
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

This document was downloaded from
https://openair.rgu.ac.uk

DANG, T., NGUYEN, T.T., MCCALL, J., HAN, K. and LIEW, A.W.-C. 2024. A novel surrogate model for variable-length
encoding and its application in optimising deep learning architecture. In Proceedings of the 2024 IEEE (Institute of

Electrical and Electronics Engineers) Congress on evolutionary computation (CEC 2024), 30 June - 05 July 2024,
Yokohama, Japan. Piscataway: IEEE [online], article 10611960. Available from: https://doi.org/10.1109/

CEC60901.2024.10611960

A novel surrogate model for variable-length
encoding and its application in optimising deep

learning architecture.

DANG, T., NGUYEN, T.T., MCCALL, J., HAN, K. and LIEW, A.W.-C.

2024

https://doi.org/10.1109/CEC60901.2024.10611960

A novel surrogate model for variable-length
encoding and its application in optimising deep

learning architecture
Truong Dang, Tien Thanh Nguyen, John McCall
National Subsea Centre, Robert Gordon University

Aberdeen, UK

Kate Han
Salford Business School, University of Salford

Manchester, UK

Alan Wee-Chung Liew
School of ICT, Griffith University

Queensland, Australia

Abstract—Deep neural networks (DNN) has achieved great
successes across multiple domains. In recent years, a number of
approaches have emerged on automatically finding the optimal
DNN configurations. A technique among these approaches which
show great promise is Evolutionary Algorithms (EA), which are
based on observations from natural, biological processes. How-
ever, since the EA needs to evaluate multiple DNN candidates,
and if the training time for a DNN is large, then the required
time would be very large. A potential solution is to use Surrogate
Assisted Evolutionary Algorithm (SAEA), in which a surrogate
model is used to predict performance of DNNs without training.
It is noted that all popular surrogate models in the literature
require a fixed-length input, while encodings of a DNN are usually
variable-length, since a DNN structure is very complex and its
depths, sizes, etc. cannot be known beforehand. In this paper, we
propose a novel surrogate model for variable-length encoding to
optimise deep learning architecture. An encoder-decoder model
is used to convert the variable-length encoding into a fixed-
length representation, which is used as inputs to the surrogate
model to predict the DNN performance without training. The
weights of the encoder-decoder model are found via training
on the variable-length data, with the targets being the same as
the inputs, while the surrogate model is trained on the encoder
output in the encoder-decoder model. In this study, a Long
Short-Term Memory (LSTM) model is used as the encoder and
decoder. Our proposed variable-length encoding based surrogate
model is tested on a well-known method which evolves optimal
Convolutional Neural Networks (CNNs). The experimental results
show that our proposed method has competitive performance
while significantly reducing the time of optimisation process.

Index Terms—surrogate model, variable-length encoding, deep
learning, encoder-decoder, sequence-to-sequence

I. INTRODUCTION

In recent years, deep learning has brought many great break-
throughs in multiple areas, such as computer vision and natural
language processing. Deep-learning methods are based on
composing simple but non-linear modules which transform the
representation at one level (starting with the raw input) into a
representation at a higher level, thereby allowing very complex
functions to be learned [1]. However, the configurations of
deep learning models have been normally found manually via
trial-and-errors. This is a very time-consuming and laborious

process, due to the fact that there is no clear guidance on
how to create the best deep learning model, researchers have
to perform a large number of experiments to find the best
configurations. In recent years, there have been many efforts
on automatically finding the best DNN configurations using
EA [2], reinforcement learning [3], Bayesian optimisation
[4] and gradient-descent based approach [5]. Among these
approaches, EA show great promise, due to their capabilities
to work on large search space, faster convergence compared to
other methods, diverse representational abilities, and its multi-
objective extension has been shown to have been successfully
applied to solve problems with multiple objective functions
[6].

A significant challenge in employing EA for deep learning
lies in the considerable amount of time required for experi-
mentation. An example is [7] which required 4 days to evolve
a CNN on the FashionMNIST dataset [8] using 2 GPUs.
This is due to the fact that the EA run through a number
of generations, in which each candidate’s fitness is evaluated
and then a number of operators are applied on the candidates.
In the case of deep learning, the fitness value of a candidate is
usually calculated based on the performance of this candidate
on a validation set. If the training time is large, it would require
a large amount of time to run. A potential approach to alleviate
this difficulty is by using Surrogate Assisted Evolutionary
Algorithm (SAEA), in which a surrogate model is used to
approximate the DNN performance without actually training
it. Common choices of surrogate models include Radial Basis
Function, Support Vector Machine [9], Random Forest [10]
and XgBoost [11].

On the other hand, it should be noted that a DNN encoding
for EA needs to be representative of all the DNN structures,
such as the type of each layer (convolutional, pooling, fully-
connected, etc.), number of filters for each layer, etc. Further-
more, the optimal depth of a DNN is not known in advance so
that the DNN encoding must be of variable-length. However,
the surrogate model can only work with a fixed-length input.
This leads to the problem of finding a suitable method to make

the variable-length representation work with surrogate models.
In this paper, we propose a novel surrogate model for

variable-length encoding to optimise deep learning architec-
tures. Our proposed method is inspired by the successes of the
sequence-to-sequence models [12]. It is known that sequence-
to-sequence models receive a variable-length input, such as
a series of text vectors, and process it into a fixed-length
vector (encoder), which is then processed into an output which
is of variable-length as well (decoder). We apply this idea
for evolving DNNs in the framework of SAEA. The encoder
is used to convert the variable-length encoding into a fixed-
length representation, which allows the surrogate model to
predict the DNN performance without training. The weights
of the encoder-decoder model are found by training on the
variable-length data, and once the training is complete the
decoder is discarded. Although several choices for the encoder
and decoder are available, in this study we choose Long
Short-Term Memory (LSTM) [13] for this task because of
its ability to compute a function of variable-length inputs
[14], and its popularity and high performance in sequence-
to-sequence tasks [12]. We test our proposed LSTM-based
variable-length encoding surrogate model on a method namely
EvoCNN [7] which evolves optimal CNNs. Our contributions
are as follows:

• We propose a novel LSTM-based variable-length en-
coding surrogate model for optimising deep learning
architecture. The LSTM-based encoder-decoder model is
used to convert the variable-length encoding into a fixed-
length representation, which is then used by the surrogate
model to predict the DNN performance without training.

