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Abstract. This paper presents the results from conducting a series of experiments with a Hsu-

Nielsen Source, accompanied by corresponding numerical simulations on a solid block. The aim 

being to illustrate a Finite Element Analysis (FEA) approach for simulating Acoustic Emission 

(AE) wave propagation in a Hsu-Nielsen Source, by employing virtual sensors to enhance 

existing AE research methodologies. The objective was to examine and establish the actual 

unload rate derived from Pencil Lead Breaks (PLBs) by comparing results from simulations and 

experimental trials. These experiments and simulations were conducted using a solid cylindrical 

steel block, capturing the propagating Acoustic AE waves from both sources over a two-second 

span. When comparing the experimental data with the simulation results, it is evident that 

replicating the structure of an impulsive AE source is feasible for brief durations. Furthermore, 

both the experimental and simulated signals on the steel cylinder displayed comparable patterns 

in the initial 25-30 µs. The methodology presented in this study demonstrates the effectiveness 

of Finite Element Analysis (FEA) in precisely identifying the specific modes present in AE wave 

propagation, including the actual unload rates affecting the AE signals recorded. 

1. Introduction 

Acoustic Emission (AE) is characterized by stress waves in the high-frequency range (0.1 to 1MHz), 

generated by the abrupt discharge of mechanical energy often associated with structural degradation. 
The technique of Acoustic Emission Testing (AET) employs these waves as they propagate to detect 

irregularities in structures and processes and machinery [1], [2], [3], [4]. Over time, AET has gained 

recognition as a viable Non-Destructive Testing (NDT) technique due to its efficiency in assessing 

structural health with minimal monitoring points and its ability to use wave propagation characteristics 

for fault detection [5], [6] [7], [8]Unlike other NDT methods like ultrasonics or radiography which 

depend on external imaging to identify flaws, AET is unique as it detects degradative processes by 

analysing energy inherently generated within the material itself [9],[10]. 

Calibration of AE systems is essential for ensuring the accuracy and reliability of measurements 

which are critical for assessing the integrity and safety of various structures and materials [11], [12]. 

[13], [14]. The AE calibration test object is a crucial tool in the maintenance and verification of AE 

testing equipment. By providing a controlled source of acoustic emissions, it allows for the 

standardization and validation of AE systems, ensuring that they produce consistent and accurate results 

for structural health monitoring. With ongoing advancements in AE technology, calibration test objects 

mailto:j.abolle-okoyeagu@rgu.ac.uk
https://creativecommons.org/licenses/by/4.0/
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continue to evolve, offering higher precision and adaptability to various testing scenarios [14], [15], 

[16]. 

The Hsu-Nielsen Source which is generally known as the Pencil Lead Break (PLB) is the standard 

AE calibration technique, it serves as a typical method for replicating and characterizing sensors in AE 

applications. This process entails exerting pressure on a test structure's surface with a pencil lead and 

inducing a bending moment at a specific angle. The force exerted results in a localized deformation of 

the test surface which is subsequently released upon the breaking of the lead. It provides a consistent 

benchmark for AE systems, verifies sensor sensitivity and enables reproducibility of results across 

different AE systems and tests [17], [18] 

Finite Element Analysis (FEA) is a computational technique designed to predict and analyse the 

response of a structure subjected to various external forces. This is accomplished by obtaining 

approximate solutions to intricate mathematical problems in which the dependent variables satisfy a 

differential equation within a well-defined range of independent variables. [19]. FEA has increasingly 

become a popular method for simulating the propagation of elastic waves that are indicative of AE 

events [20], [21], [22].In contrast to ultrasonic Non-Destructive Testing (NDT) waves, the propagation 

of Acoustic Emission (AE) waves is considerably more complex, even in simple homogeneous materials 

like flat plates. This complexity stems from the nature of AE waves, which are typically produced by 

relatively uncontrolled events, as opposed to the controlled wave generation in ultrasonic NDT achieved 

through ultrasonic transducers. [23]. 

