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Abstract
With the gradual transformation of energy industries around the world, the trend of industrial reform led by clean energy 
has become increasingly apparent. As a critical link in the new energy industry chain, lithium-ion (Li-ion) battery energy 
storage system plays an irreplaceable role. Accurate estimation of Li-ion battery states, especially state of charge (SOC) 
and state of health (SOH), is the core to realize the safe and efficient utilization of energy storage systems. This paper 
presents a systematic and comprehensive evaluation and summary of the most advanced Li-ion battery state estimation 
methods proposed in the past 3 years, focusing on analyzing data-driven state estimation algorithms. At the same time, the 
latest Li-ion battery data sets and data selection methods are analyzed, and future research trends and possible challenges 
are proposed. This review will provide a valuable reference for future academic research in Li-ion battery state 
estimation.

Keywords:- Li-ion battery state estimation; Equivalent circuit model; Parameter identification; Kalman filtering; Deep 
learning; Based on data-driven algorithms

Introduction

At present, the climate issue has become a hot topic of global concern, and the development of clean energy and the reduction 
of carbon emissions are essential ways to address global warming and the frequent occurrence of extreme weather 
phenomena. Countries are vigorously building wind power, hydropower, nuclear power, and other new green power 
generation facilities and fully implementing electric vehicles instead of traditional fuel vehicles, which are committed 
to solving the existing environmental, climate, and ecological problems. Among them, a Li-ion battery energy 
storage system, as a transfer station of a clean energy grid, can play an essential role in smoothing the grid load, 
mitigating peak and trough fluctuations, and stabilizing the grid frequency and voltage. As a power source for new clean 
energy devices, it has the advantages of safety and reliability, high energy density, and long service life.

It has been a common concern of scholars to develop a set of well-functioning battery management systems (BMS) to 
improve Li-ion batteries’ safety and energy utilization and prolong their service life. However, it takes work to 
estimate their state accurately due to Li-ion batteries’ complex physical and chemical reaction characteristics. Currently, 
the main state estimation parameters realized by BMS include state of charge (SOC) [1], state of health (SOH) [2], state 
of energy (SOE) [3], state of power (SOP) [4], state of tem-perature (SOT) [5], and state of safety (SOS) [6]. In general, 
improving SOC and SOH estimation accuracy is the basis for realizing the reliability and safety improvement of the 
BMS system. The SOC estimation of Li-ion batteries is mainly to predict the remaining battery power to avoid the unsafe 
use of batteries, which may lead to the rapid reduction of the service life or even safety accidents, while the SOH 
estimation is to accurately predict the remaining service life of the batteries, such as the remaining charging and 
discharging cycles, to determine whether the batteries need to be replaced or not and to enhance the accuracy of the 
load balancing in the battery balancing system. Meanwhile, in the joint estimation of SOC and SOH, the 
improvement of SOH estimation accuracy also helps to improve the SOC estimation accuracy. 
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From the perspective of real-time algorithms, it is mainly divided into the online state estimation method [7] and the 
offline state estimation method [8]. The online state estimation method is mainly through the pre-established battery 
model, through the real-time collection of relevant battery operating data, input to the model, and output to obtain the 
current state of the Li-ion battery estimated value. Its advantage is high flexibility, can be adjusted in real-time according to 
environmental changes, and is more suitable for dynamic changes in the battery system; the disadvantage is that the 
computational complexity is high, and the estimation results are greatly affected by the sensor noise and measurement 
errors. The offline estimation method mainly estimates the current battery state by constructing the SOC-OCV fitting 
curve [9], statistics, etc. The advantages are that the cal-culation is simple, not affected by environmental changes, 
and historical data can improve the estimation accuracy. The disadvantages are that the state cannot be updated in real 
time, and there may be delays. From the perspective of algorithm functionality, it is mainly categorized into single-state 
estimation and multi-state joint estimation. The advantages of single-state estimation are that the algorithm structure is 
simple, the computation amount is small, and it is easy to use online. The disadvantages are that the algorithm could be 
more utilized, and the estimation accuracy is affected by other unknown state factors. The advantage of joint estimation is 
that it considers the relationships between multiple states, which can estimate the battery state more comprehensively 
and thus improve the estimation accuracy. The disadvantage is the high computational complexity, and more data 
and information are needed to support it. The implementation methods for Li-ion battery state estimation are divided 
into direct measurement, model-based, and data-driven methods. (a) The direct measurement methods are ampere-time 
integration [10] and open-circuit voltage [11]. The ampere-time integration method acquires Li-ion battery terminal current 
and terminal voltage data at high frequency, serializes the discrete data, and integrates the current and other data to 
obtain the estimated Li-ion battery state. The open-circuit voltage method establishes the SOC-OCV fitting curve by 
collecting the experimental data of the Li-ion battery under the HPPC condition. It measures the open-circuit voltage data 
of the battery under the long-term quiescent state to feed into the SOC-OCV fitting function to obtain the current SOC 
value. (b) Model-based methods mainly include various equivalent circuit models, electrochemical models, etc. 
Standard equivalent circuit models include the Thevenin model [12], the second-order RC equivalent circuit model [13], the 
PNGV model [14], and so on. The algorithm identifies the relevant parameters of the equivalent circuit model, the state and
observation equations are established, and the Kalman filtering algorithm is used to establish a model-based SOC 
estimation simulation model to realize the battery state estimation. The electrochemical model can realize the battery state 
estimation of coupled electrochemical mechanisms, and then it becomes the research focus of the next-generation battery 
management system. (c) Data-driven methods mainly include two main parts: neural networks and machine learning. 
Standard neural networks include BP [15], LSTM [16], DNN [17], and so on, and standard machine learning 
algorithms include support vector machine [18], decision tree [19], clustering [20], and so on. Both neural networks 
and machine learning are trained on many samples to obtain a network model that realizes the input of the battery-related 
measurement parameters and the output of the state variables to be estimated.

To date, several review papers have been published by scholars on SOC and SOH estimation for Li-ion batteries. 
Among them, Selvaraj et al. [21] provided a more compre-hensive summary of SOC estimation methods for Li-ion 
batteries in electric vehicles, summarizing the existing SOC estimation methods from five aspects: direct method, 
model-based method, observation method, adaptive filtering method, and data-driven method. However, it is mainly an 
introductory theoretical exposition with insufficient expan-sion. Tian et al. [22] summarized the SOH estimation methods 
for Li-ion batteries, analyzing and evaluating them from four perspectives: model-based method, data-driven method, hybrid 
method, and other methods. However, there are more advanced methods as far as it is concerned. Yang et al. [23] 
summarized the health characterization, evaluation, and application of Li-ion batteries from various aspects, 
analyzed the battery characteristics under different models and working conditions, and analyzed the factors affecting 
the SOH estimation accuracy. However, the specific theoretical part of the algorithm is more general. Wang et al. [24] 
summarized the online joint estimation algorithm of SOC and SOH for Li-ion batteries and elaborated on the SOC 
and SOH estimation algorithms in detail. Liu et al. [25] summarized the multi-state estimation methods for Li-ion 



batteries, elaborated the definition of each state parameter, and summarized the joint estimation methods between 
different states, which is of solid reference significance. However, there is still the need for more expansion. Zhou et al. 
[26] summarized four typical state estimation algorithms and their joint estimation methods for Li-ion batteries and 
made a more detailed outlook on the future development trend. However, the description of the algorithms is relatively 
brief and needs to be more comprehensive. Du el al. [27] summarized the SOC and SOH estimation algorithms of Li-ion 
batteries for electric vehicles. However, it mainly focuses on the model approach, and the summary needs to be more 
comprehensive. Espendal et al. [28] summarized the development trend. Existing techniques for SOC estimation of Li-
ion batteries for automobiles described various model-based estimation methods, simultaneously analyzed the errors 
from various sources, and explained how to eliminate the errors. Cui et al. [29] comprehensively analyzed a 
comprehensive analysis of neural network-based Li-ion battery SOC estimation algorithms, especially some less 
commonly used neural network algorithms. They predicted the future direction of the technology in this field. Yao et al.
[30] summarized the model-based, data-driven, and statistical-based approaches and provided unique insights into 
future development trends. Tian et al. [31] reviewed deep learning technology’s latest application and development trend in 
Li-ion battery SOC estimation. This paper details the architecture and applications of three major deep neural 
networks (fully connected neural networks, recurrent neural networks, and convolutional neural networks). It discusses 
advanced applications of deep learning combined with other methods, such as transfer learning and data augmentation. 
Deep learning has great potential to process large-scale battery data and improve SOC estimation accuracy. It also 
highlights future challenges and research opportunities in data collection, model interpretability, and uncertainty 
estimation. Ren et al. [32] focused on reviewing four major machine learning algorithms: shallow neural networks, 
deep learning, support vector machines, and Gaussian process regression. This paper details the basic principles, 
applications, and performances of these algorithms in SOC and SOH estimation in recent years. It compares their 
datasets, input features, hyperparameter selection, performance metrics, etc. Through a comprehensive comparison 
and discussion that also analyzes current challenges and future directions to inspire the development of advanced machine 
learning state estimation algorithms.

