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Abstract
Artificial intelligence (AI) has become increasingly important in geothermal
exploration, significantly improving the efficiency of resource identification. This
review examines current AI applications, focusing on the algorithms used, the
challenges addressed, and the opportunities created. In addition, the review
highlights the growth of machine learning applications in geothermal exploration
over the past decade, demonstrating how AI has improved the analysis of
subsurface data to identify potential resources. AI techniques such as neural
networks, support vector machines, and decision trees are used to estimate
subsurface temperatures, predict rock and fluid properties, and identify optimal
drilling locations. In particular, neural networks are the most widely used tech-
nique, further contributing to improved exploration efficiency. However, the
widespread adoption of AI in geothermal exploration is hindered by challenges,
such as data accessibility, data quality, and the need for tailored data science
training for industry professionals. Furthermore, the review emphasizes the
importance of data engineering methodologies, data scaling, and standardization
to enable the development of accurate and generalizable AI models for geo-
thermal exploration. It is concluded that the integration of AI into geothermal
exploration holds great promise for accelerating the development of geothermal
energy resources. By effectively addressing key challenges and leveraging
AI technologies, the geothermal industry can unlock cost‐effective and sustain-
able power generation opportunities.
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Highlights
• Progress in the use of Artificial intelligence (AI) methodologies is presented in
detail.

• Geophysical data analysis is the most notable AI application.
• Neural networks are the most‐used AI technique across geothermal exploration
groups.

• Challenges and recommendations for future research using AI are provided.
• Large‐scale AI applications are reasonably novel in geothermal exploration.

1 | INTRODUCTION

Geothermal energy is a renewable, sustainable, and low‐
emission energy source derived from the Earth's subsurface
layers through natural heat sources, such as rock forma-
tion and radioactive decay. It is used for heating, cooling,

and power generation due to its cost‐effectiveness, stable
supply, and high‐capacity factors throughout the year. The
development of power generation from hydrothermal
reservoirs started in 1913 and has since expanded to
include various technologies such as flash and dry steam
plants for high‐temperature resources and binary cycle
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technologies for medium‐temperature resources. Global
electricity generation from geothermal energy grew from
69.8GW·h in 2011 to 95.3GW·h in 2021, providing a sig-
nificant share of electricity demand in countries, such as El
Salvador, New Zealand, Kenya, and the Philippines, and
more than 90% of heating demand in Iceland (International
Renewable Energy Agency, 2023).

The development of geothermal energy takes place in
successive stages, starting with surface surveys, followed
by exploration drilling for resource realization. If the
resource is proven, delineation drilling follows to confirm
the extent of the reservoir's productivity and its devel-
opment plan. Production drilling and power plant con-
struction can commence once the resource has been
confirmed and financial viability has been established.
Preliminary studies, exploration, and delineation drilling
require significant investment and involve high financial
risk, which can hinder resource evaluation plans. For
example, in a recent appraisal study for geothermal
exploration in Indonesia, the World Bank estimated that
the predevelopment program would cost approximately
USD 30 million, assuming a minimum of three wells for
greenfield development and at least two wells producing
an acceptable level of steam for site exploration to pro-
vide satisfactory evidence or resource availability (The
World Bank, 2012). Figure 1 illustrates the geothermal
development project stages, the level of risk at each stage,
and the associated percentage of cumulative project cost
(Gehringer & Loksha, 2012; ©World Bank; The World
Bank et al., 2012).

Many countries are exploring hidden or blind geo-
thermal resources (hydrothermal resources without sur-
face manifestations), which require detailed knowledge of
subsurface features (including hydrological, geophysical,
geological, geomechanical, geochemical, and thermal
characteristics) to assess their commercial potential
(Pandey et al., 2018). Traditional methods of subsurface
feature analysis rely heavily on expert knowledge for

resource evaluation and reserve estimation, leading to
uncertainties in the discovery of hidden geothermal
resources. Advances in data‐driven models have led to the
use of artificial intelligence (AI) to replace traditional
expert‐based and statistical methods, where AI can
uncover hidden patterns and develop predictive models
from large multivariate datasets, thus enhancing explora-
tion outcomes by reducing uncertainty and improving
prediction accuracy. With the rapid increase in the cre-
ation of data repositories for the preservation, processing,
and management of subsurface data, data‐driven models
offer an efficient and cost‐effective approach to identifying
key features of hidden geothermal resources (He et al.,
2019). This supports resource evaluation, problem solving,
and decision‐making while reducing predevelopment costs
in the geothermal industry.

2 | REVIEW OF AI IMPLEMENTATION
IN GEOTHERMAL RESOURCE
EXPLORATION

Several reviews have been published on the use of AI in
geothermal applications (Aljubran et al., 2022; Liu &
Misra, 2022; Muther et al., 2022; Okoroafor et al., 2022;
Wang et al., 2023). However, the current review focuses
on the specific applications of AI in the resource ex-
ploration domain of the geothermal industry; such
information has not been detailed in any other published
review or article. Here, exploration is defined as any pro-
cess employed to discover geothermal potential before
confirmation as a commercial resource; this includes ex-
ploratory drilling for resource evaluation. In conducting the
current study, published articles were critically analyzed to
identify studies applying AI to geothermal exploration.
Consequently, the specific applications of AI in geothermal
exploration were summarized and the potential benefits and
challenges of using AI in this field were highlighted.

FIGURE 1 Geothermal development project cost and risk profile throughout various project stages (Gehringer & Loksha, 2012; The World
Bank et al., 2012; reproduced under the terms of the CC BY 3.0 IGO copyright licenses, ©World Bank).
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The reviewed publications on the application of AI were
classified into six subsections: (1) play fairway analysis
(PFA), (2) integrated subsurface data set applications,
(3) specific geochemical data applications, (4) specific geo-
physical data applications, (5) thermal data applications,
and (6) other data applications. These six subsections pro-
vided a systematic approach to understanding the different
AI applications in geothermal exploration. The application
of each was critically evaluated and is presented in detail in
the following subsections.

2.1 | PFA applications

PFA is a regional evaluation approach used to define
geothermal potential by integrating geological, geo-
physical, and geochemical parameters indicative of geo-
thermal activity (Faulds et al., 2017). These parameters
are divided into subsets and assigned specific weights to
provide rankings that collectively constitute the geo-
thermal play.

The original Nevada geothermal fairway defined by
Faulds et al. (2015, 2018, 2019, 2021) included subsurface
features associated with geothermal activity. The features
were linked by multiplying each by a unique “weight”
and then combining the weighted parameters in a linear
sum to produce the fairway; a value scaled to represent

the degree of geothermal potential. Due to recognized
limitations in the data and the limited training sites, the
study included expert opinion, and a machine learning
(ML) approach including logistic regression (LR), weight
of evidence, and other statistical metrics (Faulds et al.,
2017). The fairway helped to locate at least two blind
geothermal systems; however, it faced several limitations,
including the limited number of training sites, certain
data set limitations, and the need to determine the
influence weights of features. Figure 2 illustrates the
modeling workflow used to identify the Nevada play
fairway. Relative weights are determined by the weights
of the evidence method and are shown in red, while
expert‐driven weights are shown in black.

