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Abstract 

This paper is the first to rigorously test commonly cited simplistic theories of cryptocurrency 

pricing, namely, cost-based model and Metcalfe’s law, using causal inferences from the 

instrumental variables approach on block-level data for six proof-of-work coins. Positive 

effects of hashrate and transaction count implied by cost-based pricing and Metcalfe’s law, 

respectively, are non-existent for any of the coins investigated. Negative and insignificant 

estimators cannot be explained by weak instruments, suggesting previously reported strong 

positive relationships are spurious due to autocorrelation and endogeneity. The study reinforces 

the need for a more sophisticated cryptocurrency valuation framework.  
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Introduction 

What factors drive cryptocurrency prices? Cryptocurrency investors, blockchain enthusiasts 

and finance researchers alike have been pondering over this question for years. At least since 

2014, various models have been developed to explain volatile and unpredictable prices of coins 

and tokens, from simplistic single-factor models, citing costs of mining (Hayes, 2017, 2019), 

adoption as number of users or as total number of transactions count (Alabi, 2017; Peterson, 

2018; Van Vliet, 2018; Pele and Pele, 2019), or willingness to hold (Wang, 2014) as primary 

price drivers, to more complicated equilibrium-based frameworks (Pagnotta and Buraschi, 

2018; Shanaev et al., 2019b).  

However, the research on fundamental, theory-based cryptocurrency valuation has been 

rather scarce, especially compared to exclusively data-driven empirical finance research on 

cryptocurrencies (see, for example, Bouri et al., 2017; Ciaian et al., 2018; Corbet et al., 2018; 

Liu and Tsyvinski, 2018; Liu et al., 2019; Gozcek and Skliarov, in press). Simultaneously, the 

empirical evidence in support of two main simplistic fundamental valuation paradigms – cost-

based and adoption-based pricing – is questionable and at a closer look might be spurious or 

inconsistent. Therefore, this study explores the relationship between factors of proof-of-work 

cryptocurrency value formation that are widely considered important for these two models, 

namely, network hashrate and transaction count, for six individual coins. It is one of the first 

to use causal inferences from instrumental variables in empirical cryptocurrency research. The 

study is able to show that both of the simplistic models do not fit the data and are consistently 

not accepted for all six sample coins. It, therefore, argues for the development of "second-

generation valuation metrics" (Lehner et al., 2018) for cryptocurrencies, them being not 

uncritical extensions of modern empirical finance asset-pricing techniques but rather asset 

class-specific equilibrium-based and theory-driven valuation models (Pagnotta and Buraschi, 

2018; Shanaev et al., 2019b).  
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Literature Review 

Cryptocurrencies and financial economics: asset-pricing without valuation 

Since the increased recognition of cryptocurrencies as an alternative investment in the 2010s, 

a wide spectrum of literature has been developed to apply techniques from traditional empirical 

finance to explore the risk-return properties of cryptocurrencies through the lens of 

conventional asset-pricing. However, performance attribution analysis has evidenced that 

cryptocurrency returns are not affected by any of the established asset markets (Bouri et al., 

2017; Ciaian et al., 2018; Ciaian and Rajcaniova, 2018; Corbet et al., 2017; Corbet et al., 2018; 

Feng et al., 2018) or risk factors (Liu and Tsyvinski, 2018), albeit some cryptocurrency market-

specific factors such as momentum, investor attention (Liu and Tsyvinski, 2018), coin market 

capitalisation, age and consensus mechanism (Shanaev et al., 2019a) have been shown to 

explain the cross-section of coin returns. Nevertheless, the Even studies that do discover 

interrelations between cryptocurrency markets and traditional assets specify that their findings 

are inconsistent (Goczek and Skliarov, in press) or conditional on cryptocurrency type (Corbet 

et al., 2017; Ciaian and Rajcaniova, 2018).  

Recently, there has been a tentative consensus forming in the field that there is a need 

for “second generation valuation metrics” for cryptocurrencies (Lehman et al., 2018). Most 

scholars envision such a “second generation” in application of more sophisticated empirical 

finance techniques (such as FECM or ARJI, see, for example, Goczek and Skliarov, in press; 

Wang et al., in press) or in the development of multi-factor models for cryptocurrencies (Liu 

et al., 2019). Nevertheless, it is logically incoherent to extend these asset-pricing models 

originally suggested for stocks to cryptocurrencies without developing the rigorous asset class-

specific valuation framework first. This argument is even accepted by the developers of 

market-size-momentum three-factor model for cryptocurrencies, who concede that stock-
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specific risk factors are based on traditional finance theories that are not directly applicable to 

cryptocurrencies (Liu et al., 2019). For stock markets, Fama-French (2015) multifactor models 

have been a logical extension of the original CAPM (Sharpe, 1964), while CAPM, in its turn, 

has been built on earlier share valuation models such as the dividend discount model (Miller 

and Modigliani, 1961; Gordon, 1963). Therefore, before the academic consensus is formed 

with regards to proper fundamental cryptocurrency valuation models, empirical applications of 

asset-pricing techniques, albeit useful for exploring general risk-return characteristics, would 

not yield substantial explanatory or predictive power or generate insights about sources of 

cryptocurrency value formation. 

 

Existing frameworks for proof-of-work cryptocurrency valuation 

The literature on fundamental valuation of cryptocurrencies is much more scarce than empirical 

asset-pricing studies (Bouoiyour and Selmi, 2017; Corbet et al., 2019). Apart from some 

recently developed equilibrium-based valuation frameworks (Pagnotta and Buraschi, 2018; 

Shanaev et al., 2019b), most of the simplistic single-variable models of cryptocurrency pricing 

can be classified as either adoption-based or cost-based.  

