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Abstract
The concept of value of information (VOI) has been widely used in the oil industry when making decisions on the acquisition 

of new data sets for the development and operation of oil fields. The classical approach to VOI assumes that the outcome 

of the data acquisition process produces crisp values, which are uniquely mapped onto one of the deterministic reservoir 

models representing the subsurface variability. However, subsurface reservoir data are not always crisp; it can also be fuzzy 

and may correspond to various reservoir models to different degrees. The classical approach to VOI may not, therefore, lead 

to the best decision with regard to the need to acquire new data. Fuzzy logic, introduced in the 1960s as an alternative to 

the classical logic, is able to manage the uncertainty associated with the fuzziness of the data. In this paper, both classical 

and fuzzy theoretical formulations for VOI are developed and contrasted using inherently vague data. A case study, which 

is consistent with the future development of an oil reservoir, is used to compare the application of both approaches to the 

estimation of VOI. The results of the VOI process show that when the fuzzy nature of the data is included in the assessment, 

the value of the data decreases. In this case study, the results of the assessment using crisp data and fuzzy data change the 

decision from “acquire” the additional data (in the former) to “do not acquire” the additional data (in the latter). In general, 

different decisions are reached, depending on whether the fuzzy nature of the data is considered during the evaluation. The 

implications of these results are significant in a domain such as the oil and gas industry (where investments are huge). This 

work strongly suggests the need to define the data as crisp or fuzzy for use in VOI, prior to implementing the assessment to 

select and define the right approach.

Keywords Value of information · Fuzzy logic · Uncertainty and risk management · Oil and gas industry

Abbreviations
EV  Expected value

IOR  Initial oil rate

US$  US dollars

OCT  Oil column thickness

VOI  Value of information

1 Introduction

Decision-making is a central process in any business, and 

decisions are routinely made in the oil and gas industry that 

could impact on the business in the short, medium or long 

term. A key element for making consistent and robust deci-

sions is to use a prescriptive method for assessing each alter-

native option (Howard 1966; Raiffa 2007). The need to use 

such methods is even stronger when the variables involved 

in the decision carry uncertainties.

The types of decisions explored in this paper are those 

associated with data acquisition and, more specifically, data 

acquisition in the context of subsurface evaluations in the 

oil and gas industry. In the subsurface domain, the variables 

defining a reservoir and its production capability (perme-

ability, fluid contact, capillary pressure, etc.) are subject to 

uncertainty due to randomness and imprecision. The uncer-

tainty in these variables results in an uncertainty in the res-

ervoir production forecast, making it difficult to assess the 
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financial benefits of developing the field or even to decide on 

whether to perform tasks to optimise hydrocarbon produc-

tion. The uncertainty in the project outcome involves the risk 

of financial losses, which need to be avoided.

The uncertainty refers to our knowledge of the input 

parameters and, consequently, of the outcomes of the sys-

tem; certainty measures our degree of knowledge, and prob-

ability is the tool used to describe the chance that a particu-

lar value of a parameter will be obtained.

In most cases, data can be acquired to enable a better 

understanding of the uncertainties with the aim of reducing 

them. However, the value of the acquired data is not meas-

ured by the reduction in uncertainty but by the reduction 

of risk and an increase in the project’s value. VOI is the 

methodology developed to assess data acquisition decisions 

in uncertain conditions, which is typically the case for sub-

surface projects.

Works in the field of decision-making for data acqui-

sition were pioneering studies by Grayson (1960), Raiffa 

and Schlaifer (1961) and Newendorp (1967). Subsequently, 

further research and applications expanded the scope of 

the subject and provided more robustness in the methodol-

ogy. Warren (1983) discussed a methodology for deciding 

between initiating or rejecting a project and deferring the 

decision until more information is acquired, using a field 

development decision as an example. Lohrenz (1988) pre-

sented four examples in the petroleum engineering domain, 

using decision trees in order to evaluate data acquisition. 