The above papers all reflect specific academic values. However, there are different problems, such as the 
summary of research status needing to be more comprehensive, being deep enough, and needing better 
scalability. At the same time, the early review literature cannot reflect the latest academic research results in Li-ion 
battery state estimation. This paper conducts a systematic and comprehensive review of the literature on state 
estimation of Li-ion battery SOC and SOH published in recent years. It selects the most representative papers 
for different algorithm types. The model-based and data-driven state estimation algorithms are expounded, and the 
data-driven algorithm is the mainstream direction of future develop-ment, so it is emphatically discussed. At the same 
time, the problem of selecting the Li-ion battery data set is summa-rized separately. Finally, the direction of future 
technology development and the possible challenges are prospected. Section 1 summarizes the existing definitions of Li-
ion battery SOC and SOH; Sect. 2 mainly expounds on the basic theory involved in data-driven algorithms; Sect. 3 
mainly classifies and summarizes the recent model-based state estimation theory; and Sect. 4 mainly classifies and 
summarizes the recent data-driven state estimation theory. Section 5 summarizes the selection principles of different 
types of algorithms and discusses future research trends and possible challenges, and Sect. 6 concludes the paper.

Definition of SOC and SOH

Definition of SOC

The SOC of a battery refers to the available state of the remaining charge in the battery, which is generally 
expressed as a percentage and takes a value in the range of 0 to 1. The classical definition of SOC is shown in Eq. (1).

where Q
rated

 is the nominal charge capacity of the battery and Q
remain

 is the total remaining charge of the battery. When 
SOC = 0 means the battery is fully discharged, and when SOC = 1 means the battery is fully charged.

(1)SOC =
Qremain

Qrated

× 100%



Explanation of basic theoretical knowledge of state estimation of Li‑ion battery

Direct measurement method

The direct measurement method of Li-ion batteries is to infer the battery’s SOC and SOH by real-time 
measurement of parameters such as voltage, current, and temperature. This method does not require complex 
mathematical modeling or data processing but relies directly on real-time measurements for state estimation. 
Standard direct measurement methods include the open circuit voltage [33] and the ampere-time integration [34].

Open circuit voltage method

By measuring the terminal voltage of the battery, the SOC of the battery can be roughly estimated. In general, there is a 
specific linear relationship between the open circuit voltage of the Li-ion battery and its SOC, so the battery’s open circuit 
voltage can be used to estimate the SOC of the battery. The advantage of the open-circuit voltage method is that the 
calculation is relatively simple, and it only needs to measure the open-circuit voltage of the battery in the long-term static 
state, which is not affected by the error of current sampling. The disadvantage is that it requires a long resting time and 
cannot realize online SOC estimation. The open circuit voltage method for SOC estimation is shown in Fig. 1.

Defining the type Defining the formula Clarification

Health status based on capacity definition SOHC =
Ct

C
0

× 100% SOHC : Battery capacity healthiness. Ct : The rated capacity 
of the battery at moment. C

0
 : Initial rated capacity of the 

battery
State of health based on internal resistance definition SOHR =

Rend−R(t)

Rend−R0

× 100% SOHR : The health of the internal resistance of the battery. 
Rend : Internal resistance of the battery at the moment 
of end of life. R(t) : Internal resistance of the battery at 
moment t. R

0
 : Initial internal resistance of the battery

Health state based on power definition SOHp = (1 −
P(t)

P(0)
)×100% SOHp : Battery power health degree. P(0) : Battery name-

plate power. P(t) : Effective power that can be supplied 
after the tth cycle

Health states based on self-discharge definitions SOHRd
=

Rd (end)−Rd (t)

Rd (end)−Rd (0)
× 100% SOHRd

 : The self-discharge health of the battery. Rd(end) : 
Self-discharge resistance at the moment of battery 
end-of-life. Rd(t) : Battery self-discharge resistance at 
sampling moment t. Rd(0) : Self-discharge resistance of 
the battery at the initial moment

Definition of SOH

The SOH of a battery refers to the current state of the battery relative to its original performance, which is an 
essential parameter for evaluating the long-term health of the battery and is usually expressed as a percentage. 
The standard definition of SOH is the ratio of the capacity discharged from a complete state of a power battery at a 
specific multiplication rate from the entire state to the cut-off voltage to the nominal capacity (the actual 
initial capacity) to its corresponding nominal capacity under the standard conditions. There are four main 
ways of defining SOH for Li-ion batteries, as shown in Table 1.

The SOH of a battery is a comprehensive indicator that reflects the health of the battery during long-term use. 
By monitoring the SOH of a battery, its health status can be assessed promptly, and appropriate measures can be 
taken to extend the battery's service life and maintain its performance.

Table 1  Li-ion battery SOH definition approach



For the same battery, it is necessary first to obtain the corresponding open-circuit voltage value of 10% SOC interval 
under HPPC condition from the SOC-OCV fitting function, and then measure the terminal voltage under normal 
operating conditions by standing for more than 30 min and then look up the table to get the estimated value of SOC 
at the corresponding moment. The fitting curves of different batteries are different. However, the overall direction is the 
same, and the SOC-OCV fitting functions of three different Li-ion batteries are drawn, as shown in Fig. 2.

As shown in Fig.  2, the slope is slower during 20% SOC ~ 80% SOC in this period, and certain battery types 
have voltage plateaus, making the estimation accuracy lower. Also, the SOC estimation accuracy is highly affected by 
temperature and lifetime.

Ampere integral method

The ampere-time integration method is a simple and intuitive method for estimating the remaining capacity of a battery 
by measuring the battery charging and discharging currents in real time and integrating them to obtain the total amount 
of battery charging and discharging. Its advantages are simple calculation, reliable results, low requirements on the state of 
the battery itself, and online real-time state estimation can  be realized. The disadvantage is that the sampling accuracy 
and sampling interval have a significant impact on the error of the final estimation results, and at the same time, 
temperature changes, battery aging, different charging and discharging multipliers, and battery self-discharge phenomenon 
will also affect the state estimation accuracy. Since the algorithm is an open-loop algorithm with no feedback correction 
link, wrong initial state values will result in wrong estimated state values. A schematic diagram of the SOC estimation 
process for the ampere-time integration method is shown in Fig. 3.
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Model‑based state estimation method for Li‑ion batteries

Model-based estimation methods are used to estimate the SOC and SOH of a battery by building a mathematical 
model of the battery. These methods usually use the physical and chemical properties of the battery as well as real-time 
measurements of parameters such as voltage, current, and temperature for estimation. Standard model-based SOC and 
SOH estimation methods include electrochemical models [35], equivalent circuit models [36], empirical models [37], 
electrochemical impedance models [38], and so on. This paper focuses on state estimation methods based on 
equivalent circuit models.

Electrochemical model

Electrochemical modeling of Li-ion batteries is usually based on their internal chemical reaction processes. Such models 
can be divided into two main types: single-particle models [39] and multi-particle models [40]. These models describe 
the diffusion and embedding/de-embedding processes of lithium ions between the battery’s positive and negative 
electrodes and consider the battery’s characteristics, such as current, voltage, capacity, and internal resistance. The 
advantages of electrochemical models are that they have better physical consistency and can accurately describe the 
behavior of the battery, including current, voltage, and temperature. The generalization is better and can be applied to 
different working conditions—more accurate battery state estimation than equivalent circuit models. The 
disadvantage is that the computational complexity is high, usually contains multiple equations and parameters, 
poses a challenge for parameter identification, and does not apply to real-time estimation. The model is imperfect 
and cannot capture the complex behavior of the battery, such as polarization effects and temperature variations. 
Figure 4 shows a schematic diagram of the electrochemical model of a Li-ion battery.

Fig. 4  Electrochemical model of Li-ion battery
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1. Obtaining the parameters of the battery operating state.
2. Selecting an appropriate equivalent circuit model according to the state estimation algorithm.
3. Using the parameter identification algorithm to identify the parameters of the equivalent circuit model.
4. Using the state estimation algorithm to estimate the state of the Li-ion battery.

Therefore, choosing a reasonable equivalent circuit model is a prerequisite for realizing highly accurate state estimation. A
conventional flowchart for state estimation of Li-ion batteries based on the equivalent circuit model is given in Fig. 5.
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Figure 4 shows that the cathode material is usually a lithium metal oxide, such as LiCoO2, LiMn2O4, and LiFePO4. 
Lithium ions are de-embedded during discharge from the positive electrode material and move through the electrolyte to 
the negative electrode. The negative electrode material is usually graphite or other forms of carbon, and there have also been 
studies using materials such as silicon. Lithium ions are embedded in the negative electrode material during the 
discharge process. An electrolyte is a liquid or solid material that can conduct electricity by transporting lithium ions. The 
electrolyte also contains salts that facilitate the transport of lithium ions, such as LiPF6. The diaphragm is a porous material 
that sits between the positive and negative electrodes, preventing them from coming into direct contact and shorting out. At 
the same time, it allows lithium ions to move freely through the electrolyte. Electrochemical models typically include 
the following vital equations and parameters.

(a) Voltage equation: Describes the relationship between the voltage response of the cell and the SOC, which is usually 
established by the variation of the ion diffusion rate and the cell’s internal resistance.

(b) Diffusion equation: Describes the diffusion process of lithium ions between the positive and negative electrodes of 
the battery, taking into account the diffusion coefficient, electrode surface reaction rate, and other factors.

(c) Embedding/de-embedding equation: Describes the process of embedding/de-embedding of lithium ions in 
the electrode material, and the Butler-Volmer equation or other electrochemical kinetic equations are usually used to 
describe the reaction rate on the electrode surface.

