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Abstract 

This study fits 22 theoretical distribution functions, four of them originally derived, onto 772 

cryptocurrency daily returns with goodness-of-fit evaluated using Cramer-von Mises, 

Anderson-Darling, Kuiper, Kolmogorov-Smirnov, and Chi-squared tests, as well as a harmonic 

mean p-value synthetic criterion. Most cryptocurrency return distributions can be sufficiently 

approximated with a Johnson SU function or an asymmetric power function. Johnson SU, 

asymmetric Student, and asymmetric Laplace distributions have better fit for larger 

cryptocurrencies, while error, generalised Cauchy, and Hampel (a Gaussian-Cauchy mixture) 

distributions are more characteristic of smaller cryptocurrencies, with larger coins 

demonstrating better overall fit. Less than 8% of sample coins and less than 4% of the top 

quartile by size do not fit into any of the investigated distributions, three largest “misbehaving” 

cryptocurrencies being Litecoin, Dogecoin, and Decred. Bitcoin and Ethereum are best 

modelled with error and asymmetric power law distributions, respectively, with asymmetric 

power law distributions stable through time. More than 30% of sample cryptocurrencies, and 

26% from the top quartile, have infinite theoretical variance, severely limiting the 

diversification potential with such cryptoassets. Three most prominent infinite-variance coins 

are Bitcoin SV, Tezos, and ZCash. This study has substantial implications for risk management, 

portfolio management, and cryptocurrency derivative pricing.  
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1. Introduction and Literature Review 

The riskiness of cryptocurrency investment has been long acknowledged in empirical finance 

research and has been often associated with thick-tailed and heavy-peaked distributions of 

cryptoasset returns (Osterrieder, 2017; Fry, 2018; Zhang et al., 2018; Szczygielski et al., 2020). 

Nevertheless, formal and rigorous research on theoretical distribution function fitting to 

empirical distributions of coins has remained scarce to date. This is especially important given 

voluminous research on diversification properties of cryptoassets (Briere et al., 2015; Bouri et 

al., 2017; Guesmi et al., 2019) and the recent advent of cryptocurrency derivatives, including 

futures (Corbet et al., 2018; Kochling et al., 2019), and options (Jalan et al., 2021).  

Existing studies have mainly considered either very few candidate distributions 

(Osterrieder, 2017; Osterrieder and Lorenz, 2017; Punzo and Bagnato, 2021), focused solely 

on Bitcoin (da Cunha and da Silva, 2020), or simply documented the non-normality of 

cryptocurrency returns (Bariviera et al., 2017; Zhang et al., 2018; Takaishi, 2018).  

The most rigorous piece of research on the topic to date is perhaps Szczygielski et al. 

(2020), who fit 58 candidate distribution to 15 most prominent cryptocurrencies and evaluate 

goodness-of-fit using Kolmogorov-Smirnov, Anderson-Darling, and Chi-squared tests. Their 

results reinforce the heavy tails of cryptocurrency return distributions, with Cauchy distribution 

fitting most cryptoassets the best, with error, Johnson SU, Burr, Dagum, and Laplace 

distributions also demonstrating best fit for individual coins. However, the null hypothesis of 

fit was often rejected even for such “winning” distributions. Most notably, the Cauchy 

distribution, declared the best fitting for Bitcoin, was rejected at 5% significance level for all 

three tests considered. Furthermore, Szczygielski et al. (2020) focus on largest coins only and 

do not show whether theoretical distributions remain stable through time. This study, therefore, 

seeks to address these notable gaps in the literature. 
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The rest of the paper is organised as follows. The next section briefly outlines the data, 

presents the stylised facts regarding cryptoasset empirical distribution function, and discusses 

the set of candidate distributions as well as the battery tests it applies to determine the goodness 

of fit. The findings chapter reports the estimation results, while the final section concludes. 

 

2. Data and Methodology 

2.1. The sample 

This study has collected daily data on the exhaustive sample of cryptocurrencies from 

Coinmarketcap over the 2013-2019 period. For distribution fitting, daily logarithmic returns 

are calculated and days with no trading activity are excluded. Next, stablecoins and coins with 

less than 100 observations are removed from the sample. This resulted in a representative 

selection of 772 coins and 688,860 coin-day observations, the largest sample to date considered 

in cryptocurrency distribution research. Additionally, the study also retrieves full Bitcoin and 

Ethereum price history from July 2010 until December 2020 and from August 2015 until 

December 2020, respectively, to test for the stability of distributions for these two most 

prominent cryptoassets.  

 

2.2. Stylised facts 

Table 1 below reports the descriptive statistics for empirical cryptocurrency return 

distributions. To better understand the distribution shapes, skewness, excess kurtosis, and 

Tukey lambda is calculated for all sample coins and compared to those of most notable 

theoretical distribution functions. Tukey lambda (Tukey, 1962; Joiner and Rosenblatt, 1971) is 

a useful heuristic that can help the study identify the appropriate set of theoretical distributions 

to consider in goodness-of-fit estimations. Following Tukey (1962), the lambda values have 
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been calculated on quantile-on-quantile plots by maximising the probability plot correlation 

coefficient between the empirical quantile function and the Tukey lambda quantile function: 

𝑄𝑇𝑢𝑘𝑒𝑦 = {

1

𝜆
(𝑝𝜆 − (1 − 𝑝)𝜆), 𝜆 ≠ 0

ln
𝑝

1 − 𝑝
, 𝜆 = 0

 

All but five (99.35%) of sample coins are right-skewed and all (100%) have positive excess 

kurtosis. However, the magnitudes of the moments estimated vary substantially, even among 

the largest cryptocurrencies. Only four return distributions are even remotely Gaussian, with 

excess kurtosis less than three and skewness between -0.5 and 0.5. Jarque and Bera (1980) test 

statistics 𝐽𝐵 =
𝑛𝑆2

6
+
𝑛(𝐾−3)2

24
 ~ 𝜒2(2) for estimated values of skewness and kurtosis 𝑆 and 𝐾 

showed significant deviations from normality at 5% for all sample coins, and for all but two 

coins (BitcoinHD and Creditcoin) at 1%, consistent with the established stylised facts 

reinforcing the non-normality of cryptoasset return distributions (Zhang et al., 2018). 

Only three cryptocurrencies (Qwertycoin, eXPerience, and INDINODE) have a 

positive Tukey lambda, suggesting that distribution tails for 99.6% of sample coins are at least 

logistic or thicker. The Tuckey lambda value for Bitcoin is -0.26, very close to -0.2 reported 

by Da Cunha and da Silva (2020). The Cauchy distribution, commonly resorted to in the 

literature to model cryptocurrency returns (Fry, 2018; Szczygielski et al., 2020), is seemingly 

too heavy-tailed for cryptocurrency returns, with less than 8% of sample coins having a Tukey 

lambda of -1 or lower. 80% of cryptocurrencies fall within the interval from -0.88 to -0.23, 

representing the “grey area” between Laplace (-0.14) and Cauchy (-1.00) distributions. This 

potentially explains the puzzle Szczygielski et al. (2020) encountered and justifies considering 

a wide range of generalised distribution families, such as Student’s T, Johnson SU, and error, 

that could produce such Tukey lambdas for some shape parameter values. Additionally, 
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prominent skewness of cryptocurrency returns warrants the use of asymmetric variations for 

all distributions considered if such exist.  

Table 1. Descriptive statistics. 

 Skewness Excess kurtosis Tukey lambda 

in
d
iv

id
u
al

 c
o
in

s Bitcoin 0.50 9.65 -0.26 

Ethereum 0.29 14.41 -0.29 

XRP 6.30 107.95 -0.44 

Bitcoin Cash 1.69 10.17 -0.31 

Bitcoin SV 3.15 24.52 -0.54 

Litecoin 4.65 65.22 -0.41 

sa
m

p
le

 c
h
ar

ac
te

ri
st

ic
s 

Mean 6.75 131.92 -0.58 

Minimum -1.01 0.37 -8.26 

1st decile 1.08 5.95 -0.88 

2nd decile 1.72 9.53 -0.65 

3rd decile 2.26 15.02 -0.55 

4th decile 2.95 22.11 -0.47 

Median 3.94 34.23 -0.41 

6th decile 5.55 59.33 -0.37 

7th decile 7.47 97.36 -0.32 

8th decile 10.26 155.12 -0.27 

9th decile 16.24 358.41 -0.23 

Maximum 45.67 2116.23 0.12 

n
o
ta

b
le

 

th
eo

re
ti

ca
l 

d
is

tr
ib

u
ti

o
n
s 

Uniform 0.00 -1.20 -1.00 

Normal 0.00 0.00 0.14 

Logistic 0.00 1.20 0.00 

Hypersecant 0.00 2.00 -0.06 

Laplace 0.00 3.00 -0.12 

Cauchy undefined undefined -1.00 

 

2.3. Distributions 

In this subsection, 𝐹(𝑥) and 𝑓(𝑥) represent the cumulative probability and probability density 

function of a theoretical distribution of interest; 𝑎, 𝑏, 𝑐, and 𝑑 denote location, scale, shape, 

and asymmetry parameters, respectively; erf is the error function; Γ is the gamma function; 𝛾 

is the lower incomplete gamma function; 𝐹12
  is the hypergeometric function; while Φ and 𝜑 

are the cumulative and the probability density functions of the standard normal distribution. 

