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Abstract—We proposed a novel ensemble selection method
called VISTA for multiple layers ensemble systems (MLES).
Our ensemble model consists of multiple layers of ensemble of
classifiers (EoC) in which the EoC in each layer is trained on
the data generated by a concatenation of the original training
data and the predictions by classifiers of the previous layer.
The predictions of the EoC in the final layer are aggregated
to obtain the final prediction. To enhance the accuracy of
the MLES, we used the Variable-Length Genetic Algorithm
(VLGA) to search for the optimal configuration of EoC in each
layer. Since the optimisation process is computationally intensive,
we use Surrogate-Assisted Evolutionary Algorithms (SAEA) to
reduce the training time. Most surrogate models developed in
the literature require a fixed-length input, which limits their
applications when the encoding is of variable length. In this paper,
we proposed to use a Long Short-Term Memory (LSTM)-based
surrogate model, in which the LSTM transforms the variable-
length encoding to a fixed-size representation which will then
be used by the surrogate model to predict the fitness values
in VLGA. For the surrogate model, we adopted Radial Basis
Function (RBF) for surrogation. We first conducted experiments
in comparing two types of LSTM converters, and the results
suggest that the proposed chunk-based LSTM converter provides
better results compared to the normal LSTM converter. Our
experiments on 15 datasets show that VISTA outperforms several
benchmark algorithms.

Index Terms—Ensemble learning, ensemble selection, classifier
selection, ensemble of classifiers, Surrogate model

I. INTRODUCTION

In recent years, ensemble learning, a sub-field of machine

learning which aims to aggregate multiple classifiers to im-

prove prediction accuracy, has been successfully applied to

many areas. By combining the prediction results of multiple

single classifiers, an ensemble learning system can compensate

for poor predictions of individual classifiers to achieve im-

proved overall performance. An example which demonstrates

the effectiveness of ensemble learning is shown in [1] in which

the authors applied 179 machine learning methods on 121

datasets to show that ensemble-based methods perform the

best.

In 2014, Zhou et a. proposed a deep ensemble system

named gcForest which consists of multiple layers of Ran-

dom Forest and Completely Random Tree Forest [2]. That

study showed that gcForest is a subset of deep models,

which can be constructed using non differentiable modules.

Experimental results on several popular datasets showed that

gcForest outperforms both DNNs and state-of-the-art ensemble

methods [2] [3]. With the success of gcForest in general, in

recent years there have been multiple works on deep and

MLES, and most works so far have focused on selecting

the best ensemble for each layer. Since MLES are composed

of non-differentiable modules, optimisation methods such as

Evolutionary Algorithms (EA) are usually used to find the

optimal ensemble configuration for each layer. However, it is

noted that optimising a MLES requires more time compared

to a single layer ensemble [4]. A potential solution to reduce

computation time is by using surrogate-assisted EA (SAEA)

[5], which uses a function with lower computational overhead,

called surrogate function, to predict the fitness value during the

evolutionary process. However, it is noted that the surrogate

functions assume a fixed-size input, while the optimal number

of layers in a multiple layers ensemble is usually not known

beforehand [3] [5].

In this paper, we propose a novel ensemble selection method

to improve the performance and efficiency of MLES. The



configuration of the deep model is represented using a binary

array, indicating which classifiers are selected or not. The

representation’s length is based on the number of layers

and available classifiers used in MLES. The optimal set of

classifiers is found by using a SAEA that maximises the

classification accuracy of the MLES on a validation dataset.

We introduce VISTA, a Variable-length Genetic Algorithm

(VLGA) combined with a LSTM-based surrogation model to

solve this optimisation problem to select the optimal EoC. Our

contributions are as follows:

• We propose an ensemble selection method for MLES.

The system is composed of multiple layers in which each

layer contains an EoC. The output probability of each

classifier in a layer is used as input for the classifiers in

the next layer.

• We propose to represent all available classifiers in all

layers in the MLES using a variable length approach.

Since the number of classifiers in each layer can be dif-

ferent, and the optimal number of layers can be problem-

dependent, this approach provides greater flexibility com-

pared to a fixed-length approach.

• We develop a LSTM based-surrogation assisted VLGA

for optimal configuration search of ensemble learn-

ing systems. Until now, SAEA-based approaches have

only considered fixed-length inputs. LSTM is a pop-

ular method for time-series problems and can handle

variable-length input, which makes it an ideal choice

for converting from a variable-length to a fixed-length

representation.

• Our experiments on 15 popular datasets show that the

proposed method performs well compared to several

benchmark algorithms.

