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Abstract
Video tampering detection remains an open problem in the field of digital media forensics. As video manipulation

techniques advance, it becomes easier for tamperers to create convincing forgeries that can fool human eyes. Deep learning

methods have already shown great promise in discovering effective features from data, particularly in the image domain;

however, they are exceptionally data hungry. Labelled datasets of varied, state-of-the-art, tampered video which are large

enough to facilitate machine learning do not exist and, moreover, may never exist while the field of digital video

manipulation is advancing at such an unprecedented pace. Therefore, it is vital to develop techniques which can be trained

on authentic or synthesised video but used to localise the patterns of manipulation within tampered videos. In this paper, we

developed a framework for tampering detection which derives features from authentic content and utilises them to localise

key frames and tampered regions in three publicly available tampered video datasets. We used convolutional neural

networks to estimate quantisation parameter, deblock setting and intra/inter mode of pixel patches from an H.264/AVC

sequence. Extensive evaluation suggests that these features can be used to aid localisation of tampered regions within

video.
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1 Introduction

Automated video analysis is an increasingly important area

of research. Video content creates a unique visual record,

but not all aspects of video content are apparent to human

eyes and this is of particular relevance in today’s age of

fake news and falsified video. Machine learning techniques

are already used to alter video content by changing weather

conditions via style transfer [1] or by performing digital re-

enactment [2, 3]. In discriminating between authentic

content and digital re-enactment using recent techniques,

human assessors did little better than random guessing [4].

There is an increasing urgency to develop techniques to

detect evidence of video processing even when it is

invisible to human eyes. This raises the important question:

How do we develop useful features for visual data when we

might not be able to perceive such features using our own

biological sensors? Deep learning provides a good tool kit

for feature discovery from data; however, it is necessarily

data hungry. In fields such as video tampering, a large,

labelled and sufficiently varied dataset which encompasses

multiple examples from many recent techniques does not

yet exist, although [4] and its recent successor [5] show

great promise. In fast moving fields, a complete dataset

may never exist as, in the time taken to gather and label the

data, many more new and improved techniques will be

discovered. Therefore, we must develop new techniques to

exploit features common to many data examples.

Video compression is prevalent in digital society. The

vast majority of online video has been compressed using

lossy formats such as H.264/AVC [6] or MPEG2 [7].

Compression formats have been designed with the human

visual system in mind, and the effects remain largely below

the threshold of detection for human eyes. It has been

shown that compression does impact classification perfor-

mance of convolutional neural network (CNN) classifiers
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[8, 9] and pre-existing compression in original source

images may have caused these effects to be understated.

CNN classifiers are passively affected by compression;

therefore, it is reasonable to use them to actively detect the

level of compression directly from pixels. Moreover,

accurate estimation of compression parameters, such as

quantisation, could be used to enhance the performance of

CNN classifiers across differing quality levels.

Video tampering techniques are growing at an

unprecedented rate [10]. Detection methods can be active

or passive [11, 12], but, since many existing videos are

unwatermarked at source, passive detection methods are

more applicable. Passive tampering detection can be cate-

gorised into recompression, region tampering and inter-

frame forgery [11]. Region tampering includes copy–move

attacks where copied regions can come from the same

frame in the video, similar to image copy–move [13] or

from a different frame in the same video [14]. Variations

on region tampering include: splicing where content from

two different sources is spliced together and inpainting

where an object or region is removed from the sequence

and the removal concealed. Inter-frame forgery is where an

integer number of frames is added, deleted or reordered.

Regardless of the editing method, however, any tampering

at the pixel level of a compressed video requires recom-

pression of the video bitstream [15, 16], and detection of

compression parameters from the pixels themselves will

evidence recompression. Compression parameters can

provide underlying evidence of how a video has been

processed. For example, two videos might exhibit different

compression parameter distributions which remain in evi-

dence when they are spliced together.

An intuitive indication of recompression is where the

Quantisation Parameter (QP) encoded within the bitstream

fails to match the value estimated from the pixels. This is

most obvious to human eyes when the bitrate and syntax

elements of the bitstream imply high-quality video data,

but the pixel content exhibits visible compression artifacts

such as blockiness. Accurate QP estimation from pixels

may also aid tampering detection in other ways such as key

frame identification and QP distribution analysis. In order

for this to happen, objective methods of measuring QP

directly from video sequence pixels are required. An ideal

QP estimator would also operate accurately over small

patches to enable localisation of tampered regions which is

an advancing area of research [12, 17]. For singly com-

pressed frames, estimated QP can be verified by encoded

bitstream syntax elements. In multiply compressed video,

there will be mismatches between estimated QP and syntax

elements, and differing QP patterns may be detected over

spatially or temporally tampered regions.

This work extends the work in [18] and takes a step

towards utilising compression parameters derived directly

from the pixels themselves. The main contributions are:

• We show CNNs can be trained to estimate different

compression parameters such as quantisation parameter,

intra- or inter-frame type and deblocking filter setting

for standalone sequence patches with reasonable

accuracy.

• We combine our CNN models along with frame deltas

to identify key frames in encoded sequences. Perfor-

mance is evaluated on singly and doubly compressed

sequences with varying bitrates.

• We use our CNN models on existing tampered video

datasets [4, 19, 20] to demonstrate that some tampered

video sequences, particularly spliced content, exhibit

distinct compression profiles and that these can be used

to localise tampered regions.