All parameters are calibrated via a maximum likelihood estimation using the Nelder-Mead 

algorithm, unlike the existing studies that prioritised computational intensity of the methods 
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and often resorted to the method of moments (Sczcygielski et al., 2020). Alternative 

calibrations with Powell and SLSQP optimisation procedures performed slightly worse in 

terms of goodness-of-fit and substantially worse in terms of computational efficiency. For 

distributions where method of moments parameter estimates are available, they were used as 

the starting values for the log-likelihood maximisation algorithm to improve convergence 

speed and precision. Raw data and code for the estimations are available upon request.  

This study considered 22 theoretical distribution functions, most of them standard in 

empirical finance and risk management, while some, notably power, asymmetric power, 

generalised Cauchy, and Hampel distributions are originally derived and suggested to better 

represent the nature of cryptocurrency returns. Next, the distributions applied, their cumulative 

and probability density functions, and specific properties are discussed sequentially1.  

1) Normal distribution: 

𝐹(𝑥) =
1

2
+
1

2
erf (

𝑥 − 𝑎

√2𝑏
) 

𝑓(𝑥) =
1

√2𝜋𝑏
𝑒
−(
𝑥−𝑎

√2𝑏
)
2

 

2) Asymmetric normal distribution: 

𝐹(𝑥) =

{
 
 

 
 𝑑2

1 + 𝑑2
(1 + erf (

𝑥 − 𝑎

√2𝑏𝑑
)) , 𝑥 ≤ 𝑎

1 −
1

1 + 𝑑2
(1 − erf (

𝑑(𝑥 − 𝑎)

√2𝑏
)) , 𝑥 > 𝑎

 

𝑓(𝑥) =

{
 
 

 
 𝑑

√2𝜋𝑏(1 + 𝑑2)
𝑒
−(

𝑥−𝑎

√2𝑏𝑑
)
2

, 𝑥 ≤ 𝑎

𝑑

√2𝜋𝑏(1 + 𝑑2)
𝑒
−(
𝑑(𝑥−𝑎)

√2𝑏
)
2

, 𝑥 > 𝑎

 

3) Logistic distribution: 

 
1 Uniform, triangular, PERT, Levy, Frechet, Weibull, Rayleigh, raised cosine, gamma, and beta distributions were 

also considered, however they did not produce adequate fit for any of the sample cryptocurrencies and thus are 

omitted from the discussion for the sake of brevity.  
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𝐹(𝑥) =
1

1 + 𝑒−
𝑥−𝑎
𝑏

 

𝑓(𝑥) =
𝑒−

𝑥−𝑎
𝑏

𝑏 (1 + 𝑒−
𝑥−𝑎
𝑏 )

2 

4) Generalised logistic distribution: 

𝐹(𝑥) = (1 + 𝑒−
𝑥−𝑎
𝑏 )

−𝑐

 

𝑓(𝑥) =
𝑐𝑒−

𝑥−𝑎
𝑏

𝑏 (1 + 𝑒−
𝑥−𝑎
𝑏 )

𝑐+1 

5) Hyperbolic secant (hypersecant) distribution: 

𝐹(𝑥) =
2

𝜋
atan (𝑒

𝜋(𝑥−𝑎)
2𝑏 ) 

𝑓(𝑥) =
1

2𝑏
sech (

𝜋(𝑥 − 𝑎)

2𝑏
) 

6) Asymmetric secant distribution: 

𝐹(𝑥) =

{
 

 
4𝑑

𝜋(1 + 𝑑2)
atan (𝑒

𝜋(𝑥−𝑎)
2𝑏𝑑 ) , 𝑥 ≤ 𝑎

1 −
4

𝜋(1 + 𝑑2)
atan (𝑒−

𝜋𝑑(𝑥−𝑎)
2𝑏 ) , 𝑥 > 𝑎

 

𝑓(𝑥) =

{
 
 

 
 

𝑑

𝑏(1 + 𝑑2)
sech (

𝜋(𝑥 − 𝑎)

2𝑏𝑑
) , 𝑥 ≤ 𝑎

𝑑

𝑏(1 + 𝑑2)
sech(

𝜋𝑑(𝑥 − 𝑎)

2𝑏
) , 𝑥 > 𝑎

 

7) Laplace distribution (Laplace, 1986): 

𝐹(𝑥) = {

1

2
𝑒
𝑥−𝑎
𝑏 , 𝑥 ≤ 𝑎

1 −
1

2
𝑒−

𝑥−𝑎
𝑏 , 𝑥 > 𝑎

 

𝑓(𝑥) =
1

2𝑏
𝑒−

|𝑥−𝑎|
𝑏  

8) Asymmetric Laplace distribution: 
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𝐹(𝑥) =

{
 

 
𝑑2

1 + 𝑑2
𝑒
𝑥−𝑎
𝑏𝑑 , 𝑥 ≤ 𝑎

1 −
1

1 + 𝑑2
𝑒−

𝑑(𝑥−𝑎)
𝑏 , 𝑥 > 𝑎

 

𝑓(𝑥) =

{
 

 
𝑑

𝑏(1 + 𝑑2)
𝑒
𝑥−𝑎
𝑏𝑑 , 𝑥 ≤ 𝑎

𝑐

𝑏(1 + 𝑐2)
𝑒−

𝑑(𝑥−𝑎)
𝑏 , 𝑥 > 𝑎

 

Normal, logistic, hypersecant, and Laplace distributions, alongside their asymmetric variations, 

are among the most frequently used in empirical finance literature due to their simplicity. 

Normal and Laplace distributions have very compelling theoretical rationales to their finance 

applications, the first stemming from the central limit theorem, and the latter naturally 

emerging from a Gaussian process with exponentially distributed variance (Linden, 2001). 

Some attempts have been made to apply Laplace scale mixture to cryptocurrency distributions 

as well (Punzo and Bagnato, 2021), with Szczygielski et al. (2020) and Chan et al. (2017) 

showing Laplace achieves best fit in some tests for MIOTA, Monero, and MaidSafeCoin. 

However, this study suspects few cryptocurrencies would be best captured by these based on 

Tukey lambda values of 0.14, 0.00, −0.06, and −0.14, respectively, as well as quite low 

theoretical excess kurtosis (0, 1.2, 2, and 3). Nevertheless, the asymmetric versions can still 

meaningfully contribute to the fit of the least heavy-tailed and moderately skewed 

cryptocurrencies. 

9) Student (Student’s T) distribution (Student, 1908): 

𝐹(𝑥) =
1

2
+
(𝑥 − 𝑎)Γ (

𝑐 + 1
2 ) 𝐹12

 (
1
2 ;
𝑐 + 1
2 ;

3
2 ;−

(𝑥 − 𝑎)2

𝑐𝑏2
)

𝑏√𝑐𝜋Γ (
𝑐
2)

  

𝑓(𝑥) =
Γ (
𝑐 + 1
2 )

𝑏√𝑐𝜋Γ (
𝑐
2)
(1 +

(𝑥 − 𝑎)2

𝑐𝑏2
)

−
𝑐+1
2
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10) Asymmetric Student distribution: 

𝐹(𝑥) =

{
 
 
 

 
 
 𝑑2

1 + 𝑑2
(1 +

2(𝑥 − 𝑎)Γ (
𝑐 + 1
2 ) 𝐹12

 (
1
2 ;
𝑐 + 1
2 ;

3
2 ; −

(𝑥 − 𝑎)2

𝑏2𝑐𝑑
)

𝑏𝑑√𝑐𝜋Γ (
𝑐
2)

) , 𝑥 ≤ 𝑎

1 −
1

1 + 𝑑2
(1 −

2𝑑(𝑥 − 𝑎)Γ (
𝑐 + 1
2 ) 𝐹12

 (
1
2 ;
𝑐 + 1
2 ;

3
2 ;−

𝑑(𝑥 − 𝑎)2

𝑏2𝑐
)

𝑏√𝑐𝜋Γ (
𝑐𝑝
2 )

) , 𝑥 > 𝑎

 

𝑓(𝑥) =

{
  
 

  
 𝑑

𝑑2 + 1

Γ (
𝑐 + 1
2 )

𝑏√𝑐𝜋Γ (
𝑐
2)
(1 +

(𝑥 − 𝑎)2

𝑏2𝑐𝑑
)

−
𝑐+1
2

, 𝑥 ≤ 𝑎

𝑑

𝑑2 + 1

Γ (
𝑐 + 1
2 )

𝑏√𝑐𝜋Γ (
𝑐
2)
(1 +

𝑑(𝑥 − 𝑎)2

𝑏2𝑐
)

−
𝑐+1
2

, 𝑥 > 𝑎

 

The conventional Student’s T distribution as well as its asymmetric parametrisation is a very 

flexible family that can approximate a wide range of empirical return distributions, from nearly 

Gaussian (when the degrees of freedom parameter 𝑐 dictating the shape of the curve is high), 

to heavy-tailed and even infinite-variance distributions (when 𝑐 is less than two). As such, 

Tukey lambda values of a T distribution with 𝑐 = 30, 4, 3, 2, and 1 are 𝜆 =

0.10,−0.15,−0.25,−0.45, and −0.99, respectively, which has the power to capture most 

sample cryptocurrencies. The theoretical case of the Student’s distribution applicability for 

financial time series stems from it being a solution for a Gaussian distribution with inverse 

gamma distributed variance (Praetz, 1972), and for cryptocurrency returns, it has been 

recommended by Osterrieder (2017).  