• We test our proposed model on a well-known neuroevo-
lution method, and the results showed that our proposed
model has competitive performance with the original
evolution-based model without surrogate, while reducing
the computational time by several orders of magnitude.

The paper is organized as follows. In Section 2, a brief review
of the related works is provided. Our proposed model is
introduced in Section 3. The details of experimental studies on
several medical segmentation datasets are described in Section
4. Finally, the conclusion is given in Section 5.

II. BACKGROUND AND RELATED WORKS

A. Deep learning and optimizing deep learning architectures

Although DL can be powerful for solving various real-world
classification and prediction problems, its complex nature
in architectural design has always been a great challenge.
Promising results of deep learning networks rely on optimal ar-
chitectural design and parameter settings. In recent years, new
approaches have emerged which seek to automatically find
the best DNN configurations. Among these approaches, EAs
have been attracting increasing attention in DNN automated
optimization due to its ability to solve non-continuous, non-
differentiable problems. An optimized hybrid deep learning
DenseNet121 architecture was proposed in [15] for chest
X-ray images for COVID-19 diagnosis. In this paper, the

authors adopted the gravitational search optimization (GSA)
optimization algorithm [16] for hyperparameters tuning of the
DenseNet121 architecture. In [17], the authors proposed NEAT
(NeuroEvolution of Augmenting Topologies) which explores
and evolves various neural network structures automatically.
NEAT begins with a minimal encoding and during evolution,
new connections and nodes are added, and each gene in
an encoding has a global innovation number for crossover.
Miikkulainen et al. proposed CoDeepNEAT [18] for evolving
DNNs based on the NEAT algorithm. In CoDeepNEAT, two
populations, blueprints and modules (for overall DNN struc-
ture and for each component respectively), are evolved and
for each candidate, each blueprint node is replaced with a
randomly chosen chromosome module and the fitness of each
blueprint and module is the average of the fitness of all DNN
chromosomes having that blueprint or module. In [19], the
authors proposed to evolve DNNs based on Inception-based
module called cells, with each being connected to the previous
two cells. Each cell is either a normal cell, which preserves the
image size, or reduction size, which has a pooling operator of
stride 2. The cells are constructed by applying five different
pairwise combinations of the hidden states, and afterwards,
the remaining hidden states are concatenated to give the final
results.

B. Surrogate models

In EAs, several operations such as crossover and mutation
are applied to the candidate population for some generations
until the optimal solution is achieved. For each evolved
candidate, it is necessary to evaluate its quality by using a
fitness function. However, for many real-world optimization
problems, significant computation time is required for fitness
evaluation [9] which makes the use of EAs infeasible in
these cases. In recent years, a new approach, called Surrogate
Assisted Evolutionary Algorithms (SAEA) has been proposed
for solving computationally expensive problems assisted by
surrogate models and has achieved good performance in a
limited computational budget [20]. The surrogate model can be
any type of machine learning model, such as Random Forest
[10] and XgBoost [11].

SAEAs can be divided into three broad categories: global,
local, and hybrid methods. In global SAEAs, the surrogate
model approximates the entire landscape of a given problem
to improve the search capabilities of the EA [21]. An example
is [22], in which the authors built a surrogate for the objective
and constraint functions, and the surrogate functions were used
to identify the feasible trial offspring with either the best
predicted objective values or with the minimum number of
predicted constraint violations. Luo et al. [23] used a one-
layer feed-forward network as a surrogate model, combined
with an encoder-decoder network for gradient-based DNN
optimisation. The surrogate model and the encoder-decoder are
trained jointly in a multi-task setting. However, for complex
problems, a global surrogate model might not be able to
accurately model the entire search space and prevent the search
from reaching the optimal solution [24]. In local SAEAs, local

surrogate models, trained with the specific data located at a
sub-space of the decision space, are used to assist EAs. For
example, Yu et al. [25] adopted a local RBF surrogate model
as an approximation landscape of the optimisation problem to
assist social learning PSO (SL-PSO). A restart strategy was
utilized to select top-ranked individuals to form the SL-PSO
population. In [24], the authors proposed a memetic algorithm
with simultaneous local searches using ensemble and smooth-
ing surrogate models, to predict fitness values reliably and
improve search results. On the other hand, hybrid methods
seek to combine both global and local surrogate models. Liao
et al. [26] considered the global and local modeling processes
as two related tasks and use a multitask EA to solve them
collaboratively while updating the global and local surrogate
models based on the obtained solution. In [27], the authors
proposed a feedback mechanism-driven SAEA where global
RBFs were used to pre-screen candidate trials and local RBFs
were employed to accelerate the local search.