II. BACKGROUND AND RELATED WORKS

A. Ensemble selection

Ensemble selection can improve predictive performance and

computational efficiency by selecting a subset of classifiers

from the entire ensemble. There are several approaches in

selecting a subset of classifiers for an ensemble such as

ordering-based, optimisation-based, and dynamic techniques.

Dang et al. [6] proposed an ensemble of deep segmentation

models in which the confidence of each prediction of the

models are measured by a threshold to determine if the model

is selected as a member of the ensemble. The optimal threshold

is obtained by using Comprehensive Learning Particle Swarm

Optimisation (CLPSO), a swarm intelligence algorithm. In [7],

the authors proposed ECM-EFS, an ensemble feature selection

based on an enhanced co-association matrix with a novel

consensus strategy based on considering all results given by

all base feature selectors, the importance of features, and the

relationship between features. Ning et al. [8] proposed a novel

sparse projection infinite selection ensemble for imbalanced

classification, in which balanced versions of the datasets are

iteratively sampled and the classifiers trained on these subsets

are combined to create the final prediction. A graph-based

approach combined with random sparse projection is used

to adaptively sample diverse subsets of the original dataset.

In [9], the authors proposed an ensemble selection method

based on joint spectral clustering and structural sparsity, in

which spectral clustering is proposed to learn pseudo cluster-

labels on the transformed data while competent base classifiers

are weighted by using structural analysis with regularization.

Nguyen et al. [10] applied Ant Colony Optimisation (ACO)

to search for both the optimal combining algorithm and the

optimal set of the outputs of classifiers in the ensemble system.

Inspired by the successes of DNNs, several deep/MLES

have been developed. gcForest [2] proposed in 2014 is the

first system consisting of multiple layers, with each layer

comprising of four Random Forest-based classifiers. After

that, several MLESs were proposed including deep ensemble

models of incremental classifiers [11], an ensemble of SVM

classifiers [12], and deep ensemble models focusing on multi-

label learning [13]. In [4], Nguyen et al. introduced MULES,

a MLES which aims to select both optimal set of classifiers

and the optimal set of features used by a selected classifier

at each layer. The optimisation problem was formulated as a

bi-objective problem to balance maximising the classification

accuracy and increasing the diversity of the EoC in each layer.

Although multiple layers ensemble can achieve better results

than a single layer ensemble, constructing and optimizing a

multiple layers ensemble requires much more computation

time. Han et al. [14] proposed a variable length-based Genetic

Algorithm to search for the optimal configuration of multiple

layer ensemble. Dang et al. [15] proposed a two-layer en-

semble of deep learning-based medical image segmentation

models. The prediction of each pixel by each segmentation

model is used as augmented data for the second layer, and the

predictions in the second layer are then combined via a weight-

based scheme in which each model has a different contribution

to the final prediction.

B. Surrogate assisted evolutionary algorithms (SAEA)

In EA, a population is evolved through a number of genera-

tions to find the optimal solution. For each evolved candidate,

it is necessary to evaluate its quality through a fitness function.

For many real-world optimisation problems, evaluating the

fitness function requires a lot of computation time [5] which

shows a need of cost-saving fitness evaluation solutions when

using EA. An approach to circumvent this problem is known as

Surrogate-assisted evolutionary algorithm (SAEA) which uses

low-cost surrogate models to evaluate the candidate solution.

Common surrogate models which have been successfully used

in SAEA are Polynomial response surface (PRS), Kriging,

Radial basis function (RBF) and Support Vector Machine

(SVM) [16].

In SAEA, as new candidates are created at each generation,

it is necessary to update the surrogate model based on the

fitness value of these new candidates. At each generation, it is

necessary to find an appropriate scheme for choosing which

candidates to use to update the surrogate model (known as

model management). Generally, there are three types of model



management used to update the surrogate model: individual-

based, generation-based, and hybrids [16]. Within generation-

based management, all candidates undergo real fitness evalu-

ation (FE). Following a certain number of generations, which

can be either fixed or adaptive [17], the surrogate model is

then updated. In contrast, only a small number of candidates

are chosen for real FE at each generation in individual-based

methods. The individuals can be chosen according to some

criteria: either a random percentage of individuals are chosen,

or the best is chosen for each generation, or the population

might be clustered and the most representative individual in

each cluster is chosen [18].

An innovative SAEA approach was developed in [19] to

efficiently solve high-dimensional and computationally expen-

sive optimisation problems. A generalized surrogate model

is designed for this algorithm which is capable of handling

both continuous and categorical variables and employs an

effective update scheme for the surrogate model to improve its

accuracy while reducing the computational cost. A dynamic

SAEA framework was proposed in [20] to solve expensive

structural optimisation problems. The framework incorporated

a dynamic surrogate model to accelerate the optimisation

process, and a multi-level EA to handle the complex and high-

dimensional search space.

