm⁻¹ above v_4 indicate that it consists of sharp, clearly defined Q branches which degrade dramatically to higher frequencies, spanning some 110 cm⁻¹. Similar spreads are observed in the H_2 C¹³CO and H_2 ¹³CCO spectra. In the v_4 analysis, Fermi resonance interactions between v_4 , $2v_5$, $2v_6$ and $v_5 + v_6$ levels were found to have significant effects on v_4 . The same interactions were thus anticipated to have significant effects on $2v_5$.

The sharp individual Q branches were taken to be good approximations to the subband origins and were analysed in terms of equation 2.1 for all three hydrogenated ketenes. These are listed, together with the derived parameters in table 2.13. The fits to individual subbands are found to be poor and are almost certainly caused by the Fermi resonance interactions. A study of the vibrational levels in this region of the spectrum indicates that the large calculated $\Delta(A - \bar{B})$ values of table 2.13 are almost entirely attributable to the major a-axis Coriolis interactions with $v_5 + v_8$ and $v_5 + v_9$.

Since the $v_5 + v_6$ combination could not be located in any of the spectra, the $v_4/2v_5/2v_6/v_5 + v_6$ Fermi resonance could not be solved. However, a qualitative measure of the relative extents of perturbation to $2v_5$ in the H₂CCO, H₂C¹³CO and H₂¹³CCO spectra can be obtained, in the first

Table 2.13. Approximate subband analyses of $2v_5$ of isotopic ketenes, cm⁻¹.

Ka	H ₂ CCO		H ₂ C ¹	н ₂ с ¹³ со		³ CCO
	OBS	0-C	OBS	0-C	OBS	0-C
2	1196.3	0.5	1185.6	1.0	1191.4	0.1
3	1205.7	-0.3	1193.1	-0.5	1202.1	-0.1
4	1219.4	-0.5	1205.1	-0.9	1217.0	0.1
5	1236.9	0.0	1221.4	-0.3	1235.3 ^a	0.1
6	1257.0	0.2	1241.1	0.5	1255.9	0.1
7	1278.9	0.2	1262.9	0.7	1278.0	-0.1
8	1302.0	-0.2	1286.1	-0.4	1301.2	0.0
9			(1310.1)	b	(1324.6)	C
vo	1187.5(4)	1177.3(9)	1182.1(1)
\triangle (A $-\overline{B}$)	+2.092(30)	+1.818(65)	+2.282(1	1)
(${\bigtriangledown_{\rm K}}^{\rm K}$ ' ${-}{\bigtriangledown_{\rm K}}^{\rm H}$ '')	+0.0047	0(44)	+0.0017	4(94)	+0.00663	3(15)

- ^a Uncharacteristic absorption pattern. Possibly caused by a localized c-axis Coriolis interaction with $K_a = 6$ level of $3v_9$.
- ^b Broad and weak absorption feature which were not used in least squares fit.

All data refer to observed Q branch maxima.

instance by comparison of the the standard deviations associated with the subband analyses in table 2.13. A second estimation can be deduced from the discrepancies between the twice-fundamental frequencies and observed (perturbed) band centres of $2v_5$ (see table 2.12). For all three isotopomers, $2v_5$ is found to absorb at frequencies appreciably above those calculated from the fundamentals. This may be caused by the Fermi resonance interactions but may also be partly attributable to a negative anharmonicity factor. These investigations tend to indicate that the degree of interaction of $2v_5$ with the $v_4/2v_6/v_5 + v_6$ system is such that it follows the order

 $H_2^{13}CCO < H_2CCO < H_2C^{13}CO.$

(f) $2v_6$, CH₂ wagging overtone, 1060 cm⁻¹

The first overtone of v_6 is located some 50 cm^{-1} below v_4 . Individual Q branch absorptions were found to be sharp, and markedly degraded to lower frequencies. Similar degradation patterns are also evident in the $H_2 \text{c}^{13}\text{CO}$ and $H_2^{-13}\text{CCO}$ spectra. The large K_a degradation is largely attributable to a-axis Coriolis interactions with $v_6 + v_8$ and $v_6 + v_9$. The unresolved Fermi resonance interactions between v_4 , $2v_5$, $2v_6$ and $v_5 + v_6$ previously reported for v_4 and $2v_5$, were expected to also affect the $2v_6$ level appreciably. If this is so, then since $2v_6$ lies below these interacting levels, it would be expected to be displaced to lower frequencies.

As before, absorption peak maxima were taken to be good approximations to the subband origins and were analysed in terms of equation 2.1. These subband origins, together with the derived parameters are listed in table 2.14. The fit of subband centres was predictably found to be poor for all isotopomers, particularly for the $H_2C^{13}CO$. This is almost certainly due to the anticipated Fermi resonance interactions.

The observed band centres for all three isotopomers are compared with those calculated by simple harmonic estimates based on the well defined fundamental origins in table 2.12. Discrepancies between the observed and calculated band centres are found to be smallest for H₂C¹³CO. Surprisingly, however, $2v_6$ in all three isotopomeric species is observed at frequencies above those predicted despite possible Fermi resonance interactions with levels at higher frequencies. This may be indicative of an appreciable negative anharmonicity factor associated with the overtone. For the corresponding vibrational displacements found in the $2v_{5}$ studies (see section 2.4(e)), it was not possible to establish whether these were attributable to negative anharmonicity or Fermi resonance, but for 20, the former seems to predominate. Indeed, Moore and Pimentel (52) rationalised negative anharmonicity for the out of plane vibrations, v_5 and v_6 (as well as for v_9), in terms of a steep potential function arising from negative quartic contributions.

	Ka	H ₂ CCO		H ₂ C ¹³ CO		H ₂ ¹³ CCO	
		OBS	0-C	OBS	0-C	OBS	0-C
	2	(1061.0)	а	(1048.0))	(150.3)	
	3	(1058.0))	(1047.8))	(1047.0)	
	4	1053.3	0.002	1045.9	0.047	1042.1	-0.011
	5	1046.7	-0.005	1039.8	-0.118	1035.5	0.027
	6	1038.7	0.004	1032.8	0.098	1027.4	-0.022
	7	1029.3	-0.001	1024.2	-0.027	1018.0	0.006
	vo	1065.11	(3)	1056.47	7(66)	1054.02	(15)
	$\Delta(A-\overline{B})$	-0.7418	3(18)	-0.666	(45)	-0.749(1	10)
(∆ _F	<'-∆ _K '')	+0.0002	25(23)	+0.0001	7(68)	+0.00027	78(15)

Table 2.14. Subband analyses of $2v_6$ of isotopic ketenes, cm⁻¹.

^a Data in parentheses may be subject to appreciable Fermi resonance displacement and were thus excluded from least squares fit. All data refer to observed subband Q branch maxima.

(g) $2v_8$, CH₂ rocking overtone, 1952cm⁻¹

Structure belonging to this overtone of v_8 is readily observed in the spectra, lying below the extremely intense v_2 fundamental. The subband Q branches are sharply defined features, degrading rapidly to higher frequency as a result of major a-axis Coriolis interactions with the lower lying A_2 levels, $v_5 + v_8$ and $v_6 + v_8$. This causes ${}^{\rm q}{\rm Q}_2$ through ${}^{\rm q}{\rm Q}_9$ to span some $80 {\rm cm}^{-1}$ of the spectrum in all three H₂CCO species studied. The observed ${}^{\rm q}{\rm Q}_{\rm Ka}$ peak maxima, taken to be good approximations to the subband origins of $2v_8$ in H₂CCO, H₂c¹³CO and H₂¹³CCO, are listed in table 2.15, with parameters determined from them. In this case, an almost perfect fit in terms of equation 2.1 can be achieved over $K_a = 2 - 7$ in all three bands, with only slight misfits to ${}^{\rm q}{\rm Q}_8$ and ${}^{\rm q}{\rm Q}_9$ within the uncertainties in the parameters.

The apparent very large changes in $\Delta(A - \bar{B})$ and Δ_{K} for each isotopomer do not derive directly from the vibration concerned. Rather, they are numerical parameters required to account for the effects of the Coriolis resonances which are of sufficient magnitude to fall barely within a strictly second-order perturbation treatment, upon which the physical validity of equation 2.1 depends. Nevertheless, the ability to fit accurately the subband origins of $2v_8$ means that this level would seem to be almost vibrationally unperturbed in all three hydrogenated ketene species studies. The slight misfits to ${}^{q}Q_8$ and ${}^{q}Q_9$ frequencies may derive from the Coriolis interactions mentioned above, or from the effects

_	Ka	H ₂ CCO		H ₂ C ¹³	³ CO	H ₂ ¹³ CCO	
		OBS	0-C	OBS	0-C	OBS	0-C
	2	1957.07	-0.01	1935.75	-0.01	1941.50	0.00
	3	1962.92	0.00	1941.50	0.01	1947.38	0.00
	4	1970.97	0.01	1949.40	0.01	1955.50	0.00
	5	1981.07	0.00	1959.31	-0.01	1965.68	-0.02
	6	1993.08	-0.01	1971.13	0.00	1977.83	0.02
	7	2006.82	0.01	1984.59	0.00	1991.63	-0.01
	8	(2022.18)	a _	(1999.67)	her tu	(2007.19)	31 ⁻ 24
	9	(2038.88)		(2015.58)	2 7 19	(2024.01)	
	vo	1952.353	(14)	1931.118	3(12)	1936.727	(17)
	∆(A-B)	+1.1876(14)	+1.1667(11)	+1.1985(16)
(∆ ^K	ζ'-Δ _K ")	+0.00155	3(25)	+0.00153	87(21)	+0.00159	1(30)

Table 2.15. Subband analyses for $2\psi_8$ overtone of ketenes, cm⁻¹.

^a Data in parentheses were not used in least squares fit but are essentially reproduced within the uncertainties in the determined parameters. of Fermi resonance with v_2 , which is suspected from the study of the v_2 bands described in 2.4(b).

(h) v_7 , CH₂ asymmetric stretch, 3165cm⁻¹

The v_7 CH₂ asymmetric stretching vibration has previously been analysed, together with microwave data, by Johns et al. (55) in order to determine the ground state rotational constants of table 2.1. These authors pointed out however, that the upper state parameters were perturbed most probably through a Fermi resonance with the $v_2 + v_8$ level which lies some 45cm^{-1} below. An indication of the extent of interaction can be gained by comparison of the ground and upper state Δ_K constants in table (iv) of their paper, where it is found that the upper state value is 12 times the magnitude of that of the ground state. This is a common feature of Fermi resonance perturbations of ketene vibrations (see sections 2.4(d) and 2.4(e), for example).

In the present study, the H₂CCO spectrum of v_7 at rather lower resolution ($\circ 0.05 \text{ cm}^{-1}$) than that available to the above authors, was compared with the same vibration in the H₂C¹³CO and H₂¹³CCO spectra by simple contour shift method. The v_2 + v_8 bands was also examined in the same way in the H₂CCO and H₂¹³CCO spectra. However, because of the large isotopic shift to v_2 , the v_2 + v_8 combination could not be located in the H₂C¹³CO spectrum because of overlap with v_1 .

The assigned ${}^{r}Q_{Ka}$ and ${}^{p}Q_{Ka}$ frequencies for v_{7} and
$v_2 + v_8$ are listed in table 2.16, whilst the observed ¹³C shifts are given, together with force field predicted (unperturbed) v_7 shifts and simple harmonic $v_2 + v_8$ shifts in table 2.17. The observed $\Delta v_7 (H_2^{13}CCO)$ shift of 13.6cm⁻¹ compares favourably with its predicted value of 12.7 cm⁻¹. The numerical similarity between these can be accounted for in terms of an almost identical observed shift to $v_2 + v_8$ in the same spectrum, which would result in virtually the same degree of interaction between v_7 and $v_2 + v_8$ in both the H_2CCO and $H_2^{13}CCO$ spectra. The same force field calculations predict an unperturbed $\Delta v_7 (H_2 C^{13} CO)$ shift of $\sim 0.0 \, {\rm cm}^{-1}$, which seems reasonable since the vibration should involve virtually no motion of the isotopically substituted carbon. However, the observed shift is 4.1 cm^{-1} . The discrepancy is almost certainly due to the diminished effects of Fermi resonance with $v_2 + v_8$ in $H_2C^{13}CO$ on account of the shift of 56.2cm⁻¹ suffered by v_2 .

If it is assumed that there are no other vibrational resonances involved, then the Fermi resonance perturbation of v_7 by $v_2 + v_8$ may be corrected for in terms of equation 1.10. This is restated below in terms of parameters relating to the present investigations:

$$E^{O}_{7}(\text{pert}) = 1/2 \{E^{O}_{7}(\text{unp}) + E^{O}_{28}(\text{unp})\} + 1/2 ([d_{O}]^{2} + 4[W_{7,2,8}]^{2})^{1/2}$$
2.2

and

Table	2.16.	$^{r}Q_{Ka}$	and	₽ _Q _{Ka}	assignments	for	ν ₇
		and	v_{2} +	V _Q ,	cm ⁻¹ .		

	H ₂ CCO		H ₂ C	н ₂ с ¹³ со		³ cco
	ν ₇	ν ₂ + ν ₈	ν ₇	ν ₂ + ν ₈	ν7	ν ₂ + ν ₈
r _{Q5}		3227.8				3215.6
r _{Q4}		3210.3				3196.7
r _{Q3}	3227.21	2190.4	3222.72		3214.20	3175.0
r _{Q2}	3210.57		3205.0		3196.7	
r _{Q1}	3192.90	3148.9	3188.0		3178.80	
r _{Q0}	3174.20	3129.9	3170.05		3160.70	3115.9
PQ1	3156.20	3110.9	3152.20		3142.50	
PQ2	3138 ^a		3134 ^a		3123.5 ^a	
PQ3	3199.75		3115.25		3106.20	
₽ _Q 4	3101.8		3096.36			
₽ _{Q5}			3078.0			

a Tentative assignment.

Table 2.17. Frequencies and ¹³C frequency shifts for v_{τ} and v_{τ} + v_{τ} , cm⁻¹.

	SHITES TOT	7 4114 2	8,
	H ₂ CCO	н ₂ с ¹³ со	н ₂ ¹³ ссо
V7 (OBS)	3165.299 ^a	4.1	13.6
ν ₇ (CALC ^b)	en esta - Spanski	0.0	12.7
ν ₂ + ν ₈ (OBS)	3120.095 ^a	n Espert a Caspinado	14.0
$v_2 + v_8 (CALC)$	^C) 3130.3	66.9	13.3

^a Johns et al. (55).

^b Predicted from force field studies. See chapter 3. ^c See footnote ^b of table 2.12.

$$E^{O}_{28}(\text{pert}) = 1/2 \{E^{O}_{7}(\text{unp}) + E^{O}_{28}(\text{unp})\} - 1/2 ([d_{O}]^{2} + 4[W_{7,2,8}]^{2})^{1/2}$$
2.3

where $d_0 = (E_7^0(unp) - E_{28}^0(unp)), W_{7,2,8}$ is an interaction parameter, and pert and unp represent perturbed and unperturbed respectively.

Clearly the first term on the right hand side of equations 2.2 and 2.3 are equivalent to the average of the perturbed energies, i.e.

$$1/2 (E_{7}^{\circ}(unp) + E_{28}^{\circ}(unp)) = 1/2 (E_{7}^{\circ}(pert) + E_{28}^{\circ}(pert))$$
 2.4

Equations 2.2 and 2.3 can be solved for by an iterative procedure such that the observed frequencies are reproduced in terms of unperturbed separations d_0 and isotopically related values of $W_{7.2.8}$, such that

$$W_{7,2,8}^{*} = (v_{7}^{*} \cdot v_{2}^{*} \cdot v_{8}^{*} / v_{7} \cdot v_{2} \cdot v_{8})^{1/2} \cdot W_{7,2,8}$$
 2.5

The results of this analysis are given in table 2.18. It should be noted that despite changes to the Fermi resonance corrected values of the frequencies, the shift on v_7 in the H_2^{13} CCO spectrum remains the same as it was prior to the perturbation analysis. However, from the analysis an estimated shift of 66.9 cm^{-1} for $v_2 + v_8$ in the $H_2 \text{C}^{13}$ CO spectrum was determined, which agrees exactly with that determined from the sum of the shifts to the constituent

fundamentals. This large shift places the combination close to v_1 in the $H_2C^{13}CO$ spectrum and may result in contributions to some of the perturbation effects observed in v_1 discussed in section 2.4.1. An anharmonicity constant $x_{28} = -3.6(1)cm^{-1}$ for $v_2 + v_8$ was also estimated from the analysis for all isotopomers.

Table 2.18. Unperturbed frequencies and ${}^{13}C$ frequency shifts for v_7 and $v_2 + v_8$, cm⁻¹.

	H ₂ CCO	_{н2} с ¹³ со	H ₂ ¹³ CCO	, ti (te	Ê.
			<u>Carlo and a</u>		
v_7^{v} (unp)	3158.7	0.0 ^a	13.6		
$v_2 + v_8 (UNP)$	3126.7	66.9	13.4		
^w 7,2,8	15.990	15.685	15.872		

^a Constraint imposed in perturbation analysis.

(i) v_8 , CH₂ rock, 978cm⁻¹

In his examination of the B-type CH_2 rocking vibration, Nemes (54) reported significant a-axis Coriolis interactions between v_8 and the lower lying v_5 and v_6 vibrations. The net effect of these interactions is a large degradation of the band to higher frequency, caused by a-axis Coriolis contributions to the upper state A constant. This is accompanied by a marked intensity perturbation which renders the ${}^{r}Q_{Ka}$ absorptions very weak. In the present studies, the v_8 in H_2CCO , $H_2C^{13}CO$ and $H_2^{13}CCO$ have been examined to determine 13 C frequency shifts.

As indicated in section 2.3, the shifts were obtained by comparison of the contours of the ^rQ_{Ka} and ^pQ_{Ka} absorptions and the wavenumbers of these, together with individual subband shifts are given in table 2.19. The assignment to the asymmetric ${}^{r}Q_{0}$ feature in the $H_{2}CCO$ spectrum was somewhat tentative mainly because of low intensities, but was, nevertheless believed to be accurate to within ± 0.1 cm⁻¹. Estimation of accurate ¹³C frequency shifts is not simple due to differing perturbation of the ${}^{p}Q_{1}$ branches. The structure of the H_2CCO , $H_2C^{13}CO$ and $H_2^{13}CCO$ asymmetric ${}^{p}Q_{1}$ absorptions are significantly different from each other and are shown in figure 2.9. In the H_CCO spectrum, some of the absorption corresponding to higher J transitions seem to be pushed to higher wavenumbers whilst the P_{Q_1} absorptions in the $H_2^{13}CCO$ spectrum appear to suffer an intensity perturbation affecting lower J transistions. In addition, an anomalous sharp absorption at 960.8cm^{-1} in the $H_2^{13}CCO$ spectrum cannot readily be assigned in terms of the structure of v_8 . In contrast, the $H_2C^{13}CO^{-p}Q_1$ absorption exhibits no apparent evidence of perturbation and follow a regular degradation pattern.

These differences in the ${}^{p}Q_{1}$ contours are almost certainly attributable to a localised interaction with the infrared inactive combination vibration ${}^{\nu}_{6}$ + ${}^{\nu}_{9}$, which is predicted from force field studies (of chapter 3) to lie 10.4cm^{-1} , 16.8cm^{-1} and 8.2cm^{-1} below ${}^{\nu}_{8}$ in the H_{2} CCO,

Table 2.19.	Individual ${}^{r}Q_{Ka}$ and ${}^{p}Q_{Ka}$ assignments
	for $\frac{v}{8}$ of isotopic ketenes and
	derived 13 C shifts, cm ⁻¹ .

	H ₂ CCO	н ₂ с ¹³ со	Shift	H ₂ ¹³ CCO	Shift
r _{Q4}	1071.84	1060.96	10.88		
r _{Q3}	1049.80	1039.22	10.58	1042.12 ^a	7.68
r _{Q2}	1027.95	1017.44	10.51	1020.22	7.73
r _Q 1	1007 ^{b,C}	996.65 ^{b,c}	10.35	999.32 ^{b,c}	7.68
r _{Q0}	987.2 ^{a,b}	976.80 ^b	10.40	979.44 ^b	7.76
PQ1	968.61 ^{b,d}	958.17 ^b	10.44	960.03 ^{b,d}	(8.58)
₽ _Q 2					
₽ _Q 3	934.65	924.18	10.47	926.83	7.82
₽ _{Q4}	919.31	908.82	10.49	911.44	7.85
₽ _{Q5}	905.12	894.56	10.56	897.28	7.84
₽ _{Q6}	891.98	881.36	10.62	881.36	7.85
PQ7	879.88	869.17	10.71	872.04	7.84
₽ _Q 8	898.64	857.90	10.74	860.82	7.82
₽ _Q	858.54	847.66	10.88	850.76	7.78

^a Overlapping absorption.

^b Absorption minima.

^C Weak absorption.

d Uncharacteristic degradation pattern.

Figure 2.9 Comparison of the ${}^{p}Q_{1}$ absorptions of v_{8} fundamentals of ${}^{H}_{2}CCO$, ${}^{H}_{2}C^{13}CO$ and ${}^{H}_{2}{}^{13}CCO$.

 $H_2C^{13}CO$ and $H_2^{13}CCO$ spectra respectively. The v_8 and $v_6 + v_9$ vibrations can interact through a b-axis $K_a' \stackrel{+}{=} 1$ Coriolis interaction by rotation about the b-axis, though only a $K_a' + 1$ interaction can affect the ${}^{p}Q_1$ absorption since it involves transitions to the $K_a' = 0$ level. The difference in the energies for the two interacting levels can give an indication of the relative extents of interaction. This can be calculated, in the first approximation in terms of the following expression:

$$(E_{Ka'=0}^{8} - E_{Ka'=1}^{69}) = (E_{8}^{0} - E_{69}^{0})$$

$$+ \{ (A' - \overline{B}') 0^{2} - (A' - \overline{B}') 1^{2} \}$$
2.6

On the assumption that A' & A" and B' & B" for $v_6 + v_9$, then differences of $\infty+1.3$ cm⁻¹, $\nu+7.7$ cm⁻¹ and $\nu-0.9$ cm⁻¹ are calculated for the interacting levels in H_2CCO , $H_2C^{13}CO$, $H_2^{13}CCO$ and $H_2^{13}CCO$. Remembering that no allowance has been made for anharmonicity or for vibrational effects on the rotational constants, this implies that the interacting levels should lie close for H_2CCO and $H_2^{13}CCO$, possibly with the $K_{a}' = 0$ transitions, of v_{8} lying at slightly higher frequencies in the spectrum of the former, and slightly lower in the spectrum of the latter. This seems to be consistent with the localised perturbations evident in the corresponding spectra as depicted in figure 2.9. The much larger separation of levels in $H_2C^{13}CO$ would explain the seemingly unperturbed appearance of ^pQ₁ for this isotopomer. The interaction is clearly a very small one, and is unlikely to produce significant effects in other subbands, due to the

larger separations of interacting levels involved.

The ¹³C shifts determined from all other ${}^{p}Q_{Ka}$ and ${}^{r}Q_{Ka}$ transition are consistent, as can be seen in table 2.19. From these subband shifts, the band origins and the frequency shifts are estimated and listed in table 2.20 These are considered to be accurate to within $\div 0.1 \text{ cm}^{-1}$.

Table 2.20. Frequencies and ^{13}C frequency shifts

for v_8 , cm⁻¹.

	H ₂ CCO	н ₂ с ¹³ со	н ₂ ¹³ ссо	
ν ₈	977.8 ^a	967.36 ^b	970.00 ^b	
Δv_8	_ 6 - 5	10.44	7.80	

a Nemes (54).

^b Calculated in terms of H₂CCO frequency.