C. Variable-length encoding

In evolutionary deep learning research, one of the crucial
steps is to represent the deep learning configuration before
sending it to optimisation algorithms. With respect to represen-
tative dimension design, the encoding of network architecture
can be divided into fixed-length encoding and variable-length
encoding. Even though variable-length encoding require spe-
cialized genetic operators, it is more adaptive and does not
require human expertise such as optimal depth in advance
[2]. In [7], the authors proposed EvoCNN, a variable-length
encoding to evolve DNNs for image classification. EvoCNN
represents a CNN as a variable-length encoding of convo-
lutional, pooling and fully-connected layers, and customized
crossover and mutation operators are developed for the evolu-
tion process. The architecture and weights are jointly evolved
by including the mean and standard deviation of the weight
initialization process in the encoding. A variable-architecture
encoding strategy was proposed in [28] to realize an adaptive
scalable DNN architecture search. The authors used a block-
based encoding to simplify the design and search process,
and a reinforcement operator is designed to help select the
random evolution operators with a learning process. Sun et
al. [29] proposed a variable-length encoding to optimise the
network architecture from both the micro and macro levels at
the same time. In this paper, there are two types of network
blocks, pooling block and convolutions block. The encoding
strategy in this paper depends on the number of blocks selected
to construct the network as well as the configuration for
each block. Specially designed operators demonstrate in the
paper in detail the feasibility of the network after decoding.
In [30], the authors proposed a variable-length encoding-
based genetic algorithm to search for an ensemble learning
optimal configuration. They designed chunk-based crossover
and point-based mutation genetic operators for their proposed
variable-length encoding.

ConvLayer
Number of filters:

64, filter size:3

MaxPoolingLayer
Pool size: 2 Flatten

DenseLayer
Number of

neurons: 100

1 64 3 2 2 3 100

ConvLayer
Number of filters:

32, filter size:5

MaxPoolingLayer
Pool size: 2

ConvLayer
Number of filters:

64, filter size:3

ConvLayer
Number of filters:

32, filter size:3

MaxPoolingLayer
Pool size: 2

1 32 5 2 2 1 64 3 1 32 3 2 2 3 50

Flatten
DenseLayer
Number of

neurons: 50

0.2 0.6 -0.3 0.74 0.87

0.07 0.3 0.4 -0.1 -0.2

Surrogate model Predicted
accuracy: 0.85

Surrogate model Predicted
accuracy: 0.93

ConvLayer
Number of filters:

64, filter size:3

MaxPoolingLayer
Pool size: 2 Flatten

DenseLayer
Number of

neurons: 200

1 64 3 2 2 3 200

ConvLayer
Number of filters:

32, filter size:5

1 32 5

0.1 -0.5 0.35 0.97 0.22

1 64 3 2 2 3 2001 32 5

ConvLayer
Number of filters:

64, filter size:3

MaxPoolingLayer
Pool size: 2 Flatten

DenseLayer
Number of

neurons: 200

ConvLayer
Number of filters:

32, filter size:5

Fixed-length representation

Training phase

Encoder

Encoder

Encoder

Decoder

Fixed-length representation

Fixed-length representation

Testing phase

Fig. 1. An example of encoder and decoder in the proposed method

III. PROPOSED METHOD

The main ideas of our proposed method is illustrated in
Figure 1. The training phase is shown in the upper part,
while the testing phase is shown in the lower part. During
the training phase, a given DNN architecture will be converted
into a variable-length encoding. An example is given, in which
the violet boxes show the layer type (1 denotes convolutional
layer, 2 denotes max-pooling layer, and 3 denotes a dense
layer). In the lower part, two example DNNs are shown with
different number of layers, and the resulting encoding has
different sizes as well. During the training phase, the variable-
length DNN encoding will be used as input to an encoder,
which converts the variable-length encoding into a fixed-length
representation. Afterwards, a decoder will be used to convert
the fixed-length representation to a variable-length output such
that the output will be as close to the input as possible. This
process, which is similar to that of an autoencoder, allows
the weights of the encoder and decoder to be trained via an
optimisation algorithm, such as the Adam algorithm.

In the testing phase, shown in the lower part of Figure
1, each DNN architecture is converted into a variable-length
encoding, and sent to the encoder to create a fixed-length
representation. However, unlike the training phase, the decoder

is not used but instead a surrogate model would use the
fixed-length representation to predict the DNN performance
without actually training the DNN. Two examples in the
testing phase are shown, the first one is a four-layer DNN
which is encoded as a vector of length 7, while the second
example is a seven-layer DNN encoded as a vector of length
15. Both are converted to a fixed-length vector of length 5
via the encoder, then the surrogate model is used to predict
the DNN performance, with the first one having a predicted
accuracy of 0.85 while the surrogate model predicts that the
second DNN would have an accuracy of 0.93.

Our work is loosely related to the work by Luo et al. [23]
which also used an encoder-decoder architecture to optimise
DNNs, however the authors of that work used a gradient-
based approach for DNN optimisation. The authors also did
not investigate the use of LSTM-based encoder-decoder to
convert a variable-length DNN encoding into a fixed-length
representation to be used by a surrogate model in the context
of SAEA. Another related work is by Gong et al. [31] which
also used a sequence-to-sequence based procedure to convert
a variable-length encoding to a fixed-length representation.
However, the authors did not investigate the use of surrogate
models, and performed evolution on the fixed-length vector,
while the newly generated candidates are converted back to
the variable-length encoding using the decoder. In contrast, in
our work, the evolutionary process is performed on the original
variable-length space while the fixed-length representation is
only used as the input for the surrogate model to predict the
DNN performance without training.