11) Error (generalised normal) distribution (Nadarajah, 2005):  

𝐹(𝑥) =
1

2
+
sign(𝑥 − 𝑎)𝛾 (

1
𝑐 ;
|𝑥 − 𝑎|𝑐

𝑏
)

2Γ (
1
𝑐)

 

𝑓(𝑥) =
𝑐

2𝑏Γ (
1
𝑐)
𝑒−

|𝑥−𝑎|𝑐

𝑏  
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12) Johnson SU distribution (Johnson, 1949):  

𝐹(𝑥) =
1

2
+
1

2
erf (𝑎2 + 𝑏2 asinh (

𝑥 − 𝑎1
𝑏1

)) 

𝑓(𝑥) =
𝑏2𝑒

−
1
2
(𝑎2+𝑏2 asinh(

𝑥−𝑎1
𝑏1

))
2

𝑏1√2𝜋√1 + (
𝑥 − 𝑎1
𝑏1

)
2

 

Error and Johnson SU distributions are both generalisations of the standard Gaussian that allow 

for a wide range of distribution shapes. While these do not generate pathological infinite-

variance distributions, they are still shown to enjoy very good fit for some cryptocurrencies 

(Chan et al., 2017; Szczygielski et al., 2020). As such, for the sample of Szczygielski et al. 

(2020), NEO is best described by a Johnson SU, while Monero and MIOTA are best 

represented by the error distributions for most of the tests.  

13) Cauchy distribution (Poisson, 1824): 

𝐹(𝑥) =
1

2
+
1

𝜋
atan (

𝑥 − 𝑎

𝑏
) 

𝑓(𝑥) =
1

𝑏𝜋 (1 + (
𝑥 − 𝑎
𝑏

)
2
)
 

The Cauchy distribution is among the most frequently used to model cryptocurrency returns. 

As such, it is the best fit for the majority of cryptocurrencies in the sample of Szczygielski et 

al. (2020). The theoretical intuition behind Cauchy’s applicability to cryptocurrency returns is 

perhaps best given by Fry (2018), who suggests a model of cryptocurrency returns shaped by 

the ratio of trading volume and liquidity, both variables independent and normally distributed, 

which naturally gives the Cauchy distribution. Nevertheless, Szczygielski et al. (2020) concede 

that Cauchy distributions are still significantly different from the empirical coin distributions, 

most notably for Bitcoin, it thus being the best fit among the distributions considered, yet still 

not a good fit. This is reinforced by Tukey lambda values – very few sample coins have lambdas 
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close to or lower than -1, corresponding to the theoretical Cauchy distribution having more 

pathological tails than the empirical distribution.  

14) Generalised Cauchy distribution (original derivation): 

𝐹(𝑥) =

{
 
 

 
 1 −

2

𝜋
atan((1 +

|𝑥 − 𝑎|

𝑏
)

𝑐

) , 𝑥 ≤ 𝑎

2

𝜋
atan((1 +

|𝑥 − 𝑎|

𝑏
)

𝑐

) , 𝑥 > 𝑎

 

𝑓(𝑥) =
2𝑐 (1 +

|𝑥 − 𝑎|
𝑏

)
𝑐−1

𝑏𝜋 (1 + (1 +
|𝑥 − 𝑎|
𝑏

)
2𝑐

)

 

To address the puzzle of simultaneously best and relatively poor fit of Cauchy theoretical 

distribution in the literature, this study proposes a power law modification for a Cauchy 

function by introducing the shape parameter 𝑐. 𝑐 = 1 gives the regular Cauchy, while 𝑐 > 1 

and 𝑐 < 1 generate thinner or heavier tails, respectively. While such a distribution is still 

infinite mean and undefined variance for any value of 𝑐, it can produce Tukey lambda values 

in the desired range to improve goodness-of-fit. For example, shape parameters 𝑐 =

0.5, 0.75, 1, 1.5, and 2 return lambdas 𝜆 − 2.01,−1.34,−1, −0.64, and -0.41, respectively.  

15) Burr distribution (Singh and Maddala, 2008): 

𝐹(𝑥) = 1 − (1 + (
𝑒𝑥 − 𝑎

𝑏
)
𝑐

)

−𝑑

 

𝑓(𝑥) =
𝑒𝑥𝑐𝑑 (

𝑒𝑥 − 𝑎
𝑏

)
𝑐−1

𝑏 (1 + (
𝑒𝑥 − 𝑎
𝑏

)
𝑐

)
𝑑+1 

16) Dagum distribution (Dagum, 1975): 

𝐹(𝑥) = (1 + (
𝑒𝑥 − 𝑎

𝑏
)
−𝑐

)

−𝑑
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𝑓(𝑥) =
𝑐𝑑𝑒𝑥

𝑒𝑥 − 𝑎

(
𝑒𝑥 − 𝑎
𝑏

)
𝑐𝑑

((
𝑒𝑥 − 𝑎
𝑏

)
𝑐

+ 1)
𝑑+1 

The use of Burr and Dagum distributions for cryptocurrency return modelling follows 

Szczygielski et al. (2020), who report these as best fits for Chainlink and Cardano, respectively.  

17) Slash distribution (Rogers and Tukey, 1972): 

𝐹(𝑥) =

{
 
 

 
 

1

2
,  𝑥 = 𝑎

𝛷 (
𝑥 − 𝑎

𝑏
) − 𝑏

𝜑(0) − 𝜑 (
𝑥 − 𝑎
𝑏

)

𝑥 − 𝑎
,  𝑥 ≠ 𝑎

 

𝑓(𝑥) =

{
 
 

 
 

1

2𝑏√2𝜋
,  𝑥 = 𝑎

𝑏
𝜑(0) − 𝜑 (

𝑥 − 𝑎
𝑏
)

(𝑥 − 𝑎)2
,  𝑥 ≠ 𝑎

 

Rogers and Tukey (1972) define and derive the slash distribution as a ratio between 

independent normal and uniform variates. This allows to modify the model of Fry (2018) for 

the unform distribution of cryptocurrency liquidity as well as generate lighter tails as compared 

to Cauchy while still preserving the infinite mean and undefined variance property. 

18) Power distribution (original derivation): 

𝐹(𝑥) = {

1

2
(1 + |

𝑥 − 𝑎

𝑏
|)
1−𝑐

, 𝑥 ≤ 𝑎

1 −
1

2
(1 + |

𝑥 − 𝑎

𝑏
|)
1−𝑐

, 𝑥 > 𝑎

 

𝑓(𝑥) =
𝑐 − 1

2𝑏
(1 + |

𝑥 − 𝑎

𝑏
|)
−𝑐

 

This is an originally developed distribution for the study of cryptocurrency markets.  It has a 

mean of 𝜇 = 𝑎 (if 𝑐 ≥ 2), variance 𝜎2 =
2𝑏2

(𝑐−2)(𝑐−3)
 (if 𝑐 ≥ 3), skewness 𝑆 =  0 (if 𝑐 ≥ 4), and 

excess kurtosis 𝐾 = 6
(𝑐−2)(𝑐−3)

(𝑐−4)(𝑐−5)
− 3 (if 𝑐 ≥ 5). This parametrisation allows to easily account 

for Paretian tails in cryptocurrency returns as well as represent both finite and infinite variance 
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distributions. Additionally, when 𝑐 tends to infinity, this function converges to exactly Laplace 

with mean 𝑎 and scale 𝑠 = 𝑏/𝑐, which can be intuitively grasped from lim
𝑐→+∞

𝐾 =

lim
𝑐→+∞

6
(𝑐−2)(𝑐−3)

(𝑐−4)(𝑐−5)
− 3 = 3 and strictly proven using lim

𝑐→∞

𝑐−1

2𝑠𝑐
(1 +

|𝑥−𝑎|

𝑠𝑐
)
−𝑐 

=
1

2𝑠
𝑒−

|𝑥−𝑎|

𝑠 .  