Demirmen (1996) used VOI methodology to justify and 

rank subsurface appraisal projects. Newendorp and Schuy-

ler (2002) developed fundamental ideas related to VOI, 

including examples from the exploration and appraisal of 

oil and gas projects. Koninx (2000) discussed VOI from 

a methodological perspective, adding examples related to 

the value of 3D seismic acquisition and appraisal to clearly 

define the hydrocarbon composition. In other research, 

Coopersmith and Cunningham (2002) proposed a step-wise 

methodology to facilitate VOI assessment and, through 

SPE-related publications, Bratvold et al. (2007) showed 

that although the use of systematic qualitative methods in 

VOI has increased in recent years, it is still far from being 

a standard application, even when large investments are 

involved. Begg et al. (2002) introduced alternative concepts 

for assessing the value of an uncertain project, such as the 

value of flexibility, a complementary methodology to VOI. 

Kullawan et al. (2014) discussed an important application 

of VOI in a geosteering operation in which a large number 

of real-time operations are executed day to day, demonstrat-

ing the flexibility of the VOI methodology in adapting to 

challenging circumstances. Bickel (2014) applied decision 

analytics and value of information for unconventional res-

ervoirs. Ferreira (2015) discussed a probabilistic approach 

to quantify the value of information associated with a 4D 

seismic acquisition project. Steineder et al. (2018) used the 

value of information methodology to assess a pilot project 

polymer injection in a horizontal well. Grose and Smalley 

developed a risk-based surveillance planning method based 

on a value of information approach for data acquisition in 

producing fields (2017). Shabair et al. (2017) discussed a 

practical implementation of value of information applied to 

a reservoir surveillance plan for a fractured carbonate under 

waterflooding. Similarly, Clemen (1996) and Suslick and 

Schiozer (2004) discussed applications and methods which 

enrich the VOI process.

All of these works contributed to the development of 

a robust and consistent theory for assessing the value of 

data gathering, with specific applications to the oil and gas 

industry. The research assumes that the data acquired will 

produce accurate information, which means that the remain-

ing uncertainty is only that which is caused by randomness. 

However, in subsurface projects in the oil and gas industry, 

there are cases in which data are not crisp but fuzzy, and 

this imprecision in the aggregated data determines the pro-

ject’s value. If the data proposed to be acquired are fuzzy, 

a methodology that assesses the value associated with data 

acquisition must include the fuzziness of the data unless 

the proven form of this uncertainty (fuzziness) leaves the 

project’s value unchanged. Fuzzy logic has been applied 

in recent years to several problems related to the oil and 

gas industry, such as Ahmed et al. (2019) in the prediction 

of the rate of penetration during drilling in a shale forma-

tion, Sari (2016) for estimating the rock strength, Thong 

and Kepic (2015) developing fuzzy clustering techniques to 

incorporate prior information into seismic impedance inver-

sion, Nashawi and Malallah (2010) making a permeability 

prediction from wireline well logs using fuzzy logic, Ebra-

himi and Sajedian (2010) developing a method for predicting 

the two-phase inflow performance relationship of horizontal 

oil wells. Meanwhile, Ivanovich et al. (2012) used a fuzzy 

petrophysical compositions method for calculating hydro-

carbon reserves, Popa (2013) discussed the identification 

of horizontal well placement using fuzzy logic, Bermudez 

et al. (2014) developed a methodology for the monitoring 

and prediction of unexpected behaviour in electric submers-

ible pumps, and Mirzabozorg et al. (2014) implemented a 

methodology for the incorporation of engineering knowl-

edge during history matching performance prediction using 

fuzzy logic. Nageh et al. (2015) developed a screening cri-

terion for EOR technologies using fuzzy logic as an artifi-

cial intelligence technique, Bukhamseen et al. (2016) built 

a streamlined model guided by fuzzy logic to optimise field 

injection and production strategies, Grassian et al. (2017) 

developed a fuzzy expert system for analysing and optimis-

ing submersible electric pump failure modes, and Passal-

acqua and Qubian (2018) implemented a decision-making 

approach for heavy oil field projects using a fuzzy analytical 
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hierarchy process. The aim of this work is to integrate the 

fuzzy characteristics of subsurface data into the classical 

theory for valuing data gathering in order to develop a com-

plete methodology for assessing the value of acquiring fuzzy 

data, as applicable to decisions being made in the oil and 

gas industry.