In 2020, Faulds et al. (2020) used advanced AI
methods (such as artificial neural networks [ANNs] and
training set augmentation) to address the fundamental
problems associated with the Nevada play fairway
project. In their ongoing project, ML techniques are
applied to enhanced datasets of the original fairway,
and a modified PFA workflow is used to incorporate
newly added datasets. Their project are aimed to develop
an algorithm‐based approach that learns to estimate the
influence weights for various parameters and minimizes
the expert‐driven inputs, to identify undeveloped geo-
thermal sites in the Great Basin region and investigate
the implementation of ML principles in geothermal

FIGURE 2 Nevada play fairway modeling workflow (Faulds et al., 2017; permission obtained© J.E. Faulds, all rights reserved).
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potential assessments, in addition to introducing ground‐
breaking aspects to the process of identifying previously
undiscovered blind geothermal systems by determining
new signatures.

In the framework of Nevada PFA, Smith et al. (2021)
used a combination of supervised and unsupervised ML
approaches to assess the impact of specific geological and
geophysical features in predicting geothermal potential
and discovered new methods to empirically structure
correlations between feature weights and labels in an
improved manner. First, a permutation‐supervised filter
model was developed to discover feature dependencies in
the positive and negative categorizations of training and
test data. Second, the unsupervised principal component
analysis (PCA) method was used to select the most rel-
evant features for the favorability analysis. The reduced
data set was then clustered using the semi‐supervised k‐
means algorithm to detect geographic patterns in the
data. The results indicated potential means of uncovering
favorable sources of predictive information to locate
blind geothermal systems and improve knowledge of
complex geothermal feature‐label relationships in the
Great Basin area and beyond.

There are benchmarks (such as an existing power
plant or conclusive positive or negative drilling results)
in certain geographical areas where geothermal poten-
tial is known. Using the known benchmarks in Nevada
and Nevada PFA data, Brown et al. (2020, 2022)
interpreted the original and enhanced PFA datasets,
added new datasets in a form suitable for ML algo-
rithms, and explored a variety of ANN architectures to
predict geothermal potential as a probability map. A
supervised ML approach was applied to a series of maps
based on 10 geological and geophysical features that
were used to categorize geographical regions as either
positive or negative resources. The training data set
contained 83 positive sites from known geothermal
systems (subsurface temperature ≥39°C) and 62 negative
sites from wells with a negative geothermal potential,
the majority of which were from deep oil and gas ex-
ploration wells. These positive and negative sites were
combined to form the “labels” that were used to train
and improve various ANN models including Bayesian
neural networks (BNNs). The authors concluded that
the Bayesian NN can predict geothermal resource
potential and provide measures of confidence and reli-
ability. The main challenges encountered throughout
the study were the small size and possible imbalance of
the training set, the diverse data types (a mixture of
categorical and numerical data), and the complicated
feature‐label relationships.

Vesselinov et al. (2020) combined data from three
previous PFA studies in Southwest New Mexico
(SWNM), an area of known geothermal resources, to
generate a data set containing 42 geological, geophysical,
geochemical, and geothermal attributes at 207 locations.
They then applied an unsupervised ML framework, the
non‐negative matrix factorization with a customized k‐
means clustering (NMF k) SmartTensors tool, developed
by the Los Alamos National Laboratory (LANL), to the
combined data set. Nonnegative matrix factorization
splits the main data matrix into two smaller matrices

representing hidden data structures, known as the sig-
nature and mixing matrices, while k‐means clustering
determines the optimal number of signatures. According
to the authors, NMF k has important advantages over
PCA, singular value decomposition, and independent
component analysis (ICA) methods because it can deal
with true and categorical variables as well as sparse da-
tasets with large amounts of missing data. The analysis
showed that NMF k found hidden structures in the data
and revealed the optimal signal numbers. The study
concluded that the main parameters characterizing
SWNM geothermal systems include quartz water vapor
temperature at 2 m depth; temperature at 250 m depth;
silica (SiO2); Calcium (Ca); Sulfate (SO4); Sodium (Na);
Na/Ca/K, Na/K, and Potassium/Magnesium (K/Mg)
geothermometers; and bottom‐hole temperature (BHT).

Holmes and Fournier (2022) suggested a new method
for extending the use of ML in PFA predictions with
uncertainty estimates. Normalized Shannon entropy was
employed as the uncertainty metric to evaluate three
sources of uncertainty: model representation, model
parameterization, and feature interpolation. Four ML
algorithms––LR, decision trees (DT), extreme gradient
boosting (XGB), and ANN––were evaluated and trained
to assess the potential of subsurface enthalpy resources
in a research area with known geothermal resources
in SWNM. The advanced XGB and ANN models out-
performed the simpler LR and DT models for all geo-
thermal gradient classes. This research identified con-
tinuous enthalpy trends hidden in a high‐dimensional
feature set and effectively generated geothermal gradient
classification maps from four independent ML algo-
rithms and a weighted ensemble model that showed a
higher overall predictive ability. The ensemble also out-
performed standard interpolation techniques that rely
only on spatial patterns for prediction.

In summary, PFA seeks to increase the success rate of
geothermal exploration by integrating the geological,
geophysical, and geochemical parameters indicative of
geothermal activity. When integrated with AI‐based
algorithms, PFA can identify signatures that lead to
the location of hidden geothermal systems and improve
the knowledge of complex geothermal feature‐label
relationships to predict resource potential and provide
measures of confidence and reliability. However, the
limitations of PFA include the need for extensive and
costly diverse surface and subsurface data types that
are not always available during the early stages of geo-
thermal exploration. In addition, a significant amount of
training data is required to replace expert knowledge in
determining the influence weights of features for future
applications.

2.2 | Integrated subsurface data set
applications

Expert knowledge has been incorporated into the widely
used PFA technique to analyze complex geological,
geophysical, hydrochemical, and thermal datasets and
the findings are combined to produce probabilistic
predictions of geothermal resource prospectivity.
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Researchers have used recent advances in ML on inte-
grated subsurface datasets to provide an alternative
approach to performing PFA by simultaneously pro-
cessing integrated datasets to produce predictive results.

To analyze various datasets and effectively guide
geothermal research and development, LANL created an
open‐source tool called GeoThermalCloud (GTC),
which uses unsupervised and physics‐informed ML al-
gorithms. Vesselinov et al. (2022) used GTC and re-
viewed multiple geothermal datasets with promising
results. This review included: (1) analyzing 18 data at-
tributes at 44 SWNM sites, identifying low‐ and medium‐
temperature hydrothermal systems, determining promi-
nent attributes and the spatial distribution of extracted
hidden hydrothermal signatures, and proving blind pre-
dictions of regional physiographic regions; (2) analyzing
18 geochemical and thermal attributes with sparse da-
tasets at 14 341 Great Basin locations and extracting
hidden geothermal signatures associated with low‐,
medium‐, and high‐temperature geothermal systems,
their main characterizing features, and their spatial dis-
tribution within the study area; (3) identifying key geo-
logical factors controlling geothermal production in the
Brady Geothermal Field, Nevada; (4) investigating 19
geothermal attributes in 41 wells at Tohatchi Springs,
New Mexico; (5) analyzing data attributes from four
different Hawaiian islands separately and jointly and
identifying low‐, intermediate‐, and high‐temperature
geothermal systems and their main characterizing fea-
tures; and (6) performing prospectivity analysis to iden-
tify future drilling locations using 22 data attributes at
102 locations at the Utah FORGE site. The authors
concluded that GTC ML techniques were validated with
various datasets and were capable of producing pro-
spectivity maps with favorable drilling areas for future
geothermal exploration.