Next, we describe how the main ideas of our proposed
method is applied in the SAEA framework for optimising
deep learning architectures. Let Ncand be the number of
candidates, Ngen be the number of generations, in which
each candidate denotes a different DNN architecture. The
algorithm will be divided into two stages. During the first
stage (cold start), the DNN candidates are trained normally
for Ncoldstart generations, and evaluated on a validation set
(Ncoldstart < Ngen). The performance of each candidate are
stored in a dataset Dcoldstart = {xvar

n , yn}Ln=1, where xvar
n

denotes the variable-length DNN architecture encoding of the
nth candidate during the cold start stage, and yn denotes
its performance on the validation set after being trained, and
L = Ncoldstart∗Ncand. Then, the encoder-decoder model will
be used to train on {xvar

n } such that the output of the decoder
matches the input of the encoder as closely as possible (note
that yn is not used at this point). In other words, we solve the
optimisation problem:

min
WEnc,WDec

1

L

L∑
n=1

||Dec(Enc(xvar
n))− xvar

n || (1)

where Enc and Dec denotes the encoder and decoder, and
WEnc and WDec denotes their respective weights. Once
the encoder-decoder model has been trained, we discard the
decoder and use the encoder to convert the variable-length
inputs into a fixed-length representation. More specifically,

we create the surrogate data Dsurr = {xfixed
n , yn}Ln=1, where

xfixed
n = Enc(xvar

n) is the fixed-length representation of xvar
n .

A surrogate model G(.) is then used to learn the relationships
between xfixed

n and yn by training on Dsurr to solve the
optimisation problem:

min
WG

1

||Dsurr||

||Dsurr||∑
n=1

||G(Enc(xvar
n))− yn|| (2)

where WG is the parameters of the surrogate model, and
||Dsurr|| is the size of the surrogate data (which will be
updated during the training process), and G(Enc(xvar

n)) is
the predicted performance by the surrogate model G of the
DNN architecture encoded by xvar

n . Note that the surrogate
model G can be a traditional machine learning model, such as
Random Forest or XgBoost, or a deep learning model, such
as CNN.

Another problem is the choice of the encoder and decoder,
since the encoder must have the ability to convert a variable-
length input into a fixed-length output, and vice-versa for the
decoder. It is known that recurrent networks, such as LSTM
[13] have the ability to compute a function of variable-length
inputs [14], and that LSTM has also been used successfully
in sequence-to-sequence tasks [12]. Therefore in this paper
LSTM is used as the encoder and decoder. LSTM is a type
of recurrent neural network which was specifically designed
to handle the vanishing and exploding gradients problems. Let
h
(k)
t denote the hidden states of the kth layer of a multi-layer

LSTM, and the input xt can be denoted by h
(0)
t , in which

the input vector is d-dimensional while the hidden states are
p-dimensional. We also denote c

(k)
t as the cell state, which

is an additional p-dimensional hidden vector. The cell state
can be considered as a type of long-term memory. The update
matrix denoted by W (k) with size 4p × 2p is used in the
update process given the inputs [h

(k−1)
t , h

(k)
t−1]. There are four

intermediate, p-dimensional vector variables used in the update
process, i (input), f (forget), o (output), and c, which are all
4p-dimensional vectors. The equations for the update process
are as follows (where sigmoid and tanh denotes the sigmoid
and tanh function respectively, and ⊙ denotes the element-wise
product operator):

i
f
o
c

 =


sigmoid
sigmoid
sigmoid
tanh

W (k) ·

[
h
(k−1)
t

h
(k)
t−1

]
(3)

c
(k)
t = f ⊙ c

(k)
t−1 + i⊙ c, h

(k)
t = o⊙ tanh(c

(k)
t)

The sigmoid and tanh functions are defined as follows:

sigmoid(x) =
1

1 + e−x
, tanh(x) =

ex − e−x

ex + e−x
(4)

After the cold start procedure is completed, the surrogate
model G will be used instead of training the DNN candidate
architectures. However, in order to ensure that the surrogate
model retains its accuracy, it is necessary for it to be updated

periodically. In this paper, the surrogate model is updated peri-
odically after every Nupdate generations. More specifically, let
Gen be the current generation (Ncoldstart < Gen ≤ Ngen). If
(Gen−Ncoldstart)%Nupdate ̸= 0 then the surrogate model is
used to predict the accuracy of each DNN architecture xvar

in the current generation, otherwise each DNN in the current
generation xvar will be trained and evaluated on the training
set to find its performance metric y. The encoder is used to
find the fixed-length representation xfixed = Enc(xvar) and
{xfixed, y} will be added to Dsurr. The surrogate model will
be updated at the end of the generation using Equation 2.

Our proposed method is described in Algorithm 1. The
algorithm receives as inputs the training set D, validation
set V, number of candidates Ncand, number of generations
Ngen, number of cold start generations Ncoldstart, the sur-
rogate model G and the number of update generations for
the surrogate model Nupdate. In lines 1-2, the cold start and
the surrogate data is initialized as the empty set, and the
candidates are initialized randomly. Lines 3-8 denotes the cold
start procedure, in which each DNN candidate during the first
Ncoldstart generations are trained on D and its performance
is evaluated on V, and the DNN encoding along with the
performance is added to Dcoldstart. Afterwards, in line 9, the
encoder-decoder is trained on Dcoldstart, then in line 10, the
encoder is used to convert the variable-length encodings in
Dcoldstart into a fixed-length vector, which are then added to
Dsurr. In line 11, the surrogate model G is trained on the
surrogate data Dsurr. In lines 12-25, the algorithm continues
from generation Ncoldstart + 1 to the last generation. After
each Nupdate generations, the DNN candidates are trained
normally and then the surrogate model is updated using the
new results (lines 19-22). Otherwise, for each DNN candidate,
the encoder is first used to convert its encoding into a fixed-
length representation, which is then used by the surrogate
model to predict its performance without training (lines 14-
17). Finally, in line 26, the optimal DNN architecture found
during the evolutionary process is returned.