A significant portion of research using FEA for simulating AE has concentrated on characterizing 

wave propagation [24] [25], [26] yet there has been minimal exploration of the connection between the 

source input and the sensor output. Moreover, even within the studies on propagation, there has been 

scant attention given to the topic of attenuation in a manner that holds practical value. Hence, this work 

aims to ascertain what insights can be garnered regarding the characteristics of an AE source through 

the data collected by sensors arrayed along a solid steel cylinder. Attaining this objective necessitates 

the coupling of simulations with a series of concurrent experiments, which are strategically designed to 

exert maximum control over both the source and the boundaries of the test subject. 

 2. Materials and methods 

The selected test object is a steel cylinder, with its configuration as a reference object deliberately 

chosen due to its prior assessment in previous studies. [27]. 

2.1. Experimental technique 

In the experiments, we utilized a standard Hsu-Neilson source, PAC-1220A pre-amplifiers, and PAC 

Micro U80D-93 broad band piezoelectric AE sensors to generate AE and capture the ensuing wave 

signals. The preamplifiers were configured with a gain of 40dB.  

 
Figure 1. AE experimental setup 

PC 

Signal Conditioning Unit 

Preamplifie Test object 

        S1 
    S2 
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The test object, A solid steel cylinder, measuring approximately 0.17 meters in length and 0.31 mm 

in diameter, was utilized, positioned upright on one of its circular faces. The opposite circular face 

served as the test surface. Two broadband sensors were affixed to this test surface, each placed 0.0785 

meters from the edge, while the AE source was positioned centrally (figure 1). For the initial part of the 

experiment, both sensors remained attached to the cylinder, and 20 lead breaks were recorded without 

any removal or reattachment of the sensors. Subsequently, an additional set of 20 lead break experiment 

was conducted, during which the sensors were removed and then reattached after each break. Despite 

Sensor 1 (S1) serving as the trigger sensor, there was negligible or no difference in the signal arrival 

times at the two sensors. To ensure consistency in detecting the signal arrival time, and thresholding 

technique [28] was utilized using the first sensor as the trigger.  

2.2. Finite element simulation 

FEA replicating the aforementioned experimental setups were conducted using the dynamic explicit 

solver in ABAQUS (provided by Dassault Systemes, Vélizy-Villacoublay, France). For the test model, 

A 3D elastic steel cylinder, with pressure unloading akin to a Pencil Lead Break (PLB) situated at the 

centre of the top surface, was modelled with the bottom surface being completely constrained. The data 

were collected from a point within the Finite Element (FE) model, positioned at 0.0785 meters from the 

left-hand edge of the top surface.  

The selected rise times were within the range documented in existing literature, and the outcomes of 

the various unload rates can be found in [29] The force and surface area used (Table 1) are estimated 

values derived from the PLB experiment. 

The explicit dynamic module of ABAQUS software was used to capture the transient stress patterns 

emerging from rapid pressure variations and for signal processing, the MatLab software was utilized. 

The material properties used were those of steel (table 1). 

Table 1. FE simulation parameters 

Young Modulus  210GPa 

Density 7800kg/m3 

Area 0.003m2. 

Force 100N 

Element Type C3D8R Elements 

Mesh Size  0.01mm 

Boundary Condition Fixed 

Six different unload rates (2 × 10-8 s, 5.11 × 10-7s, 1 × 10-6s, 1.5 × 10-6s, 1.98 × 10-6s, 2.47 × 10-6s) 

were studied. The unload rates were set to approximate the time it would take a fracture traveling at the 

speed of sound to traverse the diameter of a 0.5mm pencil lead. This was done so that the simulated 

responses could be aligned and compared with the observed responses of Pencil Lead Breaks (PLBs) as 

documented in [28]. The simulation results were captured as time series data, beginning as soon as the 

virtual sensor detects the activation of the source. This recording starts at the point when the source was 

applied to the solid cylinder and continued until the end of the simulation, which occurred 0.02s after 

the source was applied. 