Comparison of v_8 and $2v_8$ ¹³C shift data

The ¹³C shifts to the v_8 vibration may, in fact be obtained from two sources. Firstly, as above, by comparison of the contours of v_8 in the H₂CCO, H₂C¹³CO and H₂¹³CCO spectra. Secondly, ¹³C shifts are available from subband analyses of $2v_8$ (see section 2.4(g)), where the shifts on v_8 may be taken to be half of the observed shifts on $2v_8$ for the same isotopomers. This assumes a common anharmonicity factor. The calculated shifts are collected in table 2.21. Despite the slight disparity between the $H_2C^{13}CO$ shifts estimated by the two methods, the agreement is pleasing and demonstrates the accuracy with which the ¹³C shifts to the B-type and C-type vibrations are determined. From these comparisons, values of $10.5cm^{-1}$ and $7.8cm^{-1}$ are thus believed to represent the most accurate v_8 frequency shifts for $H_2C^{13}CO$ and $H_2^{13}CCO$ respectively.

Table 2.21. Comparison of v₈ ¹³C frequency shifts as determined from both fundamental and overtone studies, cm⁻¹.

The second s		
•	н ₂ с ¹³ со	H ₂ ¹³ CCO
∆v ₈	10.44	7.80
1/2(∆2v ₈) ^a	10.62	7.81
Average	10.53	7.80

^a Values quoted assume negligible anharmonicity contributions.

(j) v_5 , CCO deformation, 587 cm⁻¹ and v_6 , CH₂ wagging, 528 cm⁻¹

The C-type v_5 and $_6$ vibrations at 587cm^{-1} and 528cm^{-1} in the H₂CCO were most recently examined by Nemes (54). His studies indicated major Coriolis a-axis perturbations of these vibrations through interaction with v_8 and v_9 . In the present studies, the H₂CCO v_5 and v_6 bands have been reexaminied and their contours compared with those of the same vibrations in the $H_2C^{13}CO$ and $H_2^{13}CCO$ species in order to determine ^{13}C frequency shifts. The analyses were hindered by the presence of a number of hot bands in the region in addition to some CO_2 absorptions originating from contamination within the samples. Further difficulties were experienced in locating the ${}^{p}Q_{Ka}$ absorptions for both vibrations: for the ${}^{v}_{5}$ vibrations, significant intensity perturbations resulted in low intensity in the P wing, whilst instrumentation limitations prevented the recording of spectra of good quality below ${}^{v}420cm^{-1}$ for v_6 . The assigned ${}^{r}Q_{Ka}$ and ${}^{p}Q_{Ka}$ frequencies, together with the calculated subband shifts for v_5 and v_6 are listed in tables 2.22 and 2.23 respectively.

Figures 2.10 and 2.11 display the variation of the $H_2C^{13}CO$ and $H_2^{13}CCO$ frequency shifts relative to H_2CCO for v_5 and v_6 . Large variations in the shifts to individual subbands of v_5 and v_6 for $H_2C^{13}CO$, are mainly attributable to significant changes in the extents of a-axis Coriolis interactions in H_2CCO and $H_2C^{13}CO$. By contrast, the $H_2^{13}CCO$ shifts remain reasonably constant over all the subbands, indicative of Coriolis interaction of more or less the same extent as in H_2CCO . Quantification of these perturbations in the ^{13}C spectra was not attempted.

From the lower ${}^{p}Q_{Ka}$ and ${}^{r}Q_{Ka}$ absorptions, the best estimates of the true vibrational frequency shifts to v_{5}^{ν} and v_{6}^{ν} for $H_{2}c^{13}CO$ and $H_{2}{}^{13}CCO$ were obtained relative to the

Table 2.22. Individual ${}^{r}Q_{Ka}$ and ${}^{p}Q_{Ka}$ assignments for v_{5} of isotopic ketenes and derived ${}^{13}C$ shifts, cm $^{-1}$.

	H ₂ CCO	н ₂ с ¹³ со	Shift	H ₂ ¹³ CCO	Shift
Q ₉	840.45 ^a	833.07	7.38	841.06	-0.61
Q ₈	811.32	803.41	7.91	811.54	-0.22
Q ₇	781.88	773.87	8.01	782.20	-0.32
G ² Q ₆	752.58	744.55	8.03	752.80	-0.22
Q ₅	723.70	715.78	7.92	723.85	-0.15
Q4	695.58	687.96	7.62	695.65	-0.17
Q ₃	668.50	661.31	7.19	668.61	-0.11
² Q ₂	642.96	636.36	6.60	642.89	0.07
² Q ₁	619.20	613.15	6.05	619.10	0.10
Q ₀	597.70	592.30	5.40	597.40 ^{b,c}	0.30
^P Q ₁	578.32	573.07 ^b	5.25	577.95	0.37
PQ2	561.02 ^b				
°Q ₃	546.70	540.81	5.89	546.50 ^C	0.20
°Q ₄	535 ^C	527.70	7.3	534.11	0.89
^D Q ₅	523.78	516.57	7.21	523.62	0.16
^D Q ₄ D _{Q5}	535 ^C 523.78	527.70 516.57	7.3 7.21	534.11 523.62	

a Broad absorption.

^b Overlapping absorption.

^c Tentative assignment.

Table 2.23. Individual ${}^{r}Q_{Ka}$ and ${}^{p}Q_{Ka}$ assignments for v_{6} of isotopic ketenes and derived ${}^{13}C$ shifts, cm $^{-1}$.

2	H ₂ CCO	H ₂ C ¹³ CO	Shift	H ₂ ¹³ CCO	Shift
rQ7	648.05	645.48	2.57	642.58	5.47
r _{Q6}	634.81	631.74	3.07	629.29	5.52
^r Q ₅	620.60	616.98	3.62	615.10	5.50
^r Q ₄	605.55	601.01	4.54	600.04	5.51
r _{Q3}	589.32	583.73	5.59	583.80	5.52
r _{Q2}	572.09	565.26	6.83	566.59	5.50
^r Q ₁	553.94 ^a	545.71 ^a	8.23	548.43 ^a	5.51
r _{Q0}	535.40	526.24 ^b	9.16	529.90	5.50
p _Q 1	517.00 ^C	507.32 ^C	9.68	511.48 ^C	5.52
p _{Q2}	499 ^d	490 ^d	9	493.59 ^C	5.4
PQ3	481.38 ^C	473.22 ^C	8.17	475.84 ^C	5.54
PQ4	463.51	456.53	6.98	457.83	5.68
PQ5	444.59 ^C	438.97 ^C	5.62	438.95 ^C	5.64
₽ _Q 6	424.98	420.49	4.49		

- ^a Absorption minima.
- ^b Overlapping absorption.
- ^C Mid absorption point.
- d Tentative assignment.

corresponding H_2CCO frequencies. These are given in table 2.24 and the shifts are estimated to be accurate to about $\pm 0.1 \text{ cm}^{-1}$.

Table 2.24. Frequencies and ¹³C frequency shifts for v_5 and v_6 , cm⁻¹.

	H ₂ CCO	н ₂ с ¹³ со	H ₂ ¹³ CCO
ν ₅	587.30 ^a	581.90 ^b	586.93 ^b
^V 6	528.36 ^a	518.68 ^b	522.84 ^b
$^{\Delta v}5$	· _ · ·	5.40	0.37
Δν6	-	9.68	5.52

^a Nemes (54).

^b Calculated in terms of H₂CCO frequency.

2.5 CONCLUSIONS

Assignment and analysis of the rotational structure in the A-type fundamentals $v_1 - v_4$ of ketene give evidence of perturbations in all four vibrations. These are comparatively minor in the case of v_1 and v_2 . The most probable source of perturbation of v_1 is $v_4 + 2v_8$, whilst v_2 is probably affected by an a-axis Coriolis interaction with $v_4 + v_5 + v_9$ and also possibly through b-axis Coriolis interaction with $2v_5 + v_8$. For v_3 and v_4 the perturbations are particularly severe. v_3 is almost certainly perturbed by a close Ferm resonance with $v_8 + v_9$, whilst v_4 is most probably affected by Fermi resonance with all of $2v_5$, $2v_6$ and $v_5 + v_6$.

In the $H_2C^{13}CO$ and $H_2^{13}CCO$, the A-type fundamentals appear to suffer the same perturbations, except for v_2 which suffers an isotopic shift of $56.5cm^{-1}$, effectively removing it from the vicinity of $v_4 + v_5 + v_9$, but bringing it closer to $2v_8$.

In dideuteroketene, only v_1 appears to be essentially unperturbed. v_2 suffers minor perturbations with an apparent crossing of energy levels between $K_a = 6$ and 7, probably through Fermi resonance with $v_3 + 2v_6$, although rotational resonance with $v_3 + v_5 + v_9$ may also contribute. v_3 is once again in strong Fermi resonance with $v_8 + v_9$, which lies slightly lower in this case. v_4 lies between $v_5 + v_6$ and $2v_6$, both of which affect it by Fermi resonance; $2v_5$ lies nearly 160 cm^{-1} higher, so its resonance effects on v_4 are comparatively small.

Preliminary studies of the rotational structure in the B_1 and B_2 fundamentals $v_5 - v_8$ for H_2CCO , $H_2C^{13}CO$ and $H_2^{13}CCO$ indicate that these are also significantly perturbed. The low-lying C-type fundamentals, v_5 and v_6 , and B-type fundamentals, v_8 and v_9 (the latter being too low to be detected) Coriolis interact through rotation about the a-axis as previous studies have found (54). v_8 also shows evidence of a small localised b-axis Coriolis interaction with $v_6 + v_9$ which lies in close proximity.

In the D₂CCO spectrum, the four lowest fundamentals, v_5 , v_6 , v_8 and v_9 are again in strong Coriolis resonance, an analysis of which has very recently been performed (56).

In the analysis of the B-type v_7 above 3000 cm^{-1} , it is interesting to note that perturbations were again observed and that the overall fit to the observations is rather poor (55), just as has generally been found for the A-type vibrations. Moreover, the parameters so determined for the antisymmetric CH₂ stretching fundamental include a value of $\Delta_{\rm K}'$ which is 12 times the magnitude of the ground state value, similar to the observations on the v_4 band lying at 1116cm⁻¹. The cause is Fermi resonance between v_7 and v_2 + v_8 . A similar perturbation has been found for v_7 in the H₂¹³CCO spectrum. As a consequence of the large shift on v_2 in H₂C¹³CO however, perturbation of v_7 by v_2 + v_8 is substantially reduced. These perturbations have been quantified and corrected.

Preliminary analysis of the first overtones of the out of plane bend, $2\nu_5$ and CH_2 wag, $2\nu_6$ in H_2CCO , $H_2C^{13}CO$ and $H_2^{13}CCO$ give clear evidence of perturbations caused mainly by Fermi resonance interaction with ν_4 .

Finally, analysis of the CH_2 rock overtone $2v_8$ indicates that the band is essentially unperturbed vibrationally. The derived ^{13}C frequency shifts agree well with those predicted from studies of the fundamental.

Clearly ketene is a molecule the vibrations of which are highly perturbed in the gas phase. An energy level manifold of fundamental and binary vibration levels below 3300 cm^{-1} is shown in figure 2.12, in which a few ternary vibrations are included where it is considered that they perturb the fundamentals. The major Coriolis interactions involving the four lowest levels v_5 , v_6 , v_8 and v_9 reproduces itself throughout the manifold, and in a particularly complicated and extended form for A_1 species vibrations. Indeed, as can be seen in figure 2.12, the interaction involving binary levels extends uninterrupted through levels from above 1900 cm^{-1} to below 900 cm^{-1} . This must contribute in a complicated manner to the perturbations observed in the v_3 and v_4 bands, and may even extend to involve v_2 .

For dideuteroketene, resonances between v_5 , v_6 , v_8 and v_9 lead to a highly complex interacting set of 16 binary vibration energy levels, similar to that in figure 2.12, some of which, in turn, interact with the v_3 and v_4 fundamentals.

The vibrational frequencies and 13 C shifts determined from these studies are collected in table 2.25 for ease of reference. They were used to assist in empirical force field calculations for ketene discussed in the following chapter. However, the value to such calculations of a number of the frequencies and shifts, particularly for the A_1 fundamentals, was anticipated to be somewhat limited, due to the effects of the perturbations found to be present, and

Figure 2.12

12 Energy level manifold for H₂CCO, showing fundamental and binary vibration levels, interconnected by Fermi resonance and Coriolis interactions. A few ternary levels are included, where they are considered to cause perturbations to the A₁ species fundamentals analysed in this work. discussed in this chapter.

Table 2.25. A summary of frequencies and ^{13}C frequency shifts determined in the present studies, cm⁻¹.

	H ₂ CCO	н ₂ с ¹³ со	^н 2 ¹³ ссо	D ₂ CCO
^V 1	3070.4	0.17	5.70	2267.32
ν ₂	2152.56	56.59	5.36	2120.49
ν 3	1387.5	1.5	12.4	1225
$^{\vee}4$	1116.01	7.91	5.21	924.7
ν ₅	_	5.40	0.37	
ν ₆	_	9.68	5.52	
v 7	3158.7	0.0	13.6	0 6 5 <u>1</u> - 340 1
ν ₈	_	10.44	7.80	al <u>i</u> teedi
2ν ₅	1187.5	10.2	5.3	199 <u>9</u> - Angel Angel
^{2ν} 6	1065.1	8.6	11.1	-
2ν ₈	1952.353	21.24	15.63	

CHAPTER 3

AB INITIO AND EMPIRICAL FORCE FIELD STUDIES OF KETENE

3.1 INTRODUCTION

The earliest empirical harmonic force field of ketene was determined by Moore and Pimentel (52) in terms of frequency data from the infrared spectra of the H_2CCO , HDCCO and D_2CCO isotopomers. However, these authors found it necessary to constrain somewhat arbitrarily six of the interaction force constants to zero as a result of insensitivities toward the available data.

Later, Fletcher and Thompson (60) preferred to constrain two of these interaction constants to interrelated values instead of zero, in accordance with the hybrid orbital force field model of Mills (61).

In subsequent studies by McKean and Duncan (28), it was found that there were two physically acceptable force field solutions to the out-of-plane vibrations. Although the

second solution had previously been ignored, it described the available data equally well. They showed that Coriolis constant or frequency shift data would discriminate between the alternative sets.

The most recent empirical force field studies of ketene were carried out by Mallinson and Nemes (59), who introduced centrifugal distortion constants for the H_2CCO , HDCCO, D_2CCO species and as well as Coriolis coupling constants for the low lying vibrations in the H_2CCO species. This permitted the determination of two more interaction force constants and also allowed the discrimination between the alternative out-of-plane force constants. However, their force field is most notably deficient in describing the totally symmetric A_1 vibrations, where three out of the four remaining constraints were imposed.

The only previously reported ab initio force field study of ketene was carried out by Pouchan et al. (62), who performed HF-SCF calculations using a minimal type STO-3G basis set. The same authors also predicted the force constants for ketene by a semi-empirical MINDO/2 approach and compared these with their ab initio findings.

Gleghorn and McConkey (63) also performed MINDO/2 type calculations on ketene, but many of their force constants differ significantly with those determined by the same method by Pouchan et al. (62).

By introduction of new frequency data from isotopic ketenes (discussed in chapter 2), including data from the $H_2C^{13}CO$ and $H_2^{13}CCO$ species, it was hoped to determine a more accurate empirical harmonic force field for ketene. However, the numerous Fermi resonance interactions, particularly in the A_1 block vibrations were anticipated to lead to indeterminacies in the A_1 force constants. Thus to arrive at a reliable general harmonic force field (GHFF) for ketene, complementary and supplementary ab initio studies were also performed.

In the present ab initio force field studies, it was anticipated that better quality force fields for ketene would be determined by HF-SCF calculations using split-valence contracted gaussian basis functions of the Pople group (34,36-40) and also of Pulay et al (35). This type of basis set has been found to predict molecular properties somewhat better than the largely inferior minimal type basis used by Pouchan et al. (62).

3.2 SYMMETRY COORDINATES

The symmetry coordinates adopted in the present studies are those previously defined by Moore and Pimentel (52). These are given in table 3.1 and the positive displacements for each of these are illustrated in figure 3.1. In the ab initio studies, these coordinate definitions were readily constructed within the program (TEXAS (64): see section

Table 3.1 Symmetry coordinates for ketene.

s ₁	=	$(\delta r_1 + \delta r_2)/(2)^{1/2}$
s ₂	=	δr ₃
s ₃	=	δr ₄
s ₄	=	δα
s ₅	=	δφ _x
s ₆	=	δγ
s ₇	=	(or ₁ - or ₂)/(2) ^{1/2}
s ₈	=	δβ
s ₉	=	δφ Y

 $\delta\gamma$ and $\delta\beta$ measure the change in the angle between the bisector of the HCH angle and the CC bond projected in the xz and yz plane respectively. ϕ_x and ϕ_y measure the CCO angle bending in the xz and yz plane respectively. The sense of the positive displacement is such that the CH₂ group, or CCO group, bends towards the positive x or y axis. See figure 2.1

3.3.1), thus allowing direct comparison with the empirical force field.

This set of coordinates appears to be similar to that used by Mallinson and Nemes (59) with two exceptions. Firstly, their CH_2 rocking coordinate S_8 is $-(2)^{1/2}$ times S_8 of this work. Secondly, there is uncertainty associated with their definition of the CH_2 wagging coordinate S_6 , where it appears that

S₆(M&N) = sin(<HCH).S₆(this work)

Empirical calculations were performed in terms of the rostructure determined by Moore and Pimentel (52), viz

 $r(CH) = 1.079A^{\circ}$ $r(CC) = 1.314A^{\circ}$ $r(CO) = 1.161A^{\circ}$ $\alpha(HCH) = 122.0^{\circ}$

The selection of the geometry used in ab initio calculations has a strong influence on the resulting force constants. This will be discussed in detail in section 3.3.3.

3.3 AB INITIO GEOMETRY AND FORCE FIELD STUDIES OF KETENE

3.3.1 HARDWARE AND SOFTWARE

All ab initio calculations were carried out on Robert Gordon's Institute of Technology's mainframe computer, the DECSYSTEM-20. This system is large enough to cope with moderately sophisticated ab initio programs. Its operating times were such that it offered the advantage of virtually continuous access. In addition, the available memory of the DECSYSTEM-20 was such that practical limitations of computing space were not encountered. However, execution times tended to be rather long, particularly daytime executions, owing to simultaneous access by other system users.

Ab initio calculations were carried out by utilization of the ab initio gradient program TEXAS (64). This is a one-configuration HF-SCF type program and the version utilized had previously been modified to incorporate iterative equilibrium geometry and saddle point optimisation routines, collectively referred to as MINIT (65). The smallest basis set used in the studies of ketene, the 4-21G (36) generally took less than 3 minutes CPU time to evaluate the SCF energy whilst the largest basis, the 6-31G** (35,41) took over an hour. The more costly gradient evaluations generally took about 10 minutes and over 6 hours for the same basis sets respectively.

TEXAS has been used to carry out a comprehensive study of the molecular properties of small molecules by Pulay et al. (36). It has also been used by Schlegel et al. (66) to calculate the force constants of first row hydrides. More recently, TEXAS had been used to predict the force constants for glyoxal, acrolein, formaldehyde and ethylene (67). For ethylene (68) in particular, the ab initio force constants are in excellent agreement with highly accurate empirical constants determined by Duncan and Hamilton (69).

3.3.2 SELECTION OF THE BASIS FUNCTIONS

The selection of the basis functions for the present ab initio studies of ketene required careful prior consideration. It was necessary to employ basis sets which give adequate descriptions of the molecular wavefunction but which are small enough to be economical.

TEXAS limits the choice of basis functions to s and p primitive gaussian functions. Thus discussion will be restricted to this type of basis functions.

Force constant calculations have been performed in terms of valence shell triple-zeta (TZ) basis sets (70,71). These have been found to give fairly good predictions at the SCF level, but force field evaluation times are excessive (35, and references therein). Contraction of a TZ to a double-zeta (DZ) type representation in the valence shell and to a minimal basis (single-zeta) in the core has been

reported to have practically no numerical effect on resulting ab initio force fields (35). At the same time, there is a substantial reduction in the required computing time. Such bases are denoted as split-valence contracted gaussian basis sets (see also section 1.3.3). A number of these have been developed by Pople and coworkers (34,35,37-40) as well as by Pulay et al. (36) and have been used extensively to predict ab initio molecular properties at the SCF level. A distinguishing feature of this type of basis is the equality of the valence shell s and p exponents, which reduces the computing times. This feature is readily exploited by TEXAS (64).

Faster evaluation times can be achieved by further contraction of the valence shell to a minimal type basis. However, this has been shown to have detrimental effects on force constants (36) and so the minimal type basis was considered inappropriate for the present studies. The most appropriate type of basis for this work thus appeared to be the split-valence type basis sets.

With regard to scaling of the atomic basis function exponents to approximate more closely to molecular environments (72) (see also section 1.3.3), it was decided to follow the recommendations of the appropriate authors for the scaling of their basis sets.

The split-valence and other basis sets are often supplemented with higher angular momentum or "polarisation"

terms (40,41), most notably d-type functions for heavy centres and p-type functions for hydrogen. Addition of polarisation functions is often desirable since they give rise to molecular properties with are close to the HF limit but this is offset by a corresponding increase in computing expense.

The way in which the polarisation functions were introduced in the present studies has been largely dictated by TEXAS. The p-type primitive hydrogen polarisation functions are readily accommodated whilst the d-type functions are constructed from p-type gaussian functions, in accordance with recommendations by the program's author. This gives rise to six second order d fuctions

$$(x^{2}, y^{2}, z^{2}, xy, yz, xz) \exp(-\alpha_{d}r^{2})$$
 3.1

which are equivalent to the five pure d-type functions

$$(3z^2 - r^2, xy, yz, xz, x^2 - y^2) \exp(-\alpha_d r^2)$$
 3.2

plus an s function (which is generally tolerated (64)). It was also necessary to select values for the polarisations exponents, α_d for heavy centres and α_p for hydrogen. Hariharan and Pople (41,42) found little dependence of α_d on different chemical environments for C, N, O and F and adopted an average exponent of 0.8. A p-type hydrogen exponent of 1.1 was also recommended by the same authors.

3.3.3 AB INITIO STUDIES OF THE EQUILIBRIUM GEOMETRY OF KETENE

The selected reference geometry around which derivative are calculated has quite a significant effect on the harmonic force constants, particularly stretching constants. Thus, in a similar fashion to the selection of the basis functions, the reference geometry must also be carefully selected. Ideally, true equilibrium for the molecule should be used, but for most molecules, this is not known. Frequently, the configuration corresponding to the theoretical energy minimum is used and has produced satisfactory results. However, errors arising from core-core repulsion terms in the HF approximation are often dominant contribution to the errors in force constants. Generally, theoretical geometries can be in error by as much as 10% whilst experimental geometry parameters such as r, r, etc. are usually less than 2% in error. The experimental geometries are therefore considered to be better estimations of true equilibrium. From comprehensive studies of the geometries of small molecules by Pulay et al. (36) and Blom et al. (46) a set of empirical corrections to theoretical geometries were proposed. These will be discussed later.

Molecular geometries (and hence force constants) also have some dependence on the basis set used. This has been discussed by several authors (10,36,37,73,74). No such study has been found for ketene and thus a limited study of

the ab initio equilibrium configurations for different basis sets was carried out and compared with experimental values.

Ab initio equilibrium configurations were obtained by use of the MINIT routine (65). It includes a force relaxation routine (45) (see section 1.3.5) which utilizes a quasi-Newton type convergence method to obtain theoretical minima on molecular hypersurfaces. Molecules were considered to be sufficiently relaxed to be at equilibrium when internal forces of considerably less than 0.005mdyn remained on each centre. This criterion for the attainment of equilibrium was advocated by Schaefer (75) and was considered adequate in the present studies.

The equilibrium configurations of ketene, determined from a number of basis sets are given in table 3.2, together with experimentally derived values, for the ground state (52), which are the only ones available.

Two of the experimental geometry parameters, the CC and CO bond length are not well defined because the central atom lies close to the molecular centre of mass. However, as Herzberg indicated (3), the sum of the two bondlengths is precisely determined and Moore and Pimentel (52) obtained an $r_{o}(CCO)$ value of 2.475A^O.

The split-valence basis sets consistently predict a CH bondlength of ca. $1.068A^{O}$ which is about $0.01A^{O}$ shorter than

the experimental r_0 of 1.079A^O. Inclusion of polarisation tends to increase the theoretical bondlength to around 1.070A^O. The STO-3G CH bondlength of Pouchan et al. (62) is somewhat longer at 1.075A^O, whilst the DZ CH bondlength of Dykstra and Schaefer (76) is similar to that of the 6-31G**.