19) Asymmetric power distribution (original derivation): 

𝐹(𝑥) =

{
 

 
𝑑2

1 + 𝑑2
(1 + |

𝑥 − 𝑎

𝑏𝑑
|)
1−𝑐

, 𝑥 ≤ 𝑎

1 −
1

1 + 𝑑2
(1 + |𝑑

𝑥 − 𝑎

𝑏
|)
1−𝑐

, 𝑥 > 𝑎

 

𝑓(𝑥) =

{
 
 

 
 (𝑐 − 1)𝑑

𝑏(1 + 𝑑2)
(1 + |

𝑥 − 𝑎

𝑏𝑑
|)
−𝑐

, 𝑥 ≤ 𝑎

(𝑐 − 1)𝑑

𝑏(1 + 𝑑2)
(1 + |𝑑

𝑥 − 𝑎

𝑏
|)
−𝑐

, 𝑥 > 𝑎

 

The asymmetric power distribution uses an additional parameter 𝑑 for asymmetry modelling, 

with 𝑑 > 1, 0 < 𝑑 < 1, and 𝑑 = 1 generating left-skewed, right-skewed, and symmetric 

distributions, respectively, analogous to the asymmetric Laplace distribution. This allows to 

model distributions coherent with the stylised facts documented by prior studies, as such, da 

Cunha and da Silva (2020) reporting asymmetric power law scaling in Bitcoin distribution tails, 

with 𝑐 = 3.53 for the right tail and 𝑐 = 3.01 for the left tail, consistent with asymmetric power 

law distributions with finite-variance and infinite or undefined higher moments.  

20) Gumbel distribution (Gumbel, 1941): 

𝐹(𝑥) = 𝑒−𝑒
−
𝑥−𝑎
𝑏

 

𝑓(𝑥) =
1

𝑏
𝑒−

𝑥−𝑎
𝑏
 − 𝑒

−
𝑥−𝑎
𝑏

 

21) Generalised extreme value (GEV) distribution (Jenkinson, 1955): 

𝐹(𝑥) = {𝑒
−(1+

𝑐(𝑥−𝑎)
𝑏

)
−
1
𝑐

, 𝑐 ≠ 0 

𝑒−𝑒
−
𝑥−𝑎
𝑏            , 𝑐 = 0
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𝑓(𝑥) =

{
 
 

 
 1

𝑏
(1 +

𝑐(𝑥 − 𝑎)

𝑏
)

−
𝑐+1
𝑐

𝑒
−(1+

𝑐(𝑥−𝑎)
𝑏

)
−
1
𝑐

, 𝑐 ≠ 0

1

𝑏
𝑒−

𝑥−𝑎
𝑏
 − 𝑒

−
𝑥−𝑎
𝑏
                                          , 𝑐 = 0

 

The consideration of extreme value distribution family, including Gumbel, Weibull, Frechet, 

and generalised extreme value for cryptocurrency return modelling has been a staple in early 

academic research on the topic (Osterrieder and Lorenz, 2017). This definition of the GEV 

function using a shape parameter 𝑐 allows to model a spectrum between Gumbel, Frechet, and 

Weibull distributions (Jenkinson, 1955). 𝑐 = 0 gives an unbounded Gumbel distribution, while 

positive and negative values of 𝑐 generate distributions from Frechet and Weibull families 

bounded from below and above, respectively. The use of GEV in this study is motivated by 

Silahli et al. (2021) who use modified two-sided Weibull distributions to model cryptocurrency 

portfolio returns, and Osterrieder and Lorenz (2017), who apply the GEV function to Bitcoin 

returns.  

22) Hampel distribution (original derivation): 

𝐹(𝑥) =
1

2
+ 𝑐 erf (

𝑥 − 𝑎1

√2𝑏1
) +

(1 − 𝑐)

𝜋
atan (

𝑥 − 𝑎2
𝑏2

) 

𝑓(𝑥) =
𝑐

√2𝜋𝑏1
𝑒
−(
𝑥−𝑎1
√2𝑏1

)

2

+
1 − 𝑐

𝜋𝑏2 (1 + (
𝑥 − 𝑎2
𝑏2

)
2
)
 

This distribution is an original derivation based on the insights of Hampel and Zurich (1998). 

It is a Gaussian-Cauchy mixture with separate location and scale parameters for the normal and 

Cauchy components and a shape parameter 0 ≤ 𝑐 ≤ 1 for the weight of the normal distribution 

in the mix2. For 𝑐 > 0, it has infinite mean and undefined variance. The Hampel distribution 

 
2 Hampel and Zurich (1998) proposed a thought experiment with 𝑐 = 1 − 10−10 to demonstrate how rare events 

can manifest themselves in large samples and how heavy-tailed distributions can seem very well-behaved for a 

small number of observations. To this study’s best knowledge, no prior piece of empirical research applied this 

concept to empirical distribution fitting. 
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therefore can serve as a useful tool to model return processes that combine periods of relative 

stability with explosive behaviour – a prominent stylised fact in empirical finance studies of 

cryptocurrency markets (Fry and Cheah, 2016; Fry, 2018; Zhang et al, 2018). Mixture 

distributions have been shown to fit financial time series remarkably well at least since Kon 

(1984), who implemented Gaussian-Gaussian mixtures to model time-varying distribution 

parameters of stock returns.  

 

2.4. Goodness-of-fit tests 

Following Szczygielski et al. (2020) and to address the varying concepts of goodness-of-fit 

measurement for additional robustness, this study considers a selection of multiple tests. In 

addition to Kolmogorov-Smirnov, Anderson-Darling, and Chi-squared utilised by Szczygielski 

et al. (2020), this study also reports Kuiper test (as in Chan et al. 2017), and Cramer-von Mises 

test results. The formulae and testing procedures for all tests are outlined below: 

1) Cramer-von Mises test (Cramer, 1928; Mises, 1939; Anderson, 1962): 

𝐶𝑣𝑀 =
1

12𝑛
+∑(

2𝑖 − 1

2𝑛
− 𝐹(𝑥𝑖))

2𝑛

𝑖=1

~ 𝑁 (0,
1

45
) 

Cramer-von Mises test (Cramer, 1928; Mises, 1939) belongs to the goodness-of-fit test family 

also including the Watson test, and allows to intuitively test for the sum of squared deviations 

from the empirical distribution function.  

2) Anderson-Darling test (Anderson and Darling, 1952): 

𝐴𝐷 = −𝑛 −∑
2𝑖 − 1

𝑛
(ln 𝐹(𝑥𝑖) + ln (1 − 𝐹(𝑥𝑛+1−𝑖))

𝑛

𝑖=1

 

𝑝𝐴𝐷 =

{
 
 

 
 𝑒

1.29−5.71𝐴𝐷+0.0186𝐴𝐷2 ,                             𝐴𝐷 ≥ 0.6

𝑒0.92−4.28𝐴𝐷−1.38𝐴𝐷
2
,                    𝐴𝐷 𝜖 [0.34; 0.6)

1 − 𝑒−8.32+42.80𝐴𝐷−59.94𝐴𝐷
2
, 𝐴𝐷 𝜖 [0.2; 0.34)

1 − 𝑒−13.44+101.14𝐴𝐷−223.73𝐴𝐷
2
,             𝐴𝐷 < 0.2
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Anderson-Darling test (Anderson and Darling, 1952) is a useful goodness-of-fit measure for 

risk-management purposes as it is shown to be most sensitive to distribution violations at the 

tails (Goldman and Kaplan, 2018). Therefore, the results obtained from the Anderson-Darling 

procedure can be especially relevant for risk management of cryptocurrency portfolios and 

value-at-risk calculations. The p-values for the test are calculated based on the exponential 

function approximation.  

3) Kuiper test (Kuiper, 1960): 

𝐾𝑃 = √𝑛 (max
𝑖
(
𝑖

𝑛
− 𝐹(𝑥𝑖)) + max

𝑖
(𝐹(𝑥𝑖) −

𝑖 − 1

𝑛
)) 

𝑝𝐾𝑃 =∑2(4𝑡2𝐾𝑃2 − 1)𝑒−2𝑡
2𝐾𝑃2

+∞

𝑡=1

 

Kuiper test (1960) is a generalisation of the Kolmogorov-Smirnov statistic that treats maximum 

negative and positive deviations from the empirical distribution separately, having been applied 

to cryptocurrency distribution fitting by Chan et al. (2017). P-values for the test are calculated 

using the sum of the first ten terms of the infinite series.  

4) Kolmogorov-Smirnov test (Kolmogorov, 1938; Smirnov, 1948; Massey, 1951): 

𝐾𝑆 = √𝑛max
𝑖
|
𝑖

𝑛
− 𝐹(𝑥𝑖)| 

𝑝𝐾𝑆 = 𝑒−𝐾𝑆
2
 

Kolmogorov-Smirnov (Kolmogorov, 1938; Smirnov, 1948; Massey, 1951) test assesses the 

goodness-of-fit using the supremum statistic based on the maximum absolute deviation from 

the empirical distribution function in either direction. Kolmogorov-Smirnov test is known to 

detect distribution violations more often at the hump of the distribution (Goldman and Kaplan, 

2018). 

5) Chi-squared test: 

𝑚 = ⌈1 + log2 𝑛⌉ 

Electronic copy available at: https://ssrn.com/abstract=3847351



17 

 

𝜒2 =∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖
 

𝑚

𝑖=1

~ 𝜒2(𝑚 − 1) 

Following Szczygielski et al. (2020), this study defines the number of bins 𝑚 for Chi-squared 

tests as the ceiling of one plus the base two logarithm of the number of observations to 

maximise the power of the test.  