2  Model formulation

The first step in applying the classical VOI method is to 

define a set of n discrete states of nature (known as “cases”) 

s1, s2,… sn that describe the range of all possible project 

outcomes. Each state has a probability of occurrence p
(
si

)
 

where (Clemen 1996):

The probabilities in Eq. (1) are known as “prior probabili-

ties” because they represent the current belief (i.e. before the 

acquisition of new data) regarding the likelihood that a state 

will occur. Experts assign these probabilities based on their 

experience and judgment.

We now assume a decision problem with m alternative 

solutions included in the set A:

For each pair (the alternative aj and the state of nature si ), 

there is a value uji , which is the value that will materialise in 

the future if the alternative aj and state si occur.

The expected value (EV) corresponding to the jth alterna-

tive is defined as:

Typically, the decision criterion used is to select the alter-

native with the maximum EV:

Equation (4) represents the value of the project without 

information (i.e. with the actual information) which, in the 

subsurface domain, typically includes several uncertainties 

in the input parameters that, in turn, will result in uncertain-

ties in the outcomes.

There are situations in which additional data may be 

acquired (in the future) that could narrow the uncertainty 

in the input parameters that are responsible for the spread 

(uncertainties) in the outcomes. Acquiring these data would 

affect the value of each discrete state and would also modify 

(1)

n∑

i=1

p(si) = 1

(2)A =
{

a1, a2, a3,… , am

}

(3)EV
(
aj

)
=

n∑

i=1

ujip
(
si

)

(4)EV(a∗) =
max EV

(
aj

)

j

the probabilities assigned to each state. The net effect of the 

changes to the values and probabilities of the states (cases) 

is a change in the project’s value.

In general (Bratvold et al. 2007):

Both values, EVwith information and EVwithout information , con-

tain what we believe the outcome of the project would be 

in two different situations, both of which are in the future.

Let us assume that the outcomes resulting from the 

acquired data are discretised in the following set X of l 

values:

Here, the elements of the set X , x1, x2,… , xl are the values 

measured or estimated during the data acquisition process; 

they can be values of porosity, permeability, pressure, depth, 

etc. (in their corresponding units). The reliability probabili-

ties p
(
xk|si

)
 are assigned by experts in the same way as the 

prior probabilities in Eq. (1). The reliability probabilities 

measure the likelihood that the data accurately identifies 

the states of nature. Because data are imperfect in the real 

world, reliability probabilities are always less than 1. In the 

Bayesian inference system, imperfect data are the opposite to 

perfect data, which is an ideal (not a real-world) concept and 

assumes that data can accurately predict the state of nature.

Reliability probabilities are flipped using Bayes’ theorem 

to generate the posterior probabilities, as in Eq. (7):

The denominator in Eq. (7) is the marginal probability of 

the new data p
(
xk

)
 , which is defined using the total prob-

ability theorem, as given in Eq. (8):

Given the data outcome xk , the EV for the jth alternative 

is:

EV(uj|xk) is the expected value of the project for the jth 

alternative and the data outcome xk.

The optimum alternative is that which maximises the EV:

The unconditional maximum EV (i.e. the EV of the pro-

ject taking into account the data acquisition outcomes) is the 

(5)VOI = EVwith information − EVwithout information

(6)X =
{

x1, x2,… , xl

}

(7)p
(
si|xk

)
=

p
(
xk|si

)
p
(
si

)

p
(
xk

)

(8)p
(
xk

)
=

n∑
i=1

p(xk|si)p
(
si

)

(9)EV
(
uj|xk

)
=

n∑
i=1

ujip(si|xk)

(10)EV
(
a∗|xk

)
=

max EV(aj|xk)

j
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sum of the conditional EV weighted with the corresponding 

marginal probabilities:

Finally, the VOI is the difference between the EV of the 

project with information and the EV of the project without 

information (Bratvold et al. 2007), given in Eqs. (11) and 

(4):