4. Results and discussion 

4.1. Experimental results 

Figure 2 shows comprehensive recording of a typical raw Acoustic Emission (AE) time series produced 

by a Hsu-Nielsen source, as captured by both sensors on the solid cylinder. It is evident from the figure 
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that the peak amplitude is attained rapidly and is subsequently followed by a more prolonged ring-down 

phase, which persists for the full length of the recording (10ms). 

 
Figure 2: Standard raw AE signal acquired by a Hsu-Nielsen source, recorded at both sensors on the 

steel cylinder.  

 
 

Figure 3: Power spectra of entire time series shown in figure 2 for both sensors on the steel cylinder. 

4.2. Simulation results 

Figure 4 shows the time series simulated at the two sensors, capturing the initial 10ms for the examined 

unload rate (1 × 10-6s). The wave at the first and second sensors are shown in blue and red respectively. 

The signals suggest that as the wave disperses and undergoes reflection, there is a gradual decrease in 

its amplitude over time. Additionally, an increase in the unload rate corresponds to a diminishing wave 

amplitude. 
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Figure 4: Raw AE signal of displacement at both virtual sensors the steel cylinder unloading at 

1×106s. 

Figure 5 shows the frequency spectra at the first sensor for the time series depicted in Figure 4. There 

is a noticeable immediate frequency cut-off at 400 kHz, which is attributed to the effective sampling 

rate determined by the time steps in the simulation. 

 

Figure 5: AE frequency spectra for time series in Figure 4 unloading at 1 × 10-6s. 

In the simulation, the velocities of the two waves can be approximately calculated to be around 

3000ms-1 and 1250ms-1, assuming both are traveling across the surface from the source to the sensor. 

The former speed aligns well with the speed of Rayleigh waves, whereas the latter does not match the 

speed of any known pure modal wave. For the experimental records, given the similar positioning of the 

sensors, analysing the energy and the power spectrum can help assess the uniformity of the 20 PLBs 

and the consistent response of the two sensors. To further examine the spectra presented in Figure 5, 
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three new frequency bands were identified (upon inspection); below 200 kHz (low frequency, LF), 200-

500 kHz (medium frequency, MF), and above 500 kHz (high frequency, HF). This categorization results 

in three power values: PLF, PMF, and PHF, and three indicators as proportions of the total power: 

 
i

i

LF MF HF

P
f

P P P
=

+ +
  

Table 2 provides a summarized view of the total power frequency structure for both the experimental 

and simulated data on the solid cylinder at sensor position S1. The experimental figures are derived from 

the average power values of 20 experimental measurements. In a similar manner, proportions for the 

simulations at S1 and for each unload rate were computed. Since sensors S1 and S2 are essentially at 

the same distance, their total power frequency structures are identical, though there are slight variations 

in the experimental data. For simplicity in referencing, condition codes have been assigned to the 

simulations. 

Table 2. Total power and fraction distribution across the frequency bands for both experiments and 

simulations. 

Condition Code fLF fMF fHF Ptot 

Expt, sensor 1 ES1F 0.39 0.43 0.18 3.23 

Expt, sensor 2 ES2 0.38 0.49 0.13 4.07 

1st Simulated 

unload rate  
Sim1S1R 0.39 0.57 0.04 0.03 

2nd Simulated 

unload rate  
Sim2S1R 0.39 0.57 0.04 0.42 

3rd Simulated 

unload rate  
Sim3S1R 0.41 0.56 0.04 0.75 

4th Simulated 

unload rate  
Sim4S1R 0.43 0.53 0.03 0.10 

5th Simulated 

unload rate  
Sim5S1R 0.47 0.50 0.03 1.14 

6th Simulated 

unload rate  
Sim6S1R 0.51 0.46 0.03 1.12 

Figure 6 compares the power spectral content at the first sensor, contrasting the measured (E) and 

simulated (Sim) results for the shorter time series.  
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Figure 6: Comparison of experimental and simulated power content at first sensor 

Observations indicate that, with extended unload durations, there's a noticeable shift towards lower 

frequencies, aligning with the anticipated increase in frequencies as one approaches a step unload. 