To assess the goodness-of-fit synthetically across five tests, this study opts to use the 

Wilson (2019) harmonic mean p-value 𝑝𝐻𝑀 =
5

1

𝑝𝐶𝑣𝑀
+

1

𝑝𝐴𝐷
+

1

𝑝𝐾𝑃
+

1

𝑝𝐾𝑆
+

1

𝑝
𝜒2

 commonly used for 

family-wise error rate adjustments in multiple testing when hypotheses are not independent, 

which is obviously the case when comparing p-values from different tests for the same 

empirical distribution. From this point onwards, the study refers to harmonic mean p-value 

results when assessing the overall fit if not specified otherwise.    

 

3. Findings and Discussion 

3.1. Individual goodness-of-fit tests 

This section presents estimation results and goodness-of-fit across all tests. Tables 2-6 below 

report the metrics across Cramer-von Mises, Anderson-Darling, Kuiper, Kolmogorov-

Smirnov, and Chi-squared tests, respectively.  
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Table 2. Goodness-of-fit across distributions: Cramer-von Mises test. 

Distribution 
best fits fits (at 5%) 

Total 1st quartile 2nd quartile 3rd quartile 4th quartile number % of coins 

normal 0 0 0 0 0 13 1.68 

asymmetric normal 2 0 2 0 0 14 1.81 

logistic 0 0 0 0 0 122 15.80 

generalised logistic 0 0 0 0 0 127 16.45 

hyperbolic secant 0 0 0 0 0 94 12.18 

asymmetric secant 0 0 0 0 0 32 4.15 

Laplace 2 1 0 0 1 369 47.80 

asymmetric Laplace 12 6 4 1 1 389 50.39 

Student 12 7 2 3 0 652 84.46 

asymmetric Student 114 59 33 14 8 663 85.88 

error 57 2 10 18 27 613 79.40 

Johnson SU 130 49 40 23 18 710 91.97 

Cauchy 2 0 0 0 2 494 63.99 

generalised Cauchy 85 24 25 19 17 702 90.93 

Burr 0 0 0 0 0 83 10.75 

Dagum 0 0 0 0 0 7 0.91 

slash 2 1 1 0 0 581 75.26 

power 35 5 11 13 6 669 86.66 

asymmetric power 128 23 27 45 33 728 94.30 

Gumbel 0 0 0 0 0 0 0.00 

GEV 0 0 0 0 0 7 0.91 

Hampel 187 16 36 57 78 705 91.32 

none 4 0 2 0 2 4 0.52 
 

Table 3. Goodness-of-fit across distributions: Anderson-Darling test. 

 distribution 
best fits fits (at 5%) 

total 1st quartile 2nd quartile 3rd quartile 4th quartile number % of coins 

normal 0 0 0 0 0 1 0.13 

asymmetric normal 0 0 0 0 0 1 0.13 

logistic 0 0 0 0 0 16 2.07 

generalised logistic 0 0 0 0 0 23 2.98 

hyperbolic secant 0 0 0 0 0 17 2.20 

asymmetric secant 0 0 0 0 0 0 0.00 

Laplace 0 0 0 0 0 97 12.56 

asymmetric Laplace 12 5 3 3 1 140 18.13 

Student 5 2 0 2 1 317 41.06 

asymmetric Student 130 64 33 21 12 435 56.35 

error 45 2 7 14 22 203 26.30 

Johnson SU 141 50 43 25 23 442 57.25 

Cauchy 0 0 0 0 0 20 2.59 

generalised Cauchy 59 13 22 10 14 389 50.39 

Burr 3 1 1 0 1 16 2.07 

Dagum 0 0 0 0 0 0 0.00 

slash 0 0 0 0 0 27 3.50 

power 21 5 6 6 4 277 35.88 

asymmetric power 125 26 36 38 25 409 52.98 

Gumbel 0 0 0 0 0 0 0.00 

GEV 0 0 0 0 0 0 0.00 

Hampel 83 12 14 27 30 322 41.71 

none 148 13 28 47 60 148 19.17 
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Table 4. Goodness-of-fit across distributions: Kuiper test. 

distribution 
best fits fits (at 5%) 

total 1st quartile 2nd quartile 3rd quartile 4th quartile number % of coins 

normal 0 0 0 0 0 9 1.17 

asymmetric normal 0 0 0 0 0 8 1.04 

logistic 0 0 0 0 0 69 8.94 

generalised logistic 0 0 0 0 0 71 9.20 

hyperbolic secant 0 0 0 0 0 63 8.16 

asymmetric secant 0 0 0 0 0 19 2.46 

Laplace 6 5 0 0 1 317 41.06 

asymmetric Laplace 8 1 3 2 2 315 40.80 

Student 38 20 10 6 2 577 74.74 

asymmetric Student 63 36 13 9 5 575 74.48 

error 95 9 17 31 38 586 75.91 

Johnson SU 128 42 40 28 18 643 83.29 

Cauchy 3 0 1 0 2 252 32.64 

generalised Cauchy 98 34 33 21 10 667 86.40 

Burr 0 0 0 0 0 51 6.61 

Dagum 0 0 0 0 0 3 0.39 

slash 0 0 0 0 0 319 41.32 

power 59 14 15 18 12 637 82.51 

asymmetric power 65 6 9 23 27 633 81.99 

Gumbel 0 0 0 0 0 0 0.00 

GEV 0 0 0 0 0 4 0.52 

Hampel 177 23 37 49 68 661 85.62 

none 32 3 15 6 8 32 4.15 
 

Table 5. Goodness-of-fit across distributions: Kolmogorov-Smirnov test. 

distribution 
best fits fits (at 5%) 

total 1st quartile 2nd quartile 3rd quartile 4th quartile number % of coins 

normal 0 0 0 0 0 93 12.05 

asymmetric normal 0 0 0 0 0 96 12.44 

logistic 1 1 0 0 0 330 42.75 

generalised logistic 1 0 1 0 0 336 43.52 

hyperbolic secant 0 0 0 0 0 226 29.27 

asymmetric secant 1 0 0 1 0 200 25.91 

Laplace 5 2 1 2 0 543 70.34 

asymmetric Laplace 13 5 4 3 1 547 70.85 

Student 27 13 7 4 3 761 98.58 

asymmetric Student 99 44 24 21 10 757 98.06 

error 59 4 10 19 26 721 93.39 

Johnson SU 152 54 47 32 19 764 98.96 

Cauchy 8 0 1 2 5 694 89.90 

generalised Cauchy 92 29 31 15 17 761 98.58 

Burr 2 1 1 0 0 237 30.70 

Dagum 1 0 1 0 0 51 6.61 

slash 3 0 1 1 1 730 94.56 

power 24 4 8 6 6 739 95.73 

asymmetric power 108 13 25 36 34 758 98.19 

Gumbel 1 0 0 1 0 20 2.59 

GEV 1 0 1 0 0 52 6.74 

Hampel 174 23 30 50 71 748 96.89 

none 0 0 0 0 0 0 0.00 
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Table 6. Goodness-of-fit across distributions: Chi-squared test. 

distribution 
best fits fits (at 5%) 

Total 1st quartile 2nd quartile 3rd quartile 4th quartile number % of coins 

normal 1 0 1 0 0 14 1.81 

asymmetric normal 0 0 0 0 0 14 1.81 

logistic 1 0 1 0 0 111 14.38 

generalised logistic 0 0 0 0 0 107 13.86 

hyperbolic secant 0 0 0 0 0 96 12.44 

asymmetric secant 0 0 0 0 0 46 5.96 

Laplace 3 0 2 1 0 344 44.56 

asymmetric Laplace 12 4 3 4 1 357 46.24 

Student 34 15 12 5 2 515 66.71 

asymmetric Student 78 42 22 5 9 524 67.88 

error 69 5 8 28 28 535 69.30 

Johnson SU 66 27 19 13 7 586 75.91 

Cauchy 33 4 6 11 12 384 49.74 

generalised Cauchy 91 26 29 22 14 612 79.27 

Burr 1 1 0 0 0 81 10.49 

Dagum 0 0 0 0 0 6 0.78 

slash 53 26 17 6 4 485 62.82 

power 37 8 12 12 5 576 74.61 

asymmetric power 96 11 25 31 29 602 77.98 

Gumbel 0 0 0 0 0 3 0.39 

GEV 0 0 0 0 0 6 0.78 

Hampel 181 21 30 54 76 685 88.73 

none 16 3 6 1 6 16 2.07 

 

For all five tests, the selection of 22 functions employed by this study can describe the empirical 

cryptocurrency return distributions remarkably well. For Cramer-von Mises, Anderson-

Darling, Kuiper, Kolmogorov-Smirnov, and Chi-squared tests, all null hypotheses were 

rejected only for 0.52% (1.30%), 19.71% (34.84%), 4.15% (5.44%), 0.00% (0.13%), and 

2.07% (2.98%) of coins, respectively, on 5% (10%) significance level. The results strongly 

suggest that most distribution violations occur at the tails, which is crucial for risk management 

of cryptocurrency portfolios. The overwhelming majority of fits and best fits is achieved by a 

handful of distributions, mostly from the generalised families and the ones specifically derived 

in this study. As such, the asymmetric power, Johnson SU, Hampel, asymmetric Student, 

generalised Cauchy, and error distributions contribute to 99.35% (90.80%), 80.83% (75.52%), 

95.85% (81.09%), 99.87% (88.60%), and 97.80% (75.26%) of fits (best fits) in the respective 

tests across the sample, implying that a relatively small set of theoretical functions is sufficient 
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to model a wide range of empirical cryptocurrency distributions and highlighting the practical 

feasibility of implementing the approach of this study for investment practice.  