2 Related work

There are a number of challenges in the detection of

tampered video. Although tampering detectors exist, these

are often tailored to specific tampering techniques. The

authors of [4] produced one of the largest manipulated

datasets to date, based exclusively on the digital re-enact-

ment strategy of [3]. A deep neural network was success-

fully trained to detect manipulated video content with less

than 1% error where humans did little better than guessing,

but it was shown in [21] that this learning does not nec-

essarily transfer readily to other video manipulation

methods. In their recent paper reviewing video content

authentication techniques, Singh and Aggarwal [15] noted

that there is no consistent database of realistically doctored

videos. A large dataset specifically for image rebroadcast

detection was produced in [22]. They demonstrated how

previous techniques, which had achieved good results on

small, specific datasets, were significantly outperformed on

this large, diverse dataset by a CNN, which obtained over

97% accuracy in determining which images had been

rebroadcast and which were authentic. Manipulation tech-

niques are currently more powerful than detection tech-

niques [23], with many ways to digitally alter an image or

video but relatively few methods to detect such manipu-

lations. There is therefore a need to develop detection

techniques that are independent of the type of video

manipulation.

Machine learning techniques are evidently very good at

discovering consistencies and patterns within data and used

to detect tampering [4, 22], but novel techniques are

required to fulfil their large data requirements. In [23], a

Siamese neural network was used to identify whether pixel
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patches exhibited consistent image metadata and could,

therefore, have come from the same image pipeline and be

part of the same authentic image. The network was trained

using only authentic images and their associated EXIF

metadata, so a large dataset could be gathered quickly and

simply. Using 80 features from EXIF metadata and 3 fur-

ther processing techniques (JPEG compression level,

Gaussian blur and re-scaling), the authors managed to

classify whether two 128 9 128 pixel patches were con-

sistent with each other and thus achieve a new state of the

art in image tampering localisation.

While image metadata are often available in online

image files, authentic video metadata are not as readily

available. Video files are much larger and will often be

edited or compressed and recompressed for storage or

streaming purposes. Recompression can also mask tam-

pering, but some evidence can remain. Any processing can

leave a forensic fingerprint on the pixels of a video

sequence. Analysing this fingerprint can provide evidence

of video tampering, such as splicing, inpainting or inter-

frame tampering. Here we look specifically at aspects of

video compression that can usefully contribute towards this

fingerprint. In uncompressed video, sensor pattern noise

can be utilised to identify a camera model as in [24], and

identification of two different camera models in the same

frame can be used to infer tampered video. Shullani et al.

[25] compiled a dataset of authentic video and found that

sensor pattern noise was affected by the compression

applied by two different social media platforms. Moreover,

the two different social media platforms (YouTube and

WhatsApp) had different effects on the data, implying that

their compression mechanisms are distinct from each other.

In [26], elements of compression, such as macroblock

compression type, were used to detect inter-frame tam-

pering. Using machine learning techniques, deleted frames

in an MPEG-2 encoded video sequence were detected with

95% accuracy. However, given that the compression fea-

tures were extracted directly from the bitstream itself, [26]

could be simply defeated via recompression. This paper

aims to overcome that challenge by estimating compres-

sion parameters directly from the pixels. These patterns are

then used to identify areas of inconsistency which could

infer video tampering.

The human visual system is adequate to detect some

compression effects and can quantify ‘‘no reference’’

quality [27, 28]. The source of video compression visual

effects can be found by examining transformations used in

compression standards. A video sequence comprises key

(intra-) frames, which provide access points into the

sequence, and predicted (inter-) frames which rely on data

from previously encoded frames. Key frames contain more

data than predicted frames and are sometimes compressed

more to meet bit rate requirements, occasionally resulting

in visible artifacts. As noted in [11], many inter-frame

tampering detection methods assume perfectly periodic key

frames and struggle to detect tampering that aligns with

key frames. Identification of key frames directly from

pixels is a strong feature in inter-frame tampering detec-

tion, but intra/inter decisions are not only made at the

frame level.

In H.264/AVC and MPEG-2, frames are further divided

into macroblocks which are blocks of 16 9 16 pixels. Each

macroblock can be intra- or inter-coded. Intra-frames can

only contain intra-macroblocks, but inter-frames can con-

tain both intra- and inter-macroblocks. For non-predicted

data, the pixel data itself are transformed into the frequency

domain using Discrete Cosine Transforms (DCTs), quan-

tised and variable length encoded for transmission. For

predicted data, a suitable patch of reference pixels is

located; then, the difference between current and reference

data is transformed, quantised and encoded. Quantisation is

performed as in Eq. 1 where d is DCT coefficients of a

macroblock or residual, C is the compressed coefficients

and Qs represents the quantisation step as indexed by the

quantisation parameter [29].

C ¼ round
d
Qs

� �
ð1Þ

Higher QP indexes larger Qs and means more frequency

coefficients are filtered out entirely. An increase in QP

often manifests visually as an increased ‘‘blockiness’’, that

is, discrete regions of macroblocks consisting single or few

frequency coefficients. Most often, low frequencies have

higher signal amplitudes, so sharp edges persist while

textures are reduced. In key frames, macroblock edges

align uniformly within the frame. This visual effect was

more apparent in earlier video compression standards [7]

where non-integer DCTs forced regular inclusion of key

frames. Periodic key frames limited rounding error drift

between encoder and decoder but were sometimes visible

as a pulse in the sequence as accumulated rounding errors

were reset. The integer transforms introduced in H.264/

AVC [6] reduced the role of key frames to access points in

the bitstream and consequently reduced the periodic pulse

in video sequences. HEVC [30] defines other techniques to

reduce visible compression artifacts but is yet to be fully

adopted. H.264/AVC is more common in the wild. Com-

pression artifacts are not restricted to artificial block edges,

however, and can also manifest as a lack of specific fre-

quency detail or as banding in areas of smooth colour/

intensity transition.