Table 3.2. Comparison of ab initio and experimental geometries^a of ketene.

	r(CH)	r(CC)	r(CO)	r(CCO)	α(HCH)
					<u>e la se</u> rva fue
4-21G	1.0683	1.2948	1.1625	2.4573	119.93
4-31G	1.0682	1.2976	1.1637	2.4613	119.81
5-31G	1.0682	1.3028	1.1656	2.4684	119.96
6-31G	1.0685	1.3038	1.1661	2.4699	120.00
6-31G**	1.0704	1.3064	1.1437	2.4501	121.71
STO-3G	1.075	1.300	1.183	2.483	119.5
DZ	1.070	1.311	1.171	2.482	120.07
DZ+P		े ज स े) 가 도 한 번째	1-0000	122.0
Experimental	1.079	1.314	1.161	2.475	122.3

^a Bondlengths in $A^{O}(A^{O} \equiv 10^{-10} \text{m})$ and bond angles in degrees.

A different trend is found for the CC bondlength. An increase in the number of basis core functions results in a corresponding increase in the CC bondlength, up to $1.303A^{O}$ for the 6-31G basis set. The effect of polarisation is to

lengthen the bond even more to $1.306A^{\circ}$. However, this is still nearly $0.01A^{\circ}$ shorter than the experimental CC value of $1.314A^{\circ}$. A similar effect arising from the introduction of polarisation has been found for ethylene, where an increase in the CC bondlength of roughly the same amount is found. The STO-3G CC bondlength of $1.300A^{\circ}$ is similar to those from the split-valence basis sets. However, the DZ CC bondlength of $1.311A^{\circ}$ is considerably closer to the experimental CC value which probably results from a more complete description of the basis core functions.

The CO bondlengths of ca. $1.16A^{\circ}$ determined from the split-valence basis sets are fairly consistent, varying by only $0.0036A^{\circ}$ and are close to the experimental CO value of $1.161A^{\circ}$, but are considerably shorter than those of the STO-3G and DZ. By inclusion of polarisation functions, the CO bondlength substantially decreases by almost $0.02A^{\circ}$ to $1.144A^{\circ}$. Similar trends have also been found for the CO bonds of formaldehyde and CO_2 (36) where the decrease in the CO bondlength is about $0.02A^{\circ}$ and $0.015A^{\circ}$ respectively.

By comparison of the CCO bondlength sums in table 3.2, it is found that the split-valence basis sets are all less than the experimental value and inclusion of polarisation functions results in an even greater underestimation. The STO-3G CCO bondlength sum is somewhat closer to, though larger than that of the r_0 structure (52). The DZ CCO bondlength is in closest agreement with experiment although it is also an overestimate.

The split-valence HCH angles are fairly consistent, ranging from 119.8° to 120.0° , but are considerably less than the r_o value of 122.3° . The DZ HCH angle is similar to that of the split-valence basis sets whilst the STO-3G angle of 119.5° is poorer. Inclusion of polarisation functions however results in a substantial increase in the HCH angle by ca. 1.7° and hence better agreement with experiment. Dykstra (77) found similar effects in his studies of the energies of isomers of ketene, where a DZ basis set supplemented with d-type polarisation functions (DZ+P) was used. His HCH angle of 122.0° agrees rather better with the experimental value than that of the 6-31G**. (Nb. Dykstra did not quote any bondlengths for the DZ+P basis set.)

The total energies associated with the theoretical equilibrium configurations for split-valence and polarisation included basis sets as well as the DZ and DZ+P are given in table 3.3. The total energy associated with the STO-3G equilibrium was not quoted by Pouchan et al. (62), but is expected to be higher than that of the other basis sets considered here. From table 3.3, it can be seen that the split-valence energies improve as the number of basis functions increase. It can also be seen that the DZ basis set is roughly equivalent to a 6-31G whilst a DZ+P is about the same as a 6-31G**.

From table 3.2, it can be seen that deviations of the split-valence equilibrium geometries from the experimental r_ structure are fairly systematic. Such systematic

deviations were also found by Pulay et al. (36) for a wide range of small molecules. As a result, for force constant calculations, these authors recommended empirical correction of the ab initio geometry. Their corrections were made in terms of a set of small reference molecules and apply to the 4-21G basis set. Similar scaling was practised by Blom and Altona for the 4-31G basis set (46,78-83). In addition to these, several larger basis sets including, the 6-31G and 6-31G**, were also employed. Comprehensive studies of geometry trends for these larger basis sets were not available and thus empirical corrections to the theoretical geometries derived from these could not be established. Furthermore, the accuracy of such corrections to the theoretical geometry of ketene perhaps have to betreated with caution, because of the unusual adjacent double bond structure present.

	Contraction of the State of the		a second second second second second second
- 19	Basis	Energy + 151	
n an tha ann <u>a</u>	<u>lantare estimat</u>	er <u>el consectuer se se</u>	
	4-21G	-0.3736	
	4-31G	-0.4949	
	5-31G	-0.6176	
	6-31G	-0.6493	
	6-31G**	-0.7302	
	DZ	-0.6724	
	DZ+P	-0.7556	

Table 3.3. Total ab initio energies for ketene, Hartree.

⁺ Since the time of writing, both published and unpublished molecular geometry data have been brought together for larger basis sets in "Ab Initio Molecular Orbital Theory" by Hehre, Radon, Schleyer and Pople, Wiley (1986). 128
AB INITIO FORCE FIELD STUDIES OF KETENE

The ab initio quadratic force constants of ketene are given in table 3.4. These were calculated from the 4-21G (36), 4-31G (34), 5-31G (35), 6-31G (35) and 6-31G** (41) basis sets. For the most part, the reference geometry was taken to be the theoretical minima (columns 1 to 5), though calculations were repeated for some basis sets at other geometries. Specifically, the 6-31G and 6-31G** force fields were also determined at the experimental r_0 structure (52) (columns 6 and 7) and the 4-21G force constants were also evaluated around an empirically corrected theoretical geometry (column 8). The latter geometry was obtained by adjusting the 4-21G theoretical geometry in terms of the corrections given in table IV of reference (36).

3.3.4

All the force constants were determined by numerical followed by analytical differentiation of the molecular energy in terms of the symmetry coordinates (45) (see also section 1.3.5) of table 3.1. For columns 1 to 8, the quadratic and dominant cubic force constants were evaluated in terms of the two-sided distortion expressions 1.43 and 1.44. The distortions were taken to be $\pm 0.05A^{\circ}$ for stretching coordinates and ± 0.04 rad for bending coordinates, in accordance with recommendations of Fogarasi and Pulay (12). The 4-21G'/corr. A₁ force constants of column 9 were determined by a more elaborate method in which internal forces for several distortions were fitted to cubic terms of polynomials. This method has the advantage over the

F _{ij}	4-21G/ 4-21G	4-31G/ 4-31G	5-31G/ 5-31G	6-31G/ 6-31G	6-31G**, 6-31G**	6-31G/ Expt	6-31G**/ Expt	4-21G /Corr ^b	4-21G' /Corr ^b ,c
$ \begin{array}{c} F \\ F \\ F \\ 1 \\ 1 \\ F \\ 1 \\ 2 \\ F \\ 1 \\ 4 \\ F \\ 2 \\ 2 \\ 2 \\ 4 \\ 5 \\ 2 \\ 4 \\ 5 \\ 4 \\ 4 \end{array} $	$\begin{array}{c} 6.460\\ 0.139\\ -0.095\\ 0.045\\ 11.51\\ 0.937\\ -0.432\\ 17.50\\ 0.008\\ 0.763\end{array}$	$\begin{array}{c} 6.483\\ 0.129\\ -0.083\\ 0.047\\ 11.61\\ 0.947\\ -0.415\\ 17.25\\ 0.009\\ 0.755\end{array}$	$\begin{array}{c} 6.520\\ 0.116\\ -0.074\\ 0.044\\ 11.37\\ 0.954\\ -0.416\\ 16.84\\ 0.008\\ 0.752 \end{array}$	$\begin{array}{c} 6.522\\ 0.116\\ -0.074\\ 0.044\\ 11.34\\ 0.951\\ -0.416\\ 16.760\\ 0.008\\ 0.751 \end{array}$	6.465 0.133 -0.085 0.045 10.990 1.276 -0.351 19.811 -0.002 0.710	$\begin{array}{c} 6.146 \\ 0.134 \\ -0.073 \\ 0.030 \\ 10.667 \\ 0.973 \\ -0.418 \\ 17.353 \\ 0.007 \\ 0.739 \end{array}$	$\begin{array}{c} 6.165\\ 0.143\\ -0.084\\ 0.043\\ 10.495\\ 1.226\\ -0.349\\ 17.537\\ -0.002\\ 0.703 \end{array}$	6.204 0.139 -0.093 0.050 10.072 0.951 -0.430 18.068 0.011 0.756	6.165 0.139 -0.094 0.050 9.951 0.950 -0.430 17.772 0.010 0.756
F F55 F56 F66	0.782 0.089 0.205	0.694 0.086 0.211	0.727 0.091 0.215	0.707 0.091 0.215	0.811 0.105 0.147	0.707 0.094 0.224	0.779 0.106 0.150	0.783 0.098 0.188	
F77 F78 F79 F88 F89 F89 F99	6.391 -0.383 0.004 1.064 -0.211 0.786	6.434 -0.354 0.004 1.060 -0.208 0.719	6.485 -0.356 0.006 1.098 -0.209 0.730	6.489 -0.344 0.006 1.076 -0.209 0.727	6.404 -0.284 0.013 0.927 -0.226 0.778	6.124 -0.348 0.007 1.107 -0.209 0.732	6.105 -0.284 0.011 0.927 -0.223 0.758	6.137 -0.360 0.004 1.106 -0.183 0.817	

Table 3.4. Ab initio quadratic force constants^a for ketene determined from split-valence basis sets around various reference geometries.

^a Units are consistent with energy measured in aJ (aJ \equiv mdynA^O),

stretching coordinates in A° ($A^{\circ} \equiv 10^{-10}$ m) and bendings in radians. ^b Empirically corrected theoretical geometry of Pulay et al. (36).

^C Force constants determined by multi-distortion analyses.

two-sided distortion approach that it takes the dominant quartic force constant contributions into account but suffers from numerical inaccuracies affecting such higher derivatives, particularly if larger distortions are used (34). Thus, in the stretching coordinates and deformation coordinates, distortions of not more than 0.05Å^O and 0.04rad were used. A second disadvantage of this method is that a larger number of calculations are required therefore force constant evaluation times are considerably longer.

The most striking overall feature of table 3.4 is that the force constants are of remarkable consistency, particularly with regard to the sign and magnitude of the interaction constants. Surprisingly, the force constants seem on the whole to be comparatively insensitive to the reference geometry used. By comparing the force constants calculated around different geometries (4-21G/4-21G) and 4-21G/corr; 6-31G/6-31G and 6-31G/Expt; 6-31G**/6-31G** and 6-31G**/Expt), it can be seen that the main effects are on the diagonal force constants. These have an inverse relationship with their corresponding geometry parameters, and the most pronounced example of this may be seen in the 6-31G** CO bondlength, where adoption of the experimental geometry causes a decrease of more than $2mdynA^{o-1}$ in the corresponding F₃₃ diagonal constant.

The main effect of the inclusion of polarisation terms seems to be to increase substantially the F_{33} CO (stretch) and F_{23} CC (stretch) / CO (stretch) constants whilst causing

a smaller decrease in the F_{22} CC (stretch). Again, the changes in the F_{22} and F_{33} diagonals can be reasoned in terms of the effects of polarisation on the geometry. From section 3.3.3, it was seen that inclusion of polarisation caused a slight increase in the CC bondlength and a large decrease in the CO bondlength. This almost certainly causes the small decrease and large increase in the F_{22} and F_{33} constants respectively. The F_{23} constant will be discussed later.

A second notable effect of polarisation is to decrease markedly the F_{66} CH_2 wag in relation to the other B_1 constants. Although the absolute change is only about 0.05mdyn, this represents approximately a 30% decrease in the value of the constant.

By comparison of the 4-21G force fields around a common empirically corrected theoretical geometry from the two-sided distortion and multi-distortion methods (columns 8 and 9), it is found that the discrepancies are minimal. This indicates that the two-sided distortion method for obtaining force constants is sufficiently accurate for the present purposes.

The cubic diagonal and semi-diagonal force constants obtained from the 6-31G and 6-31G** basis sets around both theoretical and experimental geometries are given in table 3.5. Here, it may be seen that the cubic force constants are very consistent, though less so than the quadratic

Table 3.5.	6-31G and	6-31G** d	iagonal and	d semi-diagonal
	cubic for	ce constan	ts ^a determ:	ined around
	theoretica	al and exp	erimental o	geometries.
F _{iij}	6-31G/ 6-31G/	6-31G/ Expt.	6-31G**/ 6-31G**	6-31G**/ Expt.
F F111 F112 F113 F114	-26.0 0.276 -0.001 -0.095	-24.6 0.280 0.029 -0.121	-25.3 0.244 0.031 -0.080	-24.2 0.228 0.007 -0.081
F F221 F222 F223 F224	0.138 -66.2 -0.096 -0.245	0.163 -63.1 -0.008 -0.322	0.224 -64.2 -0.771 -0.446	0.215 -61.8 -0.584 -0.469
F F331 F332 F333 F334	-0.020 -2.75 -115.0 -0.039	-0.017 -2.74 -118.4 -0.050	-0.015 -2.77 -135.1 -0.004	-0.008 -2.64 -122.7 -0.006
F 4 4 1 F 4 4 2 F 4 4 3 F 4 4 4	-0.472 -0.188 -0.073 -0.125	-0.389 -0.100 -0.035 -0.145	-0.330 0.025 -0.058 -0.172	-0.332 0.037 -0.091 -0.169
F F551 F552 F553 F554	-0.041 -1.24 -1.36 0.014	-0.041 -1.23 -1.36 0.015	-0.026 -1.30 -1.19 0.023	-0.027 -1.23 -1.10 0.024
F F661 F662 F663 F664	-0.196 -0.773 0.245 0.496	-0.182 -0.758 0.254 0.522	-0.129 -0.635 0.286 0.388	-0.142 -0.662 0.291 0.396
F F771 F772 F773 F774	-26.5 0.315 0.053 0.311	-25.0 0.358 0.063 0.262	-25.6 0.307 0.088 0.278	-24.5 0.289 0.090 0.271
F F881 F882 F883 F884	-0.342 0.019 -0.159 0.410	-0.288 0.125 -0.141 0.388	-0.252 0.359 -0.145 0.315	-0.262 0.345 -0.136 0.314
F F991 F992 F993 F994	0.030 -0.783 -0.949 0.004	0.031 -0.775 -0.948 0.003	0.026 -0.746 -0.824 0.001	0.023 -0.686 -0.770 0.002

^a For units, see footnote ^a to table 3.4.

constants. Cubic constants determined from the other quoted basis sets of table 3.4 are very similar, generally agreeing to within 5% or 0.15 of their absolute magnitude. The most marked changes are found in the F_{333} CO and F_{223} CC/CC/CO constants, where the inclusion of polarisation functions causes a numerical decrease of up to $17 \text{mdynA}^{\text{o}-2}$ and $0.75 \text{mdynA}^{\text{o}-2}$ respectively. The corresponding quadratic constants F_{33} and F_{23} were found to be very sensitive to polarisation functions above. Curiously, this sensitivity seems not to be reflected in the rather large F_{332} CO/CO/CC constant which remains essentially unaltered over all the studied basis sets and geometries.

The diagonal quartic stretch force constants determined from the multi-distortion analysis are given in table 3.6. These figures are subject to inherent numerical errors and should be treated with caution.

Table 3.6. Quartic diagonal force constants^a obtained from multi-distortion analysis using a 4-21G basis set and empirically corrected geometry.

^F 1111	+91
F2222	+287
F3333	+674
F4444	+2.2

^a For units, see footnote ^a of table 3.4.

From tables 3.4 and 3.5, it was seen that the quadratic and dominant cubic constants are internally consistent. However, this does not necessarily infer an assurance of accuracy. Generally, the reliability of the force constants has been judged from comparison with experimental force constants (when available). For most molecules, it has been found that agreement is good, though ab initio constants are systematically overestimated at the SCF level, generally by as much as 20%. One noteworthy exception to this is CO2, where the neglect of electron correlation results in an ab initio CO/CO interaction constant much larger than a well defined experimental value (85-87). Inclusion of polarisation functions was found to have a detrimental effect on the constant (86). It was therefore anticipated that the CC/CO interaction constant of ketene would probably be similarily overestimated for the same reason at the SCF level.

The reliability of the ab initio force fields for ketene can at least be partially gauged by comparing some of the force constants with their ethylene equivalents. Recently, Fogarasi and Pulay (68) found that their ab initio force constants for ethylene, obtained from TEXAS, were generally in excellent agreement with accurate experimental values determined by Duncan and Hamilton (69). The largest basis set which Fogarasi and Pulay used was a 6-31G** and their force constants were calculated around an empirically corrected (4-21G) theoretical geometry (which is close to the experimentally estimated r_e structure (89)). These

constants are best compared with the 6-31G**/Expt force constants of ketene. The two sets of comparable constants are given in table 3.7 (below), where it can be seen that they are quite similar.

Table 3.7.

Comparison of 6-31G** analogous quadratic constants^a of ketene and ethylene using coordinate definitions of table 3.1.

		Ketene	Ethylene
CH ₂	sym str	6.165	6.171
CC s	str	10.495	10.545
CH ₂	def	0.703	0.818
CH ₂	wag	0.150	0.337
^{СН} 2	asym str	6.105	6.100
CH ₂	rock	0.927	1.270
^{СН} 2	sym str/CC str	0.143	0.139
CH ₂	sym str/CH ₂ def	0.043	0.120
CC s	str/CH ₂ def	-0.349 -	0.269
CH ₂	asym str/ CH ₂ rock -	-0.223 -	0.276

^a For units, see footnote ^a to table 3.4.

There is complete agreement with regard to sign and also, all stretch and stretch/stretch constants are in close numerical agreement. The larger CH_2 bending constants for ethylene are consistent with the vibrations occurring at higher frequency than in ketene, particularly in the case of the wag. As well as determining quadratic force constants for ethylene, Fogarasi and Pulay also evaluated cubic constants from the 6-31G** basis set (68), though this time at the theoretical equilibrium. Their CC and CH_2 stretch diagonals of -56.1mdynA^{O-2} and -32.7mdynA^{O-2} are in fairly good agreement with the corresponding values of -64.2mdynA^{O-2} and -25.3mdynA^{O-2} respectively for ketene.

The ab initio force fields determined here from splitvalence contracted gaussian functions are compared with the only previous ab initio force field study of Pouchan et al. (62), and with the experimental force field of Mallinson and Nemes (59) in table 3.8. Since the ab initio force fields of table 3.4 are essentially the same for all basis sets, for clarity only those obtained from the largest (and therefore most accurate) - 6-31G**/6-31G** and 6-31G**/Expt - are included in table 3.8. Although both the split-valence and STO-3G minimal basis set force fields are in general qualitative agreement (with the exception of F_{89} rock/in-plane CCO bend), the former are in much closer quantitative agreement with the experimental force field particularly with regard to the interaction force constants. Specifically, the F_{34} CO/CH₂ (symmetric) def(ormation) and F₇₉ CH₂ asym(metric) str/in-plane CCO bend which were

	experi	mental force	e constant	s ^a for ke	etene
	with th	nose predic	ted from S	TO-3G,	
	6-31G**	*/6-31G** a:	nd 6-31G**	/Expt.	
			6-31G**	6-31G**	
Fij	M&N(59)	STO-3G(62)	/6-31G**	/Expt	A
^F 11	6.080(105)	7.63	6.465	6.165	
^F 12	1.590(296)	0.227	0.133	0.143	
^F 13	[0.000] ^b	-0.216	-0.085	-0.084	
^F 14	[0.176] ^C	0.050	0.045	0.043	
^F 22	9.219(955)	13.28	10.990	10.495	
^F 23	0.515(478)	0.344	1.276	1.226	
^F 24	-0.288(34)	-0.361	-0.351	-0.349	
F33	15.28(155)	19.17	19.811	17.537	
F34	[0.000] ^b	0.100	-0.002	-0.002	
F44	0.613(13)	0.862	0.710	0.703	
F55	0.681(8)	0.797	0.811	0.779	
F ₅₆	0.101(4)	0.156	0.105	0.106	
^F 66	0.093(2)	0.316	0.147	0.150	
F77	5.754(25)	7.74	6.404	6.105	
F78	-0.098(262)	-0.289	-0.284	-0.284	
F79	[0.000] ^b	0.037	0.013	0.012	
F88	0.708(24)	1.262	0.927	0.927	
F89	-0.204(8)	0.141	-0.226	-0.223	
F99	0.696(24)	0.696	0.778	0.760	

Comparison of the Mallinson and Nemes

^a For units see footnote ^a of table 3.4.

^b Constrained to the value quoted.

Table 3.8.

^c Constrained to hybrid orbital model prediction – $F_{14} = 0.029F_{11}$ (61).

constrained to zero in the experimental force field, are predicted to be close to zero by the ab initio force fields. In addition, the ab initio F_{11}/F_{77} sym/asym CH_2 stretch ratio is in close accord with that of Mallinson and Nemes (59).

There are a few noteworthy discrepancies between the 6-31G** and the Mallinson and Nemes (59) experimental force fields particularly in the A1 block. Most importantly, the empirical F_{12} CH₂ sym str/CC constant is some 10 times that predicted by ab initio calculations. From table 3.7, it may be seen that the ab initio CH2 sym str/CC constant for ethylene is about the same magnitude as that for ketene. Although a somewhat larger CH₂ sym str/CO constant for formaldehyde has been found (by both ab initio and experimental studies (89)), it is anticipated that the Mallinson and Nemes F₁₂ is a serious overestimation. From table 3.8 it may also be seen that the ab initio F_{13} CH_2 sym str/CO constant of ca. -0.08 mdynA⁰⁻¹ is considerably removed from zero, to which it was constrained by Mallinson and Nemes (59). The F₂₃ CO/CC constant of the experimental force field is about one half of the value of that predicted from the 6-31G** (or any other split-valence) basis set. Despite the fact that the experimental constant is barely determined, it is considered that the ab initio constant is seriously overestimated, as has been found for the analogous CO/CO interaction force constant of CO₂ (86-88), unless electron correlation is included in the calculations, as discussed above. Other discrepancies between the empirical

and ab initio force fields may be found in the B_1 and B_2 force constants. There is a difference in magnitude of the F_{78} constant by a factor of 3. Here, however, the Mallinson and Nemes constant not effectively determined, being subject to a very large uncertainty. Comparison of the F_{55} out-of-plane CCO bend and F_{00} in-plane CCO bend constants indicates that the former is the smaller empirical constant, whilst the latter is the smaller ab initio constant. Since the corresponding $\boldsymbol{\nu}_{\mathsf{5}}$ vibration is found to lie at a higher frequency than ν_{o} then intuitively, one would expect the F₅₅ constant to be larger. More seriously, the F_{66} wag is considerably overestimated by ab initio calculations. The ${\rm B}_1$ vibrations are very sensitive to small changes in any of the three B1 force constants and since a similar overestimation is not found for the F₅₆ out-of-plane CCO bend/wag constant, then it was anticipated that ab initio vibrational predictions for the B1 constants (see section 3.5) might be in considerable error.

3.4.1 EXPERIMENTAL DATA AND THEIR ASSESSMENT

(a) Vibration frequencies

An investigation of the high resolution infrared spectra of a number of fundamental and overtone vibrations in chapter 2 has demonstrated that severe perturbations are present in almost all fundamental vibrations. The determined band origins for the totally symmetric (A_1) vibrations are subject to Fermi resonance displacements and/or inaccuracies arising from a-axis Coriolis resonances, which are particularly severe due to the large magnitude of the A rotational constant. Either effect usually leads to irregularity in the observed subband origins such that the location of accurate vibration frequency is difficult. Of all the A, vibrations studied, it would appear that only the v_1 (CD₂ symmetric stretch) of D₂CCO is essentially unperturbed.