Johnson SU, asymmetric Student, and generalised Cauchy distributions demonstrate 

better fit for larger coins, while asymmetric power, error, and Hampel distributions are more 

characteristic of smaller cryptocurrencies. Generalised asymmetric distributions overall 

perform much better than their symmetric counterparts, reinforcing that skewness is an 

important parameter to consider in cryptocurrency risk management. The extensions of the 

Cauchy distribution this study developed were successful in representing cryptocurrency 

returns, generalised Cauchy and Hampel mixture demonstrating very good fit, addressing the 

issues identified in the existing literature (Szczygielski et al., 2020). Burr, Dagum, and extreme 

value distributions, however, were not particularly well-performing, especially for Kuiper and 

Cramer-von Mises tests, contradicting the assertions of prior research. As expected from the 

analysis of stylised facts and descriptive stats, conventional distribution functions, such as 

normal, logistic, hypersecant, and Laplace, as well as their asymmetric versions, did not 

demonstrate good or best fits as well.  

 

3.2. Harmonic mean p-value adjustment 

Table 7 below reports the Wilson (2019) harmonic mean p-value to synthesise the results of 

five tests discussed above. The goodness-of-fit of asymmetric power, Johnson SU, asymmetric 

Student, Hampel, generalised Cauchy, and generalised normal (error) functions for empirical 

cryptocurrency return distributions is generally reinforced. For the harmonic mean p-value, the 

selection of these six distributions accounts for 92.36% (86.79%) of fits (best fits). Only 7.64% 

(12.69%) of coins overall, and only 3.63% (4.15%) from the top quartile, do not fit any of the 

22 considered distributions at 5% (10%). The degree of overall fit is higher for more prominent 

coins, the largest “misbehaving” cryptocurrencies being Litecoin, Dogecoin, and Decred.  
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Table 7. Goodness-of-fit across distributions: Harmonic mean p-values. 

distribution 
best fits fits (at 5%) 

Total 1st quartile 2nd quartile 3rd quartile 4th quartile number % of coins 

normal 0 0 0 0 0 3 0.39 

asymmetric normal 0 0 0 0 0 5 0.65 

logistic 0 0 0 0 0 41 5.31 

generalised logistic 0 0 0 0 0 41 5.31 

hyperbolic secant 0 0 0 0 0 40 5.18 

asymmetric secant 0 0 0 0 0 0 0.00 

Laplace 2 1 0 0 1 209 27.07 

asymmetric Laplace 9 3 3 2 1 238 30.83 

Student 4 1 0 3 0 465 60.23 

asymmetric Student 131 67 34 20 10 522 67.62 

Error 63 2 8 19 34 410 53.11 

Johnson SU 143 51 42 26 24 565 73.19 

Cauchy 0 0 0 0 0 77 9.97 

generalised Cauchy 71 19 24 16 12 557 72.15 

Burr 0 0 0 0 0 31 4.02 

Dagum 0 0 0 0 0 1 0.13 

Slash 1 1 0 0 0 107 13.86 

power 27 5 9 7 6 476 61.66 

asymmetric power 151 25 39 50 37 583 75.52 

Gumbel 0 0 0 0 0 0 0.00 

GEV 0 0 0 0 0 2 0.26 

Hampel 111 11 18 35 47 513 66.45 

none 59 7 16 15 21 59 7.64 

 

Tables 8 and 9 below demonstrate the agreement between goodness-of-fit tests employed and 

the synthetic harmonic mean criterion in terms of both fits and best fits. In terms of fits, the 

tests are considered in agreement if they both accept or reject the null hypothesis of fit at the 

5% confidence interval and in disagreement otherwise. Regarding best fits, the tests are 

considered in agreement if both suggest the same distribution (or none) to fit a particular 

cryptocurrency the best (with the highest p-value), and in disagreement otherwise. The 

agreement of a test with the harmonic mean criterion can be interpreted as the contribution of 

this test to the synthetic goodness-of-fit measure. This analysis can reveal which tests are the 

most informative when distinguishing between good and bad fits of theoretical functions to 

empirical cryptocurrency return distributions.  

For fits, the highest agreement (>90%) is observed for Kuiper and Cramer-von Mises, 

Kuiper and Chi-squared, and Cramer-von Mises and Chi-squared, suggesting that using just 
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one of the three aforementioned tests can suffice reasonably well when seeking to assess the 

fit of a single distribution to a cryptocurrency return time series. Kolmogorov-Smirnov and 

Anderson-Darling demonstrate the lowest agreement (58.95%), highlighting the notable 

stylised fact that they are more likely to reject the null at the hump and at the tails of the 

distribution, respectively (Goldman and Kaplan, 2018). The highest agreement with the 

harmonic mean criterion (~90%) is detected for Kuiper and Anderson-Darling, showing that a 

combination of these two tests can provide sufficient detail in terms of distribution fits. For 

best fits, in turn, a combination of Cramer-von Mises and Anderson-Darling could achieve a 

better result. The contribution of Kolmorogov-Smirnov is relatively low in both cases, 

implying relatively low discriminatory power of this simple test. 

Table 8. Agreement between goodness-of-fit tests (fits). 

Goodness-of-fit test 
Cramer- 

von Mises 

Anderson-

Darling 
Kuiper 

Kolmogorov-

Smirnov 
Chi-squared 

Harmonic 

mean 

Cramer-von Mises 100.00 72.79 91.23 86.12 90.61 83.03 

Anderson-Darling 72.79 100.00 80.36 58.95 78.80 89.72 

Kuiper 91.23 80.36 100.00 78.53 91.22 90.40 

Kolmogorov-Smirnov 86.12 58.95 78.53 100.00 79.52 69.16 

Chi-squared 90.61 78.80 91.22 79.52 100.00 88.10 

Harmonic mean 83.03 89.72 90.40 69.16 88.10 100.00 
 

Table 9. Agreement between goodness-of-fit tests (best fits). 

Goodness-of-fit test 
Cramer- 

von Mises 

Anderson-

Darling 
Kuiper 

Kolmogorov-

Smirnov 
Chi-squared 

Harmonic 

mean 

Cramer-von Mises 100.00 59.59 50.78 58.29 40.03 70.98 

Anderson-Darling 59.59 100.00 42.62 43.52 30.18 79.92 

Kuiper 50.78 42.62 100.00 55.44 38.47 52.72 

Kolmogorov-Smirnov 58.29 43.52 55.44 100.00 33.68 53.63 

Chi-squared 40.03 30.18 38.47 33.68 100.00 38.47 

Harmonic mean 70.98 79.92 52.72 53.63 38.47 100.00 

 

3.3. Goodness-of-fit across sample coins 

Table 10 below presents the best-fitting distributions across all five considered tests and the 

harmonic mean p-value for top 50 cryptocurrencies from the sample. Bitcoin and Ethereum are 
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best described by error and asymmetric power distribution, respectively, both showing finite 

variance and reinforcing diversification properties of the largest cryptocurrencies (Briere et al., 

2015; Guesmi et al., 2019). However, there are notable exceptions to this heuristic: Bitcoin SV, 

Tezos, ZCash, Ontology, Lisk, Monacoin, THETA, Horizen, V.Systems, and Bytom are shown 

to have infinite-variance distributions, while diversification properties of Litecoin, Dogecoin, 

and Decred are uncertain due to overall poor fit. Notably, ZCash, Monacoin, and Horizen has 

been prominent targets of 51% attacks, which can hint towards the link between malevolent 

attacks and tail risk on cryptocurrency markets (Shanaev et al., 2019; Grobys, 2021). Overall, 

only 62.31% of sample coins, and 69.95% from the first quartile, demonstrate finite variance, 

meaning investors seeking portfolio diversification need to carefully select cryptoassets with 

desired risk properties (see Table 11 below). 

Table 11. Variance properties of cryptocurrency distributions, % of total. 

theoretical 

variance 

sample 

Total 1st quartile 2nd quartile 3rd quartile 4th quartile 

finite 62.31 69.95 64.77 58.55 55.96 

infinite 30.05 26.42 26.94 33.68 33.16 

uncertain 7.64 3.63 8.29 7.77 10.88 
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Table 10. Best fits for 50 largest cryptocurrencies across all tests (2013-2019). 