Additionally, the fact that the experimental spectra generally display lower low frequency content 

compared to the simulations suggests that the highest unload rate tested in this study is the most 

appropriate. However, it's important to note that the reduced high frequency (HF) content in the 

simulations is partially due to the time-step employed, making it an artefact of the simulation process. 

Figure 7 illustrates the changes in power content between the low and medium frequency bands, 

revealing a consistent decrease in the ratio of LF to MF as the unload rate increases. By excluding HF 

band in this analysis, it appears that lower unload rates, specifically in the range of 4 to 5, may more 

accurately reflect the observed phenomena. 

 

Figure 7. Comparison of experimental and simulated low frequency power ratio  

Figure 8 illustrates how the unload rate impacts the total simulated power content of the signal at 

sensor S1. It is evident that the total power accelerates substantially from the fastest rate, while the slope 
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gradually declines as the unload rates decrease. Additionally, it's worth noting that the total power at the 

highest unload rate is approximately sixty times lesser than that at the lowest rate. 

 

Figure 8: Simulation power vs unloading rate. 

In both the experimental and simulation scenarios, the AE detected in the block was rapidly affected 

by reflections from the block's edges and bottom surface. In the first 25-30μs, the experiments and 

simulation on the steel cylinder showed comparable patterns. However, beyond this period, the actual 

measurements yielded clearer signals. This increased clearness is due to energy losses caused by 

reflections, an aspect that the simulations did not incorporate. This observation suggests that, in their 

current form, the simulations are useful for interpreting the structure of the source primarily during the 

initial phases of arrival in the case of small objects. 

5. Conclusion 

The comparison between pencil lead break experiments and equivalent simulations on a steel block 

suggests that while initial signals in both cases are similar, measured signals become clearer over time 

due to energy losses from reflections not accounted for in simulations. Despite artificial constraints in 

simulation frequency due to time-step choice, there's a noticeable trend of increasing frequencies with 

rising unload rates, albeit with a decrease in signal power. Analysing mid to low frequency power ratios 

indicates optimal unload rates likely fall within the lower to middle range tested. Simulations show 

potential to replicate impulsive AE source characteristics for short durations but require inclusion of 

damping effects from reflections for accurate long-term representation, crucial for evaluating multiple 

impulsive sources comprehensively. 
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Background
Calibration of AE systems is essential for ensuring the accuracy and 

reliability of measurements which are critical for assessing the 
integrity and safety of various structures and materials. 

AE is a term used to describe high-frequency (0.1 to 1MHz) elastic 
stress waves generated by the rapid release of mechanical energy often 
associated with structural degradation.

Finite Element Analysis (FEA) is a computational technique designed 
to predict and scrutinize the response of a structure subjected to 
various external forces.



Schematic representation of a typical AE experimental system setup



The Hsu Nielson Source 



Experiments



Simulation



Experimental Results



Simulation Results



Comparison of experimental and simulated power content at the first sensor



Comparison of Experimental and simulated low frequency power ratio 



Results

Power simulation vs unloading rate



Conclusion 
 In the initial 25-30μs, the signals on the test object, both simulated and measured, display 

comparable characteristics.

 The simulation revealed that for short durations, it's possible to replicate the line structure of an 
impulsive AE source.

 Analysing and comparing the ratio of mid to low frequency power in both the simulated and 
measured signals suggests that the optimal unload rate is within the lower to middle range.

 Within the frequency domain, the simulations display an artificial cut-off near 400kHz, resulting 
from the chosen time-step.
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