Mudunuru et al. (2022) also used GTC and proposed
an enhanced PFA using ML. In their model, ML was
applied throughout the PFA process, which helped to
find hidden signatures from the filtered data and uncover
physical information from site‐specific workflows. In this
model, GTC extracted critical geothermal signals, which
were then analyzed by subject matter experts for effective
blind geothermal discovery.

Meshalkin et al. (2020) and Shakirov et al. (2021)
applied ML to an integrated subsurface data set from well
log data to predict rock thermal conductivity (TC) and
support geothermal exploration and enhanced oil recovery
applications, which rely heavily on understanding the
process of heat transfer within a reservoir. The data set
featured the reservoir rock lithology, physical rock prop-
erties (porosity, mineralogy, and cementation degree), in
situ pressure, and temperature. Meshalkin developed and
evaluated eight regression models using well logs and core
sample data from a heavy oil reservoir to characterize and
predict vertical changes in rock TC. Among the ML
methods, the random forest (RF) approach most accu-
rately predicted rock TC from well logs. The research
tabulated the coefficient of determination (R2), root mean
square error (RMSE), random error, and systematic error
evaluation metrics of the eight regression models, and the
results showed that when using RF, TC was determined

with a total relative error of 12.54% compared to the ex-
perimental data.

Shakirov proposed and evaluated an improved
approach for estimating TC and the volumetric heat
capacity (VHC) from well data. This approach used three
alternative theoretical models incorporating correction
factors to determine rock TC, as well as advanced
regression analysis to predict the thermal properties of
subsurface rocks. The proposed method was evaluated
using experimental data (thermal core log and well log
data) from five drilled wells. The estimation of TC from
well log data was achieved with uncertainty of less than
12% for TC parallel to the bedding plane and 15% for TC
perpendicular to the bedding plane. In addition, rock
VHC was estimated from well‐log data with uncertainty
under 5%. These applied case studies demonstrated that
well‐log‐based estimates using the ML approach were
more accurate than the theoretical model predictions.

Sadeghi and Khalajmasoumi (2015) assessed the
geothermal potential of northwestern Iran (East Azer-
baijan Province) by combining data on volcanic and
intrusive rocks, volcanoes, geochemical parameters,
faults, and fractures using fuzzy logic approaches with a
binary index overlay in a Geographic Information Sys-
tems (GIS) framework. The integration of the informa-
tion layers resulted in a conceptual model that identifies
the relationship between information layers and targets.
The authors compared all the approaches and the
weighted index overlay proved to be the best approach,
and therefore its use may be beneficial in future assess-
ments, particularly when the number of information
layers is insufficient. Their research indicated that the
central part of the study area has the greatest potential
for future geothermal exploration; however, an increase
in the number of detailed information layers at larger
scales is required to provide more information for
exploration.

In summary, by simultaneously processing integrated
geological, geophysical, geochemical, and thermal data-
sets, recent advances in ML have provided an alternative
approach to conducting PFA and predicting subsurface
thermal properties, and predictive results have been
obtained that effectively guide geothermal research and
development. However, this approach requires a signifi-
cant amount of available data, and therefore significant
upfront investment. In addition, this type of analysis
requires expertise in data realization and interpretation
to develop robust and efficient data‐driven predictive
models.

2.3 | Geochemical data applications

Groundwater chemistry (geochemistry) data are often
used in the early stages of geothermal exploration
because groundwater samples are typically less expensive
to obtain and are more widely available than other
geothermal data. The geochemical analysis provides
useful information about hydrogeological processes,
groundwater types, heat sources, recharge conditions,
flow patterns, hydrogeochemical interactions between
water and the host rock, and geothermal characteristics
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of the reservoir (such as reservoir temperature, heat
flow, boundary conditions, and the geographical extent).
Geochemical data include aqueous species, major cat-
ions, anions, isotopes, geothermometry, and tracer ele-
ments. Chemical, gas, and/or isotope geothermometers
are used to calculate the subsurface reservoir temperature
using empirical formulae based on the chemical compo-
sition of water/gas samples. However, geothermometers'
use is limited because they assume an overall chemical
equilibrium between the fluid and reservoir rock, whereas
fluid re‐equilibration can occur during migration to the
surface. Other limitations include limited spatial cover-
age, microbial effects, and correction for total
silica composition. These can lead to large uncertainties
when determining the reservoir temperature. To this end,
researchers have used AI to solve the current limitations
of conventional geothermometers.

2.3.1 | Enhanced Na/K geothermometers

Ferhat Bayram (2001) developed new equations for the
Na/K chemical geothermometer using a simple ANN
with two input layers (Na, K), two hidden layers, and
an output layer (reservoir temperature). The ANN was
trained using multilayer perceptrons (MLP) and back-
propagation, which are widely used in ANN classifica-
tion, with 600 reservoir temperature training data
derived from the outputs of six known geothermometers
and synthetic Na/K data (Na given different values
between 200 and 2000mg/L, while K was kept constant
at 20, 60, 80, 100, 120, 140, 180 and 200 mg/L for each
calculation). However, the ANN model overestimated
the subsurface temperature when compared with the
actual temperature measurements from 20 geothermal
fields in Turkey.

In a similar approach, Can (2002) used an ANN
architecture with two input layers, a hidden layer, and
an output layer to develop a new Na/K chemical geo-
thermometer for estimating the subsurface temperature
of geothermal reservoirs. The model was trained using
the error backpropagation method to obtain the optimal
network weight values, using 39 geothermal well data
from worldwide locations with temperatures ranging
from 94 to 345°C. The new geothermometer provided
competent subsurface temperature predictions compared
to recorded BHTs and had the lowest normalized mean
square error value. However, as the developed geo-
thermometer was derived on a purely empirical basis, the
author advised that it should not be used outside the
calibration range.

Similarly, Diaz‐Gonzalez et al. (2008) developed three
novel Na/K geothermometers, with two obtained using the
ANN technique and the third obtained using the linear
regression method. In the first geothermometer, the ANN
design was trained using 212 actual reservoir temperature
data collected from several geothermal fields worldwide as
the input layer neurons. Backpropagation training was
performed using a linear activation function, taking
advantage of the linear nature of the Na/K geotherm-
ometer. The second geothermometer was trained via back-
propagation using a time‐tangent hyperbolic activation

function. According to the results, the new geotherm-
ometers consistently provided deep equilibrium temperature
estimates (for temperatures over 160°C) that were more
accurate and consistent than those derived from traditional
geothermometer equations mentioned in the literature.

Serpen et al. (2009) introduced a novel ANN‐based
Na/K geothermometer, adapted from the work of Ferhat
Bayram (2001), Can (2002), and Diaz‐Gonzalez et al.
(2008), using the same 212 actual reservoir temperature
data as training data, with Na and K measurements used
as inputs and geothermometer temperatures used as
outputs. Instead of backpropagation, a multilayer feed-
forward NN (FNN) was trained using a genetic algo-
rithm to optimize the weights of the hidden layer neurons
and a linear regression algorithm to optimize the weights
of the output neurons. The model was evaluated suc-
cessfully and demonstrated a deviation of approximately
10% when compared with actual subsurface temperature
measurements. The results also suggested that additional
reliable data are required to obtain a Na/K geotherm-
ometer with a good temperature prediction capability
below 160°C, as the available training data set was lim-
ited in size.