Adoption-based models claim that cryptocurrency prices are predominantly driven by 

demand-side factors. They are usually derived from the application of Metcalfe’s law, which 

states that network’s value should be proportional to the squared number of users (wallets), or, 

equivalently, to the number of transactions. Prominent adoption-based models include Alabi 

(2017), Peterson (2018), Van Vliet (2019), and Pele and Pele (2019). Notably, all of the 

empirical studies justifying the applicability of Metcalfe's law suffer from similar econometric 

shortcomings: first, they regress coin price on the number of users or transactions (usually also 

applying a simple logarithmic transformation to both series). These models typically yield 

unnaturally high values of R-squared (above 0.99) and do not report any autocorrelation test 
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results. Effectively, they can be represented as 𝑃𝑡 = 𝛽0 + 𝛽1𝐹𝑡 + 𝜀𝑡 or ln⁡(𝑃𝑡) = 𝛽0 +

𝛽1ln⁡(𝐹𝑡) + 𝜀𝑡, where 𝑃𝑡 is coin price at time period 𝑡 and 𝐹𝑡 is a particular fundamental variable 

at time period 𝑡. In financial econometrics, it is widely known that level data such as prices is 

serially correlated, and a log-difference transformation should be applied to it instead of a 

simple logarithmic transformation. In the graphical representation of the models’ fit both in 

Van Vliet (2018) and Pele and Pele (2019), the regularities of observed prices’ deviations from 

the expected price suggest severe autocorrelation issues, therefore the reported regressions 

results are probably spurious and inconsistent. In terms of more technically sophisticated 

studies, Goczek and Skliarov (in press) apply factor augmented error correction models to find 

that the only consistent positive driver of Bitcoin prices is investor attractiveness, results for 

Bitcoin supply, traditional asset market exposures and number of transactions being 

inconsistent. However, Goczek and Skliarov (in press) still use natural logarithm of Bitcoin 

price in their regression models instead of log-difference, possibly leading to the shortcomings 

outlined above. Hence, the cryptocurrency valuation field can benefit from the methodology 

developed in the conventional empirical finance literature, estimating the sensitivity of returns 

to the change in fundamental variables.  

As for the cost-based modes, they have been primarily developed in the works of Hayes 

(2017, 2019). Hayes (2017, 2019) claimed that cryptocurrency price is mostly driven by 

marginal costs of mining, i.e. supply-side factors or “the cost of production”. Hayes (2019) 

developed a valuation model and, utilising Granger causality, showed that logarithm of 

predicted price based on the marginal cost of mining Granger-causes market price, while 

market price does not Granger-cause model price. However, there are two major shortcomings 

in Hayes' (2019) result. First, the null hypothesis that market price does not Granger-cause cost 

of mining has been accepted with a p-value of 0.101 (therefore, the result was only marginally 

insignificant, not allowing to infer that the relationship is one-directional with sufficiently high 
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confidence). Second, and most importantly, Granger causality has been applied to log-

transformed price data (not return or log-return data), which is well-known to have unit roots. 

As Granger causality analysis is only applicable to stationary series (Granger, 1988), the 

empirical results of Hayes’ (2019) study might be spurious.  

Interestingly, the reliance on the cost-based framework of cryptocurrency pricing led 

some researchers to believe that Bitcoin constitutes ideal money for a socialist economic 

system as it adheres to the labour theory of value, each unit of cryptocurrency representing 

spent kilowatt-hours, and thus, labour (Huckle and White, 2016). Nevertheless, the notion that 

Bitcoin price is "backed by electricity" is common not only within such ideologically inclined 

circles but also among less radical authors and analysts (Granot, 2018).  

Overall, it is shown that existing empirical studies on simplistic valuation frameworks 

suffer from spurious regressions and inadequate model design. Nevertheless, there exists 

another important issue associated with estimating a causal relationship between fundamental 

blockchain characteristics and coin price – namely, endogeneity – which is discussed in detail 

in the next subsection. 

 

The uniqueness of cryptocurrencies as an asset class and the endogeneity issue 

One of the main barriers to expanding fundamental analysis practices from stocks to 

cryptocurrencies is the absence of conventional disclosure that can be used, for example, to 

compute valuation multiples. Nevertheless, technically, cryptocurrency-specific disclosure is 

necessarily publically available and is updated at an extremely high frequency, as all essential 

information regarding the state of the network is stored in the blockchain. For example, the 

data on when the latest block was mined, how many transactions it included and how much 

fees miners charged becomes public knowledge almost instantly. It simultaneously presents an 

opportunity and poses a challenge for fundamental analysis. Unlike for stocks, where new 
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fundamental information is released to the public in discrete “chunks”, with earnings 

announcements and regular corporate disclosure, for cryptocurrencies each block constitutes a 

unique piece of disclosure of its own, leading to traditional estimation techniques such as event 

studies being effectively inapplicable. Moreover, in equity valuation, it can be safely assumed 

that stock price does not influence fundamentals, at least in the short run, and therefore the 

relationship between changing company characteristics and abnormal stock returns can be 

considered causal and unidirectional. For cryptocurrencies, this does not necessarily hold true. 

For example, imagine that on a particular day both network hashrate and coin price increase 

substantially. One could argue that it is due to cost-based valuation model: as higher hashrate, 

holding electricity price and ASIC efficiency constant, implies higher marginal costs of 

production, coin price reflected the increase in cost (Hayes, 2017, 2019). Alternatively, a price 

jump might have changed the incentives of miners, making mining more profitable and 

therefore increasing mining activity on the chain (Kroll et al., 2013). This is a clear case of an 

endogeneity problem – as the causal relationship between variables (here, hashrate and coin 

price) is not unidirectional, the regressor will be correlated with the error term, resulting in an 

inconsistent estimator (Angrist and Krueger, 2001).  

A similar endogeneity issue can be present in case of adoption-based model: a coin 

price increase might be a response to the growing number of transactions and higher adoption, 

consistent with Metcalfe’s law (Van Vliet, 2018; Pele and Pele, 2019), or be a proximate cause 

of the aforementioned growth in the number of transactions, as, for example, a favourable news 

event might increase private coin valuations and therefore lead to higher market prices and 

higher transaction demand. Note that such an issue is completely absent from fundamental 

analysis of stocks, as it is generally accepted that stock price does not influence company 

fundamentals in the short term, therefore the model ln (
𝑃𝑡

𝑃𝑡−1
) = 𝛽0 + 𝛽1 ln (

𝐹𝑡

𝐹𝑡−1
) + 𝜀𝑡 will 

theoretically return an unbiased 𝛽1 estimator as the regressor can be considered exogenous. 
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The endogeneity problem, though absent from most of the empirical research on 

cryptocurrency valuation, is notably briefly discussed in Polasik et al. (2015), Ciaian et al. 