III. PROPOSED APPROACH

In this section, our proposed ensemble learning system

called VISTA, which is based on surrogate-assisted VLGA

with a LSTM network will be introduced.

A. Ensemble Selection for Multiple Layers Ensemble Systems

Suppose we have a set of N training observations, denoted

as D, where each observation has a feature vector xn and its

label ŷn where ŷn belongs to a label set Y of M labels. Our

objective is to learn a hypothesis, represented by a classifier

h, to approximate the unknown relationship g : xn → ŷn.

For ensemble learning, we combine a set of K hypotheses to

assign a label to each unlabelled instance.

The ensemble system introduced in this paper consists of

multiple layers, and each layer consists of an EoC (an example

is shown in Figure 1). In the first layer of a MLES, K learning

algorithms are trained on the original training data to obtain

a set of EoC. The Stacking algorithm is also used to generate

input data for the second layer [4]. For each subsequent

layer, the EoC of that layer is constructed using the output

data from the previous layer concatenated with the original

dataset. The predictions of the EoC of the last layer (sth layer)

are aggregated for a collaborative decision i.e., predictions

corresponding to all class labels. For each instance, the label

that corresponds to the maximum value among the predicted

probabilities is assigned to it.

It is recognised that in each layer there exists a subset of

EoC that performs competitively in comparison to the whole

EoC [21]. In this study, we propose a novel ensemble selection

approach to select the optimal subset of classifiers for each

layer of MLES.

Training Data Combiner

Decision Tree

Naive Bayes

Random
Forest

SVM

SVM

LDA

Decision Tree

Prediction

Fig. 1. An example of Multiple Layers Ensemble Systems

Layer 1 Layer 2 Layer 3

0 1 0 0 1 1 0 1 1 0 0 1

Fig. 2. Chunk-based representation example

B. Optimisation Problems and Evolutionary Algorithm

The ensemble selection problem is modeled as a maximisa-

tion optimisation problem. Let’s denote E as a representation

of a configuration for an EoC which shows whether a classifier

is selected or not while hE is the combining model which

combines the classifiers’ predictions associated with E. The

objective is to maximise classification accuracy when predict-

ing labels for observations in a validation set V:

maxE{
1

|V|

∑

x∈V

∥ hE(x) = ŷ ∥} (1)

In this study, we developed a surrogate-assisted variable

length binary representation Genetic Algorithm (SA- VLGA)

to search for the optimal set of classifiers for each layer in a

MLES. The proposed SA-VLGA in this paper consists of two

operators: CROSSOVER and MUTATION.

REPRESENTATION: We introduce a variable length bi-

nary representation method for multiple ensemble systems to

facilitate ensemble selection. The representation’s length is

determined by both the number of layers s in the multiple

layers ensemble and the quantity of available classifiers K in

each layer. The value at each index in a representation is as

the equation below:

h
(i)
k

=

{

1, kth classifier at ith layer is selected, i = 1, s

0, otherwise
(2)

Figure 2 below provides a chunk-based representation for

a three-layer ensemble system with four potential classifiers

available in each layer, each chunk contains encoding for clas-

sifiers in a layer. For this configuration, the second classifier

of the 1st layer, the first, second, and fourth classifier of the

2nd layer and the first and fourth classifier of the 3rd layer

will be selected to construct the ensemble.

CROSSOVER: To control the crossover process, a crossover

probability Pc is used. Crossover will be performed if the

randomly generated crossover rate is less than Pc. In the



chunk-based crossover operation, for two selected parent can-

didates with s1 and s2 layers, two random numbers r1 and

r2 are generated from the sets {K, 2 × K, ..., s1 × K} and

{K, 2 ×K, ..., s2 ×K}, respectively. Each parent exchanges

its tail with the other while retaining its head.

MUTATION: A mutation probability parameter Pm is used

to direct the mutation process. For each index of a represen-

tation, a flip mutation from 0 to 1 or 1 to 0 will occur when

a randomly generated mutate rate is smaller than Pm.

C. LSTM based Surrogate model

To address the issue of the expensive computational cost

of the search process for ensemble selection, we propose

integrating a surrogate model with our VLGA approach. The

surrogate model will be initialised and trained with individuals

from several first generations. The trained surrogate model

will then be used for fitness approximation for several next

generations. It is noted that the surrogate model is designed

as an adaptive model that will be continuously updated during

the search process and it will only be retrained with newly

collected individuals with actual fitness before being used for

fitness approximation again.

Surrogate models typically use mathematical or statistical

methods to approximate the relationship between the inputs

and the outputs of a complex system. These methods often

require a number of input variables. To handle the variable

length encoding of the ensemble system in this paper, we

proposed to use LSTM [22] to convert the variable length

input to the fixed length input before feeding it to the surrogate

model.