2.3.2 | Enhanced gas geothermometers

To predict subsurface reservoir temperatures, Perez‐Zarate
et al. (2019) used a three‐layer FNN, with four variables in
the input layer, eight neurons for the hidden layer, and one
neuron for the output layer, to perform a multivariate
analysis of the gas phase composition of geothermal fluids.
They collected gas phase fluid compositions and downhole
temperature measurements from published literature and
created a new database consisting of 591 samples from 149
production wells worldwide. The principal gas phase com-
positions of CO2, H2S, CH4, and H2 were specified as in-
puts, and the recorded downhole temperatures were used as
output variables. Thus, 455 ANN architectures were suc-
cessfully tested, and a sensitivity analysis was performed
to identify the relationship between input factors and
results. A robust ANN modeling technique involving three
functional geochemical sub‐databases was successfully im-
plemented, and six ANN architectures emerged as the best
tools for estimating subsurface temperatures based on sta-
tistical parameter estimation (with error percentage differ-
ences ranging from 2% to 11%). The best ANN architecture
had three variables in the input layer, eight neurons in the
hidden layer, and one neuron in the output layer. According
to the authors, the results support the possibility of using
an ANN for gas geothermometry to estimate subsurface
temperatures.

Acevedo‐Anicasio et al. (2021) developed eight new
gas geothermometers using an ANN and an analytical
computer program (GaS_GeoT) to evaluate the reli-
ability of predicting subsurface temperatures. For the
first time, a geochemometric study based on multi‐
criteria decision analysis was used to determine the best
ANN for geothermal reservoir temperature prediction.
The database of 591 geochemical samples of Perez‐
Zarate et al. (2019) was used to evaluate the predictive
effectiveness of new gas geothermometers in geothermal
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fields. The prediction accuracies of these geotherm-
ometers were then compared with those of 25 other gas
geothermometers currently in use. Figure 3 illustrates the
workflow of the proposed model. The eight new gas
geothermometers provided accurate reservoir tempera-
ture predictions for fluid‐dominated reservoirs, and two
of the eight provided accurate predictions for steam‐
dominated reservoirs. The results suggest that the deve-
loped gas geothermometers and the GaS_GeoT program
can be used as geothermometric tools for accurate res-
ervoir temperature estimation.

2.3.3 | Novel chemical geothermometers

Haklidir and Haklidir (2019) generated a geochemical data
set from up to 83 thermal springs in Western Anatolia,

Turkey, which represented relatively high‐, medium‐, and
low‐temperature geothermal systems. Critical hydro-
geochemical indicators were selected, including the reser-
voir temperature, pH, electrical conductivity (EC), and Na,
K, SiO2, chloride (Cl), and boron (B) concentrations
for each spring. Using the geochemical data set, the
authors predicted subsurface reservoir temperatures using
various ML methods, including support vector machines
(SVMs), k‐nearest neighbors (KNNs), and deep NNs
(DNNs). They aimed to identify the algorithm with the
lowest RMSE and mean absolute error (MAE), and the
DNN approach produced the least errors and the most
accurate reservoir temperature predictions when numeri-
cally compared with the actual temperature data. How-
ever, owing to limited hydrogeochemical data, they
assumed that all the data provided were valid for con-
ducting temperature estimations. The study also showed

FIGURE 3 Schematic flow diagram showing the work methodology used in the study of Acevedo‐Anicasio et al. (2021). (Reproduced under the
terms of the Creative Commons Attribution (CC BY 4.0) license).
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that when the data quality and quantity are increased, the
accuracy and reliability of the estimates are also increased.

When applying AI to estimate subsurface reservoir
temperatures, large amounts of geochemical data are
required as training samples. However, data are limited for
some geothermal sites. In this respect, Yang et al. (2022)
proposed a new approach to train five ANN architectures
with varied hidden layers to estimate reservoir temperature
in the absence of training data. A numerical simulation of
water–rock interaction was used to generate a geochemical
and thermal data set for the Lindian geothermal field in
China, which was used as training data, while 29 hot water
samples and temperature log data from 11 geothermal wells
in the same field were used as test data. The results were
then correlated with conventional geothermometric calcu-
lations, and the prediction error of the ANN was found to
be the lowest, followed by that of the Na/K geotherm-
ometer. In contrast, the prediction errors of the chalcedony
geothermometer and integrated multicomponent geother-
mometry methods were the highest. The authors suggest
that ANNs provide accurate reservoir temperature esti-
mates, but only when there is a high degree of water‐rock
interface and no other complicated activities are involved,
otherwise, the ANN‐based technique is not valid and needs
to be improved.

The Great Basin is the largest contiguous endorheic
watershed region in the western United States, and it con-
tains many geothermal reservoirs ranging from low‐ to high‐
temperature resources. Ahmmed et al. (2020) characterized
the geochemical features of geothermal resources in the
Great Basin by analyzing 15 geochemical attributes at
14 341 locations. Three temperature‐constrained datasets
were generated, and an unsupervised NMF k approach was
applied to each data set; hidden signals were discovered that
were indicative of hidden geothermal resources. The results
showed that most of the major cations/anions were related
to low‐temperature geothermal resources, whereas fewer
were related to medium‐temperature geothermal resources.
This research also suggested that tracer elements were key
features to consider when characterizing high‐temperature
geothermal resources.

In summary, geochemical analysis is a cost‐effective
and noninvasive method for estimating subsurface reser-
voir temperatures in the initial phases of geothermal
resource evaluation. However, geochemical analysis can
limit the accuracy of temperature prediction because tra-
ditional geothermometers rely on certain assumptions
about the composition of the geothermal fluid and reser-
voir conditions, which may not always be accurate. The
main challenge in integrating AI models with geochemical
datasets for reservoir temperature prediction is the lack of
appropriate training data, which can lead to prediction
uncertainty. Therefore, to improve the accuracy of sub-
surface temperature predictions, combining geochemical
analysis with other methods, such as geophysical analysis,
may be necessary.

2.4 | Geophysical data applications

Geophysical data is widely used in geothermal exploration
to help scientists characterize the geology and structure of

the subsurface and identify hidden geothermal resources.
Electromagnetic (EM), magnetotelluric (MT), and seismic
surveys, as well as remote sensing (RS), are the most com-
monly used geophysical techniques in geothermal explora-
tion. Both EM and MT are used to investigate rock resis-
tivity; however, the main difference between MT and EM
surveys is that MT uses naturally occurring electromagnetic
fields whereas EM uses artificial, controlled sources to probe
the Earth's subsurface and map its electrical conductivity
structure.

Rock resistivity and subsurface reservoir temperature
have a strong relationship because they are influenced by
the same parameters, such as porosity, permeability, and
fluid salinity. The resistivity of rocks containing water as
a pore fluid often decreases with increasing temperature
because temperature tends to reduce the viscosity of pore
fluids. Researchers used the pattern of resistivity change
with temperature to train data‐driven algorithms for es-
timating the subsurface temperature.