Ticker Kurtosis 
Tukey 
lambda 

Diversification 
benefits 

Cramer- 
von Mises 

Anderson-
Darling 

Kuiper 
Kolmogorov-

Smirnov 
Chi-squared Harmonic mean 

best fit 
p 

value 
best fit 

p 

value 
best fit 

p 

value 
best fit 

p 

value 
best fit 

p 

value 
best fit 

p 

value 

BTC 9.65 -0.26 yes ERR 0.6188 ERR 0.0703 ERR 0.5541 ERR 0.6235 APWR 0.9821 ERR 0.2384 

ETH 14.41 -0.29 yes APWR 0.8387 APWR 0.2603 APWR 0.9590 APWR 0.8281 APWR 0.9235 APWR 0.5976 

XRP 107.95 -0.44 yes APWR 0.6899 APWR 0.1182 PWR 0.5624 APWR 0.6516 APWR 0.8817 APWR 0.3451 

BCH 10.17 -0.31 yes APWR 0.8754 APWR 0.2540 PWR 0.9779 PWR 0.8035 PWR 0.9927 APWR 0.5959 

BSV 24.52 -0.54 no HPL 0.9130 HPL 0.2246 HPL 0.9899 HPL 0.8725 HPL 0.9970 HPL 0.5742 

LTC 65.22 -0.41 uncertain APWR 0.2882 none 0.0154 JSU 0.0572 JSU 0.4675 HPL 0.0693 none 0.0193 

EOS 98.54 -0.42 yes APWR 0.7492 APWR 0.1853 PWR 0.7997 JSU 0.6103 SLASH 0.9763 APWR 0.4078 

BNB 24.76 -0.38 yes APWR 0.8678 APWR 0.2914 JSU 0.9676 JSU 0.8421 PWR 0.9246 APWR 0.6288 

XTZ 13.16 -0.26 no GCAU 0.6140 GCAU 0.0624 LAP 0.2724 JSU 0.5543 SLASH 0.9778 GCAU 0.1941 

ADA 71.39 -0.46 yes JSU 0.7890 JSU 0.1266 GCAU 0.8703 STU 0.7408 SLASH 0.9984 JSU 0.3890 

XMR 12.65 -0.23 yes APWR 0.5887 APWR 0.0838 GCAU 0.4167 ALAP 0.5790 APWR 0.4639 APWR 0.2216 

XLM 38.12 -0.36 yes ASTU 0.6810 APWR 0.0636 ASTU 0.8264 ASTU 0.7875 ASTU 0.6399 ASTU 0.2265 

TRX 38.68 -0.43 yes GCAU 0.8120 APWR 0.1651 JSU 0.9462 GCAU 0.7393 CAU 0.8820 APWR 0.4431 

ETC 485.54 -0.65 yes APWR 0.6116 APWR 0.0968 GCAU 0.5827 JSU 0.6342 GCAU 0.2936 APWR 0.2042 

DASH 263.81 -0.48 yes ASTU 0.7098 ASTU 0.1040 ASTU 0.6518 ASTU 0.7326 JSU 0.4635 ASTU 0.2831 

NEO 32.21 -0.38 yes JSU 0.7501 ASTU 0.0987 JSU 0.9088 JSU 0.7856 STU 0.4687 ASTU 0.2725 

ATOM 4.14 -0.26 yes ASTU 0.6569 ASTU 0.1251 HPL 0.6948 HPL 0.7211 JSU 0.3753 ASTU 0.3165 

MIOTA 6.07 -0.23 yes APWR 0.8357 APWR 0.2865 PWR 0.9366 APWR 0.7840 SLASH 0.9895 APWR 0.6043 

ZEC 146.05 -0.51 no ASTU 0.7572 GCAU 0.1555 GCAU 0.9894 ASTU 0.8219 GCAU 0.9846 GCAU 0.4514 

XEM 74.40 -0.36 yes ASTU 0.5915 ASTU 0.0524 GCAU 0.9963 ASTU 0.6834 SLASH 0.6441 ASTU 0.1682 

ONT 10.24 -0.30 no ALAP 0.8448 GCAU 0.3084 GCAU 0.9868 JSU 0.8539 STU 0.9961 GCAU 0.6292 

VET 7.50 -0.27 yes JSU 0.9174 JSU 0.5108 JSU 0.9988 JSU 0.8702 JSU 0.9987 JSU 0.8065 

DOGE 175.25 -0.46 uncertain ASTU 0.3549 none 0.0127 ASTU 0.1052 ASTU 0.4159 none 0.0044 none 0.0155 

ALGO 6.89 -0.38 yes JSU 0.8486 ASTU 0.3149 STU 0.9610 HPL 0.8490 ALAP 0.9951 ASTU 0.6428 

QTUM 16.68 -0.34 yes JSU 0.7816 JSU 0.1748 HPL 0.5378 STU 0.6736 SLASH 0.2790 JSU 0.2789 

DCR 7.52 -0.21 uncertain JSU 0.5201 none 0.0092 JSU 0.6895 JSU 0.5446 GCAU 0.9502 none 0.0391 

LSK 49.31 -0.49 no ASTU 0.7426 ASTU 0.1661 ASTU 0.4298 ASTU 0.6136 ASTU 0.9989 ASTU 0.4057 

ICX 8.63 -0.26 yes JSU 0.9100 JSU 0.4295 GCAU 0.9989 GCAU 0.8576 STU 0.9990 JSU 0.7464 

RVN 13.11 -0.27 yes JSU 0.8520 JSU 0.2866 JSU 0.8983 JSU 0.8116 JSU 0.9657 JSU 0.6216 

BTG 39.14 -0.51 yes ASTU 0.8845 ASTU 0.3609 ASTU 0.9914 ASTU 0.8672 ASTU 0.9603 ASTU 0.7038 

WAVES 6.45 -0.23 yes ASTU 0.7199 ASTU 0.1093 ASTU 0.8058 ASTU 0.7614 ASTU 0.8738 ASTU 0.3511 

BCD 169.48 -0.67 yes JSU 0.8138 JSU 0.2151 ASTU 0.8593 ASTU 0.7880 JSU 0.9063 JSU 0.5237 

MONA 34.79 -0.40 no ASTU 0.5836 none 0.0305 JSU 0.6857 ASTU 0.7127 ASTU 0.2533 ASTU 0.1206 

THETA 11.13 -0.27 no GCAU 0.8981 GCAU 0.3113 LAP 0.9910 LAP 0.8704 SLASH 0.9828 GCAU 0.6579 

NANO 14.22 -0.27 yes ASTU 0.6123 APWR 0.0533 GCAU 0.9237 JSU 0.7265 ASTU 0.6738 ASTU 0.1872 

SC 11.35 -0.27 yes JSU 0.7675 JSU 0.0926 JSU 0.8941 JSU 0.7965 JSU 0.7533 JSU 0.3163 

ZEN 135.76 -0.47 no ALAP 0.8009 GCAU 0.1755 GCAU 0.9809 GCAU 0.7879 GCAU 0.9786 GCAU 0.4874 

VSYS 30.19 -0.57 no ASTU 0.8761 ASTU 0.4238 HPL 0.9955 HPL 0.8587 APWR 0.9342 ASTU 0.7299 

BCN 256.15 -0.55 yes HPL 0.5739 none 0.0369 HPL 0.4454 HPL 0.6306 HPL 0.7420 ASTU 0.1279 

BTM 23.19 -0.37 no APWR 0.7942 APWR 0.2102 JSU 0.9751 GCAU 0.7667 SLASH 0.9884 GCAU 0.4446 

DGB 89.63 -0.40 yes ASTU 0.7196 ASTU 0.1350 ASTU 0.4696 ASTU 0.6619 ASTU 0.3049 ASTU 0.3182 

KMD 620.26 -0.96 yes ASTU 0.6333 ASTU 0.0693 ASTU 0.5790 ASTU 0.6761 ASTU 0.4426 ASTU 0.2328 

HC 17.17 -0.37 yes ASTU 0.7619 ASTU 0.1513 ASTU 0.4244 HPL 0.6321 STU 0.5478 ASTU 0.3383 

STEEM 62.49 -0.38 yes JSU 0.7247 JSU 0.0964 STU 0.7600 JSU 0.7258 STU 0.7567 JSU 0.3078 

BTS 13.45 -0.28 yes GCAU 0.6406 APWR 0.0504 GCAU 0.8548 GCAU 0.7027 GCAU 0.8474 APWR 0.1744 

IOST 227.47 -0.56 yes APWR 0.7776 APWR 0.2276 APWR 0.5976 HPL 0.6901 ALAP 0.3598 APWR 0.3051 

ZIL 4.14 -0.15 yes JSU 0.8808 JSU 0.3079 ASTU 0.9877 JSU 0.8571 ASTU 0.9535 JSU 0.6499 

XVG 230.40 -0.44 yes JSU 0.6131 APWR 0.0526 PWR 0.5033 PWR 0.5927 SLASH 0.3458 APWR 0.1500 

AION 22.86 -0.41 yes ASTU 0.6833 ASTU 0.1100 HPL 0.3300 ASTU 0.5240 STU 0.9994 ASTU 0.2873 

AE 15.60 -0.39 yes JSU 0.8527 JSU 0.3134 JSU 0.8785 JSU 0.7918 SLASH 0.9856 JSU 0.6344 
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3.4. Dynamic goodness-of-fit for Bitcoin and Ethereum 

Tables 12 and 13 below report harmonic mean p-values for goodness-of-fit on the full daily 

price history for Bitcoin and Ethereum, respectively, with estimations on the whole sample and 

in subsamples. Despite the error distribution generating the best fit for Bitcoin in 2013-2019, 

for the 2010-2020 sample period the asymmetric power distribution demonstrates significantly 

better fit, similarly to Ethereum. This highlights the flexibility of the asymmetric power 

function developed in this study and its robustness in subsamples. The asymmetric power 

distribution is also the only function showing high fit (all p-values greater than 20%) for all 

individual year periods and the whole sample for both coins, reinforcing the Paretian tails of 

largest cryptocurrency return distributions (da Cunha and da Silva, 2020).  