(d) Heat equation: Describes the temperature distribution inside the cell and the effect of temperature on cell 
performance.

(e) Parameters: These include the internal resistance of the cell, the conductivity of the electrode material, the diffusion 
coefficient, the electrochemical reaction rate constant, and other parameters. 

These equations and parameters are usually integrated into a set of differential equations or difference equations, 
which are numerically simulated or analytically solved to model the dynamic behavior of the battery and enable the 
estimation of states such as SOC and SOH of the battery. These models have critical applications in battery design, 
management, and control and can help optimize the performance and lifetime of battery systems.

Equivalent circuit model

Usually, the steps of estimating the states such as SOC and SOH of a Li-ion battery are mainly divided into the following 
steps.
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     As shown in Fig. 6, in a data-driven approach, more data features need to be captured relative to a 
model-based approach to make the trained model fit the fundamental physical and chemical properties of Li-ion 
batteries as closely as possible. Usually, the data needs to be cleaned first to minimize model overfitting due to 
problems such as errors contained in the data and data point noise. Subsequently, the cleaned data is divided into a 
training set and a test set, and the model is trained using the training set and validated using the test set. In data-driven-
based algorithms, the loss function is usually used as an evaluation criterion, and choosing an appropriate loss 
function is conducive to improving the fitting accuracy of the model. A typical machine learning and deep learning-
based Li-ion battery state estimation algorithms are introduced below for data-driven methods, respectively, and the rest 
of the algorithms have similar algorithmic structures and processes, which will not be repeated.

As shown in Fig. 5, in the state estimation algorithm based on the model method, the characteristics of 
different state estimation algorithms combined with the characteristics of different equivalent circuit models 
are matched, and the most suitable pair is selected for combination. Second, parameters such as terminal voltage, 
terminal current, and temperature of the Li-ion battery are collected at intervals of 0.1 s, and the parameters 
are transferred to a parameter identification algorithm (e.g., FFRLS) for calculating the relevant parameters of 
the equivalent circuit model. Subsequently, the model parameters are brought into the parameter identification 
algorithm to establish state equations and observation equations, and appropriate state and observation variables 
are selected to estimate the state of the Li-ion battery, during which the SOC-OCV fitting curves are usually 
pre-established for parametric conversion. Finally, the relevant target estimation parameters, such as SOC, SOH, 
and RUL, are calculated.

A data‑driven approach to Li‑ion state estimation

Data-driven Li-ion battery state estimation methods rely heavily on machine learning (SVM et al.) and deep 
learning (CNN, LSTM, DBN) techniques for estimating key state parameters of Li-ion batteries, such as SOC, 
SOH, and future performance or lifetime. In contrast to model-based approaches, data-driven methods do not require 
complex electrochemical models but rather learn battery behavioral characteristics directly from experimental data. 
These methods typically require a large amount of data to train the model for highly accurate and reliable estimation, 
and their basic flowchart is shown in Fig. 6.
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Long Short‑Term Memory (deep learning)

LSTM (Long Short-Term Memory Network) is an algorithm that utilizes deep learning techniques to predict the 
performance parameters of Li-ion batteries. The LSTM network is a special kind of recurrent neural network (RNN), capable 
of processing and memorizing long-term dependence information, making it particularly suitable for dealing with time-
series data, such as battery charging and discharging cycle data. In Li-ion battery state estimation, LSTM can help to 
address the complex, nonlinear, time-dependent, and battery aging mechanisms that are difficult to capture by traditional 
methods. The specific flow of Li-ion battery state estimation using LSTM is shown in Fig. 7.

As shown in Fig. 7, the data usually collected are voltage, current, temperature, etc. The data’s diversity and 
adequacy largely determine the model’s performance. The generalization ability of the model can be enhanced 
by collecting the operating data of the battery under different working conditions, such as HPPC [41], BBDST 
[42], UDDS [43], and DST [44] working conditions. In order to improve the utilization of data, it is necessary to 
select the features reasonably, such as assigning weights to the features through the attention mechanism and other 
related algorithms. The LSTM neural network is designed to process time data. The correct processing of time series 
data (e.g., the length of the sequence, the step size), etc., has a significant impact on the performance of the model 
to ensure that the time series data can effectively capture the characteristics of the changes in the state of the 
battery concerning the time. Meanwhile, adjusting the hyperparameters of the neural network is also an essential 
task, such as the learning rate, the batch size, and the number and size of neurons in the hidden layer, which can 
also be automatically optimization-seeking by some optimization algorithms [45].

Support vector regression (machine learning)

Support vector regression (SVR) utilizes machine-learning techniques to predict the state of Li-ion 
batteries. SVR is a regression method based on SVM, suitable for small samples and nonlinear and high-
dimensional pattern recognition. It is especially suitable for dealing with complex problems in battery state 
estimation. The specific flow of Li-ion battery state estimation based on SVR is shown in Fig. 8.
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Fig. 8  Flowchart of SVR-based Li-ion battery state estimation

As shown in Fig. 8, similar to the LSTM algorithm, the antecedent steps, such as processing and feature 
extraction, must be completed first. The performance of the SVR model depends mainly on the choice of kernel 
function. Commonly used kernel functions include linear kernel, polynomial kernel, and radial basis function 
(RBF) kernel. Choosing an appropriate kernel function can significantly improve the model’s prediction 
accuracy. Meanwhile, reasonable parameters of the SVR model (e.g., C, ε, and kernel function parameters) 
are critical. They must be finely tuned by methods such as cross-validation to achieve the best prediction 
performance.

In summary, when applying data-driven-based methods to estimate Li-ion battery states, the matters to be taken 
care of include ensuring the quality of the data, performing effective feature engineering, carefully selecting and tuning 
the model, and preventing overfitting to ensure that the model has a good generalization ability. These strategies help 
build efficient and reliable battery state estimation systems that support battery management.

Overview of recent model‑based estimation methods

Many state estimation methods based on equivalent circuit models of Li-ion batteries have emerged in recent years. 
The basic steps of these algorithms are consistent and can be summarized in 3 steps, which are (a) model building, (b) 
parameter identification, and (c) state estimation. The related theories and algorithms used in each of these steps have 
advanced in different aspects, and this section is divided into three subsections to summarize and generalize the theories 
and algorithms involved in each of these steps.



Table 2 gives a few standard equivalent circuit models available and list the literature on Li-ion battery state estimation in 
the last 5 years that use these models.

The choice of different equivalent circuit models for Li-ion batteries depends mainly on the required accuracy, 
computational complexity, and application scenario. Simple models, such as the Rint model, are suitable for essential 
battery performance estimation and are computationally fast but may only accurately capture some electrochemical 
dynamics. More complex models, such as the Randles model or the multiple RC loop model, provide higher 
accuracy, can simulate more details of the internal processes of the battery, and are suitable for applications with in-
depth studies of battery performance and aging mechanisms. Therefore, the choice of model needs to be weighed 
against accuracy, computational resources, and the specific needs of the target application. The advantages and 
disadvantages of the various equivalent circuit models listed in Table 2 are analyzed below.

(a) Randles model.

The Randles model is an equivalent circuit model commonly used in electrochemical impedance 
spectroscopy (EIS) [46] analyses to describe electrochemical processes at electrolyte interfaces. It consists of a series 
resistance (representing the ohmic impedance of the electrolyte), a capacitor in parallel (representing the double-layer 
capacitance), and a Warburg impedance (representing the diffusion process). The advantages are that the model is 
simple, describes the basic properties of electrochemical systems, and applies to various electrochemical studies. The 
disadvantage is that the model assumes more ideal assumptions and may not accurately portray complex 
electrochemical systems’ full range of properties, especially under nonlinear or non-stationary conditions.

(b) PNGV model.
  The PNGV (Partnership for a New Generation of Vehicles) model is a US government initiative to develop fuel-
efficient vehicles in the automotive industry. While not a direct “model” for battery or circuit modeling, the PNGV 
initiative is focused on advancing fuel-efficient technologies, including hybrid and electric vehicles. Advantages of 
PNGV include fostering technological innovation in automobiles and promoting more environmentally friendly vehicles. 
However, its disadvantages may include the high cost of research and development and the challenge of 
commercializing advanced technologies within a limited time frame.

(c) Thevenin model.
The Thevenin model of a Li-ion battery is an equivalent circuit model that reduces the battery to a voltage source

(representing the open circuit voltage) and a series resistor (representing the internal resistance). The model is 
suitable for simulating battery behavior under various load conditions and is relatively simple to implement, making it 
widely used in basic battery management systems. However, an oversimplified model can be a drawback because it may 
need to accurately capture the complex dynamics or aging effects of the battery, limiting its accuracy and effectiveness in 
estimating its state of charge or health.

Equivalent circuit model of Li‑ion battery

The selection of an appropriate equivalent circuit model depends on the application requirements, the required 
accuracy, and the available computational resources. It can be evaluated and selected based on real-time, accuracy, 
and scalability. A trade-off is typically between model accuracy and computational efficiency in practical applications. 