1) LSTM representation transformation: In this paper, we

developed a chunk-based LSTM converter for the surrogate

models. In [23], Zoph, Barret, et al. used a RNN (Recurrent

Neural Network) to sample a string which encodes a DNN in

a sequential manner. Deng et al. [24] proposed a predictive

model for deep network performance before training to re-

duce expensive training cost. The suggested predictive model

utilises the LSTM algorithm to capture information from each

layer sequentially. The approach involves merging the encoded

representations of individual layers into vectors, generating a

unified description using LSTM, and subsequently feeding it

into an MLP for network performance prediction.

Our study introduces a novel approach for optimising the

search for multiple layers ensemble network structures. Un-

like existing methods for predicting network performance,

we propose using chunk-based LSTM to construct surrogate

models. Additionally, our approach differs from prior research

on surrogate models, as it applies surrogation to evolving

variable length input data.

Suppose we have a representation E consisted of N chunks

that we can denote E as {e0, e1, ...eN−1}. The LSTM circular

chunk-based converter is a multiple-layer LSTM algorithm

that consists of nlstm layers. Each LSTM layer in the chunk-

based converter consists of a single unit only.

Each encoding chunk n representation is denoted as en, it

is fed to single unit LSTM layer t, where t = n%nlstm. For

Fig. 3. LSTM chunk-based converter

each LSTM layer t, the output is denoted as Ot, the activation

function is denoted as σ, Wt is the weighting matrix, and

bt is the bias vector. If only one chunk en is fed into an

LSTM layer t, the output is Ot = σ(Wt × [en] + bt). If more

than one chunk {en, en+nlstm
, ..., en+m×nlstm

} is fed into an

LSTM layer recurrently, starting from the second chunk in the

set, the hidden state/output Ot−1 is generated, Ot = σ(Wt ×
[en, Ot−1] + bt) and is fed together with the next item in the

set to the corresponding LSTM layer.

In the developed chunk-based LSTM converter, tanh func-

tion is used as the activation method, which outputs zero-

centred values that enable easy mapping of the output values

as strongly negative, neutral, or strongly positive. The final

outputs of all nlstm LSTM layers are concatenated and formed

as an input for the surrogate model.

An LSTM converter working scheme is demonstrated in

Figure 3 in which a 6-chunk ensemble learning encodings

is feeding into the 4 single unit LSTM layers chunk-based

converter. From input encoding chunk 1 to chunk 4, they are

fed into LSTM layers 1 to 4. Starting from input encoding

chunk 5, the corresponding representation chunk is sent to

LSTM layer 1 while encoding chunk 6 is sent to LSTM layer

2. The final output of the LSTM converter is a concatenate of

single unit LSTM layer 3, LSTM layer 4, LSTM layer 1’, and

LSTM layer 2’.

We compare chunk-based converter to traditional LSTM

converter using an example illustrated in Fig.4. Here an input

encoding that reflects a 6-chunk ensemble network configu-

ration is fed into a simple LSTM converter, comprising an

LSTM layer with 100 units, another with 150 units, a third

one with 50 units, and finally, a Dense layer with 50 units. The

output encoding with a fixed length that matches the output

size of the Dense layer (50) will be used for a surrogate model.



Fig. 4. LSTM simple converter

By contrast, in the chunk-based LSTM converter, there are

multiple single-unit LSTM layers in a hierarchical structure.

The encoding is divided into layer-based chunks and then sent

to corresponding LSTM layers. Each single unit LSTM layer’s

output is concatenated to construct the final converted output.

In the provided example of this simple LSTM converter,

it’s evident that the total number of units, spanning from

the LSTM layers to the dense layers, is significantly greater

compared to the subsequently proposed chunk-based LSTM

converter. The converted fixed-length training data size for the

surrogate model is also smaller.

The advantage behind the chunk-based LSTM is primarily

in three folds. First, the chunk-based LSTM would be able

to maintain layer-based information of the ensemble network

structure when converting it into fixed-length training data for

the proposed surrogate model. This includes the number of

layers (chunks), the number of potential classifiers in each

layer (chunk), and the structure of the variable-length encoding

corresponding ensemble network. Secondly, the chunk-based

LSTM converter in this research is single unit-based instead

of the multiple unit-based structure of the original LSTM

converter. The chunk-based LSTM converter thus has fewer

units and hidden layers. Since we do not need the LSTM

converter to learn extensive long-term memories, there is no

need to maintain as many hidden layers as in the original

LSTM converter. Finally, the chunk-based LSTM converter

requires less parameter tuning, as we only need to decide the

number of single unit layers, each layer will be designed to

be the same.