In the oil and gas industry, uncertainty may be the result 

of lack of information, inaccuracy of measurements or 

lexical vagueness. Typical examples of lack of information 

are the porosity and permeability values used to populate 

the reservoir models between the existing wells. Probabil-

ity techniques are used for managing uncertainties due to 

incomplete information. Inaccuracy of measurement relates 

to the measuring tools used and to the classification and 

interpretation of the measurement. For example, pressure 

gradient measurements have uncertainties associated with 

the measured value and depth; similarly, the saturation val-

ues of the remaining oil usually carry uncertainties related 

to the methods, conditions and accuracy of the logs and 

laboratory experiments. The subjectivity of the interpreter 

also adds uncertainty to the values resulting from the data: 

the interpretation of results often results in categories with 

lexical vagueness such as “large”, “profitable” and “small”. 

These uncertainties, due to inaccuracy of measurement and 

lexical vagueness, introduce imprecision in the data. In this 

paper, we show how fuzzy logic can be used to manage 

uncertainty in VOI assessment in the oil and gas industry.

There are two approaches for understanding the outcome 

of data acquisition: crisp data and fuzzy data. In the crisp 

approach, the outcome of the data acquisition falls into only 

one of the discrete intervals into which the range of pos-

sible outcomes of the data acquisition is divided, while in 

the fuzzy approach (fuzzy VOI), the outcome of the data 

may fall into more than one of these discrete intervals. A 

discussion of the latter approach is given in the remainder 

of this section.

Fuzzy logic was introduced by Zadeh (1965) to deal with 

the uncertainty associated with vagueness and imprecision in 

data; further developments by Zadeh (1968), Okuda (1978), 

Hayward and Davidson (2003) and Sivanandam et al. (2010) 

gave rise to a complete logic system that is applicable in 

many domains.

In classical logic, an element or event either “belongs” to 

a set of outcomes or does not and this is described using the 

binary representation of zero or one. In classical set theory, 

this is referred to as the characteristic function for the set of 

events. Fuzzy logic extends the concept of the characteristic 

(11)EV
(
a∗

x

)
=

m∑
k=1

EV(a∗|xk)p(xk)

(12)VOI = EV
(
a∗

x

)
− EV(a∗)

function to a membership function, which represents the 

meaning of “belonging” as a continuous value between zero 

and one. In this way, the degree to which an event belongs 

to the sets of outcomes is represented by the membership 

function of that event on those sets.

Fuzzy logic captures vagueness through the member-

ship function, which is a mapping from a given universe of 

discourse X to a unit interval containing the membership 

values.

In a crisp set of events M , the probability of occurrence 

of the events in the set is:

In Eq.  (13), p(x) is the probability of the occurrence 

of event x , 𝜇M is the characteristic function [defined in 

Eq. (15)], and p
(
xk

)
 are the probabilities of the events where 

the characteristic function is 1.

The characteristic function is (Zadeh 1965):

For a fuzzy set, the probability of a fuzzy event M̃ is:

where 𝜇M̃

(
xk

)
 is the membership function 𝜇M̃ evaluated for 

the value xk.

The posterior probabilities of the states of nature, given 

the fuzzy event M̃ , are given by Eq. (17), assuming that the 

reliability, prior probabilities and membership functions of 

the fuzzy events are known (Ross 2010):

where the fuzzy reliability probabilities are:

An orthogonal fuzzy system is a set ∅ of fuzzy sets, 

∅ =
{

M̃1, M̃2,… M̃l

}
 , satisfying the condition that:

For fuzzy events, if the fuzzy system is an orthogonal set 

and the data outcome is represented by the fuzzy set M̃k , 

(13)
P(M) =

∑

x𝜖X

p(x)𝜇M =
∑

xk∈M

p
(
xk

)

(14)where M ⊂ X.