IV. EXPERIMENTAL STUDIES

A. Experimental Settings

We applied our proposed method to a well-known evolu-
tionary DL method called EvoCNN1 [7] which uses an EA to
evolve CNNs. We experiment on several datasets: FashionM-
NIST [8], MNIST, MNIST with Rotated Digits (MRD) [32]
like in experiments of EvoCNN [7]. The FashionMNIST and
MNIST datasets have 50,000 training images and 10,000 test
images, while the MNIST with Rotated Digits dataset has only
12,000 training images and 50,000 test images, and is more
challenging for machine learning algorithms than the original
MNIST dataset. The number of generations Ngen and number
of candidates Ncand were set to 100, the number of cold start
generations Ncoldstart and the number of update generations
Nupdate were set to 5. A LSTM layer was used for the encoder

1https://github.com/yn-sun/evocnn

Algorithm 1 Training process
Input: Training set D, validation set V, number of candidates

Ncand, number of generations Ngen, number of cold start
generations Ncoldstart, the surrogate model G, the number of
update generations for the surrogate model Nupdate

Output: The best DNN architecture found during the evolutionary
process.

1: Dcoldstart ← ∅,Dsurr ← ∅
2: Initialize the candidates {xvar

n }Ncand
n=1

3: for Gen← 1 to Ncoldstart do
4: for n← 1 to Ncand do
5: Train the DNN represented by xvar

n on D and evaluate its
performance yn on V, and add {xvar

n , yn} to Dcoldstart

6: end for
7: Perform evolutionary operators on {xvar

n }Ncand
n=1 to generate

the new population
8: end for
9: Train the encoder-decoder on Dcoldstart using Equation 1.

10: Create Dsurr by using the encoder Enc to convert each variable-
length encoding xvar ∈ Dcoldstart into a fixed-length represen-
tation, i.e. xfixed = Enc(xvar)

11: Train the surrogate model G on Dsurr

12: for Gen← Ncoldstart + 1 to Ngen do
13: if (Gen−Ncoldstart)%Nupdate ̸= 0 then
14: for n← 1 to Ncand do
15: xfixed

n = Enc(xvar
n)

16: yn = G(xfixed
n)

17: end for
18: else
19: for n← 1 to Ncand do
20: Train the DNN represented by xvar

n on D and evaluate
its performance yn on V

21: end for
22: Update the surrogate model G
23: end if
24: Perform evolutionary operators on {xvar

n }Ncand
n=1 to generate

the new population
25: end for
26: return The best DNN architecture found during the evolutionary

process.

and decoder, with the fixed-length vector having a size of 100.
The training of the encoder-decoder was done for 300 epochs
using the Adam algorithm. We compared the results of the
original EvoCNN method and our proposed variable-length
encoding based surrogate model based on two performance
metrics namely accuracy and F1 score. We also compare
the optimisation time between the two cases. Two surrogate
models used in our experiments were Random Forest and
XgBoost. These models were chosen because they are well-
known surrogate models in the literature and they generally
provide good results. The hyperparameters for the EvoCNN
algorithm were set in the same way as [7].

B. Results and Discussions

In this section, we compared the results between the orig-
inal method (no surrogate model was used), and when two
surrogate models were used. Figure 2 shows the results of the
original EvoCNN method, and when Random Forest and Xg-
Boost were used as the surrogate model on the FashionMNIST
dataset. It can be seen that the performances of the original

Train fitness Test accuracy Test F1 score0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.864 0.8335 0.83370.8495 0.8333 0.83260.8585 0.8261 0.8256

FashionMNIST
EvoCNN
Random Forest-based surrogate
XgBoost-based surrogate

Fig. 2. The results on the FashionMNIST dataset

Train fitness Test accuracy Test F1 score0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.918 0.8829 0.88120.917 0.9005 0.89920.925 0.9105 0.9093

MNIST
EvoCNN
Random Forest-based surrogate
XgBoost-based surrogate

Fig. 3. The results on the MNIST dataset

method and the two surrogate models are roughly similar.
The train fitness of the original method is 0.864, followed by
XgBoost at 0.8585 and Random Forest at 0.8495. However,
for the test accuracy and F1-score, both the original method
and Random Forest scores at around 0.83, while XgBoost only
obtains a score of around 0.82.

Figure 3 shows the experimental results on MNIST dataset.
For this dataset, XgBoost achieved the best score for both
the train fitness and the test scores. The best train fitness
score was obtained by XgBoost at 0.925, while the scores
for both EvoCNN and Random Forest were around 0.917. For
the test accuracy, the best score was achieved by XgBoost at
0.9105, which is higher than Random Forest and the original
method by 1% and 2.76% respectively. Similarly, XgBoost
also obtained the best F1-score on the test set at 0.9093,
followed by Random Forest at 0.8992 while the original
method only scores 0.8812.

Figure 4 shows the results for the MNIST Rotated Digits
dataset. It can be seen that the results are not as good as
the previous datasets, due to the fact that this dataset only
contains 12,000 training images compared to 50,000 training
images for the other two datasets, and that the images in
this dataset have been chosen to increase the difficulty for
classification algorithms. XgBoost achieved the highest train
fitness at 0.6835, while the original method and Random For-
est only obtains around 0.58-0.59. On this dataset, EvoCNN

Train fitness Test accuracy Test F1 score0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.598

0.3422
0.2635

0.58

0.4198 0.3988

0.6835

0.4808
0.442

MNIST Rotated Digits
EvoCNN
Random Forest-based surrogate
XgBoost-based surrogate

Fig. 4. The results on the MNIST Rotated Digits dataset

performed poorly, achieving the accuracy at 0.3422. Two
surrogate models meanwhile made the results better, obtaining
0.4198 and 0.4808 of Random Forest and XgBoost respec-
tively. A similar situation can be seen for the test F1-score,
in which XgBoost obtained the highest F1-score at 0.442,
followed by Random Forest at 0.3988, while the F1-score of
the original method was only around 0.26. The experimental
results indicated that using the proposed surrogate model can
achieve competitive performance while significantly reducing
the time of optimisation process compared to using original
method.