As noted in [11], many inter-frame tampering detection

methods struggle to detect tampering that aligns with key

frames. Methods fail when a complete Group of Pictures

(GOP) from one key frame to the next is deleted, added or

temporally moved. It can be deduced from this that these
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techniques ultimately rely on a detected mismatch between

key frames identified using features from the pixels and

either those derived directly from bitstream syntax ele-

ments, or those estimated from assumed encoder beha-

viour. It is clear from this that there are some differences

between intra- and predicted frames in video compression.

As part of an investigation into using deep neural net-

works to determine image quality, Bosse et al. [27]

developed a method to estimate QP of HEVC frames

directly from pixels. They achieved accurate results for

average QP estimation over a complete frame using a

patch-wise technique and dataset synthesised from UCID

[31]. The method was applied to key frames only. QP

estimation was framed as a regression problem, and the

dataset used to train the network contained labelled patches

compressed with all possible QPs. Although averaged QP

prediction for a complete frame was accurate, a heatmap

showing individual patch contributions displayed great

variation between patches.

This work examines QP estimation in the context of

patches taken from H.264/AVC video sequences. We also

look at identification of key frames from the pixels them-

selves. H.264/AVC is currently one of the most popular

video compression standards and is used on YouTube,

broadcast video and public datasets. A CNN is trained to

classify frame patches from a video sequence using their

quantisation parameters as labels. Unlike [27], we also

investigate whether these features can be used to detect

tampering in videos.

3 Proposed framework

The full framework is summarised in Fig. 1. In order to

implement the framework, the following techniques are

required:

• CNNs trained to estimate QP, inter/intra frame mode

and sequence deblocking filters from the pixels

• A method to calculate frame deltas

• A method to identify key frames

• A method to localise tampering

These techniques are detailed in the following subsections.

First, we use authentic data to train CNN feature detectors.

Then we use these feature detectors to express pixel pat-

ches from a video sequence as feature vectors. We use key

frames only to increase the efficacy of the CNN com-

pression feature detectors. The feature vectors are then

clustered in to two clusters using k-means clustering [32].

This assumes that there are two different distributions

present in the data, representing authentic and tampered

data, and our experimental evaluation shows that this is a

valid assumption for some tampered data.

3.1 Authentic datasets for CNN training

When examining the effects of compression, it is vital to

start with unprocessed data. Standard YUV 4:2:0 sequen-

ces from xiph.org are commonly used for video compres-

sion quality analysis.1 Strictly speaking, YUV 4:2:0 is a

compressed format due to reduced colour channel resolu-

tion; however, it is widely used as a starting format in

video compression. The sequences from xiph.org come in

various dimensions and cover a wide variety of subjects

from studio-shot sequences to outdoor scenes. All

sequences are single camera, continuous scenes with

varying degrees of camera motion.

A large amount of data are required to train a neural

network, and uncorrelated data will produce a more gen-

eralised network. It is possible to use still image data as

single frame sequences when focussing on spatial com-

pression artifacts and excluding temporal compression. For

this purpose, the images of UCID [31] were used. UCID

consists of uncompressed images which are either 512 9

384 pixels or 384 9 512 pixels and cover a wide variety of

subject matter. All are natural scenes and taken with the

same camera. Of the original reported 1338 images in the

dataset, only 882 were available.2 Using a dataset of single

images is not ideal since predicted frames cannot be

examined. However, it allows for a greater variety of pixel

combinations in a smaller dataset because individual ima-

ges are uncorrelated. Each image from UCID was regarded

as a single frame video sequence.

Following [18], we process the video using various

compression parameters to synthesise a number of original

datasets summarised in Table 1. Each video sequence was

compressed using the open-source H.264/AVC encoder

x264 and one of a range of constant QP levels using

variable bitrate mode. Constant quantisation parameters

were selected with an even distribution: QP = [0, 7, 14, 21,

Fig. 1 Summary of the proposed framework

1 Available from Derf’s Media Collection: https://media.xiph.org/

video/derf.
2 UCID images from http://jasoncantarella.com/downloads/ucid.v2.

tar.gz.
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28, 35, 42, 49]. Constant bitrate rate control and psycho-

visual options were turned off. Deblocking filter was set as

specified in Table 1. For datasets containing predicted

frames, the key frame interval was 250. Patches were then

extracted from the decoded YUV 4:2:0 sequences and

upsampled from YUV 4:2:0 to YUV 4:4:4.

Table 2 summarises synthesised datasets. A large tem-

poral stride was used to limit correlation between patches

from the same video sequence. Consecutive frames are

similar to each other, and a neural network trained with

correlated dataset will be subject to overfitting. All datasets

were prepared in advance of network training, and the

original video sequences were split into disjoint train and

test sets prior to compression and patch sampling to pre-

vent data leakage.3 The images of UCID were encoded as

intra-frames and used as supplemental data to AllIntra.