2.4.1 | Electromagnetic survey applications

Spichak and Zakharova (2009a) developed a novel
method to estimate subsurface temperatures at depth
using an indirect EM geothermometer. This method relies
on an ANN architecture, which does not require prior
knowledge of electrical conductivity mechanisms and
provides temperature predictions based on an analysis of
indirect conductivity–temperature relationships. Their
method has been applied in different geological environ-
ments, such as in Tien Shan, Kyrgyzstan (Spichak et al.,
2011); Soultz‐sous‐Forêts, France (Spichak et al., 2010);
and Hengill, Iceland (Spichak & Zakharova, 2009b).
Using the indirect EM geothermometer, four factors were
found to influence temperature estimation errors: faulting,
distance between the EM position and the predicted
temperature location, meteoric and groundwater flow,
and horizontal geological inhomogeneity. The results
showed that the distance between the EM site and the
wellbore and the ratio of the wellbore length to the ex-
trapolation depth determined the temperature extrapola-
tion accuracy. The application showed that the use of an
indirect EM geothermometer allows correct temperature
estimates to be made at depths beyond those of the
boreholes for which temperature data are available. In
particular, the relative error of extrapolation to a depth of
twice the total borehole depth did not exceed 5% on
average, and the error at three times the depth was
approximately 20%. The indirect EM geothermometer
was used to reconstruct the two‐ and three‐dimensional
(3D) temperature models of the study areas using EM
sounding data, allowing important conclusions to be
drawn about the dominant heat transfer processes, fluid
circulation pathways, and new drilling locations.

Ishitsuka et al. (2018) observed that despite the suc-
cessful application of the indirect EM geothermometer
developed by Spichak and Zakharova, the estimation er-
ror increased with increasing distance from the recorded
temperature logs. In an attempt to reduce the estimation
error in their study, the authors used a neural kriging
(NK) method to predict subsurface temperature patterns
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from the resistivity and temperature data of seven drilled
wells in the Kakkonda geothermal field in northern Japan.
Kriging was incorporated into the NN, and a variogram
was used to improve the NN design. The study showed
that the use of NK reduced both estimation and vario-
gram errors better than the standard NN method, due to
the fact that NK takes into account the spatial correlation
of temperature. The temperature distribution predicted by
NK is consistent with previous findings, and the results
show that NK is effective in estimating temperatures from
resistivity data.

Namaswa et al. (2021) developed a data‐driven ML
model to predict reservoir temperatures using 297 data
samples of recorded EM resistivity and associated sub-
surface temperature measurements from the Olkaria
Domes geothermal field in Kenya. The regression tech-
niques used were decision tree regression (DTR), adaptive
boosting, RF, and support vector regression (SVR).
The R2 and MAE metrics were used to assess the per-
formance of the models, and the DTR algorithm proved
to be the optimal model for predicting subsurface tem-
peratures (R2 = 0.81 and MAE= 29.8) based on the per-
formance scores. The authors concluded that the DTR
algorithm could be used to determine the subsurface
temperature from the resistivity in high‐temperature
hydrothermal fields.

2.4.2 | Magnetotellurics survey applications

Akpan et al. (2014) used a shallow NN consisting of five
inputs, two hidden layers, and one output layer, with
limited volume MT‐derived electrical resistivity records
and 203 borehole temperature logs from the Tattapani
geothermal field in central India as inputs to estimate
subsurface temperatures. The data set was divided into
a training and a test set (61% training and 39% test).
Conventional statistical techniques (including the
adjusted coefficient of determination, relative error,
absolute average deviation, RMSE, and regression
analysis) were used to evaluate the performance of the
network. The study concluded that the developed net-
work was structurally flexible and could be used to esti-
mate subsurface temperatures despite the modest data
size used to train the network.

Maryadia and Mizunaga (2022) used the ANN
methods originally proposed by Spichak and Zakharova
(2009a) and Akpan et al. (2014) in a geothermal field in
Japan to outline the subsurface temperature distribution
in the area and analyze the capacity of the ANN method
in a new location with different geological conditions. In
contrast with previous studies, the subsurface resistivity
profile used in their investigation was generated using
audio‐MT (AMT) soundings rather than classical MT,
because AMT is better at reproducing the shallow sub-
surface resistivity structure. The NN temperature profiles
matched those measured from the surrounding bore-
holes, thereby providing a satisfactory assessment of the
predictive capabilities of the model. Both resistivity and
temperature anomalies showed good agreement, indi-
cating the presence of subsurface anomalies, such as al-
tered layers, reservoir zones, and probable faults. The

authors concluded that the use of indirect geotherm-
ometers based on calibrated AMT survey data can help
to reduce the cost of subsurface temperature estimation
when a suitable training method is used. However,
because of the complexity of the subsurface structure, the
optimal NN model may differ from that used in their
study. This method therefore requires testing in more
locations to confirm its predictive accuracy. In addition,
further data attributes, such as alteration intensity and/or
hydrothermal minerals, could improve the accuracy of
this estimation technique.

Sutarmin and Daud (2021) investigated the correlation
between borehole temperature data and 3D inversion MT
resistivity values to obtain reliable interpretation results.
Borehole temperature records linked to resistivity values
were used to predict temperature spread using an NN. The
coordinates of the borehole location, resistivity gradient,
and resistivity values of the target temperature at that
location were used to create the vector, and the weights
from NN training were employed to determine the tem-
perature of the upcoming drill location (temperature vs.
depth analysis). During training, the best MT readings
close to the borehole were used so that the weight value
represented the geothermal field. The weight of the NN
was employed to estimate the temperature in 3D to pro-
vide the temperature distribution across the geothermal
field. Together with other geophysical data, the results of
NN 3D temperature modeling can be employed as a
drilling guideline because they help to determine the flow
area (the target area) and the outflow, thereby minimizing
risks associated with geothermal development. Figure 4
shows the 200°C isothermal line from the NN predictions
and the best of conductor (BOC) line from the 3D MT
inversion data; the BOC and 200°C isothermal trend lines
are similar. The architecture of the NN design has a sig-
nificant influence on the prediction results; therefore, to
select the optimal network for temperature prediction, the
number of layers and neurons with significant variations
must be determined.

Bayesian frameworks have been instrumental in
quantifying and reducing uncertainty when modeling
multiple data sets for predicting shallow features in
geothermal fields. Most Bayesian frameworks incorpo-
rate a geophysical/thermal model to connect geophysical
measurements to temperatures; they also allow the
inclusion of different geological properties. Using the
simulation results of a numerical reservoir model incor-
porating MT‐derived resistivity, temperature records,
and the geological boundary of the Kakkonda geo-
thermal field in Japan, Ishitsuka et al. (2021) evaluated
an NN technique with a Bayesian estimation method to
estimate the subsurface temperature distribution. The
study determined that both Bayesian estimation and NN
methods provided subsurface temperature predictions
compatible with temperature distributions produced by
numerical models. Still, when considering the number of
wells (25, 50, and 100), the Bayesian estimation method
was more robust than the NN method. The Bayesian
method also assesses parameters and estimation uncer-
tainty. However, the NN method provides superior es-
timations of complicated temperature patterns with
fewer/simpler assumptions.
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In late 2021, Ishitsuka et al. (2022) improved the
previously proposed Bayesian rock physics model to
include temperature, effective porosity, and salinity at
depth. In particular, they investigated the spatial conti-
nuity of temperature and explored a novel scenario where
pore‐fluid salinity was considered as a variable. When
applying the model to the Kakkonda geothermal field data,
the estimated temperatures were consistent with the sub-
surface temperature records, supporting the geological
hypothesis that Kakkonda granite is a heat source rock.
The two examples analyzed showed remaining uncertainties
depending on the geological context, namely effective
porosity and the salinity distribution. However, the results
indicated the presence of a magmatic‐hydrothermal setting
at depth. The authors found that Bayesian rock physics
modeling was useful for predicting temperatures and con-
straining effective porosity and salinity distributions, even
with limited data.