2) Surrogate Model: In this paper, we developed an adap-

tive surrogate model to approximate the fitness value. Initially,

the surrogate model will be trained with a specified number

of generations defined by the parameter surrtrain. After

this training, the evaluation of individuals for the next set

of generations defined by the parameter surrestimate, will

be replaced by surrogate model approximation. During each

surrogate approximation iteration, the individual representation

with the best approximate fitness will also be evaluated with

the original objective function and then added to the training

dataset for the surrogate model update when the surrestimate

generations are completed. In the final generation of the

search, each individual representation will be evaluated with

the original objective function to obtain the actual fitness, and

the best ensemble system configuration will be selected.

In this paper, we propose to build the surrogate model using

the RBF (Radial Basis Function) [25] surrogate model. RBF

is identified to be able to obtain better accuracy when dealing

with nonlinear problems compared with Polynomial response

surface (PRS) [26] and Kriging [27] in [5].

D. SA-LSTM-VLGA algorithm

1) Pseudo-code of SA-LSTM-VLGA is in Algorithm 1:

Algorithm 1 is the pseudo-code of the proposed SA-LSTM-

VLGA algorithm. The inputs to the algorithm include the

training dataset D, validation dataset V , and parameters for

the Genetic Algorithm including population size, number

of generations, and crossover and mutation probability. The

algorithm first generates a population of individuals randomly,

and then calculates the actual fitness on the validation data

using Algorithm 2. The evaluated candidates and fitness are

converted using LSTM to generate data to train the surrogate

model. Parents are selected through a tournament scheme,

and if the chosen parents pass the crossover check, they will

produce a pair of offspring. Subsequently, these offspring

undergo mutation, where random positions in their genetic

material are altered if a mutation occurs.

If the surrogate model is not used in the current generation,

the fitness of each offspring on the validation data is also

calculated using Algorithm 2. The newly evaluated population

will be used to create new training data to train the surrogate

model. If the surrogate model is used in the current generation,

each offspring’s fitness will be approximated by using the

surrogate model. A new population is created based on these

fitness approximations. The candidate with the best approx-

imation fitness will be evaluated with true fitness function

in Algorithm 2 and converted to training data to train the

surrogate model. The genetic operation process is repeated

until a new population of the same size as the original is

generated. From the population of 2∗popSize individuals, the

best individuals (in terms of fitness) are kept to use in the next

generation. The algorithm iterates until it reaches the specified

number of generations. Initially, the fitness of individuals in

the final generation is computed, and the candidate with the

highest fitness value is then selected as the solution to the

problem.

2) Pseudo-code of fitness evaluation in Algorithm 2:

Algorithm 2 is designed to compute the fitness and generate

a multiple layers learning model corresponding to a given

encoding. The encoding E specifies the number of layers and

the classifiers used in each layer. On the ith layer: (i) we train



Algorithm 1 SA-LSTM-VLGA

Require: Training dataset D, Validation dataset V , population size
popSize, the number of generations nGen, crossover probability
Pc, mutation probability: Pm, surrogate flag surr

Ensure: Optimal configuration of ensemble
1: Generate population and calculate the fitness of each individual

in the population based on V using Algorithm 2
2: Initialize the surrogate model with the first population
3: Apply tournament selection
4: for i← nGen do
5: if surr is False then
6: trainiter = trainiter + 1
7: else
8: estimateiter = estimateiter+1
9: end if

10: if trainiter == surrtrain then
11: surr ← not surr
12: trainiter = 0
13: end if
14: if estimateiter == surrestimate then
15: surr = True→ False, orFalse→ True
16: estimateiter = 0
17: end if
18: while currentpopulationsize < 2× popSize do
19: Select a pair of individuals using tournament selection
20: Generate two random numbers rc, rm ∈ [0, 1]
21: if rc ≤ Pc then
22: Partition the parents into head and tail segments, deter-

mined by two randomly chosen multiples of K
23: Exchange the tails of two parents to generate two new

offspring
24: end if
25: if rm ≤ Pm then
26: for each offspring do
27: Flip the binary value with mutation points
28: end for
29: end if
30: if surr is False then
31: Obtain the fitness of offspring using Algorithm 2
32: else
33: Calculate the fitness of the individual with the best fitness

approximation
34: end if
35: Create new surrogate model training data with the new

population using LSTM
36: end while
37: Use popSize best individuals for the next generation
38: update surrogate model with updated training data
39: end for
40: return the best fitness individual from the last generation.

the selected classifiers {h
(i)
k
} of this layer on the previous

layer’s generated training data Li−1 and (ii) we applied T-fold

cross-validation procedure and the concatenation operator on

predictions and original training data to generate training data

for the (i+1)th layer denoted by Li (Step 14). The classifier

{h
(i)
k
} works on Vi−1 to output the prediction Pi(V) which

in fact contains the predictions for observations of V at the

(i−1)th layer. The concatenation operator is applied to Pi(V)
and V to generate the validation dataset for the (i+1)th layer.