A patch size of 80 9 80 pixels was used. Block edge

artifacts in intra-frames will present themselves at mac-

roblock (and sub-block) boundaries. Therefore, any patch

size larger than 16 9 16 will capture block edges. In [27], a

small patch size of 32 9 32 was selected, but results in [18]

showed that a larger patch size yielded more accurate local

results. When aligned with the macroblock grid, 80 9 80

pixels covers 5 9 5 complete macroblocks. A larger patch

size allows for more context and image features within the

patch to contribute towards feature classification. Spatial

strides were selected so that there was no patch overlap in

the training set, although patches taken from the same

video sequence would exhibit some correlation.

Each dataset in Table 2 consists of a number of YUV

4:4:4 patches, each labelled appropriately. QP was labelled

according to the quantisation parameter. The inter- or intra-

labels depended only on the frame type, and not on

individual macroblocks. The deblocking filter setting was

done on a sequence level. From each of these synthesised

datasets, a neural network was trained to perform classifi-

cation according to the label.

3.2 Network architecture

In [18], three different network architectures (NAs) were

examined for one compression parameter (QP). Here, one

fully convolutional architecture was used, similar to the

architecture used in [33] which obtained particularly good

results on CASIA2 [34]. CASIA2 is known to suffer from

asymmetric image processing between tampered and non-

tampered image classes [35]; therefore, this network

architecture is already known to perform well in detecting

image processing. Each network was trained on only one

compression parameter, yielding three sets of network

weights, one each for QP, deblock and inter/intra.

The architecture used was: conv595-30, norm,

pool292, conv393-16, conv393-16, conv393-16, norm,

pool292, conv393-16, conv393-16, softmax. A stride of 2

for convolutions allowed sufficient overlap to encounter

compression artifacts while reducing the number of net-

work parameters. Image patches of format YUV 4:4:4 were

scaled to values between 0 and 1 and whitened. In order to

preserve compression artifacts in situ, no further data

augmentation were used. Batch size was 128 patches.

Adam was used for gradient descent [36] in the quantisa-

tion parameter network and stochastic gradient descent for

the intra/inter and deblock features. The networks were

implemented using TensorFlow.

3.3 CNN compression parameter estimation
accuracy

The quantisation parameter (QP) in H.264/AVC can be

expressed as:

0�QP� 52; QP 2 R ð2Þ

Table 1 Uncompressed,

authentic datasets for

synthesising compression

features

Name Source Length Dimensions Key frame Deblock

AllVid xiph.org 45 videos 176 9 144 to 1920 9 1080 1/250 Off

AllIntra xiph.org 45 videos 176 9 144 to 1920 9 1080 All Off

AllDeblock xiph.org 45 videos 176 9 144 to 1920 9 1080 1/250 On

UCID UCID [31] 882 images 512 9 384 or 384 9 512 All O

Table 2 Patch datasets used for

learning compression features
Name Source Label # Train # Test

IntraForQP AllIntra QP 764,640 56,392

Intra0vsInter1 AllIntra, AllVid I ¼ 0;P ¼ 1 836,512 12,992

Deblock1 AllDeblock, AllVid Deblock = 0.1 836,512 12,992

3 Training sequences: akiyo, bridge-close, bridge-far, carphone,

claire, coastguard, foreman, hall, highway, mobile, mother-daughter,

paris, silent, stefan, tennis, waterfall, old_town_cross, crowd_run,

ducks_take_off, in_to_tree, mobcal, old_town_cross, parkrun, shields.

Test sequences: bus, flower, news, tempete.
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QP relates directly to Qs in Eq. 1. Patches with similar QP

labels exhibit similar compression features, and confusion

matrices produced by the network reflected this. Different

QPs might have very similar effects on a given patch,

depending on patch content. A patch of solid colour, for

example, transforms to a single high amplitude, low fre-

quency coefficient which is nonzero on quantisation. Such

an extreme example is unlikely in natural scenes, but it

demonstrates how applying close QPs might result in

identical patches with different labels. Therefore, QP was

restricted to [0, 7, 14, 21, 28, 35, 42, 49] in the synthesised

datasets. Using all possible QP would generate an extre-

mely large dataset with more potential for ambiguous

examples and increase model training times. Another

source of ambiguity is the presence of skipped mac-

roblocks. In simple terms, a skipped macroblock in a pre-

dicted frame is identical to the reference macroblock in the

reference frame. This means that there may exist some

predicted regions whose pixel content is identical to

regions in a key frame. Using larger patch sizes decreases

this risk.

3.4 Key frame detection

One thing evident in [18] was that accurate estimation of

quantisation parameters in predicted frames is challenging.

This is because quantisation is applied to the difference

between the motion compensated macroblock from previ-

ous encoded frames and the current macroblock. If this

residual is unknown, as in the case where only the pixels

can be relied on, then it is difficult to estimate the quan-

tisation parameter. In order to avoid such challenges, it was

decided to identify and process only key frames.

A large percentage of compression in video comes from

predicted frames. It is much more efficient to compress the

differences between frames than it is to compress every

single frame in isolation. With the advent of integer

transforms in standard compression codecs, periodic key

frames are no longer required to correct transform rounding

error accumulation. Therefore, it is reasonable to assume

that key frames are in the minority in a video sequence.

Moreover, because non-predicted frames are inherently

larger than predicted frames and rate control mechanisms

attempt to avoid peaks in bitrates, key frames are often

compressed using a higher QP than predicted frames. Key

frames can also exhibit more block artifacts than predicted

frames. This can be used to distinguish key frames from

predicted frames.