(d) 2RC model.
    The 2RC model is a type of equivalent circuit model for Li-ion batteries that simulates the dynamic electrochemical 
behavior of the battery using two series-connected resistance–capacitance (RC) networks. This model captures the 
transient response of the battery during charging and discharging more accurately than a single RC network model, 
thus providing a more precise estimate of the battery state. The advantage is that it can better reflect the actual 
operating state of the battery and is suitable for applications that require high battery performance. The disadvantage is 
that the model is relatively complex and requires more data to accurately determine parameters, which may increase 
the difficulty and cost of model calibration.

(e) Fraction-order model.
The fractional order model is an advanced mathematical model for describing the electrochemical behavior of

Li-ion batteries, which is used to simulate the charging and discharging processes and aging phenomena of the batteries 
more accurately by introducing fractional order derivatives. The advantage is that its description of the battery behavior is 
closer to reality, and it can capture the complex processes inside the battery that are difficult to express by other models. 
The disadvantage is that the mathematical processing of the model is more complicated and requires specific mathematical 
tools and algorithms to solve, which increases the difficulty of model implementation and computational cost.



Table 2   Equivalent circuit model and its associated references and publication date

Equivalent circuit model and its associated references and publication date

Equivalent circuit 

model
Circuit diagram

References and year of 

publication

Randles model

2C

1CLI

1R2R

0R

LU

Simić et al. (2022) [102], Hasan 

et al. (2020) [103], Moye et al. 

(2019) [104], Poonam et al. 

(2021) [105], Zhang et al. (2023) 

[106], Han et al. [107]

PNGV model

LU

1C 2C

1R

2RocvU

LI
Geng et al. (2022) [108], Zhou et 

al. (2022) [109], Liu et al. (2022) 

[34], Lin et al. (2021) [110], 

Jiang et al. (2022) [111], Zheng 

et al. (2023) [14]

Thevenin model

LU

1C

0R

1R
ocvU

LI
Fatoorehchi et al. (2022) [112], 

Wang et al. (2021) [113], Tian et 

al. (2020) [114], Suti et al. 

(2022) [115], Seo et al. (2021) 

[116], Shen et al. (2023) [117]

2RC model

LU

1C

0R

1R
ocvU

LI 2C

2R

Cao et al. (2023) [118], 

Sugumaran et al. (2023) [119], 

Shrivastava et al. (2022) [120], 

Tahir et al. (2021) [121], Lai et 

al. (2020) [122], Saqli et al. 

(2023) [123]

Fractional-order 

model LU

0R

1R
ocvU

LI

2R

CPE1 CPE2

Wang et al. (2020) [124], Zhang 

et al. (2022) [125], Zhu et al. 

(2023) [126], Yu et al. (2020) 

[127], Ruan et al. (2021) [128], 

Wang et al. (2023) [129]



Parameter identification algorithm of the model

After selecting an appropriate equivalent circuit model, the relevant parameters of the model need to be identified for 
application in the state estimation algorithm. The model’s accuracy largely depends on the accuracy of the parameter 
identification algorithm, which further affects the accuracy of the state estimation algorithm, so the improvement of the 
parameter identification algorithm is essential. According to their working principle and application background, the 
parameter identification algorithms can be classified into several categories, and the specific classification and recent 
references of related improved algorithms are given in Table 3.

Table 3  Improved algorithms and references related to parameter identification

Types of algorithms Specific algorithm name Relevant references and year 
of publication

Detailed description of the algorithm

Based on the least squares method IA-MAFF-RLS
FMRLS

Guo et al. (2023) [47] 
Yang et al. (2023) [48] 
Zhu et al. (2023) [49]

FFRLS based on information Analysis
Fixed memory recursive least squares
Proportional control forgetting factor 

recursive least square
PCFFRLS

Based on filtering algorithms CF-PF
SPF

Based on swarm intelligence algorithms IMCCPSO

Qiao et al. (2023) [45] Chaotic firefly-particle filtering method 
El-Dalahmeh et al. (2023) [50] Physics-informed smooth particle filter 
Tang et al. (2023) [51] Incomplete multi-context cooperatively 

CBSO
Bayesian (math.)

Zhang et al. (2023) [52] 
Kim et al. (2023) [53]

coevolving PSO
Complex-order beetle swarm optimization
Bayesian inferenceBased on statistical algorithms

Based on artificial intelligence algo-
rithms

INFO Merrouche et al. (2024) [54] Innovative weighted mean of vectors

    As shown in Table 3, the Li-ion battery parameter identification algorithms are mainly divided into five major categories 
based on least squares, filtering algorithms, swarm intelligence algorithms, statistical algorithms, and artificial intelligence 
algorithms, and the table lists 1–3 recently published papers of improved algorithms for each of these five    major categories 
of algorithms. Currently, various improved algorithms based on RLS are predominant, which are preferred for equivalent 
circuit model parameter discrimination due to their broad applicability, good dynamic properties and robustness, and 
concise algorithmic structure. The IA-MAFF-RLS algorithm proposed by Guo et al. [47] is improved in several aspects. 
First, the information analysis based on the Cramér-Rao lower bound was carried out for each model parameter, and the 
constant informatics theory was introduced to update the related estimation error covariance with CRLB [55]. Second, a 
switch-based adap-tive strategy is proposed to fine-tune multiple FFs online using two rules, which trade-offs between 
the information richness of the memory window and the traceability of the current–voltage distribution. Finally, an IA-
MAFF-RLS method is established to identify different model parameters associated with FFs, respectively. This method 
provides a more accurate and interference-resistant technological path for parameter identification of Li-ion batteries in 
electric vehicles through information analysis, adaptive forgetting factor tuning, and targeted element-level strategies. 
The FMRLS algorithm proposed by Yang et al. [48] obtains the fast-dynamic (FD) and slow-dynamic (SD) 
parameters of the equivalent circuit models (ECM), respectively. Due to the slow dynamic nature of the open circuit 
voltage, the algorithm recognizes it as a component of the SD part. By accurately identifying the fast and slow dynamic 
parameters, the algorithm improves the predictive performance and reli-ability of the battery model. However, at less than 
10% SOC, especially at very high or low temperatures, the OCV iden-tification still suffers from specific errors and 
fluctuations, indicating that the adaptability of the algorithm for extreme conditions needs to be further improved. Zhu 
et al. [49] proposed the PCFFRLS algorithm, which aims to reduce the steady-state error by adding a proportional 
control link based on the forgetting factor recursive least squares algorithm and further reduce the effect of random 
noise on the estimation results using the Monte Carlo method. However, its complexity increases compared to the 
traditional EKF or AEKF algorithms. In particular, the Monte Carlo method requires many samples to be resampled, 
which may lead to an increased computational burden, especially in real-time or resource-constrained application 
scenarios. The paper should further explore the algorithms’ computational efficiency and optimization strategies.



Secondly, particle filtering and swarm intelligence-based optimization algorithms also occupy a non-negligible 
position in parameter identification. For filtering algorithms, the CF-PF algorithm proposed by Qiao et al. [45] 
achieves high-precision joint estimation of SOC and SOH by adjusting the battery parameters to reflect the 
dynamic characteristics of Li-ion batteries in different aging states in real time. It utilizes simulation of the 
behavior of fireflies attracting to each other and mapping a set of particles to different solution spaces through 
chaotic mapping to find a new optimal solution. However, the study did not consider the effect of temperature on 
battery state estimation, which is a direction for future research. El-Dalahmeh et al. [50] proposed a RUL prediction 
method based on a physically-informed Smoothed Particle Filtering (SPF) framework, which extracts the loss of 
active material in the positive and negative electrodes of Li-ion batteries and loss of lithium inventory, which are the 
three main degradation mechanisms to estimate the parameters of the single particle model (SPM), which can 
more accurately quantify the degradation mechanisms and predict the capacity decline trend. In the future, the 
accuracy and reliability of the model can be further improved by considering more physical degradation mechanisms 
in the prediction process and possible changes in battery operating conditions. For swarm intelligence optimization 
algorithms, an adaptive multi-context co-evolutionary parallel differential evolutionary algorithm (AMCC-PDE) for 
Li-ion battery parameter identification proposed by Tang et al. [51] constructs a new offline identification model 
for the Li-ion battery parameter identification problem, which transforms the battery parameter identification 
problem into a large-scale global optimization (LSGO) [56] problem. The AMCC-PDE algorithm, which 
effectively handles the high-dimensional parameter identification problem by combining the segmented parameter 
identification (SPI) method and the new context vector update strategy, is proposed. However, the application of the
algorithm also has specific challenges and limitations, such as the increase in computational complexity, the need 
for parameter adaptation, the possible local optimum problem, the need for validation in practical application 
scenarios, and the potential for further optimization. The CBSO algorithm proposed by Zhang et al. [52] combines 
the concept of complex-order (CO) operator and the mutation strategy into the traditional Beetle Swarm Optimization 
(BSO) [57] algorithm in the traditional beetle swarm optimization (BSO) algorithm, which may have better 
performance in searching for globally optimal solutions by capturing the historical memory of the particles and 
avoiding the algorithm from prematurely converging to the local optimum through mutation operations. There is 
still room for further research and validation on the algorithm's adaptability, efficiency, stability, and performance in 
practical applications.