Table 12. Stability of goodness-of-fit for Bitcoin (2011-2020).  

distribution 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Sample 

normal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

asymmetric normal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

logistic 0.0010 0.0000 0.0000 0.0000 0.0003 0.0001 0.0000 0.0051 0.0000 0.0004 0.0001 0.0000 

generalised logistic 0.0010 0.0000 0.0000 0.0000 0.0003 0.0001 0.0000 0.0111 0.0005 0.0004 0.0001 0.0000 

hyperbolic secant 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0071 0.0002 0.0000 0.0000 0.0000 

asymmetric secant 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Laplace 0.0169 0.0015 0.0011 0.0059 0.1522 0.0279 0.0007 0.2567 0.0076 0.1238 0.0423 0.0000 

asymmetric Laplace 0.0945 0.0200 0.0014 0.0113 0.1457 0.0225 0.0007 0.3178 0.2297 0.1141 0.0711 0.0000 

Student 0.1279 0.0040 0.1338 0.1126 0.3472 0.2347 0.2514 0.1121 0.0123 0.4298 0.2701 0.0000 

asymmetric Student 0.3792 0.0303 0.3736 0.2118 0.3499 0.3054 0.3723 0.1556 0.0533 0.4563 0.4437 0.0000 

error 0.0316 0.0052 0.0546 0.0566 0.5517 0.1274 0.1857 0.3136 0.0114 0.6516 0.1086 0.0002 

Johnson SU 0.5065 0.1027 0.2864 0.3140 0.3555 0.2852 0.3954 0.2825 0.1096 0.4630 0.5304 0.0001 

Cauchy 0.0864 0.0018 0.0244 0.0212 0.0290 0.0086 0.1112 0.0061 0.0017 0.0320 0.0126 0.0000 

generalised Cauchy 0.0690 0.0064 0.1451 0.1216 0.6027 0.2204 0.3443 0.2083 0.0160 0.6775 0.2405 0.0000 

Burr 0.0020 0.0000 0.0000 0.0000 0.0003 0.0002 0.0000 0.0052 0.0000 0.0006 0.0002 0.0000 

Dagum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

slash 0.1072 0.0055 0.0778 0.0566 0.0674 0.0404 0.2316 0.0123 0.0047 0.0802 0.0533 0.0000 

power 0.0633 0.0046 0.1001 0.0596 0.7104 0.0843 0.3366 0.3035 0.0092 0.7384 0.1348 0.0002 

asymmetric power 0.6041 0.3099 0.3235 0.2894 0.6946 0.2303 0.4197 0.3465 0.3142 0.6682 0.4277 0.2434 

Gumbel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

GEV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Hampel 0.2167 0.2694 0.1665 0.4349 0.3852 0.3495 0.1731 0.1547 0.4119 0.5342 0.2527 0.0000 
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Table 13. Stability of goodness-of-fit for Ethereum (2015-2020). 

distribution 2015 2016 2017 2018 2019 2020 Sample 

normal 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 

asymmetric normal 0.0005 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 

logistic 0.0285 0.0000 0.0000 0.0272 0.0028 0.0319 0.0000 

generalised logistic 0.0455 0.0000 0.0000 0.0425 0.0024 0.0235 0.0000 

hyperbolic secant 0.0081 0.0000 0.0000 0.0742 0.0020 0.0002 0.0000 

asymmetric secant 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Laplace 0.1238 0.0008 0.0012 0.5244 0.1571 0.3869 0.0002 

asymmetric Laplace 0.6686 0.1100 0.0503 0.7383 0.1995 0.3002 0.0065 

Student 0.1996 0.0021 0.0053 0.1616 0.2699 0.6223 0.0014 

asymmetric Student 0.6992 0.1326 0.3139 0.1977 0.4215 0.6940 0.0427 

error 0.1528 0.0005 0.0030 0.5184 0.2267 0.2879 0.0004 

Johnson SU 0.7774 0.2330 0.4699 0.3038 0.3097 0.6744 0.0541 

Cauchy 0.0292 0.0002 0.0010 0.0047 0.0059 0.0021 0.0000 

generalised Cauchy 0.1666 0.0011 0.0045 0.3015 0.2955 0.5659 0.0027 

Burr 0.1159 0.0013 0.0002 0.0278 0.0028 0.0287 0.0000 

Dagum 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

slash 0.0810 0.0006 0.0034 0.0145 0.0257 0.0093 0.0000 

power 0.0791 0.0006 0.0041 0.5178 0.2493 0.2701 0.0011 

asymmetric power 0.8289 0.4323 0.3817 0.7413 0.4539 0.3017 0.4811 

Gumbel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

GEV 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Hampel 0.6074 0.4117 0.0945 0.3097 0.1522 0.6490 0.0131 

 

Table 14. Asymmetric power distribution parameters for Bitcoin and Ethereum. 

Year 
Bitcoin Ethereum 

location scale shape asymmetry location scale shape asymmetry 

2010 0.0014 0.1516 4.4715 1.2006     

2011 -0.0009 0.2123 5.5831 1.1799     

2012 0.0020 0.0489 4.1098 1.0814     

2013 0.0089 0.1561 5.4759 1.0870     

2014 -0.0017 0.1322 7.2039 0.9792     

2015 0.0007 0.0970 6.2491 1.0618 -0.0111 0.6796 13.6157 1.2149 

2016 0.0018 0.0298 3.9848 1.0428 -0.0035 0.3167 9.1156 1.2372 

2017 0.0085 0.7522 24.0365 0.9453 0.0030 0.2605 7.7210 1.2043 

2018 0.0009 0.6045 22.4088 0.8677 -0.0060 0.1161 4.5432 0.8720 

2019 0.0013 0.1105 6.7938 1.0394 -0.0008 0.3109 13.0495 1.0441 

2020 0.0021 0.1039 6.6064 1.0848 0.0052 0.3185 11.8309 1.0125 

Sample 0.0020 0.0713 4.2370 1.0799 -0.0002 0.2806 8.9746 1.0924 
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Table 14 above reports the estimated distribution parameters for the sample and individual year 

subsamples, showing time-varying asymmetry and shape of the distribution. Nevertheless, in 

all estimations both Bitcoin and Ethereum distribution remain finite-variance (shape parameter 

𝑐 > 3), further reinforcing their quality as diversifiers (Briere et al., 2015; Guesmi et al., 2019).  

 

4. Conclusion 

This study has applied 22 theoretical distributions functions, including four – power, 

asymmetric power, generalised Cauchy, and Hampel – originally derived, to empirical return 

distributions for a representative sample of 772 cryptocurrency markets, using a battery of five 

tests and a synthetic harmonic mean p-value criterion to assess goodness-of-fit.  

The null hypothesis of fit has been accepted for 92.36% of sample cryptocurrencies, 

and 96.37% of coins from the top quartile by size. Most null hypothesis violations occur at the 

tails of the empirical distributions. The best fitting functions come from generalised families 

capable of producing heavy-tailed or skewed distributions, such as the asymmetric power, 

Johnson SU, Hampel, asymmetric Student, generalised Cauchy, and Hampel. This reinforces 

the stylised facts of heavy tails, non-normal distributions being appropriate for cryptocurrency 

modelling established by the existing literature. Nevertheless, the distribution selection utilised 

by this study achieves a sample-wide degree of goodness-of-fit unmatched in prior studies, 

which is the main contribution of this paper.  

Johnson SU, asymmetric Student, and generalised Cauchy produce better overall fit for 

larger coins, whereas asymmetric power, Hampel, and error distributions perform 

comparatively better for smaller cryptocurrencies. These six distributions alone account for 

92.36% (86.79%) of fits (best fits), while most information regarding fits (best fits) can be 

extracted from only two tests: Anderson-Darling and Kuiper (Cramer-von Mises), which 

allows to model cryptocurrency distributions feasibly and efficiently in the finance practice, be 
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it in risk management or derivative pricing contexts. The largest coins with no identifiable 

theoretical distribution are Litecoin, Dogecoin, and Decred.  

Only 62% of coins, and only 70% of the top quartile by size, reliably demonstrate finite 

theoretical variance. This has important implications for cryptocurrency investors and portfolio 

managers seeking to use cryptoassets as diversifiers. The most prominent infinite-variance 

coins in the sample are Bitcoin SV, Tezos, and ZCash. Bitcoin and Ethereum are consistently 

finite-variance, relatively stable with time, and can be best described by an asymmetric power 

function, reinforcing their value as suitable portfolio diversifiers as well as the phenomenon of 

Paretian tails on financial markets.  

Further research on the topic could examine the distributions of cryptocurrency 

portfolios and test their stability, as well as apply the insights generated in this study for asset-

pricing, option valuation, and risk management for cryptocurrency investment.  
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