To identify key frames, we first estimated the quanti-

sation parameter qp, the inter/intra parameter ip and the

deblocking parameter db for patches in every frame of a

sequence. The patches were 80 9 80 pixels and separated

by a stride of 16 pixels (overlapping). Patch values for qp,

ip and deblock were then averaged over each frame in a

sequence and the differences between the averages taken.

The three different predictions were then combined as in

Eq. 3

af ¼ ðqpf � qpf�1Þ � ðipf � ipf�1Þ � ðdbf � dbf�1Þ ð3Þ

where qpf represents the average CNN predicted quanti-

sation parameter for frame f and qpf�1 is the same

parameter for the previous frame. Key frames were then

defined as any frame where the value of af was more than

two standard deviations from the mean of af .

3.5 Datasets for tampering detection

Three publicly available datasets were used for evaluation:

FaceForensics [4], D’Avino et al. [19] and Video Tam-

pering Dataset (VTD) [20].

FaceForensics [4] is a large, tampered video dataset

consisting over 1000 videos where content is restricted to

talking heads, including news readers, with minimum

dimensions of 480p and 300 frames. The authentic source

videos were originally scraped from YouTube, and the

tampered sequences use a variant of Face2Face [3]. Every

tampered video has an authentic counterpart, and the video

sequences are supplied as losslessly compressed files. For

these experiments, only the first frame of each of the

sequences in the test set was used. Once the dataset was

divided into patches, it exhibited a large imbalance with

only 3% positive samples. In order to create an additional,

balanced dataset, crops of the tampered areas and corre-

sponding authentic areas were created by using the dif-

ference between related authentic and tampered sequences.

Areas outside of the crops are pixel-wise identical between

tampered and authentic content.

The dataset provided by D’Avino et al. [19] consists of

10 spliced videos. The sequences are all 720p and 281–488

frames in length. Each sequence is a single camera, con-

tinuous scene, although the camera is not static in all

sequences and some sequences are subject to significant

camera motion. The dataset provides uncompressed .avi

video files for original, forged and binary mask for each

sequence; however, the source videos used to create splices

have been compressed in the past and evidence of com-

pression can be found in the pixels (see Sect. 4.3). Again,

the dataset has a large imbalance, with 4.2% of all patch

samples labelled tampered. Original background videos

were filmed by the authors, but content for chroma-keyed

regions was obtained from YouTube. The dataset has been

benchmarked by the authors using an auto-encoder-based

method. The auto-encoder is trained on a short sequence of

authentic frames so that predictions made by the auto-
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encoder showed the greatest deviation in tampered regions.

Our method does not require any authentic frames.

VTD [20] comprises 26 forged sequences and their 26

authentic counterparts. There are also 7 authentic sequen-

ces in the dataset, but these were discarded. The tampered

video files comprise 10 sequences of spatio-temporal copy–

move, 6 inter-frame tampering (frame shuffling) and 10

spliced sequences. The sequences are between 420 and 480

frames in length and are all available in 720p, barring a

single 420p sequence. Some sequences contain cut scenes,

and there is evidence of non-motion compensated resam-

pling within the dataset, which implies that source videos

were not pristine. The dataset is distributed via a YouTube

channel and, as such, is subject to recompression. The

videos were downloaded from YouTube selecting the

highest possible bitrate and frame dimensions, and the

average bitrate was 1.7 Mbps, which equates to a com-

pression rate of 0.06 bits per pixel (bpp). Recompression

itself makes mask extraction noisy and tampering locali-

sation particularly challenging. The lack of mask provision

for this dataset also highlights the somewhat philosophical

question of whether a pixel which remains unchanged

between authentic and tampered sequences, yet forms part

of a tampered object, is considered tampered or not.

However, data from the compressed bitstream are also

available, allowing accurate identification of key frames

from the most recent (YouTube) compression. VTD is, as

yet, unbenchmarked.

For VTD, masks were extracted using a thresholded

difference between each frame of the forged and corre-

sponding authentic sequences. Pixels with a difference

higher than the threshold were labelled tampered, and those

below labelled authentic. Thresholds in the range 0–64

were selected manually for each sequence. The mask pixels

were then filtered temporally, using majority vote across 3

frames consecutive frames to remove erroneous compres-

sion noise. Finally, morphological operations were applied

to each mask frame for further clean up. Using these

masks, less than 2% of dataset patches were labelled

tampered.

3.6 Localisation of tampering

Tampering was localised within detected key frames only

and used only predicted QP and frame deltas. Frame deltas

were calculated for 16 9 16 pixel patches to correspond

with the QP prediction values. The frame delta value was

set to 1 whenever the mean absolute difference of a given

16 9 16 pixel patch and the co-located patch in the pre-

vious frame was nonzero, and set to zero otherwise.

Unsupervised clustering was used to group feature

vectors representing pixel patches into one of two groups.

For VTD and D’Avino, these feature vectors consisted

predicted QP and frame deltas. For the datasets based on

FaceForensics, frame deltas were unavailable, given that

only the first frame in the sequence was used. Therefore, all

three compression features were used in the feature vector.

The resulting clusters were nominatively labelled ‘‘au-

thentic’’ or ‘‘tampered’’. Given that some tampered video

content is simply two or more authentic videos spliced

together, these labels could be effectively switched to more

closely match the ground truth on sequences containing

spliced data.