(2016) and Bouoiyour and Selmi (2017), but even there it does not lead to significant 

methodological developments, therefore constituting another gap in the literature.  

 

Granger causality and instrumental variable estimators in cryptocurrency research 

Separating the two causality scenarios in an econometric estimation has been subject to 

rigorous theoretical and empirical research in the field. Two main econometric techniques 

developed to generate causal inferences are Granger causality (Granger, 1988) and 

instrumental variable estimators (Angrist and Krueger, 2001). The application of both in 

cryptocurrency finance research is associated with some notable technical and conceptual 

challenges. 

As for Granger causality, there are several studies applying this concept to 

cryptocurrency fundamental analysis. Hayes (2019) provides evidence of marginal mining 

costs being a unidirectional Granger-cause of market prices, however, as discussed above, his 

analysis might not be reliable. Contrastingly, Wiedmer (2018) finds that while cryptocurrency 

market capitalisation Granger-causes number of open issues in the blockchain project’s source 

code, the reverse is not true. As Wiedmer’s (2018) study has reported all required tests for the 

applicability of the Granger causality approach, the results can be considered reliable in the 

econometric sense. However, when using Granger causality in finance research, particularly 

regarding asset price data, it is crucial to understand that efficient market hypothesis does not 

allow to accept the hypothesis that fundamental variables do not influence coin price if lagged 

fundamental variables are not jointly significant, namely because it states that all prior 

information is already reflected in the price. Assume, for example, that network hashrate 

influences Bitcoin price. Then, rational agents would estimate the expected value of future 
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hashrate based on the past realisation of the variable, forming their private valuations 

accordingly. Therefore, historical data on hashrate will be already translated into current 

market prices and not market returns via the rational expectations channel. Therefore, one 

potentially apply Granger causality only to high-frequency data (i.e. individual block data) to 

exploit lags and slight inefficiencies in coin price responses. However, such an approach poses 

an issue of its own: as transaction count and especially hashrate are extremely volatile short-

term, the estimators obtained using such a procedure would have extremely low statistical 

power, leading to a rejection of the null being effectively improbable and the approach being 

useless for verifying or falsifying the simplistic fundamental cryptocurrency valuation models.  

A seemingly more promising method of generating causal inferences about the 

relationship between transaction count, hashrate and coin price is the instrumental variable 

approach, or two-stage least squares (TSLS) (Angrist and Krueger, 2001). It is a well-known 

estimation technique that is regularly applied when it is suspected regressors might be 

endogenous. An ideal instrument would be a variable that is not theoretically related 

(exogenous) to the dependent variable and has a sufficiently strong correlation with the 

endogenous dependent variable (has a strong first stage). Applications of IV and TSLS 

estimators in cryptocurrency economics and finance are virtually non-existent. Ciaian et al. 

(2016) come close to the concept of exogenous curve-shifters for supply and demand in case 

of Bitcoin, however they do not coherently apply the classical system of simultaneous 

equations framework with instrumental variables (Angrist and Krueger, 2001). Furthermore, 

the very design of proof-of-work cryptocurrencies significantly complicates system of 

simultaneous equation estimations as Bitcoin supply, for example, is deliberately engineered 

to be as inelastic as possible, therefore a sufficiently good “curve-shifter” for supply might be 

simply not feasible to construct. Furthermore, some researchers are sceptical about the 
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applicability of conventional supply-and-demand reasoning to cryptocurrencies in general 

(Goczek and Skliarov, in press).  

Bouoiyour and Selmi (2017) acknowledge the conceptual difficulty of finding proper 

instrumental variables for cryptocurrency price-related estimations and resort to the well-

known GMM logic of using lagged dependent variables as instruments. That is controversial 

for finance research as past returns (lagged dependent variables) are generally uncorrelated 

with current returns and therefore constitute rather weak instruments. The same approach is 

chosen earlier by Polasik et al. (2015), who utilise lagged dependent variables as instruments, 

additionally proposing an original instrument candidate – the logarithmic rate of growth of 

cryptography-related materials in Lexis database. Such an instrument is problematic as it might 

not be theoretically exogenous. First, Bitcoin users or open-source code developers might 

contribute to the general knowledge on cryptography more intensively as specific blockchain 

projects develop: a similar relationship has been detected by Wiedmer (2018), reporting 

growing activity for Bitcoin open source code on GitHub after cryptocurrency market 

capitalisation increases. Second, general interest in cryptography might be an effect, not a 

cause, of investor or public sentiment regarding cryptocurrencies. Hence, theoretically there is 

little reason to assert such an instrument is sufficiently strong or exogenous. 

Therefore, since neither Polasik et al. (2015) nor Bouoiyour and Selmi (2017) report 

any endogeneity or weak instrument tests, one can suspect lagged dependent variables or some 

sporadically suggested candidate instruments (such as log-difference of the number of 

cryptography-related entries in Lexis) are not sufficiently strong instrumental variables for the 

empirical testing of cryptocurrency valuation models.  

Weak instruments pose a significant challenge for hypothesis testing, as in this case, 

insignificant estimator might mean either that the null hypothesis cannot be rejected or that the 

standard error is too high, reducing the statistical power of the estimation (Young, 2017). 
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Therefore, weak instruments tests, such as Cragg-Donald F-test (Cragg and Donald, 1993) are, 

although imperfect (Young, 2017), but still crucial tools for identifying true negatives in IV 

estimations.  

Furthermore, instrumental variable methods are criticised for improper use in cases 

when there is little to no evidence that standard OLS estimators are biased (Young, 2017). For 

these reasons, Young (2017) advocates for reporting both OLS and TSLS regression results 

and explicitly testing for endogeneity, i.e. the significant difference between OLS and TSLS 

estimators. 

Therefore, this study, having identified the gap in the literature with regards to causal 

inferences in fundamental cryptocurrency valuation models, aims at filling it while recognising 

the limitations of instrumental variable estimators.  

 

Data and Methodology 

Data collection 

Unlike previous research that has explored fundamental valuation models solely in application 

to Bitcoin (Hayes, 2017; 2019; Van Vliet, 2018; Pele and Pele, 2019), this study considers six 

proof-of-work coins: Bitcoin, Litecoin, Bitcoin Cash, Bitcoin SV, Dash and Dogecoin. The 

sample characteristics for retrieved data can be consulted in Table 1.   