(15)𝜇M =

{
1, xk ∈ M

0, otherwise

(16)P
(
M̃
)
=

r∑

k=1

𝜇M̃(xk)p
(
xk

)

(17)

P(si|M̃) =

∑r

k=1
p
(
xk|si

)
𝜇M̃

(
xk

)
p
(
si

)

P
(
M̃
) =

P
(
M̃|si

)
p
(
si

)

P
(
M̃
)

(18)P
(
M̃|si

)
=

r∑
k=1

p(xk|si)𝜇M̃

(
xk

)

(19)

l∑

f=1

𝜇M̃f

(
xm

)
= 1

{
for all xm ∈ X

}
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the EV of the jth alternative and membership function M̃f  

is given by:

The optimum alternative given the fuzzy set M̃k is that 

which maximises the EV:

The unconditional maximum EV takes the form:

Finally, the VOI is the difference between the EV with 

information and the EV without information, Eqs. (22) and 

(4):

In summary, the four key equations discussed in this sec-

tion are listed in Table 1.

3  VOI case study: classical versus fuzzy 
approaches

The value of projects with uncertain values may be affected 

when additional information regarding the input variables 

is gathered. The reliability probability of the data, which 

measures the likelihood that new data could accurately 

identify the states of nature, is estimated based on expert 

experience and judgment. Once the reliability probability 

has been estimated, Bayes’ theorem is used to invert the reli-

ability probabilities to generate the posterior probabilities, 

which are then used to compute the EV of the project with 

the new data.

(20)EV
(
aj|M̃f

)
=

n∑
i=1

aijp
(
si|M̃f

)

(21)EV
(
a∗|M̃f

)
= max

j
EV(aj|M̃f )

(22)EV

(
a∗
∅

)
=

l∑
f=1

EV
(
a∗|M̃f

)
p
(
M̃f

)

(23)VOI = EV

(
a∗
∅

)
− EV(a∗)

In classical logic, there is a set of mutually exclusive dis-

crete events that expand the range of possible outcomes of 

the data acquisition; the outcome of a proposed data acquisi-

tion belongs to one of those events in a crisp manner. How-

ever, there are cases in which the outcome of the proposed 

data acquisition belongs to the discrete sets of events in a 

“vague” or “fuzzy” way; in these cases, changes in the VOI 

assessment must be made to accommodate these fuzzy data.

In the oil and gas industry (particularly in the subsurface 

domain), there are situations in which the data are vague or 

diffuse. However, there are no reported cases in the literature 

on the use of fuzzy data in assessing VOI.

The aim of this paper is to integrate the imprecision of the 

data in the VOI and assess its impact on a data acquisition 

decision in an oil field. The impact of the imprecision in 

the data is measured by comparing the results of VOI using 

crisp and fuzzy data.

3.1  Case study: reservoir description

In this section, an oilfield located in North Africa is used as 

a case study to evaluate a VOI problem where the data that 

may be acquired are fuzzy.

The project involves the exploitation of a sandstone oil 

field, composed of three isolated blocks of good quality rock 

with a thin hydrocarbon column. Two compartments with 

similar petrophysical properties (blocks A and B) have been 

drilled and produced using three vertical wells each. The 

wells are located in a pattern of one producer and one injec-

tor well. The reservoir section contains well-sorted grains 

with an average porosity of 25% and an average perme-

ability of 250 mD. The oil column thickness (OCT) of the 

wells ranges between a minimum of 11 ft and a maximum 

of 42 ft, with averages of 38 ft and 16.1 ft for blocks A and 

B, respectively.

Blocks A and B are separated by a north–south fault with 

a throw of approximately 25 ft, which isolates the blocks 

from each other. Initially, the isolation of the blocks was an 

assumption based on geological hypotheses and analogue 

information, but it was later confirmed, based on production 

and injection data from the wells. Seismic vertical resolution 

Table 1  Key equations discussed in the model formulation section

Serial number Equation Comments

5 VOI = EV
with information

− EV
without information

Definition of VOI

12 VOI = EV
(
a∗

x

)
− EV(a∗) Crisp definition of VOI

23
VOI = EV

(
a∗
∅

)
− EV(a∗) Fuzzy definition of VOI

17
P(si|M̃) =

∑r

k=1
p(xk|si)𝜇M̃(xk)p(si)

P(M̃)
=

P(M̃|si)p(si)
P(M̃)

Definition of posterior prob-
abilities on the fuzzy logic 
frame
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is between 20 and 30 ft, making it challenging to identify the 

top and base of the reservoir with enough accuracy to detect 

structural shifting in the wells.