Upon completing the traversal of the final layer i.e. the sth

layer, we apply the Sum Rule [28] to combine the predictions

Algorithm 2 Fitness calculation and model generation based

on an encoding

Require: Training dataset D, Validation dataset V and encoding
candidate E, number of folds T

Ensure: The fitness value of E and EoC associated with E
1: Retrieve the number of layer s and selected classifiers in each

layer based on the representation in E
2: L0 = D,V0 = V
3: for i← 1, s do

4: Train selected classifiers {h
(i)
k } for the ith layer on Li−1

5: Pi = ϕ

6: Use {h
(i)
k } to predict for Vi−1 to obtain Pi(V)

7: for t ← 1, T %generate the running data for the next layer
do

8: Li−1 = ∪T
j=1L

(j)
i−1;L

(j1)
i−1 ∩ L

(j2)
i−1 = ∅; |L

(j1)
i−1 | ≈

|L
(j2)
i−1 |; 1 ≤ j1, j2 ≤ T, j1 ̸= j2

9: for all L
(j)
i−1 do

10: Train selected classifiers on Li−1 − L
(j)
i−1

11: Utilize these classifiers to make predictions on L
(j)
i−1 to

obtain Pi
(j)

12: Pi = Pi ∪ P
(j)
i % add new predictions

13: end for
14: Li = L0 ⊕ Pi %concatenation operation
15: end for
16: Vi = V0 ∪ Pi(V)
17: end for
18: Apply Sum Rule method on Ps(V)
19: Calculate fitness f of E by using (1)

20: return f and h
(i)
k (i = 1, ..., s; k = 1, ...,K)

in Ps(V) so as to gain the fitness value of encoding E. We

also can determine the selected classifiers {h
(i)
k
} from E.

During the testing procedure, within every layer, the classi-

fiers make predictions on the input test data and then combine

the output with the original test sample. This generates new

test data for the next layer. The final prediction is obtained

by applying the combining function to the outputs of the

classifiers of the last layer.

IV. EXPERIMENTAL STUDIES

A. Experimental Settings

The experiments were conducted on 15 different datasets

gathered from various sources, including the UCI Machine

Learning Repository and OpenML. Our method VISTA

utilised five different classifiers in each layer. These classifiers

in EoC were trained using 5 learning algorithms namely K

Nearest Neighbour (K was set to 5), Naive Bayes classifiers

(using Gaussian distribution), XgBoost (using 200 estimators),

Random Forest (using 200 estimators), and Logistic Regres-

sion. The 5-fold Cross Validation procedure was used in each

layer to populate the training data in multiple layers ensemble.

We used 20% of the training data for validation. The maximum

number of generations was set to 500, the population size was

set to 100, and the crossover and mutation probabilities were

set to 0.9 and 0.1, respectively based on the experiments in

[29]. For the surrogate model, we used 100 generations for

training and 10 generations for estimating by the set surrtrain
to 100 and surrestimate set to 10. In each training iteration,
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Fig. 6. The F1 scores of chunk-based and conventional LSTM in VISTA

each candidate along with their true fitness will be added as

surrogate model training data. In each estimating iteration, the

candidate with the best surrogate estimate approximate fitness

will be evaluated with the original evaluation method and then

added to the surrogate model as training data.

B. Comparison of the two LSTM converters

We compared the performances of the chunk-based LSTM

converter and a conventional simple LSTM-based converter.

The simple LSTM was implemented with two ReLU layers

(100 units and 150 units respectively), one Tanh layer, and

one Dense layer. The chunk-based LSTM converter was

implemented as described in section III-C1 where nlstm is set

to 10. Each component in the chunk-based LSTM converter

was designed with 1 unit and Tanh activation method.

The classification accuracies and F1 scores of two converter-

based algorithms evaluated on 15 datasets are shown in

Figure 5 and 6. Generally, the chunk-based LSTM performs

better than the conventional LSTM. For classification accuracy,

chunk-based LSTM is slightly better than conventional LSTM

on 7 datasets. On some datasets, the differences in perfor-

mance are significant, for example, on Balance (0.9255 vs.