Table 1. Sample characteristics 

Coin Sample start date Sample end date 
Number of 

sample days 

Number of 

sample blocks 

Bitcoin 10/01/2014 14/05/2019 1687 252,808 

Litecoin 10/01/2014 14/05/2019 1687 981,676 

Bitcoin Cash 02/08/2017 14/05/2019 651 104,015 

Bitcoin SV 15/11/2018 14/05/2019 181 27,131 

Dash 02/05/2017 14/05/2019 743 407,521 

Dogecoin 02/05/2017 14/05/2019 743 1,027,525 
 

 

For all six cryptocurrencies, block-level data on date and time mined, transaction count, 

fees in native blockchain coins, fees in USD, block size in kB and mining difficulty has been 
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retrieved. Then, data has been aggregated daily, computing number of blocks mined, average 

empirical block time, the total number of transactions, total fees in native blockchain coins and 

USD, total block size and average difficulty. Daily coin price in USD has been calculated using 

transaction-weighted fees. Transaction fee density has been assessed as 𝜌 =

𝑇𝑜𝑡𝑎𝑙⁡𝑓𝑒𝑒𝑠⁡𝑖𝑛⁡𝑛𝑎𝑡𝑖𝑣𝑒⁡𝑐𝑜𝑖𝑛

𝑇𝑜𝑡𝑎𝑙⁡𝑏𝑙𝑜𝑐𝑘⁡𝑠𝑖𝑧𝑒⁡𝑖𝑛⁡𝑘𝐵
, and fiat transaction fee as 𝑡𝑐 =

𝑇𝑜𝑡𝑎𝑙⁡𝑓𝑒𝑒𝑠⁡𝑖𝑛⁡𝑈𝑆𝐷

𝑇𝑜𝑡𝑎𝑙⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
. Finally, daily 

hashrate has been estimated using difficulty and empirical block time: 𝐻𝑎𝑠ℎ𝑟𝑎𝑡𝑒 =

232𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦

𝐵𝑙𝑜𝑐𝑘⁡𝑡𝑖𝑚𝑒
. As the data is aggregated daily, blockchains with varying protocol block times 

(~10 minutes for Bitcoin, Bitcoin Cash and Bitcoin SV, ~2.5 minutes for Litecoin and Dash 

and ~1 minute for Dogecoin) can be studied in the same sample. Moreover, since the impact 

of fundamentals on coin price price is assessed on logarithmic return level, the same models 

are applicable and interpretable in the case of all six cryptocurrencies.  

The dynamics of coin price, hashrate and transaction count in for all six blockchains 

can be consulted in Figures 1a-c.  
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Figure 1a. The dynamics of coin prices for six blockchains 

 

Figure 1b. The dynamics of hashrates for six blockchains 
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Figure 1c. The dynamics of transaction count for six blockchains 
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hashrate, mining difficulty is the most obvious instrument candidate, as difficulty is tightly 

associated with hashrate (the greater the difficulty, the higher hashrate is required to mine the 

same number of blocks), but it can influence coin price only indirectly, via changes in hashrate. 

For five out of six sample coins (all except Bitcoin), difficulty adjusts with each block, 

therefore generating a potentially sufficient amount of exogenous variation to result in a 

powerful enough instrumental variable estimator. 

For Bitcoin, however, difficulty adjusts only every 2016 blocks (approximately every 

two weeks), therefore it is suspected that mining difficulty might not have a strong first stage 

as an instrument for hashrate on daily data. Therefore, for Bitcoin, a second candidate 

instrument is tested, namely, the fraction of blocks mined by unknown miners (that do not 

represent organised mining pools). It can arguably represent the degree of “enthusiastic” 

mining activity by individual miners, rather than profit-seeking mining characteristic of large 

pools. Therefore, if the share of unknown mining is high, it could imply that mining is 

unprofitable, therefore resulting in a lower hashrate. Simultaneously, for the cost-based pricing 

framework of proof-of-work cryptocurrencies, it should be irrelevant whether the mining cost 

is incurred by organised mining pools or small atomistic miners, resulting in a plausible 

instrument candidate. 

To instrument for transaction count, two transaction cost metrics – transaction fee 

density and fiat transaction fee – have been considered, representing exogenous drivers of 

adoption (as lower/higher transaction fees can influence price only via higher/lower adoption). 

Additionally, for Dogecoin, trading volume – an additional instrument candidate for transaction 

count – has been considered. 

Tables 2a, 2b and 2c report first-stage regressions of endogenous regressors (hashrate 

and transaction count) onto respective instruments. If multiple instruments were statistically 

significant in first-stage estimations, the one with greater t-stat was taken. All equations were 
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estimated using OLS with Newey-West (1987) heteroscedasticity and autocorrelation 

consistent covariance matrix, regressing logarithmic rate of change of the fundamental factor 

ln
𝐹𝑡

𝐹𝑡−1
⁡onto the instrument ln

𝐼𝑉𝑡

𝐼𝑉𝑡−1
 and estimating the model:  ln

𝐹𝑡

𝐹𝑡−1
⁡ = 𝛽0 + 𝛽1 ln

𝐼𝑉𝑡

𝐼𝑉𝑡−1
+ 𝜀𝑡 

Table 2a. The first stage for hashrate and transaction instruments (Bitcoin and Litecoin). 

Coin Bitcoin Litecoin 

Endogenous 

variable 
Hashrate Transaction count Hashrate Transaction count 

Instrument 

candidate 

Mining 

difficulty 

Unknown 

miners, % 

Transaction 

fee density 

Fiat 

transaction 

fee 

Mining 

difficulty 

Transaction 

fee density 

Fiat 

transaction 

fee 

Intercept 

0.0038*** 0.0069*** 0.0009 0.0009 0.0038** 0.0013 0.0011 

(0.0013) (0.0019) (0.0030) (0.0030) (0.0016) (0.0042) (0.0041) 

[2.9538] [3.6495] [0.2900] [0.3008] [2.3167] [0.3016] [0.2776] 

Slope 

-0.2213 -0.0477** 0.0811*** 0.0115 -0.1129* -0.0595*** -0.1475*** 

(0.1960) (0.0197) (0.0154) (0.0160) (0.0613) (0.0157) (0.0153) 

[-1.1287] [-2.4223] [5.2711] [0.7193] [-1.8414] [-3.7886] [-9.6502] 

Notes: instrument selection process for two exogenous variables (hashrate and transaction count) for Bitcoin and 

Litecoin. Instruments with the strongest first stage (highest t-stat with Newey-West HAC variance estimator) are 

in bold and selected for TSLS inferences. *, ** and *** denote statistical significance at 10%, 5% and 1%, 

respectively. Standard errors and t-statistics are reported (in parentheses) and [in brackets]. All endogenous 

variables and candidate instruments are transformed into log-differences for all estimations. 
 

