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Hydrogen can used in a number of ways to

achieve energy transition

* Electricity generation: distributed, remote, stand alone, backup (using
fuel cell)

* Transports: car, bus, truck, forklift, train, ship (using fuel cell)

* Chargers: mobile, laptop (using fuel cell)

* Domestic heating and electricity (using fuel cell)

 Domestic heating and cooking (blended with methane, combustion)
* Truck / digger: (blended with diesel)

* Energy storage and load balance for intermittent renewable energy:

(production, storage and use) -
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Whatis H,?

* H, is a gas. It is colorless, odourless, tasteless, non-toxic and highly
combustible

* |ts density — 0.08375 kg/m3 (comparison: air 1.18 kg/m?3)

* The most abundant chemical element — contribute 75% of the mass
of the universe

* But here is the problem — it is very scare as a gas, vast numbers of
hydrogen atoms are contained in water, natural gas, plants etc.




Hydrogen is not
available as a gas in
nature

= It has to be produced from different sources:

= Natural gas
= Water splitting

= Biomass
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* Produced by fossil fuels (natural gas, coal)

* Emits CO2 in the process

* Produced by fossil fuels in combination with CCS

* Reduces CO2 emissions in the process

* Produced by pyrolysis of fossil fuels

* Solid carbon as by-product

* Produced from water splitting in an electrolyser using
electricity generated from renewable sources

* Produced from water splitting in an electrolyser using
electricity from nuclear power plants

Yellow H2 * Produced from water splitting in an electrolyser using grid
electricity
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Fig. 1 Schematic of different electrolyzer systems (A) Alkaline electrolyzer, (B) PEM
electrolyzer, (C) AEM electrolyzer (6], (D) Steam electrolyzer or high-temperature
electrolyzer.
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Green H2 cost is high across the whole value
chain

Hydrogen production cost

$/kg B Green hydrogen
4 _ .BFue hydrogen
Green H2 prices needed to be reduced to 1 $/kg . 5 g:'g';;';“mg“;ﬂ: Grey hydrogen
from 4 S /kg (below the production cost of grey ] E;:g;nﬂpﬂete grey
H2) 2

2020 2025 2030 2035 2040 2045 2050

TO UNLOCK LARGE-SCALE INVESTMENT IN HYDROGEN SUPPLY

Total investment, $ billion W Green hydrogen
[l Biue hydrogen

2020s Bl 400 5300
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Several challenges hampering green
hydrogen taking bigger role

* Technical challenges

* Green hydrogen production from water electrolysis: 60-70% (1/3™ of
electricity wasted in heat)

Hydrogen compression and storage: 10% loss

Electricity production in fuel cell: 40-55%

Electricity to Hydrogen to Electricity: 38%

Work with excess Renewable Energy to improve efficiency.

#
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Only 1% of world water is fresh water

* 1 kg H2 production needs more than 20 kg of water (stochiometric, 1
kg H2 uses 9 kg water)

e Seawater desalination using reverse osmosis is expensive: (50%
efficient and 1 m3 water costs 0.7-2.5 S).

#
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Electricity accounts for 50-70% of the
production cost of Hydrogen

* Renewables are intermittent and thus it is difficult to optimise green
hydrogen production systems

* The price of fuel cells and electrolysers depends on the use of Nobel
materials such as platinum.

* Platinum is scare material, considerably high cost and resource is
concentrated and short supply.

* Geopolitical problem due to the location of mines in social or
politically unstable locations.

#
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Electrolyser
materials are
expensive rare
and degrades
quickly

EXAMPLES OF THERMALLY SPRAYED TECHNIQUES AND FEEDSTOCK MATERIALS USED IN EACH ELECTROLYSER TYPES
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Solid Oxide Electrolyser Working Principle

HO + 2¢ —pHy+ OF

‘ /—> Interconnection

Porous hydrogen
Elecimodhe (eanhoe )

Flacironl yie

O =0+
Porous oxygen O+0—=0,
electrodhe (amode )
[} g 1

Single tube

[ .

Cathode: Ni-YSZ porous, 500 um
Electrolyte: YSZ dense, ion
conductor, 20 um

Anode: LSM-YSZ, 50 um

Length: 0.4m

Cathode: H,O + 2e = H, +O*
Anode: 0* =% 0, + 2e"
Overall: H,0=H, +%: O,
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SOEL Cell designs

Support type

Cathode-supported cell

Electrolyte-supported cell Anode-supported cell Metal-supported cell

O 0 0 O

Thick electrolyte

+ Good cell stability + High mechanical + Lower operating temperature + ngh mechanical

during electrochemical robustness + Low ohmic resistance stability

process + Good gas diffusion + Lower costs of material - Energy losses in

- High resistance for properties + Considered to be easier for the supporting

polarization - High ohmic losses in  fabrication porous metal layer
the thickened - Lower mechanical reliability

electrolyte layer

TFAWS 2023 — August 21-25, 2023
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Metasurface (1 mm x 1 mm x 50 pm); 50-70% porosity

Current collector (silver mesh or silver wire wrapped)
Interconnect layer (silver + GDC thin film: ~10 microns); 30-40% porosity

Porous anode layer (GDC-LSCF) (40-50 um thick); 30-40% porosity - Dip coating
Porous anode functional layer (GDC-LSCF) (10-20 um thick); 20-30% porosity — Dip coating

2T S Dense electrolyte double layer (YSZ) (1-2 um thick); 0% porosity — Dip coating
<« —— Dense electrolyte layer (GDC) (10-20 um thick); 0% porosity — Dip coating

<« Porous cathode functional layer (NiO-GDC) (10-20 um thick); 20-30% porosity — Dip coating