Such inaccuracies in the absolute values of the frequencies are generally not of crucial importance to force constant calculations unless frequency shifts are being used. It was hoped that the availability of the spectra of $H_2C^{13}CO$ and $H_2^{13}CCO$ would yield valuable data for the determination of the 10 A₁ species force constants. The perturbations of the spectra however, render the ¹³C frequency shifts on v_1 and v_3 of only limited value, whilst

those on ν_4 are totally useless.

The effects of the very large a-axis Coriolis perturbations in the four lowest vibrations v_5 , v_6 , v_8 and v_9 also create difficulties as has been demonstrated by Nemes (54). Here however, accurate ¹³C frequency shiifts were determined by careful measurement of the displacements of equivalent Q branch features in the spectra, since the K_a-dependent perturbations are zero at subband ^pQ₁. A recent analysis of the low frequency region of D₂CCO has located the vibrations accurately (56).

The asymmetric CH_2 stretch, v_7 is in strong Fermi resonance with $v_2 + v_8$ in H_2CCO as has been shown by Johns et al (55). In this case, the data available for H_2CCO , $H_2C^{13}CO$ and $H_2^{13}CCO$ was analysed in terms of related resonance interaction constants to yield unperturbed frequency data.

A summary of the resonance interactions established for the fundamentals of the H_2CCO and D_2CCO species and their effect on the reliability of the data towards the determination of the potential function is given in table 3.9.

(b) Coriolis Interaction Constants

Only for the v_5 , v_6 , v_8 and v_9 system of H_2 CCO have Coriolis interaction constants, ζ_{ij} , been determined directly from spectroscopic analysis by Nemes (54). The

Table 3.9.	Resonance interactions identified in
	${\rm H_2CCO}$ species and in ${\rm D_2CCO},$ and their
	effect on frequency data.

Fundamental	<pre>Interacting level(s)</pre>	Type of interaction	Effect on data
	H	2 ^{CCO} species	3
ν ₁	[∨] ₄ +2 [∨] 8	Fermi	$^{\Delta v}$ 1 poor
^V 2	V4+V5+V9	Coriolis	Δv_2 good
^V 3	^v 8 ^{+v} 9	Fermi	Δv_3 poor
v_4	$2v_5, v_5+v_6, 2v_6$	Fermi	v_4 poor, Δv_4 useless
ν ₅	^V 8′ ^V 9	Coriolis	∆v ₅ good
^V б	ν ₈ , ν ₉	Coriolis	∆v ₆ good
v 7	^v 2 ^{+v} 8	Fermi	Δv_7 good(analysed)
v ₈	^v 5′ ^v 6	Coriolis	∆v ₈ good
V 9	^v 5′ ^v 6	Coriolis	Δv_{9} unknown
			was bound this think
	D,	2 ^{CCO} species	n in ing paga ng ting ting ting ting ting ting ting t
ν 1	_	Unperturbe	ed
v ₂	$v_{3}^{+2\nu}6' v_{3}^{+\nu}5^{+\nu}9$	Fermi/Cori	olis
v 3	^V 8 ^{+V} 9	Fermi	
$^{\vee}4$	² ^v ₅ , ^v ₅ + ^v ₆ , ² v ₆	Fermi	v ₄ poor
ν ₅	^v 8′ ^v 9	Coriolis	
^V 6	^v 8′ ^v 9	Coriolis	
^۷ 7	-	?Unperturbe	d
V ₈	^V 5′ ^V 6	Coriolis	
V9	ν5′ ^ν 6	Coriolis	

recent analysis of the corresponding system in $D_2^{\rm CCO}$ (56) fits a large number of rovibration transitions in terms of excited state constants with the Coriolis interactions treated explicitly in terms of the values predicted by force constants of Mallinson and Nemes (59). For $H_2^{\rm CCO}$ Nemes determined two constants to be large and two to be much smaller (54). The former produce the predominant perturbations, which are approximately proportional to $\zeta^2 K_a^2$. It is found that the two larger constants are useful parameters in the calculations, but that the two smaller constants are apparently poorly determined by the available spectroscopic information.

(C) Quartic Distortion Constants

Fourteen constants are available from microwave or combined microwave-infrared analysis of the ground state for H_2CCO (55), HDCCO and D_2CCO (91). It was hoped that these would be of considerable assistance in improving the definition of the force field. However, they were found to be mutually incompatable, both within a single isotopic species and between isotopic species. Basically reasonable fits to combinations of up to four constants could be achieved but only at the expense of extremely poor fits to the remainder. In a recent reanalysis of the ground state microwave and infrared data (92), it was concluded that the literature values of A_J^{0} , A_{JK}^{0} and δ_J^{0} were reliable to about 5%, δ_K^{0} to about 10% (but less so for H_2CCO) and A_K^{0} as force constant calculations are concerned.

A total of 58 data comprising 27 frequencies, 13 frequency shifts, 4 Coriolis constants and 14 distortion constants over 5 isotopic species of ketene were thus available for use in the force field refinement.

3.4.2 ANHARMONICITY CORRECTIONS

Frequency and shift data corrected for Fermi resonance where necessary were harmonized in terms of Dennison's rule (equations 1.30 and 1.31). For vibrational modes not involving the oxygen atom, H₂CCO anharmonicity constants are those used for ethylene, viz 0.045 for CH stretching, 0.020 for CH bending and 0.015 for CC stretching. In previous studies Mallinson and Nemes (59) assumed a value of 0.010 for the CCO bending mode. This is adopted here. For the CO stretching mode, these authors used the anharmonicity constant found for the corresponding formaldehyde mode. Here, however, it is considered that the CC and CO anharmonicity constants should be the same since major coupling must be occurring between the two modes. Therefore, a value of 0.015 is also adopted for the CO stretching mode.

Listed in table 3.10 are the product rule ratios obtained from the observed, harmonized and calculated frequencies of the H_2CCO , HDCCO and D_2CCO isotopomers. It may be seen from table 3.10 that only the $A_1 D_2CCO/H_2CCO$

product rule ratio discrepancy is satisfactorily removed on harmonizing the observed data (though it must be remembered that the v_4 frequencies for both these species are quite uncertain).

```
Table 3.10. Observed, "harmonized" and theoretical product rule ratios for ketene and deuteroketenes.
```

		OBS	HARM	THEORY
D ₂ CCO/H ₂ CCO	A ₁	0.5321	0.5230	0.5122
	B ₁	0.7581	0.7547	0.7693
	^B 2	0.5548	0.5463	0.5516
HDCCO/H ₂ CCO	A '	0.5393	0.5306	0.5327
	A	0.8890	0.8874	0.8922

The D₂CCO/H₂CCO B₂ and HDCCO/H₂CCO A' product rule ratios indicate over-correction by harmonizing. More seriously, the calculated D₂CCO/H₂CCO B₁ and the corresponding HDCCO/H₂CCO A" ratios are considerably larger than those observed. Mallinson and Nemes (59) found a similar B₁ D₂CCO/H₂CCO "overshoot" and attributed it to an incorrect band origin in either species. The D₂CCO \forall_5 and \forall_6 frequencies have more recently been accurately determined and this implies that the inaccuracies most likely lie in the H₂CCO species. However, removal of the overshoot

requires reassignment of either v_5 or v_6 by at least 6cm⁻¹. This seems rather large. The product rule ratio discrepancy in this case could alternatively be accounted for in terms of negative anharmonicity associated with the out-of-plane vibrations. Further evidence of this has probably been found in the analysis of $2v_5$ and $2v_6$ in chapter 2, where the respective band origins were found to be at frequencies appreciably higher than those calculated from the corresponding fundamental frequencies.

Anharmonicity corrections to the Coriolis coupling constants and distortion constants could not be made since the effects of anharmonicity on these are not known. Thus the experimental values were used, with uncertainties which it was hoped would cover such effects.

3.4.3 UNCERTAINTIES ALLOWED IN DATA

The allowed uncertainties in the frequency data are 1% (but 2% on v_4 data), which corresponds to an uncertainty of 0.010 in the anharmonicity constants. On the frequency shifts, this leads to an uncertainty of 2% of the observed shift on to which is added the experimental uncertainty in the estimate. The observed Coriolis constants for H₂CCO have been allowed uncertainties of between 0.10 and 0.30. Finally, for the distortion constants, uncertainties of 5% in Δ_J^{O} , Δ_{JK}^{O} , 10% in δ_J^{O} , δ_K^{O} and 20% in Δ_K^{O} (and δ_K^{O} for H₂CCO) have been adopted. The experimental data, harmonized frequencies, frequency shifts and associated uncertainties

are collected in table 3.11.

3.4.4 FORCE CONSTANT CALCULATIONS

At the outset, it was assumed that interaction force constants between symmetry coordinates with no common atoms should be constrained to zero. Thus F_{13} (CH₂ sym str/CO) and F_{34} (CO/CH₂ def) were set equal to zero. In addition, F_{79} (CH₂ asym str/in-plane CCO bend) was set equal to zero since this force constant was undetermined by the accumulated data. The refinement thus became an attempt to determine 16 parameters in terms of the 58 data in table 3.11.

The ¹³C frequency shift data proved to be of great value in defining the B₁ and B₂ species force constants much more precisely than hitherto. However, for the A₁ species, a wide variation in the resulting force constants could be achieved dependent upon which of the distortion constants one wished to reproduce most closely, it being impossible to fit all at once. The limited accuracy of the ¹³C frequency shift data did little to assist this problem which is demonstrated in table 3.12. The $\Delta_J^{\ O}$, $\Delta_{JK}^{\ O}$, $\delta_J^{\ O}$ and $\delta_K^{\ O}$ could be fitted rather well (column 1), but at the expense of very poor fits to $\Delta_K^{\ O}$, ω_1 , ω_2 and $\Delta\omega_1$ data. This produced a very large F₁₂ constant and corresponds to the result reported by Mallinson and Nemes (59). (The fact that F₁₂ calculated here is not as large as that of the above authors is a consequence of the limited effect of the

Observed frequency, $^{13}\mathrm{C}$ frequency shift, Coriolis ζ^{a} and Table 3.11. distortion constant data for isotopic ketenes^a; harmonized frequency data, uncertainties and error vector produced by force constants of table 3.13.

		H ₂ CCO	-Q. 36 .	5 B)	HDCCO		iπ 4		D ₂ CCO	
	ν	ω	σ _ω e	ν	ω	σω	е	ν	ω	σ _ω e
٧ ₁	3070.4	3215.0	32 2.3	2318.9	2400.5	24	-1.6	2267.2	2345.2	23 -0.8
v2	2152.6	2185.3	22 4.9	2142.4	2174.7	22	2.2	2120.5	2152.3	22 -8.1
٧ ₃	1387.5	1415.8	14 -8.8	1292	1316.5	13	-3.6	1225	1247.0	12 9.0
ν ₄	(1116.0)(1133.0)	23 -3.9	(1084.9)	(1101.0)	22	-0.7	(924.7)	(936.4)	19 10.0
^γ 5	587.3	593.2	5.9 1.9	555.3	560.6	5.6	-0.8	541.2	546.1	5.5 -8.3
^у б	528.4	539.2	5.4 2.8	496.8	506.3	5.1	2.3	434.7	442.0	4.4 1.9
ν ₇	3158.7	3307.5	33 4.0	3117.3	3261.8	32	0.1	2383.3	2467.1	25 -2.4
ν ₈	977.8	997.8	10 0.4	867.1	882.7	8.8	-0.6	851.7	866.8	8.7 -0.3
V9	439.0	443.4	4.4 1.4	397.6	401.6	4.0	0.9	370.6	373.8	3.7 -1.2
	Δ	σΛ	е	Δ	σ _Λ	е		Δ	۵V	е
∆ _J o	3.39	0.17	0.006	3.21	0.16	0.00)6	2.72	0.14	0.040
∆jk	⁰ 476.0	24	-13	327.0	16.5	-8.8	3	321.7	16	-5.9
$^{\Lambda K}$ o	23535	4700	3170	(15000)	00	[1437	70] ^b	5391	1100	635
δj ^o	0.145	0.014	0.012	0.225	0.022	0.01	6	0.218	0.022	0.015
δĸο	329.6	66	58	239.0	24	14.5	5	212.7	21	23.0

	Т	able 3	.11. (continu	ed)					
		H ₂ CCO			HI	DCCO			D ₂ CCO	
	ζ	Ø,	е	ζ	σ	е		ζ	σζ	е
^ζ 58	0.33	0.3	0.21	-		- [0.6	50]	-	-	[0.76]
ζ68	0.71	0.1 -	-0.005	_		- [0.4	42]	_	_	[0.26]
ζ59	0.77	0.1	0.05	-		- [0.7	75]	-	_	[0.64]
ζ69	0.30	0.1 -	-0.12	-		- [0.7	11]	-	-	[0.35]
		H ₂ 13	³ cco				H ₂ C ¹	³ cco		
	Δν	Δw	σω	е		Δv	Δω	σΔω	е	
$^{\Delta v}$ 1	5.6	6.1	1.0	0.57		0.1	0.1	0.2	0.06	
Δv_2	5.36	5.52	0.3	-0.02		56.6	58.3	1.4	-0.98	
Δv_3	12.4	12.9	1.0	-0.18		_	-	_	[0.04]
AV 4	(5.2)	(5.4)		[16.8]		(7.9)	(8.1)		[0.84]
Δv_5	0.37	0.38	0.1	0.03		5.40	5.51	0.1	0.06	
$\Delta v 6$	5.52	5.79	0.2	0.20		9.68	10.09	0.1	0.04	
Δν 7	13.6	14.82	1.0	0.68		0.0	0.00	0.2	0.00	
Δν 8	7.80	8.14	0.1	0.11		10.44	10.97	0.1	0.05	
Δν9		-	-	[0.05]		-	-	-	[7.55]

^a Frequency data in cm^{-1} , distortion constants in kHz, ζ constants dimensionless.

^b Entries in square brackets are calculated values.

Table 3.12. Sensitivity of A₁ species force constants^a for ketene to the data sets used.

		Fit to Δ_{J}^{o} ,	Fit to Δ_{JK}^{0} ,	Fit to ${}^{A}_{J}{}^{O}$,
		∆°, §°, §° JK°, J°, [§] K	К О	∆ ° JK
	^F 11	6.11	5.86	5.89
	^F 12	0.93	0.46	0.15
	^F 13	[0.0]	[0.0]	[0.0]
	^F 14	0.17	-0.23	0.05
	^F 22	9.01	9.20	9.28
	F23	0.59	0.69	0.60
	F24	-0.27	-0.27	-0.29
	F 33	15.3	15.4	15.3
	F34	[0.0]	[0.0]	[0.0]
	F ₄₄	0.614	0.622	0.608
	OBS	CALC	CALC	CALC
		H2	CCO	3384
$^{\Delta}$ J	0.00339	0.00343	0.00336	0.00339
∆jĸ	0.476	0.486	0.480	0.489
K	23.5	18.1	22.6	19.8
\mathbf{L}^{∂}	0.000145	0.000143	0.000137	0.000133
δĸ	0.329	0.284	0.275	0.273

	OBS	CALC	CALC	CALC
	T T ŠI	HI	DCCO	
${}^{\vartriangle}{}_{\mathbf{J}}$	0.00316	0.00319	0.00312	0.00316
∆ _{jk}	0.327	0.337	0.330	0.336
$\wedge^{\rm K}$	(15.0)	13.6	15.7	14.4
δ _J	0.000225	0.000221	0.000218	0.000209
δĸ	0.239	0.235	0.227	0.225
		D.	2 ^{CCO}	
$^{\Delta}$ J	0.00272	0.00269	0.00263	0.00268
∆ _{JK}	0.322	0.333	0.324	0.328
Δ_{K}	5.39	4.33	4.76	5.46
δ _J	0.000218	0.000213	0.000207	0.000202
δ _K	0.213	0.198	0.192	0.189
Comm	ents:	Very poor fit	Poor fit	Good overall
		to ω_1 , ω_2	te ω ₂ data.	fit to ω , $\Delta \omega$
		Δω ₁ data.	Negative F ₁₄	data.
		F ₁₂ unreason-	physically	Physically
		ably large.	unreasonable.	acceptable
				force constants.
а		A. 19 20年11月1日日本会工。	, un ang ng n	

Table 3.12 (continued)

^a For units, see footnote ^a of table 3.4. ^b Distortion constants in kHz. additional ¹³C frequency shift data.)

Alternatively, the experimentally determined $\Delta_{\rm K}^{~~\circ}$ values <u>can</u> be fitted in association with $\Delta_{\rm J}^{~\circ}$ and $\Delta_{\rm JK}^{~\circ}$, with moderate fits (~10%) to $\delta_{\rm J}^{~\circ}$ and $\delta_{\rm K}^{~\circ}$. This is at the expense of a poor reproduction of ω_2 frequencies and a significant negative F_{14} interaction constant, which is sensitive to both $\Delta_{\rm JK}^{~~\circ}$ and $\Delta_{\rm K}^{~~\circ}$ (table 3.12 column 2). F_{14} is the CH₂ str/CH₂ def interaction constant and is both expected and determined to be small and positive in a large number of CH₂ (and CH₃) molecules for the corresponding coordinate definitions used. A significant negative value for F_{14} is considered to be quite unacceptable physically. It may be noticed in table 3.12 that the experimental $\Delta_{\rm K}^{~\circ}$ value of H_2 CCO is not achieved; this would require an even more negative F_{14} constant.

A good fit to Δ_J^{0} , Δ_{JK}^{0} , with a moderate fit (~10%) to δ_J^{0} and δ_K^{0} and a poor fit (~15%) to Δ_K^{0} is achieved by a set of more physically acceptable constants and a good overall frequency fit (table 3.12 column 3).

Although the last set of force constants appears to be the best estimate of their true values, in the analysis it became clear that further progress would be possible only with the assistence of the ab initio calculations (see section 3.3.4). The sign of the ab initio interaction constants were found to be in complete agreement with those of the previous experimentally determined force field of

Mallinson and Nemes (59). In addition, most were also found to be in quantitative agreement.

3.4.5 JOINT EMPIRICAL AND AB INITIO CALCULATIONS

Comparison of A_1 species force constant sets between tables 3.4 and 3.12 shows the greatest degree of correspondence between the ab initio constants and those of column 3 in table 3.12. The ab initio calculations are remarkably consistent in their predictions of F_{12} and F_{14} , the two most variable constants in the empirical estimates, and were found to be similar to the corresponding ethylene constants (see table 3.7). As discussed previously, the F_{23} is predicted to be too large by a factor of ~ 2 .

Since reproduction of the Δ_{JK}^{0} and Δ_{K}^{0} distortion constants necessitates a negative F_{14} constant which is neither predicted nor acceptable on physical grounds, the ab initio value for this constant has been accepted. The two A_1 constants F_{13} and F_{34} which were considered to be small, and were set to zero in the empirical calculations are predicted to be ca. -0.08mdynA^{0-1} and 0.00 mdyn respectively. The appreciable non-zero value of the F_{13} constant could perhaps result from the erroneously large ab initio F_{23} CC/CO constant. However, empirical predictions for the F_{23} constant are still large and infer strong coupling which must be associated between the CC and CO stretch modes in ketene. (A more realistic definition of coordinates might

be obtained using symmetric and antisymmetric CCO stretching combinations.) In the absence of experimental data sensitive to F_{13} and F_{34} , the ab initio predictions were accepted.

In the B_2 species, F_{79} (CH₂ asym str/in-plane CCO bend) is empirically undetermined and was constrained to zero. Here, the ab initio calculations are consistent in predicting an essentially zero value, and thus the constraint was maintained. Otherwise, the B_1 and B_2 species predictions are in line with the comparatively well defined empirical constants. The largest ab initio discrepancy with the Mallinson and Nemes empirical force field (59) for these species was found to lie in the F_{78} (CH₂ asym str/rock) constant. However, introduction of ¹³C shifts to v_7 and v_8 , to which this constant is sensitive, has resulted in a substantially larger empirical estimate of F_{78} , and bringing it closer to the ab initio value.

Given in column 1 of table 3.13 is the GHFF for ketene in terms of the symmetry coordinates of table 3.1 determined from joint empirical/ab initio studies. The GHFF force constants are considered to be the most physically realistic set yet determined and are compared with other estimates made over the last 25 years, transformed to the present coordinate system where necessary. The reproduction of the 58 input data achieved from these force constants is given as the error vector, e = observed - calculated, in table 3.11.

Table 3.13.

Combined	empirical/ab	initio	GHFF ^a	of
ketene.				

F _{ij}	GHFF	M&N(59)	F&T(60) ^f	M&P(52) ^f
^F 11	5.880(55) ^b	6.080(105)	5.378(90)	5.345(26)
^F 12	0.131(101)	1.590(296)	[0.00] ^d	[0.00] ^d
F13	[-0.080] ^C	[0.000] ^d	[0.00] ^d	[0.00] ^d
F ₁₄	[0.045] ^C	[0.176] ^e	[0.17] ^d	[0.00] ^d
^F 22	9.244(113)	9.219(955)	8.926(900)	8.62(28)
F23	0.551(72)	0.515(478)	0.602(600)	0.96(26)
^F 24	-0.278(19)	-0.288(34)	-0.340(37)	-0.294(22)
F33	15.440(124)	15.28(155)	15.38(152)	16.11(53)
F34	[0.000] ^C	[0.000] ^d	[0.00] ^d	[0.00] ^d
F44	0.6029(58)	0.613(13)	0.585(15)	0.585(9)
F ₅₅	0.6685(32)	0.681(8)	0.582(10)	0.572(4)
^F 56	0.0923(16)	0.101(4)	0.052(5)	0.053(1)
^F 66	0.0879(6)	0.093(2)	0.083(5)	0.0861(6)
F77	5.784(47)	5.754(25)	5.432(70)	5.266(21)
F78	-0.227(65)	-0.098(262)	[-0.56] ^d	[0.00] ^d
F79	[0.000] ^C	[0.000] ^d	[0.00] ^d	[0.00] ^d
F88	0.7502(74)	0.708(24)	0.764(40)	0.707(42)
F89	-0.1888(40)	-0.204(8)	-0.172(14)	-0.189(15)
F99	0.6479(75)	0.696(24)	0.627(40)	0.652(46)

^a For units see footnote ^a of table 3.4.

^b Values in parenthesis are one standard deviation in units of the last figures.

^C Constrained to ab initio predicted values. See table 3.4

d Constrained to value quoted.

^e Constrained to hybrid orbital model prediction – $F_{14} = 0.029F_{11}$ (61).

f Fit to observed frequencies.

3.4.6 EFFECT OF MOLECULAR STRUCTURE ON FORCE CONSTANT CALCULATIONS

Force constant refinement calculations are performed around a chosen fixed molecular geometry, which ideally should be that of the equilibrium struture. In the absence of such a structure, the ground state structure is often used, as here. The calculation of the distortion constants depends upon the fourth power of the isotopic moments of inertia, so the values must be dependent to some extent on the molecular geometry chosen. Since one of the moments of inertia is very small and highly dependent on the configuration of the CH₂ group, it was considered that some of the distortion constant misfits (particularly to $\Delta_{\rm K}^{\rm O}$) could perhaps arise from this source.

In an analogous fashion to that in the ab initio studies, calculations were repeated in terms of varying molecular structures including an approximate equilibrium structure estimate (94) of

 $r_e(CH) = 1.073A^{\circ},$ $r_e(CC) = 1.316A^{\circ},$ $r_e(CO) = 1.161A^{\circ}$ and $\alpha_e(HCH) = 122.0A^{\circ}.$

This structure yielded an increase in $\Delta_{\rm K}^{\ o}$ of $\sim 4\%$ compared with the misfits of $\sim 15\%$. The fit of $\Delta_{\rm J}^{\ o}$, $\Delta_{\rm JK}^{\ o}$ and $\delta_{\rm J}^{\ o}$ was impaired somewhat, and that of $\delta_{\rm K}^{\ o}$ improved marginally. All structure variations considered produced minimal changes in the refined constants, well within the standard deviations in table 3.13. The problem of fitting the ground state quartic distortion constants is thus not associated significantly with the choice of molecular geometry. Since Duncan et al. (92) found that the centrifugal distortion constants were apparently rather precisely determined by the ground state rotational data, then the large harmonic force field misfits associated with these could perhaps result from appreciable anharmonicity factors. For the phosphine molecule, equilibrium centrifugal distortion constants may be calculated from experimental data and appear to require anharmonicity corrections of the order of 10% (93). Similar corrections seem to be necessary here for ketene.