For Bitcoin, as expected, mining difficulty is not a particularly strong instrument for 

hashrate as it adjusts only every 2016 block, such variation being insufficient. The share of 

unknown miners indicator has, in turn, a rather strong first stage (significant at 5%), therefore 

the study proceeds to use it as an instrument for hashrate (Table 2a). In terms of transaction 

count instruments, transaction fee density and fiat transaction fee have a stronger first stage for 

Bitcoin and Litecoin, respectively, therefore, at least one of the conventional transaction cost 

variables can be used as instruments for the number of transactions (Table 2a). 

Table 2b. The first stage for hashrate and transaction instruments (Bitcoin Cash and Bitcoin 

SV).  

Coin Bitcoin Cash Bitcoin SV 

Endogenous 

variable 
Hashrate Transaction count Hashrate Transaction count 

Instrument 

candidate 

Mining 

difficulty 

Transaction 

fee density 

Fiat 

transaction 

fee 

Mining  

difficulty 

Transaction 

fee density 

Fiat 

transaction 

fee 

Intercept 

0.0005 0.0005 -0.0010 -0.0044 -0.0179 -0.0252 

(0.0092) (0.0119) (0.0109) (0.0056) (0.0458) (0.0418) 

[0.0557] [0.0441] [-0.0886] [-0.7946] [-0.3907] [-0.6027] 

Slope -1.5605*** -0.5884*** -0.7271*** 0.6022*** -0.7999*** -0.7684*** 
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(0.2513) (0.1355) (0.1103) (0.0870) (0.1667) (0.1131) 

[-6.2095] [-4.3442] [-6.5921] [6.9191] [-4.7974] [-6.7963] 

Notes: instrument selection process for two exogenous variables (hashrate and transaction count) for Bitcoin Cash 

and Bitcoin SV. Instruments with the strongest first stage (highest t-stat with Newey-West HAC variance 

estimator) are in bold and selected for TSLS inferences. *, ** and *** denote statistical significance at 10%, 5% 

and 1%, respectively. Standard errors and t-statistics are reported (in parentheses) and [in brackets]. All 

endogenous variables and candidate instruments are transformed into log-differences for all estimations. 
 

Bitcoin Cash and Bitcoin SV show highly predictable results (Table 2b), with mining 

difficulty and fiat transaction fees having exceptionally strong first stages in terms of 

instrumenting hash rate and transaction count. Dash (Table 2c) follows suit, however, for 

Dogecoin neither transaction fee density nor fiat transaction fee is sufficiently correlated with 

transaction count. Here, trading volume is used as an alternative instrument, and it indeed 

exhibits a very strong first stage.  

Table 2c. The first stage for hashrate and transaction instruments (Dash and Dogecoin).  

Coin Dash Dogecoin 

Endogenous 

variable 
Hashrate Transaction count Hashrate Transaction count 

Instrument 

candidate 

Mining 

difficulty 

Transaction 

fee density 

Fiat 

transaction 

fee 

Mining 

difficulty 

Transaction 

fee density 

Fiat 

transaction 

fee 

Trading 

volume 

Intercept 

0.0001 0.0003 0.0004 0.0001 0.0009 0.0009 0.0005 

(0.0002) (0.0062) (0.0052) (0.0001) (0.0027) (0.0027) (0.0026) 

[0.3335] [0.0476] [0.0837] [0.9524] [0.3533] [0.3319] [0.2061] 

Slope 

0.9958*** -0.5810*** -0.6189*** 0.9801*** 0.0580 0.0337 0.08157*** 

(0.0065) (0.2034) (0.1399) (0.0063) (0.0460) (0.0374) (0.0096) 

[153.0054] [-2.8558] [-4.4227] [156.2124] [1.2616] [0.9022] [8.4997] 

Notes: instrument selection process for two exogenous variables (hashrate and transaction count) for Dash and 

Dogecoin. Instruments with the strongest first stage (highest t-stat with Newey-West HAC variance estimator) are 

in bold and selected for TSLS inferences. *, ** and *** denote statistical significance at 10%, 5% and 1%, 

respectively. Standard errors and t-statistics are reported (in parentheses) and [in brackets]. All endogenous 

variables and candidate instruments are transformed into log-differences for all estimations. 
 

Overall, the selected instruments for hashrate and transaction count for six sample 

proof-of-work coins are outlined in Table 3 below. 

Table 3. Selected instrumental variables 

Coin Hashrate Transaction count 

Bitcoin % unknown miners transaction fee density 

Litecoin mining difficulty fiat transaction fee 

Bitcoin Cash mining difficulty fiat transaction fee 

Bitcoin SV mining difficulty fiat transaction fee 

Dash mining difficulty fiat transaction fee 
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Dogecoin mining difficulty trading volume 

 

Estimation technique 

When the instrumental variables have been selected, a set of econometric equations regressing 

log-returns of six proof-of-work coins onto logarithmic differences in hashrate and/or 

transaction count is estimated both using OLS and TSLS, reflecting Young's (2017) 

recommendations. For each such pair of OLS/TSLS estimations, joint regressor endogeneity is 

tested using the Durbin-Wu-Hausman procedure of determining the significance of the 

difference between J-stats (Nakamura and Nakamura, 1981). Furthermore, weak instruments 

are identified using Cragg-Donald (Cragg and Donald, 1993) F-test. If Cragg-Donald F-stat 

exceeds the 10% threshold (meaning that the possible bias of TSLS estimators due to 

insufficiently strong instruments is at most 10%), the instrumental variable cannot be 

considered weak. All standard errors are estimated using Newey-West (Newey and West, 

1987) heteroscedasticity and autocorrelation consistent covariance matrix.  