In addition, a few parameter identification algorithms based on statistics and artificial intelligence have 
recently emerged, with some academic value in terms of theoretical expansion and innovation. Kim et al. [53] 
proposed ‘Bayesian-based parameter identification for electrochemical models of Li-ion batteries,” which explored in 
detail the process of parameter identification using the Bayesian frame-work for parameter identification. This 
approach focuses on estimating the distribution of electrochemical model parameters using observed voltage 
data from Li-ion batteries, emphasizing the quantification of parameter uncertainty and parameter identifiability. The 
methodology employed in this study provides a robust and comprehensive strategy for parameter estimation, 
offering valuable insight into parameter uncertainty and model sensitivity. While this approach demonstrates strong 
potential for enhancing model accuracy and reliability, its computational demands and the expertise required in 
Bayesian analysis may be a barrier to the practical implementation of the algorithm. Future research could 
explore ways to simplify the computational process by developing more efficient sampling techniques or applying 
machine learning algorithms to approximate the posterior distributions, thus broadening the methodology’s 
application and ease of use in various battery technology domains. Merrouche et al. [54] described the use of a 
vector-weighted averaging algorithm for the estimation of ECM parameters of Li-ion batteries in an application. 
The INFO algorithm optimizes the ECM parameters by minimizing the difference between the estimated and actual 
battery voltages, showing higher accuracy and convergence speed than other state-of-the-art optimization 
algorithms. The INFO algorithm can be further improved and explored for more accurate parameter identification 
hybrid methods.



Types of algorithms Specific algorithm name Relevant references and year of publica-
tion

Detailed description of the algorithm

Improvements based on EKF AMCCEKF

MM-EKF

EKF based on the adaptive maximum cor-
rentropy criterion

A multi-model extended Kalman filtering 
algorithm considering the effects of 
temperature and current rate

Improvements based on UKF ISRUKF
ADUKF
FRTSUKF

Improvements based on CKF AWSCKF

AFOBS-SRCKF

Avoid algorithm divergence
Adaptive dual spherical UKF
Fuzzy robust two-stage unscented Kalman 

filtering
Adaptive weighted square-root cubature 

Kalman filtering
Adaptive fractional-order backward 

smoothing square root cubature Kalman 
filtering

SVD-AECKF

Liu et al. (2023) [58]

Lv et al. (2024) [59]

Peng et al. (2023) [60] 
Hosseininasab et al. (2023) [61] 
Rezaei et al. (2023) [62]

Takyi-Aninakwa et al. (2023) [63] 

Zhou et al. (2023) [64]

Zhou et al. (2023) [65] Based on singular value decomposi-
tion with adaptive embedded cubature 
Kalman filtering

Improvements based on PF HIPF
FTC-APF

Hybrid algorithm MIEKPF- EKPF

H-infinity particle filter
A Fast Temperature Correction Adaptive

Particle Filter
Multi-innovative extended Kalman particle 

filter combined with extended Kalman 
particle filte

EKF-LSTM

Chen et al. (2023) [66] 
Luan et al. (2023) [67]

Zhou et al. (2023) [68]

Li et al. (2023) [69] Combining neural networks with model-
based methods

Table 4  Model-based state estimation algorithms and related references

State estimation methods for Li‑ion batteries

After the equivalent circuit model is obtained by a parameter identification algorithm, it is brought into suitable state 
estimation algorithms (e.g., EKF, UKF, PF), which can estimate the internal state of the battery based on the battery’s 
input and output data. Recently, model-based state estimation methods for Li-ion batteries have undergone several 
significant improvements to enhance the estimation’s accuracy, efficiency, and applicability. Table 4 lists some of the 
recent typical state estimation algorithms for the reader’s reference.

As shown in Table 4, model-based state estimation methods for Li-ion batteries are mainly filtering algorithms, 
which include, but are not limited to, extended Kalman filtering, unscented Kalman filtering, cubature Kalman filtering, 
particle filter algorithms, and some hybrid algorithms based on model and data-driven. The most common of these are 
the various improved algorithms based on Kalman filters, and the following will introduce the innovations and room 
for improvement in the literature listed in the table.

For the EKF improvement algorithm, a new method for SOC estimation of Li-ion batteries based on the adaptive 
iterative extended Kalman filtering (AIEKF) combined with the adaptive maximum correlation entropy criterion 
(AMCC) [70] and the Levenberg–Marquardt (L-M) [71] principle was proposed by Liu et al. [58]. AMCC was 
introduced to replace the Minimum Mean Square Error (MMSE) criterion in the traditional EKF to enhance the 
robustness to abnormal data and non-Gaussian noise. Specifically, an adaptive kernel width update strategy is designed 
so that the filter can dynamically adjust to adapt to different noise environments. At the same time, by analyzing the 
relationship between OCV and SOC, an OCV correction strategy based on terminal voltage innovation is proposed, 
which uses the terminal voltage deviation to correct the OCV estimation error and further improves the accuracy of 
SOC estimation. Lv et al. [59] proposed a multi-model extended Kalman filtering (MM-EKF) based algorithm. The 
Li-ion battery system is decomposed into two sub-models considering the effect of temperature and the effect of 
current, which can select the appropriate model according to different operating conditions, has better environmental 
adaptability than the single-model approach, and is more suitable for estimating the state of Li-ion batteries under 
complex operating conditions. Future research can further explore and improve the model generalization ability, 
optimize the computational efficiency, improve the accuracy of parameter identification, consider more 
environmental factors, and improve the weight determination method.

For the improved UKF algorithm, Peng et al. [60] proposed a dual coefficient tracking improved square root 
unscented Kalman filtering (ISRUKF), which integrates an improved square root unscented Kalman filtering based on 



the QR decomposition to maintain the positive characteriza-tion of the covariance matrix and a dual coefficient tracker. 
Effectively addressing the limitations of traditional Kalman filtering-based methods, i t provides better accuracy and 
more robust robustness. However, the literature does not discuss the impact of battery aging and long-term degradation on 
the performance of the ISRUKF method, which is critical for long-term battery management. Hosseininasab et al. [61] 
proposed an adaptive dual unscented Kalman filtering. Compared with the EKF, the UKF has more advantages in 
dealing with nonlinear systems because it avoids using the Jacobian matrix to approximate nonlinear functions, thus 
reducing the linearization error. In addition, due to the high computational complexity of the traditional UKF, the spherical 
simplex method is introduced in this paper, which significantly reduces the computational cost by reducing the 
number of sigma points. The algorithm can dynamically adjust the parameters of the battery model (e.g., resistance 
and capacity) to adapt to changes in the battery state, which is particularly important to cope with the battery’s aging 
and changes in its performance under different operating conditions. Rezaei et al. [62] proposed an improved robust 
unscented Kalman filtering (FRTSUKF) that improves the accuracy of the SOC by compensating for the uncertainty of 
the model of unknown statistical properties. In addition, the algorithm uses a fuzzy system to recursively adjust the 
covariance matrix of the measurement noise, making the estimation process more accurate and practical. However, 
the design and parameter selection of fuzzy logic systems themselves require optimization based on empirical or trial-
and-error methods, which limits their general application without sufficient expertise.

For the CKF improvement algorithm, the study by Takyi-Aninakwa et al. [63] introduces a nonlinear autoregressive 
external input (NARX) network based on the optimization of adaptive weighted square root cubature Kalman filtering 
(AWSCKF) [72]. The critical innovation is the introduction of an adaptive sliding update mechanism to optimize the 
process noise and measurement noise covariance matrices, as well as innovative updates to the state estimation and 
error covariance matrices to improve the accuracy of the method. This study demonstrates the NARX-AWSCKF model’s 
validity under laboratory conditions and emphasizes its potential for application in EV battery management systems. This is 
demonstrated by the high accuracy and robustness of the model under a wide range of battery chemistries, different 
charging and discharging conditions, and temperatures. Zhou et al. [64] proposed an improved adaptive fractional-order 
backward-smoothing square root cubature Kalman filtering algorithm (AFOBS-SRCKF), which combines Sage Husa’s 
adaptive filtering [73] and backward smoothing process to square root cubature Kalman filtering is optimized to enhance 
the algorithm’s ability to handle the nonlinearities and uncertainties inherent in SOC estimation, improving the accuracy 
and adaptability of SOC estimation in real-time in complex environments. Another paper [65] published in 2023 
proposed  a new high-precision method based on improved singular value decomposition and adaptive embedded 
Cubature Kalman fltering (SVD-AECKF) algorithm. It is used to jointly estimate the SOC and SOE of the Li-ion battery 
of new energy electric vehicles online. The dualpolarization equivalent circuit model and the Time-varying forgetting 
factor recursive least squares (TVFFRLS) algorithm were used for online parameter identifcation, and the embedded 
Cubature criterion and SVD matrix decomposition technology were combined to improve the filtering accuracy, 
efciency, and numerical stability.

For the PF improvement algorithm, Chen et al. [66] proposed the H-infinity particle filter (HIPF) algorithm, 
which combines the advantages of particle filter (PF) and H-infinity filter (HIF) and introduces a new mechanism 
of particle weight adjustment in the algorithm, which maintains the particles by compromising their weights 
in order to maintain the particle diversity and prevent particles from concentrating on a few particles, thus 
improving the accuracy of the estimation. Considering the nonlinearity and complexity of the battery behavior, 
combining the HIPF algorithm with machine learning methods can be explored further to improve the 
accuracy and robustness of the estimation. Luan et al. [67] proposed a fast temperature-corrected adaptive 
particle filtering (FTC-APF) SOC estimation strategy, which not only updates the actual capacity, open-circuit 
voltage, and double-pole (DP) model in real-time parameters to adapt to rapid temperature changes but also 
attenuates the effect of external disturbances or sensor-generated uncertainty noise on the SOC estimation of 
Li-ion batteries by predicting the process noise and updating the observation noise. Future research directions 
include considering the effect of cell inconsistency on SOC estimation and considering the variability of the 
charging and discharging processes when designing cell capacity experiments and OCV experiments.