3.5 SCALED AB INITIO FORCE CONSTANTS

The absolute accuracy of ab initio force constants calculated at the SCF level is somewhat limited, but as indicated previously, the errors are largely systematic. In a recent ab initio force field review paper by Fogarasi and Pulay (12), the following conclusions were made. Firstly, the diagonal stretching constants are overestimated by 10-15%. Secondly, overestimation of the bending modes are usually higher, about 20-30%. Thirdly, for off-diagonals, the results are less systematic, but large values are obtained within a comparable accuracy of 20, while smaller

values generally have absolute errors of within 0.05-0.10 in the units concerned.

For molecules where accurate vibrational frequencies have been measured, the ab initio force constants may be scaled down in terms of the Scaled Quantum Method (SQM) of Pulay et al. (67). In this method force constants F_{ii} and F_{jj} are scaled by C_i and C_j , and F_{ij} by $(C_i C_j)^{1/2}$, where C_i and C_j are scale factors. These are defined as

 $C_{i} = [\omega_{i}(OBS) / \omega_{i}(Ab \text{ initio})]^{2}$ and $C_{j} = [\omega_{j}(OBS) / \omega_{j}(Ab \text{ initio})]^{2}$

These are mutually averaged over several isotopic species. Note that harmonic frequencies are more commonly used.

In the present studies, only the $6-31G^{**}/6-31G^{**}$ and $6-31G^{**}/Expt$ force constants were scaled because it was considered that these represent the most accurate ab initio predictions. Scaling was effected in terms of empirical force field predicted frequencies instead of observed harmonic values since the latter are subject to appreciable vibrational resonances, particularly for v_3 and v_4 . The scale factors were averaged over the H₂CCO, HDCCO and D₂CCO species.

Serious overestimate of the F_{66} wag force constant discussed previously, as well as the sensitivity of the B_1

vibrations to the F_{56} (wag/CCO bend), resulted in considerable variation in the scale factors for the B_1 force constants. Thus, for the S_5 coordinate (out-of-plane CCO bend), adoption of the consistent scale factors for the S_9 coordinate (in-plane CCO bend) was considered to be a reasonable compromise. However, the S_6 coordinate (CH₂ wag) had to be scaled uniquely by an averaged, but largely variant scale factor. A similar but less pronounced overestimation of the wag coordinate was found by Fogarasi and Pulay for ethylene and is reflected in their small wag scale factor (68).

Scale factors for all vibrations were grouped together as far as possible according to their numerical values rather than to their vibrational types. The reasons for this were twofold. Firstly, classification in terms of vibrational type for ketene leads to 7 groups and hence 7 scale factors. These are CH_2 stretch, CH_2 symmetric deformation, CC stretch, CO stretch, CCO bend, CH_2 wag, and CH_2 rock. This was considered to be too large a number of factors in proportion to the 19 force constants of ketene. Secondly, the main objective of scaling, in any case, is to reduce the magnitude of the diagonal force constants, whilst having a much smaller effect on off-diagonal constants, which are generally small anyway. Thus to preserve the theoretical information as far as possible, a minimum number of scale factors was and is desirable.

Three and five scale factors were found to be necessary

to scale down the $6-31G^{**}/6-31G^{**}$ and $6-31G^{**}/Expt$ force constants respectively according to the SQM method. These are given, together with their groupings in tables 3.14 and 3.15. As may be seen by comparing these tables, the numerical similarity of the S₂, S₃, S₄, S₈ and S₉ scale factors is largely lost by adoption of the experimental r_o geometry as a reference. This necessitated the larger number of scale factors in table 3.15.

The ab initio SQM 6-31G**/6-31G** and 6-31G**/Expt force constants are compared with the GHFF constants in table 3.16. As may be seen, the agreement is generally very good. The largest discrepancy in the A_1 species, not unexpectedly, lies in the ${\rm F}^{}_{23}$ constant. The reason for this has been discussed in section 3.3.4. The F_{12} SQM and GHFF estimates differ by 12%. Here, however, the empirical constant is barely determined and is the most variant. For the rest of the A₁ constant, agreement to within 6% is achieved. For the B1 species, similar numerical accord is found, though the overestimation of F_{66} in relation to F_{56} is not fully by scaling. As discussed previously, the B_1 removed vibrations are very sensitive to small changes in the three associated force constants, thus vibrational predictions are likely to be significantly in error. Closest numerical agreement (<<0.05) is evident between the B_2 SQM and GHFF estimates.

Table 3.14. Scale factors for the

6-31G**/6-31G** force field.

Vibrational Mode	Coordinate	Scale Factor
CH ₂ stretch	s ₁ , s ₇	0.90355
CC stretch	s ₂	
CO stretch	s ₃	
CH ₂ sym def	s ₄	0.82494
CCO bend	s ₅ , s ₉	
CH ₂ rock	s ₈	
CH ₂ wag	s ₆	0.54070

Table 3.15. Scale factors for the

6-31G**/Expt force field.

Vibrational Mode	Coordinate	Scale Factor
CH_2 stretch	s ₁ , s ₇	0.95020
CC stretch CH ₂ sym def	^S ₂ _S ₄ }	0.85794
CO stretch	S ₃	0.92139
CCO bend	s ₅ , s ₉]	0.83231
CH ₂ rock	s ₈ J	
CH ₂ wag	s ₆	0.54391

Table 3.16.

.16. Comparison of the GHFF, SQM(1) (6-31G**/6-31G**) and SQM(2) (6-31G**/Expt) force fields^a.

F _{ij}	GHFF	SQM(1)	SQM(2)
^F 11	5.880	5.845	5.858
^F 12	0.131	0.115	0.129
^F 13	[-0.080] ^b	-0.074	-0.078
^F 14	[0.045] ^b	0.039	0.039
^F 22	9.244	9.058	9.004
F ₂₃	0.551	1.051	1.090
^F 24	-0.278	-0.289	-0.300
F ₃₃	15.440	16.328	16.158
F34	[0.000] ^b	-0.001	-0.002
F44	0.6029	0.5850	0.6032
F ₅₅	0.6685	0.6685	0.6483
^F 56	0.0923	0.0655	0.0713
F66	0.0879	0.0742	0.0872
F77	5.784	5.790	5.801
^F 78	-0.227	-0.245	-0.252
F79	[0.000] ^b	0.011	0.010
F88	0.7502	0.7637	0.7716
^F 89	-0.1888	-0.1860	-0.1855
F99	0.6479	0.6408	0.6308

^a For units, see footnote ^a to table 3.4

^b Constrained to ab initio values.

3.6 SPECTROSCOPIC DATA FOR ISOTOPIC KETENES

Spectroscopic parameters for isotopic ketenes were obtained from both the GHFF and SQM constants and are discussed below. For the latter, only the 6-31G**/6-31G** constants were considered.

(a) Frequency data

For clarity of reference, the observed (harmonic), GHFF and SQM frequencies are listed at the top of table 3.17 where it may be seen that the GHFF frequencies agree rather well with those observed. Other than v_4 , the unperturbed position of which is quite uncertain in all isotopic species, the main discrepancies involve the v_3 and v_5 fundamentals. The misfit in v_3 (calculated too high in H_2 CCO, too low in D_2 CCO) is almost certainly indicative of the effects of Fermi resonance complications. However, the perturbation analyses of v_3 in both species were only approximate and possibly may not represent the full extent of perturbations, which decrease the apparent position of v_3 in H_2 CCO and increase it in D_2 CCO. Larger corrections than those allowed would remove the apparent discrepancy in table 3.17.

The situation in the B_1 species is different, and arises from the complexity of the analysis of the Coriolis interacting v_5 , v_6 , v_9 system, such that the vibrational frequencies may be uncertain by $1-2cm^{-1}$. As indicated
Table 3.17. Comparison of the observed (harmonic) frequencies with those predicted by GHFF and SQM $6-31G^{**}/6-31G^{**}$, cm⁻¹.

1		H ₂ CCO			HDCCO			D ₂ CCO	
	OBS	GHFF	SQM	OBS	GHFF	SQM	OBS	GHFF	SQM
ω 1	3215.0	3211.0	3202.0	2400.5	2401.4	2395.8	2345.2	2347.5	2337.5
ω2	2185.3	2181.2	2175.7	2174.9	2172.7	2169.2	2152.3	2159.5	2159.0
ω3	1415.8	1422.5	1406.0	1316.5	1319.7	1313.8	1247.0	1238.2	1246.1
ω4	1133.0	1132.7	1147.7	1101.0	1096.9	1105.3	936.4	921.0	915.8
ω 5	593.2	591.8	569.1	560.6	561.5	568.8	546.1	554.2	568.7
ω6	539.2	535.9	530.8	506.3	504.0	473.8	442.0	440.3	408.6
ω 7	3307.5	3306.5	3306.7	3261.8	3262.3	3258.5	2467.1	2467.3	2466.4
ω 8	997.8	996.0	999.4	882.7	882.9	883.1	866.8	868.4	869.7
ω9	443.4	442.0	442.6	401.6	402.3	403.3	373.8	374.7	376.1
t a f		at I du	H ₂ C ¹³	CO	9 - 1 (6 ,	67102	H2 ¹³ CO	20	er pasing o
	_(DBS	GHFF	SQN	<u>1</u>	OBS	GHFF	SÇ	<u>2</u> M

		2-			-2		
	OBS	GHFF	SQM	OBS	GHFF	SQM	
Δω 1	0.1	0.05	0.04	6.1	5.65	5.65	
Δω2	58.3	59.26	58.46	5.52	5.54	4.13	
Δω 3	-	0.05	0.00	12.9	13.43	15.20	
$\Delta \omega_4$	[8.4]	0.86	1.26	[5.4]	16.37	15.75	
^{Δω} 5	5.51	5.45	15.87	0.38	0.41	2.38	
Δω 6	10.09	10.13	0.03	5.79	5.99	4.09	
٨٥	0 0	0.00	0 00	14 00	1 4 1 4	14.02	
2007	0.0	0.00	0.00	14.82	14.14	14.02	
Δω 8	10.97	11.02	10.83	8.14	8.03	8.08	
^{Δω} 9	-	7.55	7.66	-	0.05	0.06	

previously, it is suspected that either of the frequencies of v_5 or v_6 in the H₂CCO are the most likely contenders, as the analysis here is in terms of medium resolution Q branch features, whereas those of D₂CCO are calculated in terms of a large number of rovibrational transitions in all three bands. The fact that v_5 (D₂CCO) is misfit is almost certainly spurious, and caused by the calculation attempting to fit also the associated interaction constants for H₂CCO.

The SQM frequency predictions of table 3.17, with the exception of the out-of-plane vibrations are generally very close to observed and GHFF predicted frequencies. The SQM B_2 frequencies in particular are of comparable accuracy to those of the GHFF. The largest discrepancy lies in the v_4 prediction for the D_2 CCO species, where the SQM frequency is some 20 cm^{-1} lower than that observed. However, given that this vibration is subject to major Fermi resonance displacement, a misfit of this magnitude does not seem too unreasonable.

Collected in the lower half of table 3.17 are the observed, and calculated ${}^{13}C$ frequency shifts. Not surprisingly, the SQM out-of-plane shifts are in very poor agreement with those observed and calculated from the GHFF. Apart from these, the $H_2^{13}CCO$ shift to v_7 represents the largest discrepancy between observed and calculated, with the GHFF and SQM predictions being considerably smaller. The observed shift was obtained from perturbation analysis, which made the assumption that v_7 suffered perturbation by

only $v_2 + v_8$ in both H_2CCO and $H_2^{-13}CCO$. Given the large number of states possible around 3100 cm^{-1} owing to the lower lying v_5 , v_6 and v_9 vibrations, it is possible that other vibrational levels could significantly affect v_7 . These could not be taken into account in the perturbation analysis and may thus cause the discrepancy.

(b) Quartic Distortion Constants.

Collected in table 3.18 are the observed ground state and calculated distortion constants. The misfits between the observed and GHFF predicted constants (also given as the error vector in table 3.11) is $\sim 1\%$ in $\Delta_J^{\ o}$, $\sim 3\%$ in $\Delta_{JK}^{\ o}$, 12-15% in $\Delta_K^{\ o}$, $\sim 8\%$ in $\delta_J^{\ o}$ and $\sim 8\%$ in $\delta_K^{\ o}$. The SQM predictions are of comparable order of magnitude, but deviations from GHFF predictions and observed ground state constants are considerable.

(c) Coriolis Constants

The reproduction of the two largest Coriolis constants determined for H_2 CCO is good, and it is believed that the two smaller ones are ill-determined. SQM values are not quoted on account of the small but significant differences between the SQM and well determined GHFF force constants, since this will lead to considerable errors in the Coriolis constants associated with the out-of-plane vibrations. Use of the GHFF calculated constants for D_2 CCO of table 3.11 has been made in the recent high resolution analysis of the

Table 3.18.	Comparison	of the	observed	centrifuga	al distortion	constants
	with those	predic	ted by GH	FF and SQM	6-31G**/6-310	G**, kHz.

		H ₂ CCO			HDCCO			D ₂ CCO	
	OBS	GHFF	SQM	OBS	GHFF	SQM	OBS	GHFF	SQM
∆ _J	3.39	3.40	3.27	3.16	3.17	3.06	2.71	2.70	2.61
∆ _{JK}	476.0	486.1	477.3	327.0	332.5	325.5	321.4	325.2	318.1
∆_K	23535	19948	20482	15000	14542	14750	4800	4789	4928
\mathbf{L}^{δ}	0.145	0.134	0.129	0.225	0.211	0.205	0.220	0.204	0.200
^б к	329.6	270.9	311.5	239.2	224.0	181.6	203.0	189.0	206.5

region below 1000 cm^{-1} and they seem totally compatible with the extensive observations made and the large perturbations present. It is therefore felt that the predictive capacity of the GHFF of table 3.13 is high, and the calculated Coriolis interaction constants between fundamental vibrations for H₂CCO, HDCCO and D₂CCO are listed in table 3.19. These should be of considerable assistance to future studies of the vibration-rotation spectra of these species, which are required in order to give increased understanding of this fundamentally important molecule.

Table 3.19. GHFF calculated Coriolis coupling constants ζ_{ij} for H₂CCO, D₂CCO and HDCCO.

			2	-					
	v ₁	^v 2	^v з	ν ₄	^v 5	^v б	ν ₇	ν ₈	^V 9
	3070	2153	1387	1116	587	528	3159	978	439
ν ₅	^b 0.385	0.598	0.671	0.211			1		
v ₆	0.346	0.788	0.509	0.013				H	CCO
V ₇	C0.069	0.079	0.954	0.280	a0.686	0.560			_
ν ₈	0.774	0.581	0.031	0.249	0.116	0.715			
ν ₉	0.598	0.801	0.027	0.013	0.719	0.419			
	۲ 1	^V 2	v 3	v ₄	ν ₅	^v 6	v 7	v ₈	v9
	2267	2120	1225	925	541	435	2383	852	371
ν ₅	b0.308	0.939	0.031	0.151	1.A				16 1718 - 1719
ν ₆	0.562	0.115	0.605	0.552				D	2CCO
ν ₇	^C 0.194	0.067	0.647	0.734	a0.030	0.899			
ν 8	0.813	0.497	0.043	0.300	0.765	0.260			
ν 9	0.495	0.864	0.035	0.083	0.719	0.419			
	1	N	N	N	N	N	N	N	V
	×1 2319	2 2142	*3 1292	¥	*5 555	6 197	7 3117	8 867	*9 398
	2313	2132	1272	1005			5117		
ν ₁	10000	C _{0.089}	0.416	0.076	^a 0.094	0.478			
ν 2			0.123	0.174	0.022	0.088		HD	OCCO
ν 3				0.026	0.019	0.098			
ν 4					0.140	0.236			
ν 5	^b 0.070	0.936	0.225	0.207			^b 0.100	0.121	0.014
ν 6	0.436	0.253	0.741	0.229			0.347	0.154	0.017
ບ 7	^C 0.124	0.038	0.751	0.522	^a 0.228	0.713		^C 0.130	0.339
ν 8	0.740	0.533	0.030	0.265	0.597	0.422			0.044
V 9	0.466	0.809	0.012	0.077	0.750	0.108			

CHAPTER 4

EMPIRICAL AND AB INITIO STUDIES OF METHYLENE CHLORIDE

4.1 INTRODUCTION

Several attempts have been made to derive a harmonic force field for methylene chloride (95-101). All have suffered from a lack of sufficient experimental observations, leading to indeterminacies, which have necessitated either the use of approximative methods of estimation (96), or the imposition of constraints of some kind (95,97-101). These have included applying the Urey-Bradley model to decrease the number of independent force constants (95,98), constraining force constants to be equal to each other in different dihalogeno methanes (97), and simply constraining undetermined force constants to be fixed at either non-zero (100) or zero (101) values. In some cases, the undetermined force constants have been quoted (95,99,100), usually with their associated much larger uncertainties.

In a recent extended spectroscopic study of the

methylene chloride molecule, Duncan et al. accumulated in excess of 55 vibrational data on the fundamental vibrations of 7 isotopic species of methylene chloride (102). To these may be added the observed fundamental vibration frequencies of CHDCl₂ (100,103) and the centrifugal distortion constants of CH₂Cl₂ and CD₂Cl₂ determined by microwave spectroscopy (101). By use of the combination of 27 fundamental vibration frequencies, 37 heavy isotopic (37 Cl and 13 C) fundamental frequency shifts, and 10 quartic centrifugal distortion constants it was anticipated that an unconstrained harmonic force field for methylene chloride would be determined for the first time.

No ab initio force constant calculations for methylene chloride have previously been reported. Therefore, since it was anticipated that the experimental force field would be well defined, this offered a further opportunity to assess the reliability of the ab initio predictions.

4.2 SYMMETRY COORDINATES

The symmetry coordinates used by Davis et al. (101) are preferred in the present empirical and ab initio studies. These are listed in table 4.1 together with an averaged r_z geometry, determined by the above authors, which was adopted in the empirical studies. Ab initio calculations were performed around theoretical minima and will be discussed in section 4.4.2.

Table 4.1. Internal valence coordinates, symmetry coordinates, molecular geometry, and redundancy relations for methylene chloride.

$$\frac{\text{Symmetry coordinates}}{S_{1} = (\delta r_{1} + \delta r_{2})/\sqrt{2}}$$

$$S_{2} = (\delta R_{3} + \delta R_{4})/\sqrt{2}}$$

$$A_{1} S_{3} = a \delta \alpha - b (\delta \theta_{13} + \delta \theta_{14} + \delta \theta_{23} + \delta \theta_{24})$$

$$S_{4} = c \delta \beta - d (\delta \theta_{13} + \delta \theta_{14} + \delta \theta_{23} + \delta \theta_{24})$$

$$S_{R} = e \delta \alpha + f \delta \beta + g (\delta \theta_{13} + \delta \theta_{14} + \delta \theta_{23} + \delta \theta_{24})$$

$$A_{2} S_{5} = -(\delta \theta_{13} - \delta \theta_{14} - \delta \theta_{23} + \delta \theta_{24})/2 \quad C1_{4}$$

$$B_{1} S_{7} = -(\delta \theta_{13} - \delta \theta_{14} - \delta \theta_{23} - \delta \theta_{24})/2$$

$$B_{2} S_{9} = -(\delta \theta_{13} - \delta \theta_{14} + \delta \theta_{23} - \delta \theta_{24})/2$$

$$\frac{M01ecular geometry}{r}$$

$$r = r (CH) = 1.0895 \text{Å}, R = r (CC1) = 1.7708 \text{\AA},$$

$$\alpha = \angle HCH = 111.60^{\circ}, \beta = \angle C1CC1 = 112.03^{\circ},$$

 $\theta = \angle HCC1 = 108.31^{\circ}$,

e = $2 \sin(\alpha/2) \cos(\beta/2)/N = 0.40054$ f = $2 \cos(\alpha/2) \sin(\beta/2)/N = 0.40379$ g = $\sin \theta/N = 0.41125$

from which, through the condition of orthonormality,

a = 0.89906, b = 0.21891, c = 0.89766, d = 0.22034.

[For the tetrahedral case,
$$e = f = g = 1/\sqrt{6}$$
; $a = c = 2/\sqrt{5}$; $b = d = 1/2\sqrt{5}$.]

4.3 EMPIRICAL FORCE FIELD STUDIES

4.3.1 ASSIMILATED EXPERIMENTAL DATA

The data used have been obtained from infrared (102,103), Raman (100) and microwave (101) studies of isotopic methylene chlorides. In the most recent study (102), a large number of ³⁷Cl isotopic vibrational shifts on fundamentals were observed in natural abundance. In addition, a complete set of ^{13}C shifts were observed from a study of ${}^{13}CH_2Cl_2$, including some double ${}^{13}C^{37}Cl$ isotopic shifts. Rather surprisingly, Duncan et al. (102) found no evidence whatsoever of Fermi resonance perturbations to the fundamentals of methylene chloride in any isotopic species, which is an unusual situation for a polyatomic molecule. Accordingly, this permitted the use of all the experimentally observed vibrational data in the evaluation of the vibrational potential function.

Centrifugal distortion constants of quality for $CH_2^{35}Cl_2$ and $CD_2^{35}Cl_2$ were available from the most recent microwave investigation (101). No Coriolis coupling constants had been determined experimentally for methylene chloride at the time of writing.

4.3.2 ANHARMONICITY CORRECTIONS AND ALLOWED

UNCERTAINTIES

A large number of anharmonicity constants have been experimentally determined (102). However, their number is not sufficiently complete over different isotopic species to permit accurate vibrational anharmonicity correction through their use. Therefore, vibrational anharmonicities have been corrected approximately through application of Dennison's rule (equations 1.30 and 1.31) using the following anharmonicity factors, x, for CH_2Cl_2 :

CH stretch	0.040
CH bend	0.020
CCl stretch	0.015
CCl bend	0.010

The observed, "harmonized" and calculated product rule ratios for $CH_2^{35}Cl_2$, $CD_2^{35}Cl_2$ and $CHD^{35}Cl_2$ are given in table 4.2. In this table, it may be seen that the discrepancy between the observed and calculated ratios is removed satisfactorily, indicating the absence of significant vibrational resonances and the suitability of the chosen anharmonicity factors.

Uncertainties allowed in the data were 1% on fundamental vibrational frequencies, 2% on isotopic frequency shifts plus experimental error, and 3% on centrifugal distortion constants. The observed data, harmonized frequency data and

associated uncertainties are collected in table 4.3.

Species		OBS	HARM	THEORY	
^D 2 ^{/H} 2	^A 1	0.519964	0.511289	0.506351	
	^A 2	0.715525	0.711432	0.711181	
	^B 1	0.598291	0.589746	0.589129	
	^B 2	0.727938	0.723833	0.724229	
HD/H ₂	A'	0.560691	0.551808	0.545184	
	A''	0.725197	0.720996	0.717849	

Table 4.2. Methylene chloride product rule ratios.

4.3.3 FORCE CONSTANT CALCULATIONS

Refinement of the force constants, starting from the values quoted by Davis et al. (101) was straightforward. The vibrational data base forms a remarkably self-consistent set, with no single datum being markedly at variance, this deriving from the almost total lack of perturbation to any fundamental in the isotopic species concerned. The reproduction of the quartic distortion constants is also excellent, all constants being reproduced to better than 2%, with the exception of Δ_{K} (CH₂Cl₂) which is reproduced to within 3%. This is in marked contrast to the situation in ketene, discussed in chapter 3. The error vector in the

Table 4.3. Observed and harmonized spectroscopic data, uncertainties and error vector of the fit produced by the force constants of table 4.4; frequencies and shifts in cm⁻¹, distortion constants in kHz.