For assessment, Matthews correlation coefficient (MCC,

Eq. 4) and F1 score (Eq. 5) were used. MCC provides a

score between �1 and 1 where 0 represents uncorrelated

data, 1 is completely correlated data and �1 is completely

inversely correlated. This is particularly useful for when

classes can be flipped as in the case for spliced video.

MCC ¼ TP� TN � FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p
ð4Þ

F1 ¼ 2TP

2TPþ FN þ FP
ð5Þ

Both of these metrics focus mainly on true positives and

are relatively unsuitable for detection of inter-frame tam-

pering. To account for this, we have used only the intra-

frame tampered sequences of VTD. They are also both

subject to class imbalance.

4 Experimentation and discussion

Results indicate that CNNs can be trained to achieve a

reasonable level of accuracy in determining three com-

pression parameters directly from pixels and that this

accuracy is sufficient to identify key frames and aid

localisation of tampering in some sequences. This

demonstrates how authentic video can be used to fulfil the

large data requirement of deep learning techniques even

when the application is the detection of forged video.

4.1 CNN compression parameter estimation

The three trained CNNs achieved the accuracies listed in

Table 3. Training a network to detect compression

Table 3 CNN results

Trained to classify Number of classes Accuracy (%)

QP 8 71.18

Inter/Intra 2 69.23

Deblock 2 66.53
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parameters directly from pixels will always be subject to

some degree of error. Not all pixel regions in natural

images will evidence all relevant frequencies necessary to

unambiguously assign a given compression parameter.

This effect can be seen in the confusion matrix (Fig. 2).

The network incorrectly labels some lightly compressed

patches as heavily compressed, and this is likely due to a

natural lack of high frequencies in those regions. Similarly

for the inter/intra network, we label on the frame level, not

on the macroblock level. It is possible for some pixels to

remain unchanged between key and predicted frames due

to skipped macroblocks. With regard to the deblock filter,

although it is set on or off on a sequence level, the

parameters which control the level of filtering on individual

macroblocks are controlled by motion vectors. All of these

factors contribute to ambiguity in the labels for individual

macroblocks, but are sufficiently evened out over a patch

size of 80� 80 pixels to achieve a workable level of

accuracy. This is shown in Fig. 3 where the average esti-

mated QP for the complete frame is accurate, but indi-

vidual regions display some variance. In particular, the

white sky region is allocated a relatively high QP,

demonstrating a lack of high frequency coefficients.

4.2 Key frame identification

The key frame identification was performed as in Sect. 3.4.

Because it is based on outliers, this method of key frame

identification assumes at least one key frame in the

sequence, other than the initial frame. Key frames occur

when specified by the compression encoder. Cut scenes

will sometimes trigger the encoding of a key frame, how-

ever not always, and not all key frames occur on cut scenes.

Frame differences can sometimes indicate key frames, but

they are not reliable as can be seen by comparing Figs. 4

and 5.

To gauge its efficacy, the method of key frame identi-

fication was tested on a number of sequences which com-

prised compressed and recompressed versions of YUV test

sequences. These were first compressed with the open

source encoder x264 using different bitrates (0.01, 0.02,

0.05, 0.1, 0.2 bpp) and an intra-frame frequency of 1/30.

The resulting compressed sequences were then recom-

pressed using the same bitrates but an intra-frame fre-

quency of 1/25. It was found that the method performed

very well at bitrates of 0.02–0.2 bpp in identifying the key

frame from the latest compression. This is shown by the

graph for single compression and the line for the second

compression in the graph of double compression in Fig. 6.

Below bitrates of 0.02 bpp, the visual video quality was

very poor and the predicted quantisation parameter started

to saturate to its highest level, leading to inaccuracies in

key frame identification. Above bitrates of 0.2 bpp, the

predicted quantisation parameter did not saturate, but

accuracy still dropped. It is probable that the reduced

accuracy was due to rate control choices made in the x264

encoder. With a higher bitrate available, peaks in bitrate

due to key frames are comparatively reduced. Therefore, it

becomes more efficient to encode key frames with higher

quality, yielding more accurate reference frames and con-

sequently reducing the bits required for predicted frames.

Recompression at bitrates below 0.1 bpp effectively cam-

ouflaged key frames from the previous compression. As

bitrates of the second compression process increased, evi-

dence of key frames from the previous compression pro-

cess emerged, as can be seen by the rise in the ‘‘first

compression i-frames’’ F1 score graph.

The method of identifying key frames was then applied

to the VTD dataset. It should be noticed that our method

was effective at bitrates corresponding to those of VTD. As

can be seen in the graphs in Fig. 7, combining predicted

QP, inter/intra and deblocking values as in Eq. 3 provided

a clear indication of key frames in the latest compression.

Using the frame averaged mean absolute difference

between frames yielded noisy results and did not accurately

identify key frames. Comparing the key frames identified

using this method with those extracted from the bitstreams

of the forged sequences of VTD [20] achieved 87 true

positives out of a total of 93 key frames. There were 27

false positives, giving an F1 score of 0.84. The majority of

false positives (16 false positives) came from two

sequences: ‘‘Forgery cake cooking’’ and ‘‘Forgery Awe-

some Cuponk’’ which both contain ‘‘fade’’ cut scenes.

‘‘Forgery cake cooking’’ also contains evidence of tem-

poral upsampling from 25 fps to 30 fps. The robustness of

this method of i-frame detection against temporal upsam-

pling has not been investigated, and this is left for future

work. Since spatially non-uniform temporal upsampling

Fig. 2 Confusion matrix for QP-trained network
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would be indicative of video splicing, a method to detect it

would prove useful.