.« Porous cathode layer (NiO-GDC) (40-50 um thick); 30-40% porosity — Dip coating

v : - ' [ 71— Interconnect layer (silver + NiO thin film: ~10 microns)

2.15 mm

<—|— Current collector (silver mesh or silver wire wrapped)

— Porous substrate (SS or Ti) (2.15 mm thick, 100 mm long); 50-70% porosity

Steam out  Steam in
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Metasurface (1 mm x 1 mm x 50 um); 50-70% porosity

Current collector (silver mesh or silver wire wrapped)
Interconnect layer (silver + GDC thin film: ~10 microns); 30-40% porosity

Porous anode layer (YSZ-LSM) (40-50 um thick); 30-40% porosity - Thermal spray

Porous anode functional layer (YSZ-LSCF) (10-20 um thick); 20-30% porosity— Dip coating

ey S Dense electrolyte double layer (YSZ) (1-2 um thick); 0% porosity — Dip coating

<« —— Dense electrolyte layer (YSZ) (10-20 pm thick); 0% porosity — Dip coating

|«——— Porous cathode functional layer (NiO-YSZ) (10-20 um thick); 20-30% porosity — Dip coating

|l«———— Porous cathode layer (NiO-YSZ) (40-50 um thick); 30-40% porosity — Thermal spray

2.15 mm

Steam out

Steam in

[ 71— Interconnect layer (silver + NiO thin film: ~10 microns)

<—|— Current collector (silver mesh or silver wire wrapped)

— Porous substrate (SS or Ti) (2.15 mm thick, 100 mm long); 50-70% porosity



EIH\’BEE]}J Cross sectional morphology of tubular SS supported NiO-YSZ (60:40 wt%) cathode

Combinations Area %

Steel

Mounting Resin 43.08
ZrO02 1.53
2NiO

Ag
Ni rich
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Our targets

* Improving efficiency

* Lower cost

e Durability

e Scalability & system
integration

Material characterization
tests to be performed in the
Robert Gordon University

Water
tank

Controlle

Experimental Tests

d Evaporator Mixer (CEM)

.........
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20cm 35cm

Metering
pump

it
— R
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Furnace

Water bubbler/H, collection

Heating coil
Tubular cell

(sample)

® |

B
o
/.»—A

o

Condensing Coil (Heat exchanger)
With Optional water cooling

High temperature tests to be performed in the University of Surrey

Gas syringe/H, collection




Porous hydrogen
Elecirodhe (enthiode )

Flecirol yie

Porous oxygen
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Electrochemistry

2

HO + 2¢ —pHy+ O

— yrev
V=V + Nonm + nconc,cath + 77conc,an + 77act,cath + nact,an

_ BTy Cop°T
nconc,an - AF

]

Coz,refTref

)4
. . ngPB o2 2av'Fnact,an
L = lo,an CO exp RT
2,ref

)l

2(1 —a)Fn
RT




CFD modelling

e Continuity and momentum e
* Heat transfer T ' '

Elescerishe (emnhise)

HyO + 2¢ —Hy+ O

* Species concertation (i.e. H,0, H,, O,)

Elecirol yie

* Species source term: R

Porous oxygen Q=+ 0Q0—=0,

SHZ — i/ZF electrode (anode)
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CFD modelling e [

Porous hydrogen

* Electron and ionic transport: e o)

110+ 20 1yt OF

Flecirol yie

2 O0F =D + X
O+0—=0,

A' (O-A¢) — O Porous oxypen

B 100

Oion = 10300
0.3685 +0.002838e T

» Gas phase diffusivity through porous electrodes — multicomponent
diffusivity, or dilute gas and Knudsen diffusivity

#
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An |-V curve is an effective way to explain
SOEL performance

o Higher current density, higher
sl production rate of H,, but higher voltage
i.e. higher power required

Voltage (V)

Main losses: Anode activation loss, then
cathode activation loss and ohmic loss

=
[=
1

=
L=
1

T T m"l""“ Operating at 1023 K

L Reversible potential
0.8

0 20:]0 4{:[!3 BE;UU EﬂTﬂﬂ 1 OO0
Current density (A.m2)
J. Udagawa et al. (2007) -

doi:10.1016/j.jpowsour.2008.01.069 -



An |-V curve is an effective way to explain
SOEL performance
N

1.2 1

Voltage (V)

//

1.0

0.9

0.8

doi:10.1016/j.jpowsour.2008.01.069 -
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1.17

Anode act

PRy

Cathode act

Ohmic
d | Cathode cone

Reversible potential 1

T T L) I
o73 993 1013 1033 1053 1073
Temperature (K)

J. Udagawa et al. (2007) -

Higher temperature leads to better
performance due to reduction in anode
and cathode activation overpotential.
However, it creates thermal stress and
less durable cells
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CFD Modelling

External flow channel

Anode current collector

i fi
| [
| |
| i

woll |
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= |

3 Cathode
current ‘
collector

| Porous substrate ‘

| Internal flow channel 1

[] 0.0015 0.003 (m)
Plane Cell

Metasurface cell
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Comparison with previous studies
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Different Meta Surfaces

Small squares Lines-elements, parallel Net structure Twice larger squares
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Mestasurface meshes

(b)

© (d)
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CFD Simulation — comparision of
metasurfaces

Comparison of metasurfaces

2 | |=8=—Without metasurface
—#— Small squares

~=— Parallel line-elements
—@— Net structured surface
=== arge squares

1.8

Operating voltage, U (V)
e
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Optimisation of met surface geometry
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ummary

1 Metasurface elements applied for solid oxide electrolysers open a new design
space of potential cell improvements.

O the best performance curve belongs to the net structure, among the studied options,
with up to 8.58% improvement compared to the case without the metasurface
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