		12 _{CH2} 35	C12			¹² CD ₂ ³⁵ C	1 ₂			¹² CHD ³⁵ C	¹ ₂			Distort	ion data	
2		ω	σ	ε	ν	ω	σ	£	ν	ω	α	ε		Δ	σ	ε
1	2997.66	3122.6	31	3.2	2205.65	2272.5	23	-0.4	2251.5	2321.2	23	-0.5		¹² CI	2 ³⁵ C1 ₂	
2	1435.0	1464.3	15	-1.7	1060.81	1076.7	11	-1.3	1286.0	1309.5	13	3.2	$\Delta_{\rm J}$	1.392	0.042	0.021
3	712.9	723.8	7.2	-3.0	687.6	697.7	7	3.0	692.5	702.7	7	2.4	Δ _{JK}	-26.18	0.79	-0.01
4	281.5	284.3	2.8	0.5	279	281.8	2.8	1.2	280	282.8	2.8	0.5	Δ _K	473.2	14.2	6.0
													δ_{J}	0.1770	0.0053	-0.0004
5	1153	1176.5	12	-1.4	825	837.0	8.4	-0.7	890.4	904.4	9	. 2.2	δ _K	5.36	0.16	0.13
														¹² CE	2 ³⁵ C1 ₂	
6	3055	3182.3	32	-4.9	2303.72	2375.4	24	6.1	3024.8	3149.5	31	-4.9	۵ _J	1.298	0.039	0.023
7	898.66	917.0	9.2	2.3	713	724.5	7.3	-0.4	782.5	796.4	8	-2.8	∆ _{JK}	-15.88	0.48	0.12
											÷.		Δ _K	204.0	6.1	2.1
8	1268.86	1294.8	13	-0.2	961.04	975.8	10	-0.6	1223.8	1247.9	12	1.2	$^{\delta}$ J	0.1901	0.0057	-0.0028
9	759.82	771.4	7.7	0.9	730.26	740.9	7.4	0.8	739.8	750.7	7.5	0.6	δ _K	4.08	0.12	0.03
		¹² сн ₂ ³⁵ с	1 ³⁷ с1	111		¹³ CH ₂ ³⁵ CH ₂	21 ₂			¹³ CH ₂ ³⁵ CI	³⁷ C1	7	2	¹² CD	³⁵ c1 ³⁷ c1	
	Δν	Δω	σ	ε	Δυ	Δω	σ	ε	Δν	Δω	Ű	ε	Δν	Δω	σ	ε
1	0.00	0.00	0.01	0.00	6.40	6.94	0.14	0.00	6.40	6.94	0.14	0.00	0.00	0.00	0.01	0.00
2	0.0	0.0	0.1	-0.02	3.9	4.06	0.22	0.04	3.9	4.06	0.22	0.01	0.00	0.00	0.05	-0.01
3	2.9	2.95	0.26	-0.17	17.4	17.93	0.55	0.28	20.1	20.71	0.60	-0.17	3.08	3.17	0.26	-0.20
4	3.4	3.43	0.17	0.07	1.3	1.33	0.13	0.01	4.6	4.69	0.15	0.06	3.08	3.14	0.17	-0.11
5	0.20	0.20	0.10	0.03	0.00	0.00	0.01	0.00	0.17	0.17	0.10	0.00	-		-	[0.24]
6	0.00	0.00	0.01	0.00	11.7	12.69	0.45	0.10	11.7	12.69	0.45	0.10	0.00	0.00	0.01	0.00
7	0.29	0.30	0.01	0.00	8.91	9.27	0.19	0.04	9.19	9.56	0.20	0.03	0.39	0.40	0.10	0.02
8	0.15	0.16	0.01	-0.01	4.20	4.37	0.10	-0.01	4.36	4.53	0.10	-0.04	-	-	-	[0.06]
9	2.17	2.24	0.05	0.00	21.17	21.80	0.44	-0.11	23.40	24.11	0.48	-0.06	2.42	2.49	0.06	-0.04

final cycle of refinement is included in table 4.3. The largest frequency misfit is some 6cm^{-1} in the antisymmetric CD_2 stretch, ν_6 of CD_2Cl_2 . The largest isotopic shift misfit is 0.28cm^{-1} in the ^{13}C shift of 17.9cm^{-1} on the symmetric CCl_2 stretch, ν_3 , of CH_2Cl_2 . However, most frequencies are reproduced within 2cm^{-1} and most shifts within 0.1cm^{-1} .

The force constants with their least squares standard deviations are listed in table 4.4. All parameters are well defined with the sole exception of the F12 CH2 str/CCl2 str for which the standard deviation is slightly larger than the constant determined. Comparison with methyl chloride predicts a value of between +0.1 and +0.2mdynA⁰⁻¹ for F₁₂, so it is felt that the refined value of +0.10mdynA⁰⁻¹ is probably a realistic estimate for this interaction constant. Variation of F_{12} between values of 0.0 and +0.2mdynA⁰⁻¹ results in only very small changes in the numerical values of all other force constants, typically <<0.04. Comparison of the force constants with the two most recent estimates of Escribano et al. (100) and Davis et al. (101) are also given in table 4.4, the former having been transformed to the present coordinate system in the A_1 species. It will be seen that, in the absence of the isotopic frequency shift data, these both rather seriously under-estimate most of the determined A1 interaction force constants. Escribano et al. constrained the F_{67} CH₂ str/CH₂ rock interaction constant to the value transferred from methyl chloride (100). This would appear to be a rather good transference, the

Table 4.4. The general harmonic force constants^a for methylene chloride in terms of the symmetry coordinates of table 4.1, and comparison with the two most recent previous estimates.

 Fij	GHFF	EOMD(100) ^b	DRG(101) ^C	
 ^F 11	5.450(28) ^d	5.382(110)	5.088(54)	
^F 12	0.097(128)	[0.200] ^e	[0.00]	
^F 13	-0.125(60)	-0.244(120)	[0.00]	
F14	-0.152(66)	[0.022]	[0.00]	
F22	3.978(25)	3.832(150)	3.815(34)	
F23	-0.362(24)	-0.353(69)	-0.221(55)	
F ₂₄	0.323(16)	0.257(55)	0.246(13)	
F ₃₃	0.6623(85)	0.644(40)	0.583(11)	
F ₃₄	-0.326(18)	-0.246(45)	-0.229(28)	
F ₄₄	1.090(11)	1.095(49)	1.051(10)	
F ₅₅	0.6342(30)	0.627(10)	0.593(6)	
F66	5.428(26)	5.431(80)	5.039(53)	
F67	-0.127(16) [-0.087]	[0.00]	
F77	0.8566(38)	0.835(11)	0.823(9)	
F88	3.036(10)	3.079(50)	2.930(34)	
^F 89	-0.5997(26)	-0.545(11)	-0.5553(35)	
F99	0.7113(33)	0.686(10)	0.660(11)	

^a For units see footnote ^a to table 3.4.

- ^b Refined to harmonized frequency and Raman intensity data. The A₁ species force constants have been transformed to the symmetry coordinates of table 4.1.
- ^c Refined to observed frequency and centrifugal distortion data.
- d Values in parenthesis are one standard deviation in units of the last significant figures.
- e Values in square brackets were constrained in the fits shown.

constrained value of -0.087mdyn comparing with an empirical value of -0.127(16) mdyn. On the other hand, their F_{14} CH₂ str/CCl deformation interaction constant transferred from chloroform, is in poor agreement with the value required by the accumulated experimental data. One slightly unsatisfactory feature of this force field (and that of Escribano) is that the F_{13} CH_2 str/CH_2 def assumes a negative value. As discussed with reference to ketene in chapter 3, a large number of CH2 and CH3 have been found to have a significant positive value for this constant. A negative value seems unacceptable on physical grounds and despite being well defined, GHFF F13 constant for methylene chloride seems to be in error. This could result from slightly incompatable data, possibly some of the distortion constants, or vibrational frequency shifts. Further discussions on the CH₂ sym str interactions constants may be found in sections 4.4.3 and 4.6.

4.4 AB INITIO STUDIES OF METHYLENE CHLORIDE

The ab initio studies of methylene chloride were carried out on the ab initio gradient program TEXAS (64). Evaluation of the SCF energies and gradients were more costly for methylene chloride than for ketene due to the larger number of electrons and also the inclusion of second row centres. Such centres are less well described than their first row analogues (104) and thus require larger numbers of basis functions to produce comparable accuracies.

4.4.1 BASIS SETS

From previous discussions (see section 3.3.2), split-valence basis sets were considered to be the best type of gaussian basis functions with which to carry out the present ab initio studies, since they represent a compromise between accuracy and economy.

From subsequent studies pertaining to ketene, such basis sets were found to give satisfactory descriptions of hydrogen and the first row elements carbon and oxygen. In the ab initio studies of methylene chloride the situation was altered somewhat due to the second row chlorine atoms. A number of split-valence basis sets have been developed for chlorine and other second row elements, namely, 3-21G, 4-31G, 6-21G and 6-31G. These second row split-valence basis sets differ from those of the first row by having alternative minimal type representation for the 2s and 2p shells. Second row split valence basis sets consist of single functions for each of the 1s, 2s and 2p (core) shells, in addition to inner and outer valence functions for the 3s and 3p shells and differ from each other only in the number of gaussian functions used to construct each orbital.

Three out of the four basis sets above, i.e. 3-21G, 4-31G and 6-21G were compared in a paper by Gordon et al. (39), where it was found that generally, all three gave molecular predictions of comparable accuracy. However, subsequent studies by Pietro et al. (104) tended to indicate

that molecular predictions for the second row by the 3-21G (and also presumably the 4-31G and 6-21G) were in poorer accord with experiment than those for the first row. This perhaps derives from the proportionally larger minimal type representation of second row basis sets.

Molecular predictions closer to the HF limit may be obtained by extending second row basis sets, in an identical fashion to those of the first row (see sections 1.3.3 and 3.3.2), to include d-orbital polarisation functions. From a number of small chlorine containing molecules, Francl et al. (40) determined an averaged value of 0.75 for chlorine polarisation exponent α_d (of equation 3.1). Very recently, an identical value was advocated by Magusson and Schaefer (105).

Supplementing the second row 6-31G and 3-21G basis sets with polarisation functions was found to give molecular property predictions which were almost uniformally closer to experiment (104), though predictions of the former were slightly better. It is evident from the studies of Francl et al. (40) and Pietro et al. (104) that the largest basis sets produced the best results. Therefore, the 6-31G**, which includes the largest split-valence basis set of the Pople group (35,40), was adopted in the present ab initio studies of methylene chloride. (In this case, the 6-31G** basis set contains d-functions for both carbon and chlorine as well as p-functions for hydrogen.)

4.4.2 EQUILIBRIUM GEOMETRY PREDICTIONS FOR METHYLENE CHLORIDE

The ab initio equilibrium configurations for methylene chloride, determined from the selected basis sets were obtained in an identical way to those of ketene (see sections 1.3.5 and 3.3.3). In table 4.5 (below), the 6-31G and 6-31G** geometries are compared with a recently determined experimental r_{e} structure of Duncan (106).

Table 4.5. Comparison of r_e structure with that predicted from 6-31G and 6-31G**^a.

	r(CH)	r(CCl)	<u>α(HCH)</u>	<u>β(ClCCl)</u>	θ(HCCl)
6-31G	1.067	1.832	113.42	112.15	107.84
6-31G**	1.074	1.767	111.21	112.91	108.19
re	1.080	1.766	112.1	112.0	108.2

^a For units see footnote to table 3.2.

Here, it may be seen that the 6-31G CCl bondlength is more than $0.06A^{O}$ larger than both those of the 6-31G** and the experimental r_{e} value, which perhaps reflects the importance of inclusion of polarisation functions in second row calculations. Apart from this discrepancy, agreement of the ab initio predictions with experiment is good, with bond angles deviating not more than 1.3^{O} from those of the r_{e} structure. Notably, the inclusion of polarisation functions serves to bring the geometry predictions, on the whole,

closer to the experimental structure.

4.4.3 AB INITIO FORCE FIELD STUDIES OF METHYLENE CHLORIDE

The ab initio force constants for methylene chloride were obtained by numerical followed by analytical differentiation of the total molecular energy in terms of a set of symmetry coordinates (see section 1.3.5). To facilitate direct comparison with those of the empirical studies of section 4.3, these were chosen to be the coordinates of table 4.1. As before, analytical differentiation was effected in terms of the two-sided distortion expression 1.43, with dominant cubic terms determined from expression 1.44. The magnitude of the distortions was chosen to be the same as those for ketene, i.e. $\pm 0.05A^{\circ}$ for stretching coordinates and ± 0.04 rad for bending coordinates.

The 6-31G and 6-31G** quadratic force constants are compared with those determined from empirical studies in table 4.6. The ab initio predictions may be seen to be fairly self-consistent, though 6-31G CCl stretching constants (F_{22} and F_{88}) are considerably smaller. This is reflected to a lesser extent in the F_{44} CCl sym def. and also in the significantly smaller 6-31G F_{12} CH₂ str/CCl₂ str constant. These effects are almost certainly caused by the significant overestimation of the CCl bondlength by the unsupplemented 6-31G basis set (see section 4.4.2).

Fij	GHFF	6-31G	6-31G**	
F ₁₁	5.450	6.483	6.235	
^F 12	0.097	0.045	0.154	
F13	-0.125	0.153	0.141	
^F 14	-0.152	-0.014	-0.013	
^F 22	3.978	3.646	4.484	
F23	-0.362	-0.397	-0.379	
F24	0.323	0.350	0.320	
F33	0.6623	0.714	0.731	
F 34	-0.326	-0.263	-0.276	
F ₄	1.090	1.207	1.270	
F55	0.6342	0.735	0.764	
F ₆₆	5.428	6.476	6.175	
F ₆	-0.127	-0.035	-0.029	
F77	0.8566	0.937	1.029	
F88	3.036	2.929	3.556	
F89	-0.5997	-0.702	-0.662	
F99	0.7113	0.838	0.838	ere consister

Table 4.6. Comparison of GHFF and ab initio force constants^a for methylene chloride.

^a For units see footnote ^a to table 3.4.

Despite the characteristic overestimation of SCF force constants, agreement between ab initio and empirical constants is fairly good, with general agreement in both sign and magnitude. Both sets of diagonal constants may be seen to be in semi-quantitative agreement. In addition, the ab initio symmetric/asymmetric stretch ratios, F_{11}/F_{66} and F_{22}/F_{88} for CH₂ and CCl₂ respectively qualitatively agree with empirical findings. Notably, however, agreement is less close than for ketene, perhaps indicating inferior description of second row elements by split-valence basis sets.

Of a number of discrepancies between the theoretical and experimental force fields, in table 4.6 it may be seen that the F_{13} CH₂ str/CH₂ def predictions are in most marked disagreement. The ab initio value of 0.15mdyn, is in close accord with the corresponding coordinate in a large number of CH₂ and CH₃ molecules, but not with the well defined empirical value of -0.14mdyn. As indicated in the empirical studies of section 4.3, the latter constant may be driven to assume such a value by an erroneous shift or distortion constant. A similar situation was found for ketene, where the empirical CH₂ str/CH₂ def constant assumed a negative value for a better fit to the distortion constants, though it had a much larger associated uncertainty. The ab initio predictions for the same constant in ketene are consistently positive.

It may also be seen from table 4.6, the empirical F_{14}

 $CH_2 \text{ str/CCl}_2$ def constant of methylene chloride is in marked disagreement with its ab initio counterpart, the former assuming a value some 10 times the latter.

A further small discrepancy may be found in the B_1 species, where the ab initio F_{67} CH_2 asym str/rock is very much smaller than that obtained from empirical studies.

Dominant ab initio 6-31G** cubic constants for methylene chloride are given in table 4.7. Here, it may be seen that the F_{111} and F_{666} CH₂ stretch diagonals are similar to that for other molecules, and are of comparable value to the corresponding ab initio constants of ethylene and ketene (quoted in section 3.3.4).

4.4.4 SCALED AB INITIO FORCE FIELD

Only the 6-31G** force constants were considered for scaling. It may be seen from table 4.6 that several of the 6-31G** interaction constants are smaller than their empirical equivalents prior to scaling. Thus scaling by the SQM method would result in larger discrepancies between these GHFF and ab initio force constants. It has previously been suggested that scaling of ab initio force fields should not be extended to interaction constants (as indicated in reference 67). Certainly, in this instance, this would give somewhat closer force constant agreement. However, the reliability of the SQM method has been amply demonstrated by Pulay and co-workers and was thus maintained for the scaling

F 111	-24.9	^F 112	0.541	^F 113	-0.122	^F 114	-0.116
^F 221	-0.512	^F 222	-15.6	^F 223	0.441	F224	-1.04
^F 331	-0.305	F332	-0.326	F333	-0.429	^F 334	0.104
^F 441	-0.025	^F 442	-2.06	^F 443	0.729	^F 444	-2.38
^F 551	-0.037	^F 552	-0.531	F553	-0.015	^F 554	0.102
^F 661	-25.2	^F 662	0.642	^F 663	0.339	^F 664	-0.197
F771	0.016	^F 772	-0.833	^F 773	-0.318	^F 774	0.859
^F 881	-0.249	^F 882	-14.0	F883	0.095	^F 884	0.275
^F 991	0.059	^F 992	-0.866	F993	0.684	^F 994	-0.358

cubic force constants^a for methylene chloride.

Ab initio 6-31G** diagonal and semi-diagonal

Table 4.7.

of the ab initio force constants for methylene chloride.

The 17 ab initio $6-31G^{**}$ force constants were scaled in terms of the GHFF H₂ HD and D₂ frequencies. As practised in chapter 3, scale factors with numerically similar values were grouped together and resulted in the four factors given in table 4.8 (below).

Table 4.8. Scale factors for the 6-31G** force field.

Vibrational	Coordinate	Scale
Mode	Coordinate	Factor
	<u>onan in ser</u> tranzia	
CH ₂ str	^S 1, ^S 6	0.87988
CCl ₂ str	^S ₂ , ^S ₈	0.85762
	stibno. As may be	
CH ₂ def	S ₃	0.83567
CCl ₂ def	s ₄	
torsion	s ₅	
rock	s ₇	0.81359
wag	s ₉	

In fact, the CH₂/CCl₂ def and the torsion/wag/rock scale factors are still similar and may be further averaged and result in a less close frequency (but comparable frequency shift) reproduction. The same may also be done for the stretching modes scale factors, leading to two scale factors and resulting in moderately good frequency predictions.

The SQM and GHFF force constants are given in table 4.9. As may be seen, reproduction of the diagonal constants is fairly good, though some off-diagonal constants, as anticipated, are significantly underestimated. The quality of the SQM force constants will be assessed in terms of prediction of spectroscopic constants in the following section.

4.5 CALCULATED SPECTROSCOPIC PARAMETERS

The observed (harmonic) and GHFF frequencies and shifts of table 4.3 are reproduced in table 4.10 for ease of comparison with SQM predictions. As may be seen, in this table, the agreement is very impressive, with all SQM frequencies agreeing to within ca. 10 cm^{-1} of the observed and GHFF calculated values, whilst most shifts agree to better than 0.3 cm^{-1} . The major exceptions to the latter are the 13 C v_1 and v_8 shifts, which are under- and overestimated by 0.9 cm^{-1} and 0.7 cm^{-1} respectively by the SQM force field. The discrepancy in the v_1 shifts almost certainly reflects the largely differing CH₂ sym str interaction constants, particularly F_{13} , discussed in section 4.4.3. Differences in the 13 C v_8 shifts probably result from the small difference between the SQM and GHFF F_{89} CCl₂ asym str/wag constant to which these shifts are sensitive.

F _{ij}	GHFF	SQM	
	5.450	5.486	
^F 12	0.097	0.134	
^F 13	-0.125	0.121	
^F 14	-0.152	-0.011	
F ₂₂	3.978	3.845	
^F 23	-0.362	-0.321	
F24	0.323	0.271	
F33	0.6623	0.611	
F ₃₄	-0.326	-0.230	
F44	1.090	1.061	
F55	0.6342	0.621	
F66	5.428	5.433	
F ₆₇	-0.127	-0.025	
F ₇₇	0.8566	0.837	
F88	3.036	3.050	
F ₈₉	-0.5997	-0.553	
F99	0.7113	0.682	-94 - 81 40 - 91 39 - 91

Table 4.9. Comparison of GHFF and SQM force constants^a for methylene chloride.

^a For units see footnote ^a to table 3.4.

Table 4.10. Comparison of the observed (harmonic) frequencies and shifts for methylene chloride with those predicted by GHFF and SQM $6-31G^{**}/6-31G^{**}$, cm⁻¹.

	1:	² сн ₂ ³⁵ с	1 ₂	¹² CHD ³⁵ Cl ₂ ¹² CD ₂ ³⁵ Cl ₂					
	OBS	GHFF	SQM	OBS	GHFF	SQM	OBS	GHFF	SQM
^ω 1	3122.6	3119.4	3116.4	2321.2	2321.7	2317.3	2272.5	2272.9	2317.3
ω2	1464.3	1466.0	1462.3	1309.5	1306.3	1306.1	1076.7	1078.0	1073.5
ω 3	723.8	726.8	720.9	702.7	700.3	696.5	697.7	694.7	691.2
ω4	284.3	283.8	284.6	282.8	282.3	283.3	281.8	280.6	282.0
^ω 5	1176.5	1177.9	1184.0	904.4	902.2	909.9	837.0	837.7	841.8
ω6	3182.3	3187.2	3193.7	3149.5	3154.4	3157.5	2375.4	2369.3	2377.4
^ω 7	917.0	914.7	909.3	796.4	799.2	790.9	724.5	724.9	719.2
^ω 8	1294.8	1295.0	1293.2	1247.9	1246.7	1248.1	975.8	976.4	983.9
ω9	771.4	770.5	778.0	750.7	750.1	752.9	740.9	740.1	740.8

	¹² C	н ₂ ³⁵ с1	³⁷ cl	1:	³ CH ₂ ³⁵	Cl ₂	13	сн ₂ ³⁵ с	1 ³⁷ Cl	¹² c	D2 ³⁵ Cl	37 _{Cl}
	OBS	GHFF	SQM	OBS	GHFF	SQM	OBS	GHFF	SQM	OBS	GHFF	SQM
Δω 1	0.00	0.00	0.00	6.94	6.94	6.00	6.94	6.94	6.00	0.00	0.00	0.00
Δω 2	0.0	0.02	0.02	4.06	4.02	3.79	4.06	4.05	3.81	0.00	0.01	0.00
Δω 3	2.95	3.12	2.98	17.93	17.65	17.90	20.71	20.88	20.99	3.17	3.37	3.22
$\Delta \omega_4$	3.43	3.36	3.40	1.33	1.32	1.29	4.69	4.63	4.65	3.14	3.25	3.30
Δω 5	0.20	0.17	0.16	0.00	0.00	0.00	0.17	0.17	0.16	5 <u>5</u> 01	0.24	0.23
Δω 6	0.00	0.00	0.00	12.69	12.59	13.00	12.69	12.59	13.00	0.00	0.00	0.00
$\Delta \omega_7$	0.30	0.30	0.29	9.27	9.23	9.02	9.56	9.53	9.31	0.40	0.38	0.36
									1919 19		9 C 19 7	
Δω 8	0.16	0.17	0.14	4.37	4.38	5.07	4.53	4.57	5.22	<u>.</u>	0.06	0.07
Δω 9	2.24	2.24	2.32	21.80	21.91	21.72	24.11	24.17	24.07	2.49	2.53	2.54

Centrifugal distortion constants for $CH_2^{35}Cl_2$ and $CD_2^{35}Cl_2$ are similarly compared in table 4.11, where it may be see that agreement between the ground state and GHFF and SQM predictions is very good. In addition to these, table 4.11 includes GHFF predictions for some ^{13}C and ^{37}Cl methylene chlorides. These were estimated in terms of the calculated isotopic <u>change</u> in each constant subtracted from the observed values for $CH_2^{35}Cl_2$ and $CD_2^{35}Cl_2$. It is considered that this will give much more reliable and accurate estimates than do absolute values, since the anharmonicity effects on the isotopic differences will be extremely small. The values quoted for $CHDCl_2$ in table 4.11 are all calculated ones, since no experimental results have been reported.

No Coriolis coupling constants have yet been determined experimentally for any isotope of methylene chloride. The effects of such an interaction may be visually observed, for example, in the changing subband Q branch degradation in the very intense v_9 CCl₂ stretching fundamental of CH₂Cl₂, due to Coriolis interaction with the adjacent very weak v_3 CCl₂ stretching fundamental (102). It is considered that the quality of the GHFF for methylene chloride is such that calculated Coriolis coupling constants should be reliable, and therefore of assistance towards the analyses of such interacting band systems. Collected in table 4.12 are the GHFF predicted ζ_{ij} constants for CH₂³⁵Cl₂, CD₂³⁵Cl₂ and CHD³⁵Cl₂, together with those predicted from the SQM force field, in brackets. Here, it may be seen that the agreement Table 4.11.