Hokstad and Tanavsuu‐Milkeviciene (2017) used
multi‐geophysical inversion methods followed by a
Bayesian framework to estimate the subsurface tem-
perature of the Iceland Deep Drilling Project in Rey-
kjanes. In this project, the formation temperature of the
drilling target was estimated using electrical resistivity
from MT inversion and density from gravity inversion.
The temperature estimate was then updated, and a
geological model was built using resistivity logs and
core samples collected during drilling. The Bayesian
network represented the temperature dependence of the
geophysical model parameters. Various rock physics
relationships provided the first set of dependencies,
whereas differential equations (such as Maxwell's
equations of electromagnetism, Newton's law of gravity,
and the elastic wave equation) provided the second set
of dependencies. Resistivity log updates during drilling
indicated that the formation temperature was most
likely above the model temperature estimate. The well
was then drilled to a depth of approximately 4500 m,
and core samples were collected at various depths. The
model temperature estimates were found to be within
the temperature ranges suggested by the alteration of
minerals in the cores and the changes in rock properties.

This proposed approach was only calibrated and vali-
dated for mid‐ocean‐ridge basalts; it is thus necessary to
recalibrate the rock physics models used in inversion
when applying it in other geological settings.

2.4.3 | Seismic survey applications

Seismic images provide important geological information
on subsurface structure, stratigraphy, and reservoir
properties. This information, including the fault/fracture
zones, is critical to understanding the stress field and
potential fluid flow paths for geothermal permeability
evaluation. Researchers are using ML techniques to
interpret seismic data in complex geological environ-
ments where traditional methods struggle to detect
patterns and indicators of geothermal activity.

The conventional double‐beam fracture characteri-
zation method only provides information on the fracture
characteristics around a target, such as the fracture
direction, density, and compliance. The discrete fracture
network, which is almost invisible in conventional seis-
mic migration images, was mapped onto the data by
Zheng et al. (2021) using the double‐beam NN (DBNN)
model, an image‐to‐image learning technique. The au-
thors used a synthetic seismic data set to construct a
subsurface model that included small‐scale fractures
within the Soda Lake geothermal field in the United
States. The study showed that the DBNN model accu-
rately predicted the number of fracture sets and the ori-
entation of the fractures. Errors in the DBNN fracture
location were within 5 m using 60Hz P‐wave data for
targets at a depth of approximately 300 m.

Gao et al. (2021) also produced high‐resolution fault
maps for the Soda Lake geothermal field using seismic
imagery and a novel ML‐based fault detection method
based on a multiscale connection‐fusion U‐shaped (MCFU)
convolutional NNs (CNN). The MCFU approach uses skip
connections to connect feature maps of variable spatial
resolution, and a fusion operation to produce the final fault
map. According to the authors, the MCFU also provides
sharper and explainable fault maps for complicated seismic

FIGURE 4 Isothermal at 200°C and Best of Conductor (BOC) lines (Sutarmin & Daud, 2021; reproduced with permission).
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images compared with the commonly used ant‐tracking
approach and the typical U‐shaped CNN, potentially
leading to improved geological interpretability of the
detected faults, which is critical for optimizing well place-
ment to maximize geothermal energy recovery. The authors'
future work aims to train an NN for 3D fault detection.

Perozzi et al. (2021) concentrated on the quantitative
interpretation of existing seismic lines in the Canton of
Geneva, Switzerland, using an unsupervised k‐means
clustering algorithm, which allows the identification of
similar groups of clusters within a seismic image. The
k‐means method classifies seismic data by dividing
the samples into n clusters of equal variances, where the
number of clusters must be specified. The study aimed to
demonstrate how quantitative approaches can be used to
automatically detect faults, analyze seismic facies, and
identify lithofacies from geophysical borehole logs. The
results showed that when used in conjunction with expert
knowledge (geologist or geophysicist), these techniques
are an additional tool for gaining knowledge about and
characterizing geological reservoirs, thereby reducing
uncertainty in the subsurface.

Matzel et al. (2021) used an unsupervised ML
approach to analyze and define high‐permeability pro-
ductive zones as potential drilling locations within the
Raft River geothermal resource area, in the United States
of America, by combining 3D seismic and MT datasets.
For the combined data set, k‐means clustering was used to
differentiate the lithologies and validate them against
known lithological boundaries. The study focused on 3D
seismic reflection and the 3D resistivity volume, which
were supported by additional datasets. The 3D seismic
reflection data incorporated several seismic features in
addition to the basic physical aspects of density and
velocity. The MT data were reprocessed to produce the
spatial gradients of resistivity, and three lithological units
were clearly distinguished: the Raft River Formation (low
resistivity), Salt Lake Formation (medium resistivity), and
basement (very high resistivity). The results were corre-
lated with known formations based on well‐log records
and mapped seismic horizons, and a strong correlation
was observed between the geophysical measurements and
the recognized geology. Cluster analysis showed that the
boundary between the basement and overlying geology
was clearly defined, and this revealed the main production
zone of the geothermal reservoir.

2.4.4 | Remote sensing applications

RS data provide information on surface deformation
caused by geothermal activity and gas emissions, which
can be used for mineral mapping, structural analysis, and
temperature and heat flow measurements. However,
combining all the surface information to gain a full un-
derstanding of the distribution of geothermal sites requires
a high level of expertise. Researchers used AI techniques to
process and analyze satellite imagery and geospatial
remote sensing data to accurately map geothermal poten-
tial and identify areas with hidden geothermal resources.

Using RS satellite imagery, Abubakar et al. (2019)
evaluated the efficiency of using ICA and mixture‐tuned

matched filtering clustering algorithms to detect hydro-
thermal alteration and thermal anomaly zones, to con-
duct an initial assessment of the geothermal potential in
the aseismic geological setting of Yankari Park, Nigeria.
When mixture‐tuned matched filtering was applied, the
use of the verified image endmember spectra yielded
much better results than the use of library spectra. The
geographical association between anomalous regions and
the major fault‐fracture systems on the geological map of
the study area showed a strong relationship with the
previously observed thermal gradients within thermally
preserved sedimentary formations. The study also indi-
cated that further research should be conducted to
identify hidden geothermal areas in unexplored regions
by examining the spatial correlation between geological
structures and thermal anomalies.