0.8670) and Bupa (0.7404 vs. 0.7019). By contrast, conven-

tional LSTM is better than chunk-based LSTM on 4 datasets

Banana (0.9025 vs. 0.8943), Glass (0.8 vs. 0.7231), Monk-2
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Fig. 7. The Nemenyi test result on classification accuracy
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Fig. 8. The Nemenyi test result on F1 Score

(1 vs. 0.9692), and Tic-tac-toe (1 vs. 0.9931). For F1 score,

the chunk-based LSTM is better and worse than conventional

LSTM on 9 and 5 datasets, respectively. The results demon-

strate the advantage of using the proposed chunk-based LSTM

converter in generating training data for the surrogate model.

In the next section, we used the results of VISTA with

the chunk-based approach to compare to those of benchmark

algorithms.

C. Comparison to the benchmark algorithms

To evaluate VISTA’s performance, we compared it with

several ensemble methods and deep learning models. We

used two popular ensemble methods namely Random Forest

and XgBoost as benchmark algorithms; each consists of 200

learners. Additionally, we compared VISTA with two multiple

layers learning models: gcForest (4 forests with 200 trees

in each forest) [2] and MULES [4]. For MULES, we used

the same parameter settings as in the original paper. We also

compared VISTA to 3 deep learning models developed for tab-

ular data namely WideDeep [30], xDeepFM [31], and AutoInt

[32] in which we aim to show the outstanding performance

of VISTA to the deep learning models. The performance

of the experimental methods on 15 datasets was evaluated

based on the Friedman test. Since the p-values corresponding

to classification accuracy and F1 score of this test are 8.90e-12

and 3.61e-12, respectively which are smaller than a significant

threshold of 0.05, we then rejected the null hypothesis of ”no

difference in the methods’ performance”. Subsequently, the

Nemenyi post-hoc test was conducted to compare each pair

of methods. The results of the Nemenyi test are shown in

Figure 7 and 8. For accuracy, Nemenyi test result in Figure 7

shows that VISTA ranks first among all experimental methods

and is better than xDeepFM, AutoInt, and WideDeep. gcForest

ranks second and is also better than xDeepFM, AutoInt, and

WideDeep. The top 4 methods ranked based on accuracy are

VISTA, gcForest, XgBoost, and Random Forest in which the

Nemenyi test shows that there are no differences in their



TABLE I
THE ACCURACY OF BENCHMARK ALGORITHMS AND VISTA ON EXPERIMENTAL DATASETS

Dataset VISTA WideDeep xDeepFM AutoInt XgBoost Random Forest gcForest MULES

Artificial 0.7619 0.6238 0.6381 0.6095 0.7619 0.7905 0.7905 0.7238

Australian 0.8792 0.8068 0.7874 0.7633 0.8744 0.8889 0.8792 0.8309

Balance 0.9255 0.8883 0.6702 0.5372 0.8457 0.8085 0.8564 0.8351

Banana 0.8943 0.5453 0.8597 0.4214 0.8969 0.8365 0.8654 0.8899

Breast-cancer 0.9610 0.6293 0.7902 0.9610 0.9561 0.9561 0.9707 0.9512

Bupa 0.7404 0.4615 0.5385 0.5865 0.7019 0.7308 0.7212 0.7019

Cleveland 0.5778 0.1333 0.1111 0.2889 0.5889 0.6333 0.6222 0.5889

Contraceptive 0.5769 0.3054 0.4457 0.5430 0.5701 0.5588 0.5566 0.5724

Glass 0.7231 0.2923 0.5231 0.2462 0.7385 0.7077 0.7077 0.6308

Haberman 0.7500 0.5435 0.7391 0.6630 0.7065 0.7500 0.7391 0.6630

Heart 0.8519 0.6049 0.6173 0.5926 0.7531 0.8025 0.8272 0.7654

Monk-2 0.9692 0.6231 0.6308 0.5538 1.0000 0.9615 0.9615 0.9615

Newthyroid 0.9692 0.7385 0.7231 0.9231 0.9692 0.9538 0.9692 0.9385

Pima 0.7403 0.5584 0.6840 0.6320 0.7186 0.7576 0.7359 0.6840

Tic-tac-toe 0.9931 0.6076 0.9688 0.7222 0.9861 0.8056 0.8160 0.9792

TABLE II
THE F1 SCORE OF BENCHMARK ALGORITHMS AND VISTA ON EXPERIMENTAL DATASETS

Dataset VISTA WideDeep xDeepFM AutoInt XgBoost Random Forest gcForest MULES

Artificial 0.7555 0.5654 0.5567 0.4543 0.7464 0.7690 0.7608 0.7123

Australian 0.8711 0.7972 0.7553 0.7460 0.8669 0.8820 0.8704 0.8165

Balance 0.8802 0.6217 0.5122 0.3759 0.5970 0.5664 0.6985 0.5863

Banana 0.8931 0.3529 0.8582 0.4177 0.8956 0.8341 0.8646 0.8890

Breast-cancer 0.9582 0.5041 0.7503 0.9582 0.9528 0.9533 0.9691 0.9474

Bupa 0.7293 0.3786 0.3846 0.3903 0.6937 0.7063 0.6899 0.6836

Cleveland 0.2746 0.0689 0.0400 0.1242 0.3016 0.2571 0.2559 0.2555