Figure 5 shows the confusion matrices of EvoCNN and our
proposed method on the FashionMNIST, MNIST and MNIST
Rotated Digits datasets (from left to right, top to bottom).
Each row denotes the results on each dataset (FashionMNIST,
MNIST and MNIST Rotated Digits) and for each row, each
column denotes the results of the original method, Random
Forest and XgBoost respectively. For the 1st row (FashionM-
NIST), it can be seen that the main misclassification types are
the same for all three cases (original method, Random Forest
and XgBoost). The original method mostly misclassified class
6 as class 0 (187 cases), class 2 (97 cases), class 4 (84 cases),
and misclassified class 0 as class 6 (84 cases), class 2 as
class 6 (133 cases), class 4 as class 6 (120 cases), class 4
as class 2 (100 cases) and class 2 as class 4 (142 cases). Both
Random Forest and XgBoost have less images of class 2 and 4
being misclassified as class 6 compared to the original method
(around 80-90 for both compared to more than 120 for the
original method). On the other hand, XgBoost and Random
Forest misclassified more images of class 6 as class 2 and
class 4 compared to the original method, which is from 80
to around 100. XgBoost also wrongly classified 40 images of
class 9 as class 5, as opposed to just 6 and 19 images by the
original method and Random Forest.

With respect to the 2nd row (MNIST), the original method
misclassified 119 images of character 4 as character 9, which
is almost twice as those of Random Forest (51) and XgBoost
(67). The highest misclassification cases for each category
of both Random Forest and XgBoost are much smaller than
100, as opposed to the original method (119). Both Random

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

844 2 16 38 4 1 84 1 9 1

7 945 5 29 5 0 9 0 0 0

19 2 686 7 142 1 133 1 9 0

43 8 18 818 41 0 53 2 16 1

1 2 100 18 747 2 120 0 10 0

0 0 0 1 0 903 0 52 3 41

187 1 97 31 84 0 582 0 18 0

0 0 0 0 0 33 0 929 1 37

7 1 5 11 3 6 30 4 933 0

0 0 0 0 0 6 2 44 0 948
0

200

400

600

800

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

801 4 13 27 6 0 124 1 24 0

5 956 6 25 2 0 4 1 1 0

11 2 786 7 91 0 86 0 17 0

47 11 19 802 41 0 66 1 13 0

0 2 180 20 708 0 78 0 12 0

0 0 0 1 0 920 0 45 2 32

148 1 141 18 112 0 544 0 36 0

0 0 0 0 0 46 0 930 0 24

3 1 5 6 3 4 12 6 960 0

0 0 0 0 0 19 0 53 2 926
0

200

400

600

800

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

796 3 19 49 6 2 111 1 13 0

4 943 9 28 6 0 6 0 3 1

39 0 726 12 127 1 85 1 9 0

40 8 28 824 40 1 47 0 12 0

0 0 137 27 733 1 97 0 5 0

0 0 1 1 0 936 0 44 9 9

154 1 126 37 113 2 536 0 31 0

0 0 0 0 0 48 0 933 1 18

12 2 7 8 8 6 15 7 933 2

0 0 0 2 0 40 2 53 2 901
0

200

400

600

800

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

921 0 15 9 1 21 3 7 2 1

0 1093 4 2 1 8 3 0 24 0

10 6 898 22 22 6 14 11 36 7

6 2 35 866 1 43 1 17 21 18

2 5 7 2 829 3 4 4 7 119

16 7 12 56 10 705 13 9 47 17

17 2 11 3 18 22 880 1 4 0

0 9 29 6 10 5 0 915 1 53

18 14 11 37 8 36 15 10 793 32

8 3 1 14 17 12 2 15 8 929
0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9
Tr

ue
 la

be
l

935 0 3 5 1 19 12 1 3 1

0 1093 6 5 0 2 4 2 23 0

5 7 932 27 9 5 9 7 28 3

2 4 16 893 1 35 0 13 35 11

6 2 7 1 889 2 13 2 9 51

10 3 4 53 11 738 12 7 43 11

16 4 19 2 10 16 887 1 3 0

2 4 28 10 12 2 0 891 6 73

5 10 11 40 8 42 8 3 830 17

7 7 4 11 25 14 1 17 6 917
0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

946 0 2 1 1 12 8 3 4 3

0 1093 5 2 1 3 5 1 25 0

14 4 897 13 14 7 28 15 27 13

6 0 25 897 2 32 3 9 24 12

2 3 2 0 877 2 10 6 13 67

10 2 4 36 13 760 18 6 35 8

12 2 4 0 5 17 914 1 3 0

2 8 23 4 4 0 0 941 2 44

7 6 3 17 10 31 13 12 864 11

11 6 0 11 21 5 0 31 8 916
0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

3956 1 12 399 21 119 372 31 0 0

7 4359 13 935 10 88 71 9 56 1

1220 113 43 2329 99 451 715 52 16 0

346 173 31 3844 36 293 301 26 7 0

239 1161 10 403 723 175 1903 150 28 3

377 294 50 2615 89 560 409 132 25 2

668 421 20 629 298 175 2583 74 7 7

643 165 15 639 443 477 1758 1002 22 10

80 324 12 3302 92 371 691 29 15 0

231 910 7 350 848 92 2441 211 11 24
0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