If the instruments are proven to be weak (low Cragg-Donald F-stat) or if the original 

regressors (hashrate and transaction count) are shown to be exogenous (insignificant difference 

in J-stats), then the hypothesis regarding the relevance of adoption-based and cost-based 

valuation models is tested using the OLS estimators. If, on the other hand, instruments cannot 

be regarded as week and IV estimator is significantly different from the OLS estimator 

simultaneously, the results of the TSLS model are interpreted in the context of hypothesis 

testing. 

 

Findings and Discussion 

The study has estimated six econometric models (the impact of hashrate, transaction count and 

both with OLS and TSLS) for each of the six proof-of-work coins (Bitcoin, Litecoin, Bitcoin 
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Cash, Bitcoin SV, Dash and Dogecoin) individually. The results are presented in Tables 4a-f, 

respectively.  

Table 4a. Bitcoin value formation. 

Coin Bitcoin 

Model Hashrate Transaction count Both 

Method OLS TSLS OLS TSLS OLS TSLS 

Constant 

0.0018* 0.0008 0.0018* 0.0017* 0.0018* -0.0004 

(0.0009) (0.0015) (0.0009) (0.0009) (0.0009) (0.0025) 

[1.9122] [0.0542] [1.9047] [1.8872] [1.9097] [-0.1758] 

Hashrate 

-0.0051 0.5165   -0.0039 0.4625 

(0.0059) (0.3250)   (0.0060) (0.4491) 

[-0.8721] [1.5894]   [-0.6511] [1.0298] 

Transaction count 

  -0.0051 0.0448 -0.0039 0.7352 
  (0.0059) (0.0524) (0.0061) (0.6908) 
  [-0.8552] [0.8550] [-0.6457] [1.0604] 

Endogeneity test 
4.8389** 1.0314 5.4602* 

0.0278 0.3098 0.0652 

Cragg-Donald F-stat 1.2628 27.7849 0.1788 

Notes: all models estimated using standard OLS and TSLS with pre-selected instruments using a HAC covariance 

matrix. *, ** and *** denote statistical significance at 10%, 5% and 1%, respectively. Standard errors and t-

statistics are reported (in parentheses) and [in brackets]. Endogeneity tests (differences in J-stats) with respective 

p-values in italics presented below main estimation results. Cragg-Donald F-stats that pass the 10% threshold are 

in bold.  
 

For Bitcoin, both OLS and TSLS estimators of hashrate and transaction count impact 

on returns is statistically insignificant. These regressors are shown to be exogenous in two out 

of three models, while the share of unknown miners is shown to be a relatively weak instrument 

for hashrate. Transaction fee density, however, is a very strong instrument for transaction 

count, albeit the transaction count regressor in this model is shown to be exogenous, regardless. 

Overall, the instrument selected are far from ideal in case of Bitcoin, however, there is no 

evidence to support either cost-based (Hayes' marginal cost of mining) or adoption-based 

(Metcalfe's law) frameworks for Bitcoin valuation, as both OLS and TSLS estimators are 

insignificant in all cases. 

Table 4b. Litecoin value formation. 

Coin Litecoin 

Model Hashrate Transaction count Both 

Method OLS TSLS OLS TSLS OLS TSLS 

Constant 0.0017 0.0025 0.0018 0.0022 0.0017 0.0025 
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(0.2616) (0.0023) (0.0015) (0.0018) (0.0015) (0.0030) 

[1.1229] [1.1065] [1.1984] [1.2111] [1.1223] [0.8430] 

Hashrate 

0.0419** -0.2163   0.0429** -0.1059 

(0.0200) (0.4891)   (0.0199) (0.6352) 

[2.0989] [-0.4421]   [2.1530] [-0.1668] 

Transaction count 

  -0.0114 -0.2779*** -0.0119 -0.2746*** 
  (0.0083) (0.0901) (0.0083) (0.0884) 
  [-1.3761] [-3.0841] [-1.4450] [-3.1081] 

Endogeneity test 
0.2889 57.8122*** 58.4219*** 

0.5909 0.0000 0.0000 

Cragg-Donald F-stat 3.3910 93.1267 1.6504 

Notes: all models estimated using standard OLS and TSLS with pre-selected instruments using a HAC covariance 

matrix. *, ** and *** denote statistical significance at 10%, 5% and 1%, respectively. Standard errors and t-

statistics are reported (in parentheses) and [in brackets]. Endogeneity tests (differences in J-stats) with respective 

p-values in italics presented below main estimation results. Cragg-Donald F-stats that pass the 10% threshold are 

in bold.  
 

Litecoin initially shows some support for a cost-based pricing model in OLS estimation, 

as hashrate has a positive and significant (at 5%) impact on log-returns both individually and 

when controlled for transaction count. In a single-factor model with hashrate, the TSLS 

estimator is insignificant, however this result alone cannot be considered enough to reject the 

validity of the cost-based model for Litecoin, as the instrument is not sufficiently strong in this 

case and, more importantly, the original regressor is shown to be exogenous. Nevertheless, in 

the TSLS model where both hashrate and transaction cost are included, hashrate is still 

insignificant, while the regressors are shown to be exogenous. Therefore, Litecoin has 

produced mixed and somewhat inconclusive results regarding Hayes’ (2017, 2019) cost-based 

pricing model. With regards to adoption-based model, however, the findings are extremely 

consistent – fiat transaction fee is a strong instrument for transaction count, transaction count 

alone is proven to be an endogenous regressor at extremely high levels of confidence, and the 

number of transactions factor, remaining insignificant in OLS estimations, consistently turns 

negative and highly (at 1%) significant in TSLS models. This is sufficient evidence to reject 

the validity of Metcalfe’s law models (expecting a positive transaction-price relationship) in 

application to Litecoin.  

Table 4c. Bitcoin Cash value formation. 