In addition to the single type of state estimation algorithms mentioned above, some hybrid algorithms 
exist, which realize their complementary advantages through the fusion of the same or different algorithms. Zhou 
et al. (2023) [68] proposed the MIEKPF-EKPF fusion algorithm for the joint estimation of SOC and SOH of Li-
ion batteries, which entirely takes into account the influence of historical observation data on the current estimation value 
by combining the multi-innovation theory and extended Kalman particle filtering, and improves the estimation 
accuracy and robustness by dynamically adjusting the weights and particle sampling. The algorithm considers 
the influence of historical observation data on the current estimation value. It improves the accuracy and robustness 



of the estimation by dynamically adjusting the weights and particle sampling [69]. In response to the problem that the 
traditional second-order equivalent circuit model can not fully capture the complex electrochemical reactions and 
state changes inside the battery, the proposed hybrid methods of EKF-LSTM and LSTM-EKF, combined with the 
EKF algorithm for real-time dynamic estimation of the SOH and SOC, are used to estimate the SOC and SOH 
of Li-ion batteries in real-time. The real-time dynamic estimation capability of the EKF algorithm and the 
nonlinear learning capability of the LSTM use WOA to optimize the preset parameters of the EKF and LSTM models 
to improve the model performance effectively. Future research can further explore the SOC estimation methods for 
different types of batteries and their different operating conditions, as well as how to optimize the model parameter 
selection and algorithm combination methods to adapt to the practical application requirements in EV battery management 
systems.

Model-based estimation methods provide a powerful tool for accurately estimating the battery state through a deep 
understanding of the physical and electrochemical processes of the battery. With the advancement of computational 
techniques and the development of model optimization algorithms, these methods play an increasingly important role 
in improving the performance of BMS, extending battery life, and ensuring safe battery operation. Future research 
may further explore more efficient model parameter identification methods, develop more accurate electrochemical 
models, and design more flexible hybrid estimation strategies to adapt to the needs of battery state estimation under 
different types and operating conditions. In addition, combining advanced optimization algorithms and artificial 
intelligence techniques to improve models’ adaptive ability and prediction accuracy will be an important direction for 
future research.

Overview of recent data‑driven based estimation methods

In recent years, with the rapid development of machine learning and deep learning technologies, data-driven methods 
based on Li-ion battery state estimation have been widely used and deeply studied, such as LSTM, CNN, DNN, 
and integrated learning methods, which rely on a large amount of battery usage data to predict the battery state by learning 
patterns and features from the data. In particular, the hybrid use of different types of network models combined with 
transfer learning and optimization algorithms, such as the WOA [74], further optimizes the model parameter selection 
and improves the estimation accuracy.

Lithium‑ion battery dataset

A reasonable data set for machine learning algorithms can improve the whole system’s performance. Its typical 
characteristics are low noise, high precision, multiple operating conditions, large scale, etc. From the dimension 
perspective, it usually includes voltage, current, temperature, charging time, battery internal resistance, and 
appropriate features are selected according to different estimation targets. There is a specific time correlation from the 
data series, usually in the form of time series. In terms of sampling frequency, the data used for SOC estimation is 
usually sampled at high frequency, which is convenient for the model to learn the characteristics of the data 
thoroughly. The data used for SOH estimation are usually sampled at a low frequency and reflect the macroscopic 
characteristics of Li-ion batteries. In terms of the diversity of operating conditions, the data collection covers a variety 
of operating conditions, usually including but not limited to HPPC, BBDST, DST, UDDS, and standard constant 
current and constant voltage charge and discharge cycles. Different test conditions are designed according to different 
states to be estimated. Han et al. [75] highlighted the importance of three fundamental data types: laboratory, field, and 
synthetic data in battery health estimation. Ma et al. [76] developed a physical model to extract aging-related 
parameters from charging curves, which were then used to guide a DNN for high-precision and efficient RUL 
prediction. Tang et al. [77] proposed a few-shot learning-based method to detect battery life anomalies by analyzing the 
first cycle of battery aging data. The proposed method utilizes a 215 commercially available Li-ion battery dataset and 
develops a few-shot learning network to detect lifetime anomalies without prior knowledge of degradation mechanisms. 
This literature fully illustrates the importance of dataset selection for machine learning, and Table 5 lists a series of 
dataset selection schemes from the perspective of SOC and SOH estimation of Li-ion batteries, respectively.



 Table 5  Different dataset selection schemes for Li-ion batteries

Types of datasets Relevant references and 
year of publication

Detailed description of the dataset

Run-to-failure Wang et al. (2024) [78] Contains operational fault data for 6 batteries under 55 charging and 
discharging strategies. Some unique charging and discharging strategies 
are included, such as those for satellites in geosynchronous orbit (GEO)

Incremental capacity Tang et al. (2021) [79]

Electrochemical impedance spectroscopy Tang et al. (2023) [80]

IC trajectories are reconstructed from complex load curves, including 
those with large noise or non-constant current curves

A novel approach combining fractional order circuit models and machine 
learning techniques. To solve the challenge of using 10 s sampling time 
and 10 Hz sampling rate to predict the electrochemical impedance spec-
trum of Li-ion batteries

Vilsen et al. (2024) [81] Contains second-level measurements of three Li-ion battery units aged 
at three different temperatures (45 °C, 40 °C, and 35 °C) using realistic 
forklift load curves

Kirkaldy et al. (2024) [82] Forty commercial 21,700 Li-ion batteries (LG M50T) were cycled under 

Battery degradation

Cyclic aging

Different discharge levels Taş et al. (2023) [83]
15 different operating conditions (temperature and state of charge)

Contains the temperature variation, discharge time, capacity loss and 
performance characteristics of Li-ion batteries at 2C, 4C, 5C, 6C, 10C, 
15C, and 20C discharge levels

Electrochemical impedance spectroscopy Rashid et al. (2023) [84] Electrochemical impedance spectroscopy (EIS) was performed at tem-
peratures of 15 °C, 25 °C, and 35 °C at 5%, 20%, 50%, 70%, and 95% 
state of charge (SOC)

Accelerated aging Tang et al. (2021) [85] Comprehensive dataset containing 8947 burn-in cycles for 15 modes of 
operation

As shown in Table 5, eight recent papers on Li-ion battery data sets are listed, most of which are public data sets, 
reflecting the data characteristics of Li-ion batteries from different perspectives. Wang et al. [78] aimed at the 
problem that most of the current public datasets are laboratory simulation environments and lack real usage scenarios. 
The data preprocessing methods used in different studies are inconsistent, leading to unfair comparisons between 
dif-ferent models and an unobvious improvement effect. The run-to-failure dataset of Li-ion batteries based on real-
use scenarios was published. These data can help researchers evaluate Li-ion batteries’ SOC and SOH estimation 
models in real-use scenarios and have practical value. Tang et al. [79] studied how to estimate the SOC and SOH of 
batteries in Li-ion battery management and introduced a new method based on incremental capacity analysis (ICA) to 
handle data under complex load conditions. The proposed method can reconstruct ICA trajectories under complex 
load conditions, such as three complex operating conditions: constant current charging (with noise), pulse charging, and
battery pack charging with active equalization. Tang et al. [80] proposed a system to predict the EIS of a Li-ion battery 
using a 10-s pulse test and a 10-Hz sampling rate. By using more than 1000 sets of load curves under different SOC and 
SOH, the study shows that the RMSE of the proposed method can be controlled within 1.1 mU and 2.1 mU under the 3-
min dynamic curve and 10-s dynamic curve, respectively. Vilsen et al. [81] proposed a Li-ion battery degradation 
dataset based on forklift operating curves, containing degradation data measured at a frequency of seconds for three 
batteries at three different temperatures (45 °C, 40 °C, and 35 °C). This data under realistic load conditions helps to 
more accurately model and verify battery behavior in applications such as electric vehicles. Such high-frequency data are 
precious for SOC and SOH modeling, estimation, and short and long-term prediction in multi-temperature natural 
environments. Kirkaldy et al. [82] studied the cyclic aging data of a commercial model 21,700 Li-ion battery (LG M50T, 
LG GBM50T2170) and its impact on the battery state (SOC and SOH) estimation. In the experiments, the battery was 
cycled in different SOC ranges (0–30%, 70–85%, 85–100%, 0–100%). The results show that batteries in the 70–85% SOC 
range age the slowest, while those in the extreme SOC range (0–30% and 85–100%) age the fastest. Through the cycle 
aging data, the capacity fade (CF) and resistance increase (RI) of the battery can be analyzed. The study also calculated 
the loss of active material (LAM) for the positive and negative electrodes and their active materials, such as graphite and 
silicon, and the loss of lithium inventory (LLI). These metrics can help to estimate the battery health status accurately. Taş 
et al. [83] developed a dataset for lithium polymer batteries containing current, voltage, and temperature parameters at 
different discharge levels. The research team used a CNN deep learning model for SOC estimation and studied their 
impact on SOC estimation accuracy by varying the network’s dense layers and batch size. The results show that more 
extensive dense layers and smaller batch sizes produce more minor errors in SOC estimation. Rashid et al. [84] 



introduced a method to rapidly estimate the SOH of Li-ion batteries using EIS and machine learning. It has been 
shown that the SOH of the battery can be quickly estimated by analyzing the EIS data. EIS data can provide detailed 
information about the internal state of the battery, especially impedance changes that are highly correlated with the health 
state of the battery. The influence of EIS test data under different SOC and temperature conditions on SOH 
estimation was also explored. Training machine learning models with data from various conditions can improve the 
adaptability and robustness of the model to uncertain factors in practical use. Tang et al. [85] proposed a 
transfer learning and machine learning method to generate high-quality battery aging datasets by combining 
industrial data with accelerated aging experimental data. This way, high-accuracy datasets with less than 1% error can 
be generated with up to 90% experimental time savings. These datasets can be used not only to train other data-
driven battery aging models but also for more complex application scenarios such as fault prediction, lifetime 
evaluation, fast charging optimization, and battery “second life” utilization.