Ground state, GHFF and SQM centrifugal distortion constants for a number of isotopic species of methylene chloride, kHz.

Species		۵ _J	Δ _{jk}	$\Delta_{\rm K}$	δJ	δ _K	
¹² CH ₂ ³⁵ Cl ₂	OBS	1.392	-26.18	473.2	0.1770	5.36	
	GHFF	1.371	-26.19	467.2	0.1774	5.23	
	SQM	1.385	-25.92	465.7	0.1752	5.05	
¹² CD ₂ ³⁵ Cl ₂	OBS	1.298	-15.88	204.0	0.1901	4.08	
	GHFF	1.275	-15.76	201.8	0.1929	4.05	
	SQM	1.287	-15.77	201.2	0.1884	3.81	
¹² CHD ³⁵ Cl ₂	GHFF	1.3224	-19.987	297.25	0.1871	4.636 .	
	SQM	1.3358	-19.743	296.26	0.1839	4.439	
¹² CH ₂ ³⁵ Cl ³⁷ Cl ^a	GHFF	1.3255	-25.547	469.75	0.16493	5.137	
¹² CH ₂ ³⁷ Cl ₂ ^a	GHFF	1.2610	-24.923	466.35	0.15348	4.913	
¹³ CH ₂ ³⁵ Cl ₂ ^a	GHFF	1.3792	-25.034	447.26	0.18345	5.337	
¹² CD ₂ ³⁵ Cl ³⁷ Cl ^a	GHFF	1.2373	-15.526	202.66	0.17752	3.913	

^a Calculated values in terms of isotopic differences relative to experimental values.

Coriolis interaction constants for methylene chloride and its deuterated isotopomers (SQM values in brackets).

Table 4.12.

	^۷ 1	^v 2	[∨] з	v ₄	^V 5	^v 6	^۷ 7	^v 8	^V 9
	2998	1435	713	281	1153	3055	899	1269	760
v 1					^b 0.756 (0.818)	a0.144 (0.055)	0.913 (0.925)	C0.645 (0.565)	0.066 (0.054)
v 2					0.649 (0.567)	0.989 (0.997)	0.141 (0.073)	0.753	0.072 (0.024)
ν 3					0.023	0.034	0.348 (0.342)	0.016	0.764 (0.772)
ν 4					0.079 (0.099)	0.019	0.160 (0.147)	0.132	0.637 (0.634)
ν 5		12 _{CH2} 3	⁵ Cl ₂			^C 0.531 (0.520)	0.778 (0.785)	a0.010 (0.009)	0.029 (0.029)
ν 6								^b 0.839 (0.847)	0.094 (0.078)
v 7								0.456	0.417
	v ₁	^v 2	v ₃	v ₄	ν ₅	^v 6	۷ ₇	Vg	Vg
	2206	1061	688	279	825	2304	713	961	730
ν 1	2206	1061	688	279	825	2304 ^a 0.237 (0.149)	713 0.867 (0.888)	961	730 0.043 (0.066)
ν 1 ν 2	2206	1061	688	279	825 (0.719 (0.784) 0.681 (0.603)	2304 ^a 0.237 (0.149) 0.970 (0.989)	713 0.867 (0.888) 0.188 (0.131)	961 ^C 0.685 (0.606) 0.725 (0.785)	730 0.043 (0.066) 0.009 (0.091)
v v 2 v 3	2206	1061	688	279	825 b0.719 (0.784) 0.681 (0.603) 0.090 (0.059)	2304 ^a 0.237 (0.149) 0.970 (0.989) 0.041 (0.010)	713 0.867 (0.888) 0.188 (0.131) 0.412 (0.399)	961 0.685 (0.606) 0.725 (0.785) 0.065 (0.128)	730 0.043 (0.066) 0.009 (0.091) 0.712 (0.717)
v v v z v z v 4	2206	1061	688	279	825 b0.719 (0.784) 0.681 (0.603) 0.090 (0.059) 0.106 (0.135)	2304 ^a 0.237 (0.149) 0.970 (0.989) 0.041 (0.010) 0.028 (0.004)	713 0.867 (0.888) 0.188 (0.131) 0.412 (0.399) 0.207 (0.186)	961 0.685 0.606) 0.725 0.785) 0.065 (0.128) 0.033 (0.029)	730 0.043 (0.066) 0.009 (0.091) 0.712 (0.717) 0.700 (0.688)
v v v v v v v v	2206	1061	688 ⁵ cl ₂	279	825 b0.719 (0.784) 0.681 (0.603) 0.090 (0.059) 0.106 (0.135)	2304 ^a 0.237 (0.149) 0.970 (0.989) 0.041 (0.010) 0.028 (0.004) ^c 0.491 (0.481)	713 0.867 (0.888) 0.188 (0.131) 0.412 (0.399) 0.207 (0.186) 0.767 (0.774)	961 C0.685 (0.606) 0.725 (0.785) 0.065 (0.128) 0.033 (0.029) C0.008 (0.005)	730 0.043 (0.066) 0.009 (0.091) 0.712 (0.717) 0.700 (0.688) 0.047 (0.048)
v v v v v v v v	2206	1061	688 ⁵ c1 ₂	279	825 b0.719 (0.784) 0.681 (0.603) 0.090 (0.059) 0.106 (0.135)	2304 ^a 0.237 (0.149) 0.970 (0.989) 0.041 (0.010) 0.028 (0.004) ^c 0.491 (0.481)	713 0.867 (0.888) 0.188 (0.131) 0.412 (0.399) 0.207 (0.186) 0.767 (0.774)	961 ^C 0.685 (0.606) 0.725 (0.785) 0.065 (0.128) 0.033 (0.029) ^a 0.008 (0.005) ^b 0.863 (0.865)	730 0.043 (0.066) 0.009 (0.091) 0.712 (0.717) 0.700 (0.688) 0.047 (0.048) 0.050 (0.105)

	ν ₁	v 2	[∨] 3	∨ 4	v 5	v б	v 7	ب 8	۷ 9
	2251	1286	692	280	890	3025	782	1224	740
v 1		^a 0.431 (0.416)	0.233 (0.232)	0.012	^b 0.707 (0.749)	^a 0.202 (0.101)	0.777 (0.804)	^b 0.147 (0.101)	0.098 (0.166)
^v 2			0.113 (0.094)	0.028 (0.026)	0.459 (0.368)	0.877 (0.900)	0.160 (0.086)	0.396 (0.362)	0.169 (0.177)
[∨] з				0.055 (0.053)	0.186 (0.174)	0.125 (0.147)	0.373 (0.365)	0.047 (0.059)	0.070 (0.062)
^V 4					0.081	0.018	0.174 (0.157)	0.048 (0.059)	0.007 (0.002)
ν ₅	C0.624	0.165 (0.207)	0.050 (0.001)	0.057		^b 0.045 (0.053)	0.495 (0.509)	^a 0.008 (0.006)	0.020
ν ₆	박지 아이에서	¹² CD ₂ ³⁵	^{C1} 2		^C 0.057 (0.071)	a	0.346 (0.327)	^b 0.852 (0.878)	0.080 (0.073)
ν 7					0.688 (0.706)			0.214 (0.211)	0.329 (0.287)
ν 8	C0.247 (0.182)	0.752 (0.806)	0.066 (0.096)	0.105		^C 0.503 (0.454)	0.262 (0.244)	la	0.020
^V 9	0.081	0.042 (0.029)	0.733 (0.744)	0.667		0.048	0.082 (0.034)		

Table 4.12. (continued)

between the two is very good, and is a further indication of the quality of ab initio predictions.

4.6 JOINT EMPIRICAL/AB INITIO GHFF FOR METHYLENE CHLORIDE

Three force constants in the GHFF are rather poorly defined, F_{12} , F_{13} and F_{14} and the latter two are at variance to the ab initio predictions. Here, the predictions seem more reasonable. A positive value for a CH_2 str/ CH_2 def interaction would be anticipated, for the definition of coordinates used. Also, a <u>small</u> interaction would be anticipated between CH_2 and CCl_2 def coordinates. All other empirically determined force constants appear to be well defined by a number of independently measured data, and are therefore considered to be reliable.

Accordingly, force constant calculations were repeated, in a similar fashion to those for ketene, in which the F_{12} , F_{13} and F_{14} were constrained to their SQM predicted values. The effect of these constraints on other force constants is fairly small, causing small numerical adjustments most notably in F_{11} , F_{23} and F_{33} (of +0.12, -0.05, and -0.006 respectively). Comparable data reproduction to that in table 4.3 was obtained for most species. Significantly, however, reproduction of the observed v_1 frequency shifts is poor (e = 1.1cm⁻¹) and reflects the large difference between the GHFF and SQM values for F_{13} . As indicated previously,

the most recent IR study of methylene chloride (102) found no evidence of appreciable resonance displacements to v_1 (or any other vibration) in any of the large number of isotopic species examined. This perhaps indicates that the GHFF F_{12} , F_{13} and F_{14} constants are closer to their true values than the corresponding SQM predictions, despite the fact that the latter, especially F_{13} , would appear to be more acceptable, physically. Finally, it is interesting to note that a similar ab initio/experimental sign ambiguity to that for F_{13} , was found in the analogous CH_3 sym str/ CH_3 umbrella constant of methyl fluoride (107). For methyl fluoride, as was found here for methylene chloride, the sign ambiguity remains largely unresolved.

REFERENCES

- (1) E. B. Wilson, J. C. Decius and P.C. Cross, Molecular Vibrations, McGraw-Hill, New York (1955).
- H. C. Allen and P.C. Cross, Molecular Vib-Rotors,Wiley, N. Y. (1963).
- (3) G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 2 : Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand (1945).
- (4) H. W. Kroto, Molecular Rotation Spectra, Wiley(1975).
- (5) L. A. Woodward, Theory of Molecular Vibrations and Vibrational Spectroscopy, Clarendon Press, Oxford (1972).
- (6) P. Gans, Vibrating Molecules: An Introduction to the Interpretation of Infrared and Raman Spectra, Chapman and Hall, London (1971).
- (7) J. L. Duncan, Molecular Spectroscopy, <u>3</u>, 104
 (1975).
- (8) H. F. Schaefer III, ed, Methods of Electronic Structure Theory, Plenum (1977).
- (9) H. F. Schaefer III, ed, Applications of Electronic Structure Theory, Plenum (1977).
- (10) J. A. Pople, Ber. Bunsenges. Phys. Chem., <u>86</u>, 109 (1982).
- (11) P. Pulay, Molec. Phys., <u>17</u>, 197 (1969).
- (12) G. Fogarasi and P. Pulay, Ann. Rev. Phys. Chem., <u>35</u>, 191 (1984).

- (13) E. B. Wilson and J. B. Howard, J. Chem. Phys., <u>4</u>,
 260 (1936).
- (14) B. T. Darling and D. M. Dennison, Phys. Rev., <u>57</u>, 128 (1940).
- (15) J. K. G. Watson, Mol. Phys., <u>15</u>, 479 (1968).
- (16) H. Eyring, J. Walter and G. F. Kamball, Quantum Chemistry, Wiley (1958).
- (17) L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon (1956).
- (18) I. M. Mills, in Molecular Spctroscopy Modern Research, Vol. 1, Chap. 3, edited by K. N. Rao and C. W. Mathews, Academic Press (1972).
- (19) G. W. King, R. M. Hainer and P. C. Cross, J. Chem. Phys., <u>11</u>, 27 (1943).
- (20) S. C. Wang, Phys. Rev., <u>34</u>, 243 (1929).
- (21) D. Kivelson and E. B. Wilson, J. Chem. Phys., <u>20</u>, 1575 (1952).
- (22) J. K. G. Watson, J. Chem. Phys., <u>45</u>, 1360 (1966).
- (23) J. K. G. Watson, J. Chem. Phys., <u>48</u>, 181 (1968).
- (24) H. A. Jahn, Phys. Rev., <u>56</u>, 680 (1939).
- (25) Ch. Lambeau, A. Fayt, J. L. Duncan and T. Nakagawa, J. Mol. Spectrosc., <u>51</u>, 524 (1974).
- (26) C. Eckart, Phys. Rev., <u>47</u>, 552 (1935).
- (27) A. A. Chalmers and D.C. McKean, Spectrochim. Acta, <u>22</u>, 251 (1966).
- (28) D. C. McKean and J. L. Duncan, Spectrochim. Acta, 27A, 1879 (1971).
- (29) M. Born and R. Oppenheimer, Ann. Physik., <u>84</u>, 457 (1927).
- (30) C. C. J. Roothaan, Rev. Mod. Phys., <u>22</u>, 571 (1959).
- (31) J. C. Slater, Phys. Rev. <u>36</u>, 79 (1930).
- (32) S. F. Boys, Proc. Roy. Soc. (London), <u>A200</u>, 542 (1950).
- (33) W. J. Hehre, R. F. Stewart and J. A. Pople, J. Chem. Phys., <u>51</u>, 2657 (1969).
- (34) R. Ditchfield, W. J. Hehre and J. A. Pople,J. Chem. Phys., <u>54</u>, 724 (1971).
- (35) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., <u>56</u>, 2257 (1972).
- (36) P. Pulay, G. Fogarasi, F. Pang and J. E. Boggs,J. Am. Chem. Soc., <u>101</u>, 2550 (1979).
- (37) J. S. Binkley, J. A. Pople and W. J. Hehre, J. Am. Chem. Soc., <u>102</u>, 939 (1980).
- (38) W. J. Hehre and W. A. Lathan, J. Chem. Phys., <u>56</u>, 5255 (1972).
- (39) M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro and W. J. Hehre, J. Am. Chem. Soc., <u>104</u>, 2797 (1982).
- (40) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Garden, D. J. DeFrees and J. A. Pople, J. Chem. Phys., 77, 3654 (1982).
- (41) P. C. Hariharan and J. A. Pople, Theoret. Chim. Acta, <u>28</u>, 213 (1973).
- (42) P. C. Hariharan and J. A. Pople, Molec. Phys., <u>27</u>,
 209 (1974).
- (43) P. Pulay, chapter 4 of reference (9).

- (44) D. M. Bishop and M. Randic, J. Chem Phys., <u>44</u>, 2480 (1966).
- (45) P. Pulay, Molec. Phys., <u>17</u>, 197 (1969).
- (46) C. E. Blom, P. J. Slingerland and C. Altona, Molec. Phys., <u>31</u>, 1359 (1976).
- (47) H. Gershinowitz and E. B. Wilson, J. Chem Phys., <u>5</u>, 500 (1937).
- (48) B. Bak and F. A. Andersen, J. Chem. Phys., <u>22</u>, 1050 (1954).
- (49) W. A. Arendale and W. H. Fletcher, J. Chem Phys.,24, 581 (1956).
- (50) W. A. Arendale and W. H. Fletcher, J. Chem Phys., <u>26</u>, 793 (1957).
- (51) P. E. Butler, D. R. Eaton and H. W. Thompson, Spectrochim. Acta, <u>13</u>, 223 (1958)
- (52) C. B. Moore and G. C. Pimentel, J. Chem Phys., <u>38</u>, 2816 (1963).
- (53) A. P. Cox and A. S. Esbit, J. Chem Phys., <u>38</u>, 1636 (1963).
- (54) L. Nemes, J. Mol. Spectrosc., <u>72</u>, 102 (1978).
- (55) J. W. C. Johns, J. M. R. Stone and G. Winnewisser,J. Mol. Spectrosc., <u>42</u>, 523 (1972).
- (56) F. Winther, F. Hegelund and L. Nemes, J. Mol. Spectrosc., 117, 388 (1986).
- (57) S. R. Polo, Canad. J. Phys., <u>35</u>, 880 (1957).
- (58) W. L. Lafferty, A. G. Maki and T. D. Coyle, J. Mol. Spectrosc., <u>59</u>, 470 (1976).
- (59) P. D. Mallinson and L. Nemes, J. Mol. Spectrosc., 59, 470 (1976).

- (60) W. H. Fletcher and W. T. Thompson, J. Mol. Spectrosc., <u>25</u>, 240 (1968).
- (61) I. M. Mills, Spectrochim. Acta, <u>19</u>, 1585 (1963).
- (62) C. Pouchan, A. Dargelos and M. Chaillet, Spectrochim. Acta, <u>33A</u>, 253 (1977).
- (63) J. T. Gleghorn and F. W. McConkey, J. Mol. Struct., <u>29</u>, 133 (1975).
- (64) P. Pulay, Theor. Chim. Acta, <u>50</u>, 299 (1979).
- (65) MINIT routine, devised by J. S. Crighton and S. Bell, Dundee University (1983).
- (66) H. B. Schlegel, S. Wolfe and F. Bernardi, J. Chem Phys., <u>63</u>, 3622 (1975).
- (67) P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs and
 A. Vargha, J. Am Chem. Soc., <u>105</u>, 7037 (1983).
- (68) G. Fogarasi and P. Pulay, Acta Chim. Acad. Sci. Hung., <u>108</u>, 55 (1981).
- (69) J. L. Duncan and E. Hamilton, J. Mol. Struct, <u>76</u>,
 65 (1981).
- (70) I. G. Csizmadia, M Harrison, J. W. Moskowitz andB. T. Sutcliffe, Theor. Chim. Acta, <u>6</u>, 191 (1966).
- (71) B. Roos and P. Siegbahn, Theor. Chim. Acta, <u>17</u>, 209 (1970).
- (72) T. H. Dunning, Jr and P. J. Hay, in reference 8.
- (73) S. Bell, J. Chem Phys., <u>68</u>, 3014 (1978).
- (74) C. W. Bock, P. George, G. J. Mains and M. Trachtman, J. Mol. Struct, 49, 215 (1978).
- (75) L. Schaefer, J. Mol. Struct., <u>100</u>, 51 (1983).
- (76) C. E. Dykstra and H. F. Schaefer III, J. Am Chem. Soc., <u>98</u>, 2689 (1976).

- (77) C. E. Dykstra, J. Chem Phys., <u>68</u>, 4244, (1978).
- (78) C. E. Blom and C. Altona, Mol. Phys., <u>31</u>, 1377 (1976).
- (79) C. E. Blom, L. P. Otto and C. Altona, Mol. Phys., <u>32</u>, 1137 (1976).
- (80) C. E. Blom and C. Altona, Mol. Phys., <u>33</u>, 875 (1977).
- (81) C. E. Blom and C. Altona, Mol. Phys., <u>34</u>, 177 (1977).
- (82) C. E. Blom, C Altona and A. Oskam, Mol. Phys., <u>34</u>, 557 (1976).
- (83) C. E. Blom and A. Muller, J. Mol. Spectrosc., <u>70</u>, 449 (1978).
- (84) P. Pulay, TEXAS Manual.
- (85) H. B. Schlegel, S. Wolfe and F. Bernardi, J. Chem. Phys., 67, 4181 (1977).
- (86) M. Vucelic, Y. Ohrn and J. R. Sabin, J. Chem Phys., <u>59</u>, 3003 (1973).
- (87) J. Pacansky, U Wahlgren and P. S. Bagus, Theor. Chim. Acta, 41, 301 (1976).
- (88) T. K. Ha, C. E. Blom and H. H. Gunthard, Chem. Phys. Lett., <u>70</u>, 473, (1980).
- (89) J. L. Duncan, Mol. Phys., <u>28</u>, 1177 (1974).
- (90) W. Meyer and P. Pulay, Theor. Chim. Acta, <u>32</u>, 253 (1974).
- (91) L. Nemes and M. Winnewisser, Z. Naturforsch., <u>31A</u>,
 272 (1976).
- (92) J. L. Duncan, A. M. Ferguson, J. Harper and K. Tonge, J. Mol. Spectrosc., to appear, (1987).

- (93) J. L. Duncan and D. C. McKean, J. Mol. Spectrosc., 107, 301 (1984)
- (94) J. L. Duncan and B. Munro, J. Mol. Struct., to appear, (1987).
- (95) T. Shimanouchi and I. Suzuki, J. Mol. Spectrosc., <u>6</u>, 277 (1961).
- (96) K. Ramaswamy and V. Ranganathan, Ind. J. Pure Appl. Phys., <u>6</u>, 651 (1968).
- (97) R. S. Dennen, J. Mol. Spectrosc., <u>29</u>, 163 (1969).
- (98) K. Ohno, M. Hayashi and H. Murata, J. Sci. Hiroshima Univ. Ser. A., 37, 325 (1973).
- (99) T. A. Ford, M. R. Aroca and E> A. Robinson, S. Afr. J. Chem., <u>30</u>, 95 (1977).
- (100) R. Escribano, J. M. Orza, S. Montero and C. Domingo, Mol. Phys., <u>37</u>, 361 (1979).
- (101) J. W. Davis, A. G. Robiette and M. C. L. Gerry, J. Mol. Spectrosc., <u>85</u>, 399 (1981).
- (102) J. L. Duncan, G. D. Nivellini and F. Tullini, J. Mol. Spectrosc., <u>118</u>, 145 (1986).
- (103) I. M. Mills, private communication on IR spectrum of CHDCl₂.
- (104) W. J. Pietro. M. M. Francl, W. J. Hehre, D. J. DeFrees, J. A. Pople and J. S. Binkley, J. Am. Chem. Soc., 104, 5039 (1982).
- (105) E. Magnusson and H. F. Schaefer III, J. Chem. Phys., 83, 5721 (1985).
- (106) J. L. Duncan, J. Mol. Struct., to appear, (1987).
- (107) C. E. Blom and P. Pulay, Mol. Phys., <u>39</u>, 1537 (1980).