Moraga et al. (2022) developed a method incorpo-
rating RS and AI to provide a preliminary assessment of
the geothermal potential and to analyze multiple satellite
images and geospatial data to determine mineral mark-
ers, surface temperature, faults, and deformation. The
research was conducted at the Brady and Desert Peak
geothermal sites in the United States, which are adjacent
but have different resource properties. In addition, the
former has visible surface manifestations, and the latter
is within a blind/hidden location. To generate patterns of
the surface manifestations of the former and markers of
the latter, they used unsupervised ML methods and
conducted spatial and temporal analyses of geothermal
indicators and automatic labeling. Subsequently, they
created “Geothermal AI,” a deep learning (DL) AI
algorithm that used the patterns to predict geothermal
sites. Its use was tested by employing independent data-
sets from each site; an accuracy of 92%–95% was
achieved, with the lowest accuracy relating to the blind
site. Geothermal AI trained on one location was also
tested by running it in the other site to predict geothermal/
nongeothermal classification, and it showed good per-
formance with a prediction accuracy of 72%–76%. How-
ever, the model was designed for early exploration, and it
only identified the outline of a geothermal reserve and not
its prospect. A subsurface model was required to deter-
mine the total capacity of the geothermal resources, and
the subsurface prediction model was therefore extended to
estimate and assess the total capacity.

In summary, geophysical analysis is a noninvasive
and economical method that can be used to improve the
knowledge of subsurface features and rock properties.
However, they also have limitations, such as the limited
resolution, which means that they may not be capable
of detecting small‐scale features or variations in the
subsurface. In addition, the data obtained can be com-
plex and require specialized knowledge to interpret. AI
algorithms can be used to find patterns and anomalies in
the geophysical data collected, such as those obtained
using seismic, electrical, and magnetotelluric surveys.
These patterns can reveal information about the location,
dimension, and quality of potential geothermal reservoirs.
The geophysical analysis combined with ML algorithms
can help identify hidden geothermal reserves, reduce the
cost and time of exploration, and diminish the environ-
mental impact of the exploration phase.
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2.5 | Thermal data applications

Thermal gradient, BHT, shallow and deep heat flows, and
temperature measurements at different depths are ex-
amples of subsurface thermal data. Researchers used data‐
driven models integrated with existing thermal data to
extend the knowledge of thermal properties in new regions.

Koike et al. (2001) evaluated the interpolation accu-
racy of an NN‐based interpolator, NK, and applied it to
the distribution analysis of subsurface temperatures in
the Hohi geothermal area, southwest Japan, using lim-
ited log data from 20 wellbores with an average depth
range of 1260 m. The values estimated by NK were
similar to those of sample data, and the spatial correla-
tion associated with regionalized variables was recreated
with interpolation errors lower than those of the ordi-
nary multilayer NN (MNN) and ordinary kriging.
Despite the limited number and distribution of temper-
ature survey data, the NK extrapolated sample values
and the interpolation results indicated the existence of
high‐temperature zones and convection patterns of
hydrothermal fluids. In this respect, the NK method can
deal with any isotropic or anisotropic semivariogram,
even if it cannot be represented by any experimental
model.

Spichak (2006) also used a shallow NN approach and
downhole temperature logs to map the subsurface tem-
perature distribution of a hypothetical geothermal res-
ervoir. The NN, also known as the neuronet approach,
was calibrated against an analytical model result, and
results showed that errors in neuronet temperature pre-
diction were influenced by the “training level” of the
neuronet and the distance between the estimation point
and the location for which data were available. These
findings were validated by predicting the temperatures in
eight wells using 50 temperature records from other
geothermal wells. Spichak found that increasing the
training datasets for the NN reduced the average esti-
mation error for all cases studied to 16.9%, illustrating
the importance of obtaining sufficient training data to
reduce errors in the NN model. The impact of the
training data pattern (conductive vs. convective temper-
ature profiles) was investigated, and a methodology for
NN training based on the available data was established.

Shahdi et al. (2021) investigated the applicability of
four different ML algorithms (deep NN, ridge regression
model, decision tree‐based XGB, and RF model) to predict
the subsurface temperature and geothermal gradient
parameters from BHT data and geological information
from over 20 750 oil and gas wells in the northeastern
United States. In terms of predicting the subsurface tem-
perature, XGB and RF outperformed all other models.
The authors used the XGB model to generate continuous
two‐dimensional temperature maps at three different
depths, which were subsequently used to identify potential
geothermal resources, as shown in Figure 5. They also
compared physics‐based and ML models using an addi-
tional data set of vertical temperature profiles from 58
wells in West Virginia and concluded that ML models are
highly comparable to physics‐based models in predicting
subsurface temperatures according to the evaluation
metrics.

BHT is the temperature measured at a certain depth
in the well during logging operations. Owing to transient
disturbances associated with mud circulation, BHT is
generally lower than the actual stabilized or static for-
mation temperature (SFT). SFT is used to identify the
original temperature of the surrounding formation rock
and is valuable in many geothermal applications, such as
locating heat flow or lost circulation zones, estimating
heat reserves in a geothermal reservoir, evaluating geo-
thermal gradients, interpreting electrical logs, and eval-
uating in‐situ thermophysical rock properties. However,
estimating SFT at any depth is time‐consuming and ex-
pensive because drilling needs to be paused temporarily
and specialized logging equipment is required. SFT is,
therefore, often estimated using analytical and numerical
simulation approaches that use BHT and shut‐in time
data as inputs and linear or nonlinear regression models
as solutions. However, significant errors in predicting
SFT occur, and these are related to a variety of factors,
including impractical models offered to characterize
the drilling process, heat transfer models with simple
assumptions, and errors in BHT measurements.

Bassam et al. (2010) used an ANN method to gen-
erate a novel estimation model for calculating the SFT in
geothermal wells. They trained a three‐layer ANN
structure with BHT records and shut‐in times as primary
inputs and transient temperature gradients as secondary
inputs using an experimental geothermal well database
containing “statistically normalized” SFT estimates. The
best training data set was achieved using an ANN design
consisting of five neurons in the hidden layer; this
allowed for the prediction of SFT with good efficiency
(R2 > 0.95). A statistical comparison between recorded
and predicted values showed accurate predictions with
errors <5%, confirming that the new ANN model is a
reliable tool for SFT estimations using only BHT and
shut‐in time as input data (mainly when BHT data are in
the training interval of 45–263°C), making it a more
advantageous tool than the existing analytical methods
relying heavily on other complicated input variables.

Espinoza‐Ojeda and Santoyo (2016) also attempted
to estimate the SFT using a new empirical technique
based on logarithmic transformation regressions, where
several linear and polynomial regression models were
applied to the BHT and logarithmic transformation
shut‐in times. The best regression models were selected
using four statistical factors, and the optimum model
was used to reproduce the thermal recovery process of
the wells and calculate the SFT. The original BHT and
shut‐in‐time data were then used to illustrate the effec-
tiveness of the new technique. When the new log‐
transformation regression approach was applied to a
full range of geothermal, oil, and permafrost wells, the
polynomial models were found to be the best regression
models for describing the thermal recovery processes.
The outcomes showed that this new approach can be
used for an accurate estimation of SFT. The approach
involves BHT and shut‐in time measurements as the
primary input data, and it therefore offers significant
advantages over conventional analytical methods that
require many measurements. Notably, the quantity and
quality of the recorded data are crucial for the accurate
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characterization, prediction, testing, and estimation of
the potential of geothermal wells.

In summary, geothermal exploration is a complex
process that requires a thorough understanding of sub-
surface temperature and heat flow parameters. The
application of AI to geothermal exploration can provide
an efficient and accurate method for estimating sub-
surface thermal properties, including subsurface tem-
peratures, temperature gradients, TC, and heat flows.
AI algorithms can analyze large amounts of data to build
accurate subsurface temperature and heat transport
models, which can then be used to identify hidden geo-
thermal resources.