3703 0 585 65 9 92 172 232 14 39

6 4665 18 186 47 284 20 34 159 130

902 44 1195 855 42 877 352 309 237 225

206 223 455 2178 13 1211 185 90 397 99

138 219 251 84 699 366 644 835 126 1433

225 206 644 978 65 1316 191 370 342 216

441 105 424 157 129 371 1623 586 154 892

359 40 308 32 207 284 477 2830 61 576

51 179 437 1520 44 1309 338 90 748 200

154 206 155 58 439 286 842 858 92 2035
0

1000

2000

3000

4000

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

4131 0 130 57 66 36 345 114 28 4

4 5051 8 112 3 50 19 7 289 6

1177 48 660 1246 171 329 523 238 588 58

203 186 174 3165 36 278 139 72 789 15

181 392 84 56 1438 51 592 829 326 846

250 265 283 1520 129 698 153 459 749 47

537 205 178 125 1087 89 1413 394 535 319

405 56 64 21 418 132 221 3557 122 178

34 184 140 1253 81 202 259 84 2658 21

189 368 47 29 1473 43 502 983 223 1268
0

1000

2000

3000

4000

5000

Fig. 5. Confusion matrices of EvoCNN (first column), and our proposed method when Random Forest (second column) and XgBoost (third column) are used
on the FashionMNIST, MNIST and MNIST Rotated Digits datasets (top to bottom rows respectively)

0 50 100 150 200 250

FashionMNIST

MNIST

MNIST
Rotated Digits

138.46

263.91

199.85

44

80.35

49.92

44.23

78.23

70.44

Optimisation time (hours)

EvoCNN
Random Forest-based surrogate
XgBoost-based surrogate

Fig. 6. Optimisation time of EvoCNN and the surrogate-based methods using
Random Forest and XgBoost.

Forest and XgBoost had 55 misclassification entries which are
smaller than 10, compared to only 49 entries for the original
method. The average misclassification number for each entry
by the original method was 13.01, which is higher than those
of Random Forest and XgBoost by 1.95 and 3.07 respectively.
The number of correct classification cases for each class by
Random Forest and XgBoost were usually higher than that
of the original method by 30, in which the highest result are
between XgBoost and the original method for character 8 at
71.

For the 3rd row (MNIST Rotated Digits), it can be seen
that there are many more misclassification cases compared to
the other datasets. The original method performed poorly on
this dataset, with very low correct classification for character
2 (43), character 8 (15) and character 9 (24). The highlight
misclassification types are mistaking character 8 as character
3 (3302 instances), character 9 as character 6 (2441 instances)
and character 2 as character 3 (2329 instances). On the other
hand, there are only few instances being misclassified as char-
acter 7-9. In contrast, the highest misclassification numbers
for each category by both Random Forest and XgBoost were
1520, which is around half of that of the original method.
The original method made on average 365.46 mistakes for
each category, while Random Forest and XgBoost only makes
322.31 and 288.46 misclassifications for each category on
average. For Random Forest, the highest misclassification
numbers were 1520 (character 8 misclassifed as character
3), 1433 (character 4 misclassified as character 9) and 1309
(character 8 misclassified as character 5). Therefore, it can be
seen that for all datasets, our proposed variable-length based
surrogate model has less misclassified instances compared to
the original method.

Figure 6 shows the optimisation time of original method
(EvoCNN) and our proposed surrogate-based models using
Random Forest and XgBoost. It can be seen that the surro-

gate models reduce the computational time by several orders
of magnitude compared to EvoCNN. For the FashionNIST
dataset, while EvoCNN took 138.46 hours, Random Forest-
based and XgBoost-based surrogate model took only 44 hours
and 44.23 hours, respectively, which is 3-time faster than
EvoCNN. Similarly, for the MNIST dataset, EvoCNN took
263.91 hours, compared to just around 80.35 and 78.23
hours by Random Forest and XgBoost-based surrogate model
respectively. For the MNIST Rotated Digits dataset, EvoCNN
required 199.85 hours for training, while Random Forest and
XgBoost-based surrogate model only required 49.92 and 70.44
hours respectively. These results indicate that our proposed
surrogate model significantly reduces computational time
while obtaining similar performance compared to EvoCNN.

V. CONCLUSION

In this paper, we introduced a novel surrogate model for
variable-length encoding to optimise deep learning architec-
ture. An encoder-decoder model was used to convert the
variable-length encoding of the DNN into a fixed-length
representation, which allows the surrogate to predict the DNN
performance without training. During the initial cold-start
stage, its weights are trained by matching the output as
closely to the input as possible. Afterwards, the decoder is
discarded and given a variable-length DNN encoding, the
encoder transforms this encoding into a fixed-length vector,
which will then be used by a surrogate model to predict the
DNN performance without training. A LSTM was used as
the encoder and decoder, and experiments were conducted
based on a popular evolutionary DL method. We compared the
results using two types of surrogate models namely Random
Forest and XgBoost. The results indicated that our proposed
method maintain competitive accuracy while reducing compu-
tational time significantly.

VI. ACKNOWLEDGEMENT

This work was supported by the Scottish Government
through The RSE Scotland Asia Partnerships Higher Educa-
tion Research (SAPHIRE) Fund [grant number 2970].

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–44, 05 2015.

[2] N. Li, L. Ma, G. Yu et al., “Survey on evolutionary deep learning:
Principles, algorithms, applications, and open issues,” ACM Computing
Surveys, vol. 56, no. 2, pp. 1–34, 2023.