Appendix A

Assignments to the ${\rm A}^{}_1$ fundamental bands of ketene

Ka	0 +	1 -	1+	2 [±]	3	4	5	6	7
J									
0 12 23 4 5 6 7 8 9 10 11 23 11 15 17 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 34 5 5 6 7 8 9 10 11 23 22 22 22 22 22 22 22 3 31 23 33 33 3 3 3	3071.054 71.71 72.402 73.049 73.71 74.370 75.04 75.71 76.41 77.08 77.74 78.40 79.06 79.73 80.39 81.05 81.05 81.71 82.363 83.029 84.970 85.627 86.291 86.941 87.594 88.249 88.898 89.533 90.178	3071.575 72.229 72.889 73.556 74.221 74.883 75.545 76.211 76.85 77.519 78.188 78.829 79.491 80.144 80.802 81.447 82.096 82.751 83.407 84.052 84.700 85.345 85.991 86.637 87.284 87.928 88.572 89.857 90.492	3071.575 72.285 72.955 73.632 74.300 74.968 75.643 76.325 76.992 77.659 78.340 79.019 79.685 80.360 81.697 82.363 83.029 83.697 84.365 85.034 85.699 86.355 87.02 87.66 88.339 88.991 89.942 90.292 90.941	3071.81 72.49 73.13 73.80 74.47 75.14 75.806 76.472 77.14 79.14 79.14 79.80 80.46 81.121 81.78 82.44 83.10 83.76 84.41 85.07 85.73 86.38 87.048 87.688 88.339 88.991 89.642 90.292 94.941	3071.772 72.444 73.107 73.784 74.439 75.100 75.766 76.433 77.099 77.761 78.426 79.096 80.416 81.082 81.744 82.412 83.07 83.73 84.39 85.034 85.699 86.355 87.01 87.67 88.339 88.991 89.642 90.292 90.941	3071.27 71.967 72.617 73.284 73.955 74.622 75.283 75.946 76.607 77.268 77.268 77.9903 80.560 81.220 82.528 83.20 83.86 84.51 85.145 85.82 86.47 87.770 87.770 88.417 89.072 89.726 90.36	3070.638 71.301 71.967 72.635 73.30 73.955 74.622 75.283 75.946 76.607 77.268 77.929 78.588 79.245 79.903 80.560 81.220 81.863 82.528 83.166 83.820 84.477 85.12 85.771 86.416 87.048 87.72 88.339 88.991 89.642	3069.670 70.319 70.984 71.648 72.285 72.955 73.632 74.300 74.968 75.62 76.27 76.93	3068.534 69.200 69.865 70.535 71.197 71.862 72.50 73.164 74.48 75.14 75.806 76.47 77.12 77.78 78.426 79.096 79.75 80.416 81.04
36									

Assignments to R branch rovibration transitions of $\boldsymbol{\nu}_1^{}$.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ka	0 + 1	1 1	I ⁺ 2	2 [±]	3	4	5	6	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J 0 1 2 3 4	3069.03 68.350 67.68	3068.896	3068.896 68.183 67.501	3067.79 67.09				2	
33 47.193 46.493 45.31 43.976 34 45.809 44.619 43.272 35 43.908 42.569	5 6 6 7 8 9 1112 114 116 117 8 9 0 11234 117 1190 12222 22222 2290 1233 233 233 233 233 233 233 233 233 23	66.98 66.98 65.61 64.950 63.606 62.926 62.244 61.561 60.876 60.194 59.510 58.825 58.139 57.452 56.779 54.01 53.34 52.65 51.96 51.28 50.59	66.885 66.214 65.536 64.872 64.189 63.513 62.161 61.494 60.795 60.129 59.450 58.700 58.700 58.091 57.416 56.738 56.042 55.368 54.684 53.992 53.310 52.622 51.248 50.560 49.870 49.175 48.485	66.821 66.142 65.448 64.772 64.087 63.399 62.714 62.024 61.339 60.653 59.963 59.272 58.582 57.804 55.816 55.116 54.423 53.730 53.040 52.352 51.638 50.96 50.243 49.551 48.851 48.155	66.419 65.717 65.038 64.363 63.685 63.007 62.326 61.645 60.963 60.278 59.595 58.910 58.225 57.5854 56.166 55.476 54.789 54.103 52.723 52.034 51.341 50.652 49.961 49.268 48.577 47.882 47.193	3065.717 65.038 64.363 63.685 62.98 62.30 61.62 60.94 60.25 59.57 58.89 58.225 57.540 56.854 56.166 55.476 54.789 54.103 53.416 52.723 52.034 51.341 50.652 49.961 49.268 48.577 47.892 47.892 45.809	3064.537 63.863 63.21 62.501 61.820 61.144 60.468 59.775 59.09 58.408 57.731 57.048 56.363 55.679 54.993 54.307 53.622 52.239 51.552 50.858 50.171 49.47 48.782 48.084 47.390 46.692 45.995	3062.563 61.885 61.212 60.532 59.852 59.161 58.483 57.809 57.115 56.435 55.749 55.059 54.372 53.686 52.988 52.988 52.309 51.62 50.243 49.551 48.851 48.155 47.456 46.760 46.760 45.351 43.976 43.272 42.569	3059.58 58.88 58.20 57.52 56.81 56.13 55.476 54.789 54.103 53.416 52.723 52.034	3057.115 56.435 55.749 55.059 54.372 53.71 53.00 52.309 50.95 50.26 49.58 48.216 47.528 46.831 46.154 45.464 44.775 44.072

Assignments to P branch rovibration transitions of v_1 .

Ka	0 +	1 -	1 +	2 [±]	3	4	5	
J 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0+	1 ⁻ 2153.796 54.454 55.12 55.763 56.408 57.050 57.71 58.377 59.020 59.648 60.277 60.901 61.48 62.09 62.69 63.302 63.900	1 ⁺ 2153.82 54.50 55.15 55.81 56.463 57.103 57.741 58.377 59.020 59.648 60.207 60.901 61.522 62.11 62.715 63.302 63.900	2 [±] 2154.194 54.829 55.493 56.138 56.786 57.425 58.689 59.316 59.941 60.565 61.164 61.787 62.405 63.008 63.600	3 2154.39 55.031 55.682 56.338 56.980 57.624 58.244 58.244 58.898 59.538 60.164 60.780 61.400 62.010 62.621 63.235	4 2154.454 55.120 55.763 56.408 57.050 57.67 58.313 58.952 59.58 60.19 60.81 61.400 62.010 62.621	5 2155.87 56.527 57.80 58.425 59.063 59.063 59.0697 60.29 60.901 61.522 62.153 62.751 63.361	
18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36		64.493 65.076 65.632 66.210 66.787 67.352 67.925 68.483 69.038 69.608 70.164 70.709 71.247	64.493 65.076 65.65 66.210 66.787 67.352 67.910 68.483 69.038 69.567 70.105 70.664 71.166	64.196 64.801 65.362 65.942 66.512 67.083 67.677 68.249 68.82 69.405 69.946 70.547 71.166 71.789	63.831 64.431 65.024 65.62 66.210 66.787 67.352 67.925 68.483 69.038 69.611 70.164 70.709	63.235 63.831 64.431 65.024 65.62	63.962 64.563 65.14 65.729 66.318 66.893 67.451 68.032 68.597 69.156 69.721 70.268 70.827 71.36 71.909 72.46 72.990	

Assignments to R branch rovibration transitions of $\boldsymbol{\nu}_2.$

Ka	0 +	1 -	1 +	2 [±]	3	4	5	
J								
0 1								
2		2151.172	2151.111					
3		50.46	50.419	2110 167				
4		49.109	49.733	48.770	2148.324			
6		48.427	48.324	48.076	47.624	2147.047	2147.810	
7		47.743	47.624	47.378	46.918	46.363	47.121	
8		47.047	46.90	46.674	46.215	45.66	46.41/	
9 10		46.363	46.19	45.254	45.518	44.234	45.008	
11		45.008	44.735	44.537	44.111	43.52	44.292	
12		44.292	44.005	43.821	43.398	42.810	43.380	
13		43.580	43.265	43.100	42.683	42.116	42.858	
14		42.000	42.521	42.501	41.240	40.661	41.395	
16		41.395	41.022	40.894	40.512	39.928	40.661	
17		40.661	40.265	40.152	39.381	39.188	39.928	
18		39.928	39.499	39.408	39.045	38.44/	39.188	
20		38.447	37.97	37.903	37.555	36.956	37.704	
21		37.704	37.181	37.181	36.811	36.22	36.956	
22		36.956	36.416	36.416	36.053	35.47	36.198	
23		36.198	35.631	35.631	35.297	34.722	35.444	
24		34.670	34.043	34.108	33.769	55.905	33.898	
26		33.898	33.244	33.334	32.991		33.136	
27		33.136	32.456	32.565	32.221		32.355	
28		32.355	31.653	31.787	31.438		31.5/5	
30		30.824	30.024	30.223	29.865		30.017	
31		30.017	29.208	29.486	29.068		29.208	
32		29.24	28.379	28.744	28.274		28.426	
33				28.040			26.833	
35							26.034	
36							25.223	

Assignments to P branch rovibration transitions of $v_2^{}$.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									5	
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 3 \\ 3 \\ 4 \\ 3 \\ 4 \\ 9 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	K a	0+	1 -	1 +	2 [±]	3	4	5	6	7
	J 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 4 35 36 35 36		1388.060 88.712 89.374 90.042 90.708 91.372 92.038 94.04 94.70 95.360 96.025 96.683 97.345 98.006 98.659 99.314 99.968 1400.614 01.285 01.934 02.584 03.251 03.251 03.917 04.572 05.216 05.867 06.512 07.179	1388.060 88.75 89.436 90.128 90.805 91.483 92.158 92.835 93.516 94.196 94.872 95.57 96.253 96.253 96.938 97.618 98.301 98.985 99.669 1400.353 01.033 01.710 02.393 03.089 03.759 04.448 05.138 05.138 07.855	1389.028 89.705 90.381 91.056 91.722 92.405 93.086 93.766 94.43 95.787 96.453 97.121 97.800 98.476 99.148 99.810 1400.488 01.156 01.829 02.496 03.161 03.837 04.509	1390.128 90.805 91.483 92.15 92.83 93.50 94.18 94.85 95.52 96.206 96.876 97.554 98.229 98.903 99.581 1400.249 00.929 01.614 02.278 02.957 03.634 04.309 04.989 05.663 06.332 07.004 07.683 08.359 09.037 09.709	1392.45 93.13 93.80 94.48 95.15 95.82 96.501 97.853 98.531 99.203 99.883 1400.549 01.223 01.914 02.584 03.278 03.95 04.63 05.289 05.289 05.289 05.289 05.289 05.289 05.289 05.289 05.289 05.289 05.289 05.289 05.289 05.289 05.289 05.289 05.289 05.273 06.662 07.338 08.033 08.711 09.37 10.07	1390.559 91.245 91.927 92.611 93.296 95.360 96.751 97.442 98.134 98.836 99.528 1400.249 00.929 01.614 03.036 03.74 04.448 05.16 05.867 06.563 07.27 08.00 08.711 09.411 10.112 10.82		1400.773 01.446 02.111 02.773 03.444 04.120 04.782 05.446 06.113 06.774 07.443 08.118 08.783 09.411 10.112 10.785 11.434 12.103 12.778

Assignments to R branch rovibration transitions of $\boldsymbol{\nu}_{3}.$

$ \begin{array}{c} J \\ J \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4.72 \\ 8.4.72 \\ 8.4.72 \\ 8.4.72 \\ 8.4.66 \\ 4 \\ 4 \\ 8.4.04 \\ 8.3.991 \\ 1.384.735 \\ 5 \\ 8.3.36 \\ 8.3.305 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.30 \\ 8.3.305 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 8.3.30 \\ 7.3.81 \\ 7.3.34 \\ 7.3.34 \\ 7.6.32 \\ 7.5.315 \\ 7.5.315 \\ 7.5.315 \\ 7.5.315 \\ 7.5.315 \\ 7.5.315 \\ 7.5.315 \\ 7.4.92 \\ 7.3.28 \\ 7.4.573 \\ 8.3.250 \\ 1.2 \\ 7.2.293 \\ 7.3.18 \\ 7.3.293 \\ 7.3.18 \\ 7.3.293 \\ 7.3.18 \\ 7.3.293 \\ 7.3.18 \\ 7.3.293 \\ 7.3.18 \\ 7.3.293 \\ 7.3.18 \\ 7.3.293 \\ 7.3.28 \\ 7.4.62 \\ 7.1.92 \\ 7.1.92 \\ 7.1.92 \\ 7.1.92 \\ 7.1.92 \\ 7.1.92 \\ 7.1.92 \\ 7.1.94 \\ 7.1.94 \\ 7.1.95 \\ 7.2.20 \\ 7.3.28 \\ 7.4.92 \\ 7.3.28 \\ 7.4.92 \\ 7.3.28 \\ 7.4.62 \\ 7.1.92 \\$	Ka	0+	1 -	1 +	2 [±]	3	4	5	6	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J		1.						D	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		1295 262	1385 362						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2		91 72	84 66						
3 03.01 03.01 03.01 03.01 03.01 5 83.36 83.30 83.390 1382.481 6 82.03 81.949 82.30 82.715 81.805 8 81.36 81.271 81.605 82.043 1382.433 81.144 1387.993 9 80.699 80.595 80.937 81.370 81.681 80.480 87.326 10 80.029 79.916 80.270 80.699 81.002 79.818 86.645 11 79.353 79.238 79.61 80.029 80.332 79.16 85.974 12 78.679 78.565 78.926 79.353 79.286 84.613 14 77.334 77.182 77.574 78.002 73.97 78.986 84.561 15 76.62 76.17 76.900 77.334 77.183 83.256 16 75.987 75.861 76.222 76.298 75.240 81.888	1		84 04	83 991	1384 31	1384 735				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5		83 36	83 305	83 64	84 061				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6		82 70	82 629	82 97	83 390		1382,481		
8 81.36 81.271 81.605 82.043 1382.343 81.44 1387.993 9 80.699 80.595 80.937 81.370 81.681 80.480 87.326 10 80.029 79.916 80.270 80.699 81.002 79.818 86.645 11 70.353 79.238 79.61 80.029 80.332 79.16 85.974 12 78.679 78.565 78.926 79.353 79.656 85.295 13 78.008 77.872 78.249 78.679 78.986 84.613 14 77.334 77.182 77.574 78.008 78.310 77.183 83.250 16 75.987 75.861 76.222 76.662 75.88 82.568 17 73.15 75.169 75.987 74.533 81.220 13.815 74.98 74.643 74.962 73.93 80.543 19 73.968 73.815 74.198 74.643 74.962 73.93 80.543 20 73.293 73.187 73.560 73.293	7		82 03	81 949	82 30	82 715		81.805		
9 80.699 80.595 80.937 81.370 81.681 80.480 87.326 10 80.029 79.916 80.270 80.699 81.002 79.818 86.645 11 79.353 79.238 79.61 80.029 80.332 79.16 85.974 12 78.679 78.565 78.926 79.353 79.656 85.295 13 78.008 77.872 78.249 78.679 78.986 84.613 15 76.662 76.517 76.900 77.334 77.183 83.250 16 75.987 75.861 76.222 76.662 75.88 82.568 17 75.315 75.169 75.957 75.987 73.93 80.543 19 73.968 73.815 74.198 74.643 74.962 73.93 80.543 20 73.928 73.138 73.946 74.297 7.328 79.180 21 72.624 72.462 72.860 73.293	8		81 36	81.271	81.605	82.043	1382.343	81,144		1387.993
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9		80.699	80.595	80,937	81.370	81,681	80.480		87.326
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10		80.029	79,916	80.270	80.699	81.002	79.818		86.645
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11		79.353	79.238	79.61	80.029	80.332	79.16		85.974
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12		78.679	78.565	78.926	79.353	79.656			85.295
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13		78.008	77.872	78.249	78.679	78.986			84.613
15 76.662 76.517 76.900 77.334 77.643 83.25016 75.987 75.661 76.222 76.662 76.966 75.88 82.568 17 75.315 75.169 75.550 75.987 76.298 75.240 81.888 18 74.643 74.491 74.872 75.315 75.630 74.573 81.220 19 73.968 73.815 74.198 74.643 74.962 73.93 80.543 20 73.293 73.138 73.530 73.968 74.297 73.28 79.864 21 72.624 72.462 72.860 73.293 73.628 72.65 79.180 22 71.92 71.788 72.189 72.624 72.286 71.334 77.838 24 70.57 70.437 70.846 71.277 71.617 77.15 25 69.89 69.764 70.175 70.057 70.054 76.48 26 69.230 69.102 69.508 69.957 70.291 69.409 75.81 27 68.549 68.419 68.835 69.272 69.615 68.779 75.81 28 67.869 67.739 68.606 68.950 68.145 75.81 29 67.162 65.055 65.916 67.603 64.961 44.33 31 65.835 65.720 66.5916 66.296 65.603 32 65.162 65.055 65.916 66.296 <t< td=""><td>14</td><td></td><td>77.334</td><td>77.182</td><td>77.574</td><td>78.008</td><td>78.310</td><td>77.183</td><td></td><td>83.931</td></t<>	14		77.334	77.182	77.574	78.008	78.310	77.183		83.931
1675.98775.86176.22276.66276.96675.8882.5681775.31575.16975.55075.98776.29875.24081.8881874.64374.49174.87275.31575.63074.57381.2201973.96873.81574.19874.64374.92273.9380.5432073.29373.13873.53073.96874.29773.2879.8642172.62472.46272.86073.29373.62872.6579.1802271.9271.78872.18972.62472.96271.9878.5102371.2671.11571.51871.96172.28671.33477.8382470.5770.43770.84671.27771.61777.152569.8969.76470.17570.60770.95070.05476.482669.23069.10269.50869.9570.29169.40975.812768.54968.41968.83569.27269.61568.7792867.86967.73968.60668.95068.14574.952967.19667.07067.26167.61866.85574.953066.51766.39367.26167.61866.85565.91665.6033165.83565.72066.59166.626665.60364.9613465.16265.05565.91666.29665.60363.04435<	15		76.662	76.517	76.900	77.334	77.643			83.250
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16		75.987	75.861	76.222	76.662	76.966	75.88		82.568
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17		75.315	75.169	75.550	75.987	76.298	75.240		81.888
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18		74.643	74.491	74.872	75.315	75.630	74.573		81.220
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19		73.968	73.815	74.198	74.643	74.962	73.93		80.543
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20		73.293	73.138	73.530	73.968	74.297	73.28		79.864
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21		72.624	72.462	72.860	73.293	73.628	72.65		79.100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22		71.92	/1./88	72.189	72.624	72.962	71.98		70.510
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23		71.20	71.115	70.946	71.901	72.200	/1.334		77.15
26 69.230 69.102 69.508 69.95 70.291 69.409 75.81 27 68.549 68.419 68.835 69.272 69.615 68.779 28 67.869 67.739 68.606 68.950 68.145 29 67.196 67.070 67.933 68.282 67.495 30 66.517 66.393 67.261 67.618 66.855 31 65.835 65.720 66.591 66.960 66.220 32 65.162 65.055 65.916 66.296 65.603 33 65.249 65.603 64.961 64.33 34 64.961 64.33 63.698 36 63.044 63.044 63.044	25		69.89	69 761	70.040	70 607	70 950	70 054		76.48
27 68.549 68.419 68.835 69.272 69.615 68.779 28 67.869 67.739 68.606 68.950 68.145 29 67.196 67.070 67.933 68.282 67.495 30 66.517 66.393 67.261 67.618 66.855 31 65.835 65.720 66.591 66.960 66.220 32 65.162 65.055 65.916 66.296 65.603 33 65.249 65.603 64.961 64.33 35 63.698 63.044 63.698	25		69.09	69 102	69 508	69 95	70.930	69 409		75.81
28 67.869 67.739 68.606 68.950 68.145 29 67.196 67.070 67.933 68.282 67.495 30 66.517 66.393 67.261 67.618 66.855 31 65.835 65.720 66.591 66.960 66.220 32 65.162 65.055 65.916 66.296 65.603 33 65.249 65.603 64.961 64.33 35 63.698 63.044 63.044	27		68 549	68 419	68 835	69.272	69.615	68.779		, 5.0.
29 67.196 67.070 67.933 68.282 67.495 30 66.517 66.393 67.261 67.618 66.855 31 65.835 65.720 66.591 66.960 66.220 32 65.162 65.055 65.916 66.296 65.603 34 64.961 64.33 63.698 36 64.961 63.044	28		67.869	67.739	00.055	68.606	68,950	68.145		
30 66.517 66.393 67.261 67.618 66.855 31 65.835 65.720 66.591 66.960 66.220 32 65.162 65.055 65.916 66.296 65.603 33 65.249 65.603 64.961 64.33 35 66 63.698 63.044	29		67.196	67.070		67.933	68.282	67.495		
31 65.835 65.720 66.591 66.960 66.220 32 65.162 65.055 65.916 66.296 65.603 33 65.249 65.603 64.961 64.33 34 64.961 64.33 63.698 36 65.044 63.044	30		66.517	66.393		67.261	67.618	66.855		
32 65.162 65.055 65.916 66.296 65.603 33 65.249 65.603 64.961 34 64.961 64.33 35 63.698 63.044	31		65.835	65.720		66.591	66.960	66.220		
33 65.249 65.603 64.961 34 64.961 64.33 35 63.698 36 63.044	32		65.162	65.055		65.916	66.296	65.603		
34 64.961 64.33 35 63.698 36 63.044	33					65.249	65.603	64.961		
35 36 63.044	34						64.961	64.33		
36	35							63.698		
	36							63.044		

Assignments to P branch rovibration transitions of $\boldsymbol{\nu}_3.$

Ka	0+	1 -	1+	2 [±]	3	4	5	
J 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 20 31 32 33 33 35 36 36 36 36 36 37 37 37 37 37 37 37 37 37 37		1117.164 17.841 18.504 19.177 19.859 20.54 21.206 23.290 23.974 24.659 25.338 26.033 26.74 27.442 28.131 28.43 29.546 30.245 30.945 31.640 32.37 33.083 33.794 34.503 35.232 35.935 36.664 37.384	$1117.164 \\ 17.841 \\ 18.504 \\ 19.177 \\ 19.859 \\ 20.568 \\ 21.252 \\ 22.609 \\ 23.290 \\ 23.290 \\ 23.290 \\ 23.974 \\ 24.659 \\ 25.338 \\ 26.033 \\ 26.716 \\ 27.382 \\ 28.064 \\ 28.741 \\ 29.421 \\ 30.112 \\ 30.791 \\ 31.472 \\ 32.149 \\ 32.830 \\ 33.507 \\ 34.183 \\ 34.858 \\ 35.553 \\ 36.240 \\ 36.911 \\ \end{array}$	1120.023 20.698 21.381 22.055 22.731 23.408 24.091 24.771 25.450 26.137 26.820 27.505 28.188 29.546 30.245 31.640 32.306 32.989 33.692 34.396 35.09 35.79 36.487 37.171 37.88587 39.280 39.971	$\begin{array}{c} 1123.166\\ 23.846\\ 24.522\\ 25.200\\ 25.877\\ 26.554\\ 27.238\\ 27.922\\ 28.606\\ 29.291\\ 29.976\\ 30.661\\ 31.346\\ 32.031\\ 32.716\\ 33.388\\ 34.091\\ 34.771\\ 35.461\\ 36.162\\ 36.845\\ 37.592\\ 38.214\\ 38.915\\ 39.603\\ 40.303\\ 41.696\\ 42.377\\ 43.066\\ \end{array}$	1129.54630.2230.8931.5932.2732.9433.6234.31934.99635.67437.75637.75638.43639.10639.81240.50741.19341.87342.57043.25643.25743.25643.257643.25643.25643.257643.25643.25643.25643.25643.25643.25643.25643.25643.25643.25643.25643.25643.25643.25643.25643.25643.25643.25643.25643.26643.27643.25643.26645.34446.02646.749	1130.945 31.61 32.285 32.95 34.319 34.996 35.674 36.357 37.06 37.73 38.41 39.106 39.79 40.458 41.16 41.84 42.519 43.216 43.887 44.58 45.270 45.970 46.662 47.334 48.022 48.221 49.411 50.106 50.803	

Assignments to R branch rovibration transitions of $\boldsymbol{\nu}_4^{}.$

Ka	0 +	1 -	1 +	2 [±]	3	4	5	
J 0123456789101123456789101234567890123456789012334567890123456789012333333333333333333		1114.484 13.82 13.162 12.495 11.835 11.175 10.519 09.870 09.211 08.570 07.929 07.282 06.634 05.344 04.710 04.067 03.430 02.811 02.172 01.553 00.912 00.290 1099.679 99.054 98.443 97.827 97.195 96.59 95.989 95.37	$1114.484 \\ 13.764 \\ 13.096 \\ 12.38 \\ 11.69 \\ 11.02 \\ 10.38 \\ 09.69 \\ 09.002 \\ 08.329 \\ 07.661 \\ 06.97 \\ 06.298 \\ 05.626 \\ 04.945 \\ 04.258 \\ 03.579 \\ 02.945 \\ 02.224 \\ 01.553 \\ 00.186 \\ 1099.520 \\ 98.827 \\ 98.827 \\ 98.827 \\ 98.827 \\ 98.827 \\ 98.827 \\ 98.827 \\ 98.815 \\ 97.475 \\ 96.815 \\ 97.475 \\ 96.815 \\ 96.143 \\ 95.467 \\ 94.780 \\ 94.117 \\ 04.$	1115.994 15.309 14.631 13.967 13.302 12.626 11.948 11.270 10.608 09.943 07.943 07.282 06.634 05.978 05.344 04.653 04.653 04.02 03.363 02.704 02.049 01.389 00.7465 98.827 98.156 97.495 96.86 96.222	1117.779 17.103 16.432 15.756 15.087 14.427 13.764 13.764 12.421 11.753 11.093 09.769 09.108 08.448 07.792 07.123 06.461 05.805 05.145 04.489 03.178 02.525 01.867 01.208 00.554 1099.904 99.249 98.597 97.942	1116.757 16.077 15.400 14.748 14.080 13.407 12.739 12.09 11.437 10.772 10.108 09.445 08.784 08.121 07.466 06.155 05.520 04.854 04.191 03.523 02.224 01.553 00.912 00.290	1122.185 21.509 20.839 20.160 19.490 18.83 18.169 17.509 16.841 16.175 15.509 14.847 14.193 13.54 12.872 12.210 11.550 10.889 0.228 09.566 08.908 08.261 07.600 06.96 06.298 05.626 04.98 03.03	

Assignments to P branch rovibration transitions of $\boldsymbol{v}_4^{}.$