Coin Bitcoin Cash 
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Model Hashrate Transaction count Both 

Method OLS TSLS OLS TSLS OLS TSLS 

Constant 

-0.0002 0.0001 -0.0001 0.0000 -0.0002 0.0002 

(0.0038) (0.0040) (0.0038) (0.0039) (0.0038) (0.0041) 

[-0.0470] [0.0161] [-0.0297] [0.0078] [-0.0469] [0.0436] 

Hashrate 

0.0229* -0.0581**   0.0229* -0.0499* 

(0.0138) (0.0286)   (0.0138) (0.0284) 

[1.6591] [-2.0337]   [1.6657] [-1.7572] 

Transaction count 

  0.0011 -0.0384*** -0.0003 -0.0383*** 
  (0.0071) (0.0117) (0.0068) (0.0118) 
  [0.1564] [-3.2988] [-0.0379] [-3.2413] 

Endogeneity test 
54.0084*** 43.7898*** 93.0107*** 

0.0000 0.0000 0.0000 

Cragg-Donald F-stat 427.4585 583.9237 213.6075 

Notes: all models estimated using standard OLS and TSLS with pre-selected instruments using a HAC covariance 

matrix. *, ** and *** denote statistical significance at 10%, 5% and 1%, respectively. Standard errors and t-

statistics are reported (in parentheses) and [in brackets]. Endogeneity tests (differences in J-stats) with respective 

p-values in italics presented below main estimation results. Cragg-Donald F-stats that pass the 10% threshold are 

in bold.  
 

Bitcoin Cash can be regarded as a textbook case of inconsistent OLS estimators in the 

presence of endogeneity. While similar to Litecoin, Bitcoin Cash shows a robust positive 

relationship between returns and hashrate (significant at 10%) in case of simple OLS, the 

estimator remains significant, but changes sign in IV regressions. This observation cannot be 

explained as an artefact of weak instruments, as Cragg-Donald F-stats are extremely high and 

Durbin-Wu-Hausman test shows that hashrate is indeed an endogenous regressor. For 

transaction count, similarly endogenous (as evidenced by the difference in J-stats statistically 

significant at 1%) though insignificant OLS regressors turn negative and significant in TSLS 

estimations. Hence, both cost-based and adoption-based valuation models can be decidedly 

rejected for Bitcoin Cash. 

Table 4d. Bitcoin SV value formation. 

Coin Bitcoin SV 

Model Hashrate Transaction count Both 

Method OLS TSLS OLS TSLS OLS TSLS 

Constant 

-0.0130 -0.0129 -0.0114 -0.0121 -0.0128 -0.0133 

(0.0122) (0.0112) (0.0117) (0.0123) (0.0121) (0.0117) 

[-1.0612] [-1.1498] [-0.9712] [-0.9872] [-1.0531] [-1.1360] 

Hashrate 

-0.1376 -0.1292   -0.1379 -0.1282 

(0.0916) (0.1843)   (0.0909) (0.1900) 

[-1.5014] [-0.7013]   [-1.5174] [-0.6748] 

Transaction count 

  0.0103 -0.0213 0.0104 -0.0184 
  (0.0073) (0.0183) (0.0071) (0.0180) 
  [1.4167] [-1.1654] [1.4558] [-1.0191] 
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Endogeneity test 
0.0041 15.2765*** 13.1587*** 

0.9487 0.0001 0.0014 

Cragg-Donald F-stat 46.7888 215.6563 22.0414 

Notes: all models estimated using standard OLS and TSLS with pre-selected instruments using a HAC covariance 

matrix. *, ** and *** denote statistical significance at 10%, 5% and 1%, respectively. Standard errors and t-

statistics are reported (in parentheses) and [in brackets]. Endogeneity tests (differences in J-stats) with respective 

p-values in italics presented below main estimation results. Cragg-Donald F-stats that pass the 10% threshold are 

in bold.  
 

Bitcoin SV, perhaps due to the relative youth of the coin and respective levels of 

idiosyncratic risk, shows mostly insignificant results. Hashrate is shown to have no significant 

impact on price and the estimator value is similarly negative in both models. According to the 

Durbin-Wu-Hausman test, hashrate can be considered exogenous for Bitcoin SV valuation, 

therefore insignificant OLS estimates can be accepted as consistent. Transaction count is shown 

to contribute positively, albeit insignificantly, to Bitcoin SV return in OLS models, however, 

the relationship flips its sign in IV regressions, the endogeneity test reinforcing the significant 

difference between estimators in these two methods. In all cases, the instruments are evidenced 

to be of sufficient strength. Overall, the lack of significant results allows the study to reject 

both simplistic valuation models for Bitcoin SV. 

Table 4e. Dash value formation. 

Coin Dash 

Model Hashrate Transaction count Both 

Method OLS TSLS OLS TSLS OLS TSLS 

Constant 

-0.0001 -0.0002 0.0005 0.0006 -0.0001 0.0001 

(0.0023) (0.0023) (0.0023) (0.0024) (0.0023) (0.0024) 

[-0.0551] [-0.0717] [0.2171] [0.2479] [-0.0490] [0.0003] 

Hashrate 

0.0646* 0.0686*   0.0642* 0.0619 

(0.0358) (0.0363)   (0.0358) (0.0376) 

[1.8046] [1.8881]   [1.7911] [1.6438] 

Transaction count 

  -0.0052 -0.0533** -0.0050 -0.0526** 
  (0.0042) (0.0252) (0.0044) (0.0253) 
  [-1.2405] [-2.1112] [-1.1425] [-2.0792] 

Endogeneity test 
0.5272 47.5775*** 47.3067*** 

0.4678 0.0000 0.0000 

Cragg-Donald F-stat 24518.84 712.9432 355.4682 

Notes: all models estimated using standard OLS and TSLS with pre-selected instruments using a HAC covariance 

matrix. *, ** and *** denote statistical significance at 10%, 5% and 1%, respectively. Standard errors and t-

statistics are reported (in parentheses) and [in brackets]. Endogeneity tests (differences in J-stats) with respective 

p-values in italics presented below main estimation results. Cragg-Donald F-stats that pass the 10% threshold are 

in bold.  
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Dash is the only case where some inconclusive evidence has been found in support of 

the cost-based model. OLS estimator is positive and significant (at 10%), and the single-factor 

model shows that hashrate can be treated as an exogenous regressor. However, in the TSLS 

two-factor model (including both hashrate and transaction count), where joint regressor 

endogeneity is evidenced by the statistically significant (at 1%) difference in J-stats, hashrate 

becomes marginally insignificant. Of course, analogously to the case of Litecoin, these findings 

are not enough to either verify or falsify the cost-pricing valuation framework for Dash. With 

regards to the adoption-based model, the results are once again much more evident: statistically 

insignificant OLS estimators are substantially different (according to Durbin-Wu-Hausman 

endogeneity test) to statistically significant (at 5%) and negative TSLS estimators. As all 

instruments in all models are proven to be strong, the adoption-based pricing model can be 

certainly rejected for Dash. 