Based on data‑driven algorithms

In recent years, many Li-ion battery experimental datasets have been developed to support data-driven algorithms. 
These advances indicate that data-driven approaches are becoming a critical technological pathway to enhance the 
performance of Li-ion battery management systems, extend battery life, and ensure battery safety. Table 6 lists a series of 
articles published in recent years on deep learning and machine learning applied to the field of Li-ion battery state 
estimation, respectively, in order to summarize and summarize the essential and prominent recent advances in this field. As 
shown in Table 6, for related algorithms based on the field of deep learning, including but not limited to deep CNN, 
LSTM, DNN, and their composite algorithms. For DNNs and their related extended composite algorithms, an 
innovative approach proposed by Kannan et al. [86] estimates the SOC of Li-ion batteries by combining DNN and 
time-series neural-based extended analysis (N-BEATS). The proposal of this novel hybrid architecture, which is targeted at 
improving the accuracy and reliability of SOC estimation for Li-ion batteries, along with experiments using low-cost 
microcontrollers, not only demonstrates the utility of the architecture but also shows the potential for application in 
resource-constrained environments. Considering the “black-box” nature of DNNs, the research could explore model 
interpretation methods to understand the model decision-making process better and improve user trust. Li et al. [87] 
proposed an algorithm that is an innovative hybrid model designed to accurately predict the RUL of Li-ion batteries. 
This model combines a Temporal Convolutional Network (TCN) [97], Gated Recurrent Unit (GRU), DNN, and Dual 
Attention Mechanism to significantly improve the prediction accuracy of the remaining useful life of Li-ion batteries. 
Introducing the feature and temporal attention mechanisms further enhances the model’s understanding of the battery 
performance degradation patterns, giving the model significant potential for application in battery health management and 
prediction. Considering the complexity and challenges of practical applications, future work requires further efforts to 
optimize the model performance, reduce the complexity, and improve the generalization ability. Chang et al. (2024) [88] 
proposed an electrochemical impedance spectroscopy (EIS) prediction method based on the Sparrow Search 
Algorithm Optimized Deep Neural Networks (SSA-DNN) by extracting features from the middle and high-frequency 
bands and predicting the more time-consuming middle and low-frequency bands, significantly reducing the overall 
measurement time. The prediction method is also used to estimate the SOH of the battery, showing the broad 
applicability of this EIS prediction method in various application scenarios based on EIS technology.

There has been a considerable accumulation of literature on LSTM algorithms in Li-ion battery state estimation, 
and many improved algorithms based on LSTM have appeared recently. Chen et al. [89] proposed an innovative 
LSTM-RNN model for SOC estimation of Li-ion batteries, which improves the accuracy and stability of 
SOC estimation by extending the input (EI) and limiting the output (CO) to improve the accuracy and stability of 
SOC estimation. This approach focuses on the significant fluctuations in the output SOC of a single network. It 
proposes a strategy that combines a slow variable (e.g., sliding average voltage) as the input to the network and 
restricts the variation in the output SOC of the network by an Ampere-hourly integration-based state-flow 
strategy to improve the performance of the SOC estimation. Xu et al. [16] introduced an improved SOH 
estimation method for Li-ion batteries based on a convolutional neural network and short-term memory model, with 
a core focus on ensuring the accuracy of the prediction through effective data feature extraction. The study 
proposes a feature selection method by removing useless features from the input data during the data 
preparation stage. In addition, Skip Connection was added to the CNN-LSTM model in the study to address the 
problem of neural network degradation caused by multi-layer LSTM. Although the model performs well on specific 
datasets, its ability to generalize to different types of batteries from different manufacturers needs to be further 
verified. Wang et al. [90] proposed a composite model (DRSN-CW-LSTM) based on deep residual shrinkage 
network (DRSN) and LSTM for the SOC and SOH joint prediction. For the DRSN-CW model, channel-specific



thresholds are introduced to achieve adaptive soft thresholding of data noise in the residual shrinkage layer, improving 
feature extraction accuracy. Combined with the LSTM model, the time-series features of the battery data are effectively 
captured, which improves the model’s ability to understand the trend of battery performance changes. Gao et al. [91] 
proposed a hybrid network model combining the Hierarchical Feature coupling Module (HFCM) and LSTM to 
improve the accuracy and versatility of Li-ion battery SOH estimation. The HFCM module extracts different semantic 
information from the original data through the deep feature extraction flow and the shallow feature extraction flow, 
which solves the problem of insufficient feature extraction of time series. The LSTM module effectively models time 
series information by introducing input gate, forget gate, and output gate, which overcomes the limitations of 
traditional RNN in dealing with long-term memory. The whole HFCM-LSTM network structure performs ini-tial 
data processing through the 1D-CNN module, cascades the HFCM and LSTM modules, and achieves high-
precision battery SOH estimation through the fully connected layer. Guo et al. [92] proposed a framework for 
predicting the health state of Li-ion batteries based on the complete integrated empirical modal decomposition 
(CEEMDAN) and LSTM neural networks. CEEMDAN decomposes the original battery capacity degradation curves to 
remove the high-frequency subsequences unrelated to the primary degradation trend and then predicts using 
bidirectional LSTM and LSTM network groups. Experimental results show that the framework can predict 
batteries’ SOH more accurately than previous mainstream methods.

Table 6  Based on the data-driven state estimation algorithm and its related references

Types of algorithms Specific algorithm name Relevant references and 
year of publication

Detailed description of the algorithm

Based on deep learning DNN-NBEATS Kannan et al. (2023) [86] A new hybrid architecture combining Deep Neural Network 
(DNN) and Neural Basis Expansion Analysis for Time 
Series (N-BEATS)

TCN-GRU-DNN Li et al. (2023) [87] A hybrid model based on temporal convolutional network 
(TCN)-gated recurrent unit (GRU)-deep neural network 
(DNN) and dual attention mechanism

SSA-DNN Chang et al. (2024) [88] A sparrow search algorithm optimized deep neural network 
(SSA-DNN)

LSTM-RNN Chen et al. (2023) [89] A novel long short-term memory recurrent neural network 
(LSTM-RNN) with extended input (EI) and constrained 
output (CO)

CNN-LSTM Xu et al. (2023) [16] The skip connection is added to the convolutional neural 
network-long short-term memory model

DRSN-CW-LSTM Wang et al. (2023) [90] A method is based on long-short-term memory (LSTM) and 
Deep Residual Shrinkage Networks with Channel-wise 
Thresholds (DRSN-CW)

HFCM-LSTM Gao et al. (2023) [91] 

Guo et al. (2024) [92]

A novel hybrid network, called HFCM (Hierarchical Feature 
Coupled Module)-LSTM (long-short-term memory)

A LSTM neural network with the complete ensemble empiri-
cal mode decomposition with adaptive noise

CEEMDAN-LSTM

Based on machine learning PSO-LS-SVM Zhou et al. (2024) [18] A combined data-driven modeling approach based on Least 
squares support vector machine based on particle swarm 
optimization and unscented Kalman filtering

WLS-SVM Xiong et al. (2023) [93] A method for early predicting Li-ion batteries cycle life based 
on weighted least squares support vector machine 
(WLS-SVM) with health indicators (HIs)

Chen et al. (2023) [94] A hybrid method based on artificial bee colony (ABC) algo-

Wu et al. (2023) [95]
rithm and multi-kernel support vector regression (MK-SVR) 

A Particle Swarm Optimization Random Forest (PSO-RF) 
prediction method

ABC-MK-SVR 

PSO-RF

EMD-VCR-GRU-

RF

Wang et al. (2024) [96] A method combining Empirical Modal Decomposition 
(EMD), Random Forest (RF) and Gated Recurrent Unit 
(GRU)