The i-frame detection method was also applied to

D’Avino et al’s dataset [19]. Although the dataset is sup-

plied as uncompressed .avi files, the i-frame detector pro-

vided evidence of previous compression by locating

regular key frames at approximately 30 frame intervals.

4.3 Tampering detection analysis

In order to first show that predicted compression parame-

ters can be used to locate tampering in video frames, we

first examine the profiles of the different datasets. Table 4

shows predicted QP, averaged over the regions defined by

the binary tampered mask. The last column in Table 4

shows the absolute difference in average QP per sequence

averaged over all sequences. It can be seen that there is a

distinct difference in QP averaged over authentic and

tampered regions, particularly for the spliced content of

[19] and the digitally manipulated content of [4], where the

average absolute difference is larger than the granularity of

the QP classifier. Figure 8a shows the predicted QP class

distribution for sequence ‘‘08_TREE’’ [19], showing that

authentic regions and spliced regions display different

quantisation parameter distributions. The tampered con-

tent, in this instance, has a lower QP while the authentic

content displays higher QP. The sequences of [19] consist

of authentic content filmed on hand-held camera phones

and green screen plates.4 It can be deduced that, for this

sequence, the hand-held cameras produced video of a lower

quality than the green screen plates, resulting in distinct

Fig. 3 QP heatmap for test

sequence ‘‘flowers’’, QP = 35.

The heatmap gives an average

prediction of QP = 35, but there

is some variation between

individual regions

158 159 160 161

Fig. 4 Frames 158–161 of sequence ‘‘forgery CCTV_London_Str’’

[20], showing (top to bottom) sequence, binary frame difference for

16� 16 blocks (black = no difference, white = differences) and QP

prediction using a trained neural network. Frame differences clearly

indicate the key frame, even though it is not visible in the sequence.

The key frame is frame 160

4 Some spliced content of [19] came from https://www.hollywoodca

merawork.com/green-screen-plates.html.
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differences in QP distribution. Figure 8b shows the QP

distributions over the first frames of FaceForensics, with

the tampered points upsampled to equalise the dataset

imbalance. It can be seen that, in general, tampered regions

are compressed more lightly than authentic ones. Figure 9

demonstrates this further by displaying the QP heatmaps

over some examples. It can be clearly seen that the tam-

pered facial regions display lower QP than the authentic

regions.

The copy–move content of VTD does not display a

marked difference in predicted QP parameters because all

copy–move content comes from within the same sequence

and hence same QP distribution as shown in Fig. 8c. The

difference for spliced content of VTD is slightly higher, but

not significant enough for our CNN QP predictor to

ascertain which distribution individual regions come from.

The training set for our QP predictor used QP steps of 7,

and the difference between spliced and authentic content of

VTD is smaller than this. This effect may be due to the

recompression step in the processing of this video: if the

quality of both spliced and authentic content was reduced

during recompression, then any differences in QP distri-

bution will be consequently smoothed.

158 159 160 161

Fig. 5 Frames 158–161 of sequence ‘‘forgery basketball skills’’ [20],

showing (top to bottom) original sequence, binary frame difference

for 16� 16 blocks (black = no difference, white = differences) and

QP prediction using a trained neural network. Frame differences do

not always highlight key frames. The key frame is frame 160

Fig. 6 F1 scores for key frame identification in singly and doubly compressed sequences
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Table 5 shows frame deltas (Sect. 3.6) averaged over

regions and sequences. It can be seen that the averaged

frame deltas for the tampered and authentic content of [19]

are very close. There is a much bigger difference in VTD’s

spliced content. This is because some sequences, such as

‘‘Forgery Billiards’’ and ‘‘Forgery Studio’’, simply used

static images as their spliced content. Similarly, some of

the copy–move sequences, such as ‘‘Forgery basketball

skills’’ and ‘‘Forgery 100m swimming’’, also used static

content; however, since the tampered areas are also

relatively static, it is not clear if this is an explicit feature of

the tampering itself or simply of the region that was

tampered.

4.4 Tampering localisation

Using all three compression parameters from the cropped

FaceForensics test patches and unsupervised k-means

clustering, assuming two clusters, we achieved MCC of

0.67 and mean F1 score of 0.81. Clustering could be validly

diffs QP I/P deblock all

Fig. 7 Graphs showing differences between the mean value per frame

of each feature for the sequences basketball (top) and cctv [20].

Frame averages versus frame number for (left to right): absolute

frame differences; predicted QP; predicted inter/intra; predicted

deblock; combination as in Eq. 3. The key frames can be clearly

identified as outliers using a combination of the CNN predicted

features

Fig. 8 Predicted QP class distribution for authentic and spliced content in sequence ‘‘08_TREE’’ [19], digital manipulation in FaceForensics [4]

and copy–move content in sequence ‘‘dahua’’ [20]

Table 4 Predicted QP on authentic and tampered pixels in detected key frames

Sequences Average QP (mask = 0) Average QP (mask = 1) Average absolute diff.

FaceForensics [4] (Face2Face) 26.81 11.27 15.54

D’Avino [19] (splice) 19.12 9.44 9.68

VTD [20] (copy–move) 33.26 34.03 3.67

VTD [20] (splice) 32.58 26.98 5.80
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performed over the whole dataset because the tampering

method is the same for all sequences, and the source video

footage all came from a single platform (YouTube).