Table 4f. Dogecoin value formation 

Coin Dogecoin 

Model Hashrate Transaction count Both 

Method OLS TSLS OLS TSLS OLS TSLS 

Constant 

0.0012 0.0012 0.0018 0.0020 0.0013 0.0003 

(0.0033) (0.0033) (0.0033) (0.0034) (0.0033) (0.0033) 

[0.3737] [0.3535] [0.5456] [0.5708] [0.3936] [0.0964] 

Hashrate 

0.0981 0.1102   0.0904 0.0738 

(0.0622) (0.0634)   (0.0617) (0.0660) 

[1.5778] [1.7389]   [1.4664] [1.1173] 

Transaction count 

  -0.0429* -0.1881** -0.0394 -0.1853** 
  (0.0251) (0.0860) (0.0248) (0.0864) 
  [-1.7083] [-2.1876] [-1.5850] [-2.1452] 

Endogeneity test 
1.6173 3.5444* 5.2452* 

0.2035 0.0597 0.0726 

Cragg-Donald F-stat 29150.73 89.6884 44.4427 

Notes: all models estimated using standard OLS and TSLS with pre-selected instruments using a HAC covariance 

matrix. *, ** and *** denote statistical significance at 10%, 5% and 1%, respectively. Standard errors and t-

statistics are reported (in parentheses) and [in brackets]. Endogeneity tests (differences in J-stats) with respective 

p-values in italics presented below main estimation results. Cragg-Donald F-stats that pass the 10% threshold are 

in bold.  
 

Dogecoin is a special case as it involves sufficiently strong instruments and marginally 

significant evidence of regressor endogeneity (insignificant for hashrate single-factor model 

and significant only at 10% in two other cases). Regardless, there are no positive and significant 
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results for either hashrate or transaction count, transaction count estimator being negative and 

significant (at 5%) in both TSLS models. The findings are therefore allowing the study to reject 

both cost-based and adoption-based model for Dogecoin. 

Overall, the results of the econometric estimations overwhelmingly suggest that neither 

cost-pricing nor Metcalfe’s law models are robust and useful valuation heuristics for proof-of-

work cryptocurrencies. For all six coins, the adoption-based model has been decidedly rejected, 

while the cost-based model has been rejected with certainty for four out of six coins, the other 

two coins showing inconclusive results. It can be inferred that statistically significant results 

related to adoption-based models in the previous literature (Alabi, 2017; Peterson, 2018; Van 

Vliet, 2018; Pele and Pele, 2019) are spurious due to autocorrelation, while reported evidence 

supporting cost-based models (Hayes, 2017, 2019) is inconsistent due to regressor endogeneity, 

i.e. the relationship between network hashrate and coin price being not unidirectional.  

 

Conclusion 

This study has rigorously tested two most frequently used fundamental valuation heuristics for 

cryptocurrencies – cost-based pricing associated with network hashrate (Hayes, 2017, 2019) 

and adoption-based pricing based on Metcalfe’s law and transaction count (Alabi, 2017; 

Peterson, 2018; Van Vliet, 2018; Pele and Pele, 2019) – against blockchain data for six proof-

of-work cryptocurrencies (Bitcoin, Litecoin, Bitcoin Cash, Bitcoin SV, Dash and Dogecoin) 

using causal inferences from instrumental variables estimators.  

Instrumental variable approach is shown to be both technically applicable and 

practically relevant to fundamental analysis of cryptocurrencies as, unlike for stocks, major 

fundamental indicators of blockchains such as hashrate and transaction count, cannot be treated 

as exogenous as they are themselves responding to changing coin prices and adjusting with 

each block, new information instantly becoming publically available.  
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For various cryptocurrencies, different hashrate and transaction count instruments are 

shown to have the strongest first stage. For blockchains with continuously adjusting difficulty, 

changes in difficulty are sufficiently strong instruments for changes in hashrate, while for those 

where difficulty adjusts periodically (e.g. in Bitcoin blockchain, where it changes only every 

2016 blocks or, approximately, every two weeks) another instrument, such as the share of 

unknown miners, might be more applicable. To instrument for the number of transaction 

dynamics, either transaction fee density, fiat transaction fees or trading volume can be utilised 

in various cases, with fiat transaction fee being the most universal. 

The instrumental variable approach and causal inferences obtained from respective IV 

estimators suggest that most of the statistically significant positive results with regards to the 

relationship between coin price and hashrate or coin price and transaction count are either 

spurious due to serial correlation (predominantly in case of Metcalfe’s law models) or 

inconsistent due to endogeneity (mostly in case of cost-based pricing models). The study 

consistently failed to verify the predictions of either of the two models, the adoption-based 

model being decidedly rejected for all six cryptocurrencies, while the cost-based model being 

rejected in four out of six cases and having inconclusive results in other two.  

The study has shown that simplistic single-factor valuation models and frameworks for 

proof-of-work cryptocurrencies are not sufficient for adequate fundamental analysis and that 

more advanced developments in the field, perhaps simultaneous equilibrium-based models, are 

necessary. Hence, discovering theoretically plausible and empirically consistent sources of 

cryptocurrency value generation is essential for cryptocurrency researchers, investors and 

blockchain enthusiasts alike. Furthermore, the study has shown the importance of econometric 

rigour in empirical cryptocurrency research, showing that some potentially spurious results in 

existing literature can be solely attributable to inadequate methodological design. Finally, it 

has provided the methodological basis for instrumental variable estimations and causal 
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inferences in the field, suggesting some empirically robust instrument candidates for frequently 

used blockchain-related fundamentals such as network hashrate and transaction count. 

Further research in the field might apply a similar instrumental variable framework to 

study other aspects of cryptocurrency economics, such as supply and demand on the transaction 

fee market, formally testing existing theoretical models of transaction fee determination. 

Furthermore, the system of simultaneous equations can be utilised in the future to test the 

supply and demand model of cryptocurrency price if a sufficient supply curve-shifter is 

developed. 
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