[3] B. Zoph, V. Vasudevan, J. Shlens et al., “Learning transferable architec-
tures for scalable image recognition,” in Proceedings of CVPR, 2018,
pp. 8697–8710.

[4] A. Zela, A. Klein, S. Falkner et al., “Towards Automated Deep Learning:
Efficient Joint Neural Architecture and Hyperparameter Search,” ICML
AutoML Workshop, 2018.

[5] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable Architecture
Search,” Proceedings of ICLR, Apr. 2019.

[6] M. Baldeon Calisto and S. K. Lai-Yuen, “AdaEn-Net: An ensemble
of adaptive 2D-3D Fully Convolutional Networks for medical image
segmentation,” Neural Networks, vol. 126, pp. 76–94, Jun. 2020.

[7] Y. Sun, B. Xue, and M. Zhang, “Evolving deep convolutional neural
networks for image classification,” IEEE Trans. Evol. Comput., vol. PP,
10 2017.

[8] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms,” CoRR, vol.
abs/1708.07747, 2017.

[9] C. He, Y. Zhang, D. Gong et al., “A review of surrogate-assisted
evolutionary algorithms for expensive optimization problems,” Expert
Systems with Applications, vol. 217, p. 119495, 2023.

[10] Q. Gu, Q. Wang, X. Li et al., “A surrogate-assisted multi-objective
particle swarm optimization of expensive constrained combinatorial
optimization problems,” Knowl.-Based Syst., vol. 223, p. 107049, 2021.

[11] Z. Hong, M. Tao, L. Liu et al., “An intelligent approach for predicting
overbreak in underground blasting operation based on an optimized
xgboost model,” Eng. Appl. Artif. Intell., vol. 126, p. 107097, 2023.

[12] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proceedings of NIPS, 2014, p. 3104–3112.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] C. C. Aggarwal, Neural Networks and Deep Learning: A Textbook.
Springer, 2018.

[15] D. Ezzat, A. E. Hassanien, and H. A. Ella, “An optimized deep learning
architecture for the diagnosis of covid-19 disease based on gravitational
search optimization,” Applied Soft Computing, vol. 98, p. 106742, 2021.

[16] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “GSA: a gravitational
search algorithm,” Inf. Sci., vol. 179, no. 13, pp. 2232–2248, 2009.

[17] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[18] R. Miikkulainen, J. Z. Liang, E. Meyerson et al., “Evolving deep neural
networks,” CoRR, vol. abs/1703.00548, 2017.

[19] E. Real, A. Aggarwal, Y. Huang et al., “Regularized evolution for image
classifier architecture search,” in Proceedings of AAAI, 2019.

[20] X. Wang, Y. Jin, S. Schmitt et al., “An adaptive bayesian approach to
surrogate-assisted evolutionary multi-objective optimization,” Inf. Sci.,
vol. 519, pp. 317–331, 2020.

[21] C. Chen, X. Wang, H. Dong et al., “Surrogate-assisted hierarchical learn-
ing water cycle algorithm for high-dimensional expensive optimization,”
Swarm and Evolutionary Computation, vol. 75, p. 101169, 2022.

[22] R. G. Regis, “Evolutionary programming for high-dimensional con-
strained expensive black-box optimization using radial basis functions,”
IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 326–347, 2013.

[23] R. Luo, F. Tian, T. Qin et al., “Neural architecture optimization,” in
Proceedings of NIPS, 2018, p. 7827–7838.

[24] D. Lim, Y. Jin, Y.-S. Ong et al., “Generalizing surrogate-assisted
evolutionary computation,” IEEE Trans. Evol. Comput., vol. 14, no. 3,
pp. 329–355, 2009.

[25] H. Yu, Y. Tan, C. Sun et al., “A generation-based optimal restart strat-
egy for surrogate-assisted social learning particle swarm optimization,”
Knowl.-Based Syst., vol. 163, pp. 14–25, 2019.

[26] P. Liao, C. Sun, G. Zhang et al., “Multi-surrogate multi-tasking op-
timization of expensive problems,” Knowl.-Based Syst., vol. 205, p.
106262, 2020.

[27] S. Chu, Z. Yang, M. Xiao et al., “Explicit topology optimization of
novel polyline-based core sandwich structures using surrogate-assisted
evolutionary algorithm,” Comput. Methods Appl. Mech. Eng., vol. 369,
p. 113215, 2020.

[28] T. Zhang, C. Lei, Z. Zhang et al., “AS-NAS: Adaptive scalable neural
architecture search with reinforced evolutionary algorithm for deep
learning,” IEEE Trans. Evol. Comput., vol. 25, no. 5, pp. 830–841, 2021.

[29] Z. Lu, S. Liang, Q. Yang et al., “Evolving block-based convolutional
neural network for hyperspectral image classification,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 60, pp. 1–21, 2022.

[30] K. Han, T. Pham, T. H. Vu et al., “VEGAS: a variable length-based
genetic algorithm for ensemble selection in deep ensemble learning,” in
Proceedings of ACIIDS, 2021, pp. 168–180.

[31] Y. Gong, Y. Sun, D. Peng et al., “Bridge the gap between fixed-length
and variable-length evolutionary neural architecture search algorithms,”
Electronic Research Archive, vol. 32, no. 1, pp. 263–292, 2024.

[32] H. Larochelle, D. Erhan, A. Courville et al., “An empirical evaluation
of deep architectures on problems with many factors of variation,” in
Proceedings of ICML, 2007, p. 473–480.

	coversheet_template
	DANG 2024 A novel surrogate model (AAM)