Contraceptive 0.5542 0.2440 0.3722 0.5251 0.5461 0.5204 0.5244 0.5224

Glass 0.6787 0.0754 0.2950 0.1662 0.7540 0.5765 0.5264 0.5113

Haberman 0.5539 0.5253 0.4250 0.3987 0.5237 0.5539 0.5221 0.5440

Heart 0.8412 0.3769 0.4939 0.5661 0.7271 0.7817 0.8056 0.7502

Monk-2 0.9685 0.4495 0.5604 0.5486 1.0000 0.9607 0.9607 0.9607

Newthyroid 0.9548 0.3839 0.3446 0.8713 0.9453 0.9260 0.9453 0.9052

Pima 0.7234 0.5570 0.5617 0.5696 0.6952 0.7255 0.7230 0.6478

Tic-tac-toe 0.9921 0.5362 0.9637 0.5682 0.9841 0.7383 0.7715 0.9763

performances. The 3 poorest methods are 3 deep learning-

based methods.

In detail, VISTA ranks first on 7 datasets and ranks second

on 6 datasets (see Table I). On some datasets like Balance

and Heart, the accuracy of VISTA is about 3% better than

the second-best method on this dataset (0.9255 vs. 0.8883 of

WideDeep on Balance and 0.8519 vs. 0.8272 of gcForest). On

some datasets like Bupa and Contraceptive, although VISTA

performed well, the differences between VISA’s performance

and other top methods’ performance are not significant.

Meanwhile, our method is outperformed by Random Forest

and gcForest on the Artificial and Cleveland datasets as our

accuracy is 3% and 6% smaller than that of the first-ranked

method.

For F1 score, the test result in Figure 8 shows that VISTA

performed better than MULES, AutoInt, xDeepFM, and Wid-

eDeep. VISTA ranks first on 7 datasets and ranks second on the

7 datasets (see Table II). On the Cleveland dataset, although

VISTA ranks fifth for accuracy, it ranks second for F1 score.

It’s important to highlight that the F1 score considers both

False Negatives and False Positives in the detection results,

as the metric represents the harmonic mean of Precision and

Recall. This demonstrates VISTA’s powerful ability to classify

test samples with different class labels.

VISTA required a longer training duration compared to two

deep ensemble models, namely gcForest and MULES. Taking

the Breast-cancer dataset as an example, gcForest completed

the training process in just 105 seconds, whereas VISTA

took significantly more time, specifically 25341.82 seconds

(with the maximum number of generations set to 500 and

the population size of 100). Meanwhile, MULES (with the

maximum number of generations set to 100 and the population

size to 50) took its training process in 3154.86 seconds. It’s

worth mentioning that the training time for VISTA could be



further reduced through parallel implementation or implement-

ing early stopping for VLGA. Conversely, the classification

time of VISTA competes favorably with those of gcForest

and MULES, as VISTA incorporates a limited number of

classifiers in each layer. On the Breast-cancer dataset, for

example, VISTA took only 0.18 second for classification in

total. Meanwhile, gcForest completed the classification for all

test instances in 0.25 second while MULES used 0.17 second

for the same task.

V. CONCLUSIONS

In this study, we propose VISTA, a novel SAEA-based

MLES. In each layer, the output of each classifier is con-

catenated with the original training data as the input of the

next ensemble layer. A VLGA was proposed to search for

the configurations of each layer i.e., which classifiers are

present in the ensemble of a layer. Since the optimisation

process requires high computational time, a LSTM-based

surrogate model was used in this paper. The LSTM converts

the variable-length configuration of each layer into a fixed-

length representation, which allows a conventional surrogate

model to predict the fitness value of a candidate in VLGA.

In this paper, the Radial Basis Function (RBF) was chosen

as the surrogate model. We performed experiments comparing

two types of LSTM converters and the results show that the

chunk-based LSTM converter consistently is slightly better

than the normal LSTM converter. The experimental results

on 15 popular datasets show that VISTA performs better than

other benchmark algorithms, including two ensemble methods

(Random Forest and XgBoost), two multiple layers ensemble

methods (gcForest and MULES), and three deep learning

methods for tabular data (WideDeep, xDeepFM, and AutoInt).
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