Machine learning-based algorithms mainly include SVM, decision trees and random forests, K-mean clustering and 
their composite algorithms, etc. In this paper, a series of literature on improved algorithms based on support vector 
machines and random forest algorithms for estimating the state of Li-ion batteries are listed in order to show the recent 
developments in this field. Zhou et al. [18] proposed a data-driven modeling method that combines the Least Squares 
Support Vector Machine (LS-SVM) and UKF data-driven modeling approach using LS-SVM to establish a nonlinear 
link between the current, voltage, and SOC. PSO is used to optimize LS-SVM parameters to improve the model’s 
accuracy for voltage estimation. Unscented Kalman filtering is used for SOC estimation using the state and 
measurement equations established by LS-SVM. Xiong et al. [93] proposed a method for early prediction of the cycle life 
of Li-ion batteries based on the Weighted Least Squares Support Vector Machine (WLS-SVM) algorithm. WLS-SVM 
improves the traditional SVM algorithm’s robustness and prediction accuracy when dealing with abnormal data. 
Although the area change of the battery’s voltage-capacity discharge curve ( ΔA10 − 100) was shown to have a strong 
correlation with the battery’s cycle life, this metric may not be the only or optimal health indicator, and other unconsidered 
metrics can be further considered in the future to provide more comprehensive or earlier information about the battery's 
health. Chen et al. 2024) [94] proposed a method based on the Artifcial Bee Colony (ABC) [98] algorithm and the Multi-
Kernel Support Vector Regression (MK-SVR) hybrid method for predicting the capacity degradation of Li-ion batteries. In 
the paper, the capacity degradation prediction model of Li-ion battery under diferent conditions is established by MK-SVR, 
and ABC optimizes the penalty factor and kernel function parameters of SVR to improve the efectiveness of SVR for Li-ion 
battery capacity degradation prediction. The acquisition and processing of real-time data and the practical feasibility of 
model updating and maintenance must be further explored in future work. Wu et al. [95] proposed a method to improve the 
accuracy of the RUL prediction of Li-ion batteries by constructing a particle swarm-optimized random forest (PSO-RF) 
algorithm. The PSO-RF model optimizes the tree in the random forest algorithm by optimizing the PSO-RF model solves 
the problem of parameter selection of the random forest algorithm by optimizing two parameters: the number of trees and 
the number of random features used for segmentation in the random forest algorithm, which improves the accuracy and 
robustness of the prediction. The study was compared with the traditional random forest and BP neural network algorithms, 
but the comparative analysis may need to be more comprehensive. Comparison with other advanced machine learning and 
deep learning methods, such as CNN and extended LSTM, which perform well in time series prediction, can also be 
considered. Wang et al. [96] proposed a combination of empirical modal decomposition (EMD) [99], random forests
combination of empirical modal decomposition (EMD) [99], random forests (RFs), and GRU for Li-ion battery SOH 
estimation method. The method starts by analyzing the time intervals between equal voltage increases and decreases of 
the battery as HIs. Then, it analyzes the correlation between these HIs and SOH using Pearson’s coefficient. 
Next, the battery SOH data were decomposed using EMD, and the variance contribution ratio (VCR) [100] was 
introduced to measure the relationship between the intrinsic modal function (IMF) [101] components and SOH. 
Ultimately, an EMD-VCR-GRU-RF-based SOH estimation model was developed. However, the construction and 
training of the model are still relatively complicated, and further simplification of the model structure is needed. In 
practical applications, real-time estimation of battery SOH is a crucial requirement. Future research can explore how to 
reduce the computation time and realize real-time or near real-time estimation of battery SOH.

Challenges faced by data-driven estimation methods based on data include data quality and availability, model 
interpretability, overfitting, and generalization ability. To improve the performance of estimation methods, 
common strategies include data preprocessing, feature engineering, model selection and tuning, and model fusion. 
In addition, with the rapid development of data science and artifcial intelligence technologies, new data-driven 
estimation methods and tools are emerging, providing more possibilities for solving practical problems.



Features Model-based approach Based on a data-driven approach

Usage scenario Initial stage, physical characteristics analysis, stable working 

Advantages
environment

Strong physical interpretation, versatility, high accuracy
Disadvantages High model complexity, poor real-time performance, and 

strong parameter dependence

Large-scale application, dynamic environment, rapid deploy-
ment

Strong adaptive ability, good real-time, high robustness
High data demand, poor interpretation, and risk of overfitting

Discussion

Selection principles for different methods

This paper focuses on the estimation of Li-ion battery SOC and SOH. Furthermore, it discusses the model-based and 
data-driven estimation methods. Model-based estimation algorithms are suitable for scenarios 
where some knowledge of the physical or chemical processes of the system is known. For example, in the state 
estimation of Li-ion batteries, equivalent circuit models (such as Thevenin model, 2RC model, and Randles 
model) and electrochemical models are often used. These methods use the understanding of the internal reactions of 
the battery, establish mathematical models, and combine the Kalman filter algorithm and its various improved 
algorithms to achieve state estimation. Data-driven methods are suitable for scenarios with a large 
amount of historical data but insufficient knowledge about the system’s internal processes. Data-driven 
approaches rely on machine learning and deep learning techniques to make predictions and estimates by learning 
patterns in the data. For example, the application of LSTM, SVR, DNN, etc., in SOC and SOH estimation 
of Li-ion batteries. Table 7 summarizes the advantages and disadvantages of model-based versus data-driven 
approaches.

Currently, the existing research mainly focuses on the state estimation of a single model, which uses 
equivalent circuit, electrochemical, machine learning, and neural network models separately. The advantages 
of different models are not thoroughly combined, which is also a challenge for the algorithm’s 
complexity. The choice of the state to be estimated is usually a single state or a joint estimation of two 
states. At the same time, the fusion of different state estimates is not tight in the design of the specific algorithm 
structure, and the known effective information is not maximized to improve the algorithm’s accuracy. It is also a 
challenge to design the model. It is challenging to fully use the existing technology to design a set of simple and accurate 
models for Li-ion battery state estimation.

Table 7  Comparison of model-based and data-driven approaches

Future research directions and challenges

Future research directions can be developed from the following perspectives. (a) Multi-state joint estimation method: 
Future research should pay more attention to the joint estimation of multi-states (such as SOC, SOH, and SOP). The 
accuracy of the overall estimation can be improved by considering the interrelations between multiple states. (b) 
Hybrid modeling approach: Combining model-based and data-driven approaches to form a hybrid modeling approach to 
leverage both strengths. For example, the equivalent circuit model is combined with deep learning algorithms to improve 
prediction accuracy through the structured information provided by the physical model and the nonlinear fitting ability of deep 
learning. (c) Advanced machine learning and deep learning techniques: Explore and apply new machine learning and deep 
learning algorithms, such as graph neural networks (GNNS) and variational autoencoders (VAE), to better capture the 
complex dynamic behavior and characteristics of batteries. (d) Application of big data and cloud computing: Big data 
technology and platforms process and analyze large-scale battery data to extract more valuable information and 
features for state estimation and prediction. Cloud computing can provide powerful resources and flexible data storage 
and processing capabilities. (e) Integration of smart sensors and Internet of Things technologies: Smart and Internet of 
Things technologies are integrated to realize real-time monitoring and remote management of battery status. With the 
high-frequency data collected by the sensor network, state estimation, and fault prediction can be performed more precisely.



While exploring more advanced algorithms, the following challenges may be faced. (a) Data quality and quantity: High-
quality and diverse data are the basis of data-driven methods. However, practical applications often face the problem of 
insufficient data and poor data quality. Data augmentation techniques and synthetic data generation methods must be 
developed to compensate for the lack of accurate data. (b) Model complexity and computational burden: As the 
complexity of the model increases, the computational burden increases significantly. Especially in real-time applications, it 
is necessary to balance accuracy and computational efficiency, which is one of the most urgent problems to solve. (c) 
Generalization ability and robustness of the model: The generalization ability and robustness of the model under 
different application scenarios and operating conditions is a significant challenge. There is a need to develop general 
models that can adapt to different battery types and working conditions while enhancing the robustness of the model to 
noise and abnormal data. (d) Complexity of battery degradation mechanism: The battery degradation mechanism is 
complex and variable, involving various physical and chemical processes. These mechanisms need to be studied and 
understood more deeply to improve the accuracy and reliability of the model. 

Conclusion

This paper focuses on the key challenges and advanced methods for state estimation of Li-ion batteries, 
especially for SOC and SOH estimation in battery management systems, and proposes a series of innovative 
strategies by comprehensively analyzing the limitations of current estimation techniques. These include data 
preprocessing, feature engineering, model selection and optimization, and model fusion techniques to improve 
the estimation performance. In this paper, the battery data are first analyzed in depth, and the critical roles of 
data preprocessing and feature engineering in state estimation are identified. The quality of model input data 
can be improved through preprocessing measures, such as outlier handling, data normalization, and feature 
selection and extraction, to provide a more accurate and stable basis for subsequent state estimation models. 
In particular, machine learning techniques can be employed simultaneously to identify and construct 
features that significantly impact state estimation, and these methods have shown significant results in 
improving estimation accuracy. During the model development phase, various statistical and machine learning 
models were considered to identify the most suitable algorithms for battery state estimation. The comparative 
analysis of different models’ performance reveals each model’s advantages and limitations in specific scenarios. It 
explores a series of model fusion strategies to combine the advantages of different models to improve the overall 
estimation accuracy and robustness. Considering the rapid development in data science and artificial 
intelligence, this study also explores the potential applications of these advanced techniques in Li-ion 
battery state estimation. We emphasize the importance of leveraging methods such as big data and deep learning 
to enhance the estimation methodology further and point out several directions to focus on in future research, 
including the development of more accurate electrochemical models, effective identification methods for model 
parameters, and the design of flexible hybrid estimation strategies. All in all, our research results contribute to 
advancing state estimation techniques for Li-ion batteries and provide a theoretical foundation and practical guidance 
for future research and applications in this field. 
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