2.6 | Other data applications

Researchers have used other available datasets, including
well surface locations, borehole angles, site photographs,
and AI, to assist in the exploration of geothermal
resources. Porkhial et al. (2015) used a data set extracted
from six exploration wells at the Sabalan geothermal site
in Iran with five variables as input data (well northing
and easting, total depth, hole inclination, and hole
azimuth) and one output (subsurface temperature at
total depth) to train a group method of data handling
(GMDH)‐type NN model for predicting geothermal
reservoir temperature behavior. To determine the best

set of acceptable quadratic expression coefficients, the
authors examined the number of neurons in each hidden
layer and their connectivity configuration in conjunction
with singular value decomposition. A comparison
between the actual results and the developed GMDH
model demonstrated the predictive capabilities of the
proposed model and showed that two elements (well
northing and azimuth direction) did not affect the
borehole subsurface temperature.

Xiong et al. (2022) investigated the possibility of
using the GoogLeNet deep learning approach with
photographs and image interpretation to detect geo-
thermal surface manifestations (GSMs) and compared
their results with existing ML models to aid geothermal
resource exploration. They generated a new image data
set containing seven GSM types (warm springs, hot
springs, geysers, fumaroles, mud pots, hydrothermal
alteration, and crater lakes) and one non‐GSM type, as
demonstrated in Figure 6. The results of the GoogLeNet
model were correlated with those of three ML ap-
proaches (SVMs, DTs, and KNN) using the evaluation
metrics of overall accuracy (OA), overall F1 score (OF),
and computational time (CT) to train and test the models
via cross‐validation. This study demonstrated that the
GoogLeNet model, retrained using transfer learning,
significantly outperformed the SVM, DT, and KNN
models and provided the highest OA, OF, and CT for
both validation and testing. The results showed that deep

FIGURE 5 Temperature map at three different depths obtained using an extreme gradient boosting (XGB) model. (a) 1000m, (b) 2000 m, and
(c) 3000m. (Shahdi et al., 2021; reproduced under the terms of the Creative Commons Attribution (CC BY 4.0) license).
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transfer learning using a pre‐trained network may be a
viable option for GSM recognition.

3 | CONSIDERATIONS AND
OPPORTUNITIES

Based on a literature review of recent advances in AI
applications, this study provides a perspective on the use of
AI in geothermal exploration, identifying the AI algorithms
used, the challenges being addressed, and the opportunities
for further application. The review highlights that the most
important subsurface features in geothermal exploration
decision‐making are reservoir temperatures, fluid types, and
flow rates. It also highlights that most research has focused
on the application of geophysical data, while NNs are the
most widely used AI techniques among all geothermal
exploration groups, both in ML and DL.

The exploration of geothermal resources involves the
management of subsurface, technical, and economic
uncertainties. Subsurface uncertainties arise from limited
knowledge of geological, geophysical, geochemical, and
thermal properties. Technical uncertainties arise from the
limitations of tools and data acquisition, which create
challenges in the processing and interpretation of sub-
surface features. Affected by the first two uncertainties,
economic uncertainties can influence decision‐making on
field development strategies. The use of AI in geothermal
exploration applications can reduce uncertainties and
minimize costs, but the scarcity of large, high‐quality
subsurface datasets and the challenges of accessing them
present a critical barrier to the widespread adoption of
data‐driven models in geothermal exploration.

Organized data repositories and efficient data processing,
preparation, and transformation are critical to enabling
generalizable AI algorithms. Facilitating access to data,

optimizing it for AI applications, and providing specialized
AI training to professionals in the geothermal industry can
make geothermal energy a cost‐effective, widely accessible,
and geographically diverse source of power generation. One
example is the OpenEI Geothermal Data Repository (Open,
2023), an open‐source data collection node funded by the US
Department of Energy's Geothermal Technologies Office
and used by many researchers.

The authors suggest collaborative efforts between
governments, industry organizations, and data owners to
establish comprehensive databases of subsurface hydro-
thermal resources. The Geothermal Operational Optimi-
zation using ML (GOOML) project exemplifies industry
collaboration to enhance the capacity and capabilities of
the geothermal industry by analyzing historical produc-
tion data. Siratovich et al. (2020) suggest that the use of
datasets from New Zealand and the United States can
lead to the development of generalized data‐driven geo-
thermal algorithms. These algorithms can predict market
conditions, optimize maintenance operations, and rec-
ommend system component setpoints for optimal power
generation. These insights will enable the prediction and
scheduling of maintenance tasks, resulting in improved
operational efficiency, higher capacity factors, and mini-
mized levelized energy costs, ensuring the competitiveness
of geothermal power generation (Craig et al., 2021; Smith
et al., 2023).

4 | CONCLUSIONS

The rapid development of AI algorithms offers a signif-
icant opportunity for their integration into the geo-
thermal industry. Transfer learning enables AI models
trained in one domain to be applied to related domains
with limited data, such as using techniques from the oil

FIGURE 6 Example images of the types of geothermal surface manifestations (a) warm spring, (b) hot spring, (c) geyser, (d) fumarole, (e) mud
pot, (f) hydrothermal alteration, (g) crater lake, and (h) a non‐GSM type. (Xiong et al., 2022; reproduced under the terms of the Creative Commons
Attribution (CC BY 4.0) license).
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and gas industry in geothermal exploration. This study
investigates advanced AI approaches in geothermal
resource exploration, emphasizing innovative geoscience
and subsurface engineering concepts resulting from AI
applications.

The combination of hydrothermal data with NNs
(both ML and DL) has been primarily used to predict
subsurface hydrothermal reservoir temperatures. This
review showcases the effectiveness of AI in determining
reservoir properties, predicting lithology and fluid con-
tent, detecting mineral constituents, and identifying
optimal locations. In comparison to basic physics‐based
and statistical methods, AI has the potential to improve
the efficiency of geothermal exploration. However, there
are challenges to overcome, such as reduced prediction
accuracy when models trained in one location are applied
elsewhere. Future studies should focus on improving AI
accuracy across different regions to increase exploration
efficiency. There is a significant opportunity to leverage
AI in geochemical data applications to infer reservoir
characteristics and reduce development costs and risks
associated with geothermal projects.

The growing use of AI in geothermal exploration
suggests its continued growth. Although DL techniques
provide additional research opportunities, the lack of
significant geothermal data remains a crucial challenge
that must be addressed for AI to have a transformative
impact on geothermal exploration. It is believed that
combining all accessible geothermal information (raw
and moderated) from various open‐source data reposi-
tories can revolutionize geothermal resource exploitation
and hidden geothermal system discovery.

Shared initiatives across the geothermal industry are
essential to make multiple datasets and insights accessible
for the rapid development of AI approaches. Encouraging
interdisciplinary collaboration and promoting AI use
through various channels, such as conferences and train-
ing activities, can enhance exploration performance and
reduce costs. Partnerships between academic and profes-
sional organizations play a crucial role in accelerating the
development of AI approaches on a larger scale. The
application of AI in geothermal exploration has signifi-
cant potential to improve efficiency, effectiveness, and
productivity in geothermal energy development, ensuring
competitiveness in the broader energy industry. Our
findings suggest that AI will be pivotal in the future of
geothermal energy exploration and development.
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