Unfortunately k-means clustering did not perform as well

with full first frames of FaceForensics, achieving MCC =

0.11, but when this dataset was balanced using random

oversampling, MCC rose to 0.58 with mean F1 over both

classes of 0.76. This clearly demonstrates that there are

dataset imbalance challenges associated with tampering

detection.

Using only frame deltas and predicted QP as features

and forming two clusters using unsupervised k-means

clustering for each sequence, the following were achieved

on D’Avino et al’s dataset [19]: mean MCC: 0.249, mean

F1 score: 0.255. MCC rises to 0.302 if the two lowest

scoring sequences (‘‘07_UFO’’ and ‘‘03_Cat’’) are ignored.

In both these sequences, spliced objects are small relative

to the frame size and occupy few key frames. Moreover,

QP distributions for authentic and tampered regions in

these two sequences are much less distinct that in the other

sequences, and fall under the QP step size of 7 necessary

for our CNN QP predictor.

In all the sequences of [19], key frames were estimated

to occur at an interval of one every 30 frames. While this

dataset is supplied as uncompressed, it is evidently com-

piled from compressed sources and one key frame per

second at a frame rate of 30 fps is relatively standard in

compression. Figure 10 shows example frames for some of

the sequences from [19]. It can be seen that, for these

examples, the quantisation parameters in tampered regions

are generally lower than in authentic content. The results of

the unsupervised k-means clustering, although noisy,

reflect this. It can also be seen that there are a high number

of false positives, and this combined with the dataset

imbalance contributes to the relatively low MCC score.

Fig. 9 Predicted QP is lower in the tampered regions of samples from FaceForensics [4], left to right: authentic pixels, authentic QP heatmap,

tampered pixels, tampered QP heatmap

Table 5 Predicted frame deltas

on authentic and tampered

pixels in detected key frames

(not applicable to FaceForensics

datasets)

Sequences Average diff (mask = 0) Average diff (mask = 1) Average absolute diff.

VTD [20] (copy–move) 0.68 0.43 0.31

VTD [20] (splice) 0.72 0.56 0.32

D’Avino [19] (splice) 0.90 0.92 0.11
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The results on VTD [20] were somewhat less encour-

aging. There are relatively few key frames in many of these

sequences. Where key frames were detected every 30

frames in [19], the most common gap between key frames

in VTD was 160 frames, resulting in only 3 key frames for

over half of the sequences in the dataset. Three sequences

completely lacked key frames coinciding with the tam-

pered region, and these were removed from our analysis.

The use of MCC and F1 scores based on spatial compo-

nents is unsuitable for frame shuffling. Excluding these

sequences, the mean MCC was 0.082 and F1 0.065. This

shows a weak correlation between predicted and actual

tampered areas, which can be partly attributed to recom-

pression causing an equalisation in the QP distribution

between tampered and authentic regions. Although a real-

istic process, recompression of this dataset also resulted in

challenges in extracting accurate tampering masks and this

may also be a contributory factor. The authors of [19] also

noted that YouTube compression had a negative effect on

their auto-encoder-based tampering detector. This high-

lights challenges for tampering detection in video dis-

tributed using one of the most common video sharing

platforms in the world. Further work is needed if tampering

detectors are to thoroughly overcome the challenges of

recompression.

5 Conclusions and future work

With video manipulation techniques currently increasing at

an unprecedented rate, it is vital to develop features that

can detect tampering irrespective of the original tampering

method. A lack of large, current, comprehensive tampered

video datasets makes learning these features from tampered

data impossible; therefore, it is necessary to derive such

features using authentic sources. Video compression pro-

vides a common foundation for video analysis, with the

vast majority of available video sequences compressed in

some format. Moreover, the use of machine learning

techniques and feature discovery from data provides a

methodology which can be used to produce updated fea-

tures should new compression standards fall in to common

use.

We have shown that three features of H.264/AVC

compression, namely quantisation parameter, intra/inter

and deblock modes, can be estimated objectively by CNN.

These features have been used to predict the location of key

frames in a video sequence, where they provide some

advantage over simple frame deltas. They have also been

used to localise spliced regions within the detected key

frames. Results suggest that this type of feature shows great

promise in the work towards universal tampering detection.

Video manipulation causes self-inconsistencies within the

video sequence, whether this is caused by splicing,

inpainting, inter-frame tampering or small, localised

changes used to alter content such as those used in digital

re-enactment. This work shows that with the use of only

four features (QP, inter/intra, deblocking and frame dif-

ferences) derived exclusively from untampered sources,

self-inconsistencies within a video sequence can be

detected and exploited to localise tampering.

Our future work will examine further features that can

be learned from authentic video and used to refine the

localisation of video manipulation. A finer grained quan-

tisation parameter predictor would improve prediction with

the current feature set; however, this might require

Fig. 10 Heatmap for test sequence (top to bottom) ‘‘08_TREE’’, ‘‘05_HEN’’ and ‘‘06_LION’’ from [19]: (left to right) real, fake, ground truth,

clustered data, QP predictions. Darker areas mean lower QP predictions
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migration from spatial to frequency domain. Additional

features to investigate include compression features, par-

ticularly those associated with non-key frames such as

skipped macroblocks and motion vector regions and fea-

tures specific to multiple compressions. Other processing

steps performed by cameras or software in the video pro-

cessing pipeline should also be examined to determine if

these are robust against recompression. We will also work

on a better method to combine these features into a video

manipulation localiser which is robust against multiple

types of tampering.
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