Due to the nature of the reservoir and the performance of 

analogue reservoirs, each producer was drilled in patterns 

with a nearby injector well, to ensure pressure maintenance 

and sweep efficiency. In order to allow water to be injected 

without compromising the integrity of the cap rock, water 

injection commenced when the initial bottom-hole pres-

sure in the producer wells fell by 1000 psi from the initial 

pressure (the approximate initial value was 2500–1500 psi), 

which typically occurs after 1 year of production.

3.2  Reservoir performance

Oil production from block A started eight and a half years 

ago (January 2010), and production from block B com-

menced 2 years later. Figures 1 and 2 show the historical, 

until 2018, as well as the predicted oil rates for the exist-

ing wells until 2029, when the 20-year concession licence 

expires. The wells show similar performance trends, the 

main difference being the initial oil production rates (IORs) 

of the wells for blocks A (Fig. 1) and B (Fig. 2).

The technical team working on this project found a cor-

relation between the OCT and initial oil rate (IOR). Figure 3 

shows the OCT and IOR measured in each well as well as 

the correlation found between these parameters.

The linear relationship between IOR and OCT shows that 

an increase in OCT correlates with an increase in IOR for 

each well.

To establish the relationship between IOR and OCT, we 

use a linear correlation; in the study case discussed in this 

paper, the data are limited to what was measured in the field, 

and the experts identified that the larger the OCT, the higher 

the IOR and realised that these two parameters seem to fol-

low a linear trend. On the other hand, the relation between 

these parameters has a physical meaning through Darcy’s 

law for the flow of fluids in porous media: in a horizontal 

linear medium, the flow is proportional to the cross-sectional 

area of the rock which is the product of thickness and width. 

The main limitation of the correlation is the small sample 

used, which, however, due to the support provided by Dar-

cy’s law, gives robustness to this approach.

This correlation has several drawbacks due to the uncer-

tainties in the measured OCT and these include:

(1) Repeat formation tester (RFT) data failure. During 

operation of the RFT, there were repeated failures in 

gathering the pressure data points (due to seal failures 

or poor fluid mobility) and the data that were inter-

preted carried a great deal of ambiguity. Many data 

points do not fit into the water or oil profiles, and these 

results mean that the definition of OCT is ambiguous.

(2) Fuzzy OCT. Log interpretation does not show a crisp 

indication of OCT, and the interpreted water saturation 

response curve does not show a clear transition between 

the interval with 100% water saturation and the interval 

with irreducible water saturation. This ambiguity in the 
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inter-fluid contact creates vagueness in the estimated 

values for OCT.

(3) Unclear definition of the limits of the transition zone. 

The limits of the transition zone are not clearly defined. 

It could be interpreted that the complete reservoir sec-

tion is within the transition zone or that the tools used 

are not capable of distinguishing the changes in fluid 

saturation.

3.3  Field development

Facilities for managing fluid production and injection in 

block A were available by January 2010, when block A 

started production. When block B commenced production 

in January 2012, however, the facilities were upgraded to 

manage production and injection for the two blocks.

After blocks A and B had been in production for eight and 

a half and six and a half years, respectively, the assessment 

of the operator company was that although block A had been 

a success in terms of oil recovery and financial benefits, the 

opposite was true for block B, which had shown limited oil 

recovery, resulting in financial losses.

4  Decision problem

Next to block B, there is a third block (block C), with an 

area similar to that of blocks A and B. Block C is separated 

from B by a north–south fault. The field operator needs to 

decide whether to continue with the development of the field 

towards block C, or to restrict the reservoir development to 

the currently productive blocks, A and B.

4.1  Problem alternatives

The operator estimates that there are three options for con-

tinuing the development of the field and these are explored 

in the following sections.

4.1.1  Without information

This option entails the development of block C, based on 

the current information. Facilities and flowlines will take 

6 months to be ready and available, and the rig can be spud 

in 3 months, with another 3 months required to drill and 

complete the first well. Oil production with one well could 

start by January 2019, and another well will be added to the 

stream every 3 months. The full development will be com-

plete with three producer wells in 6 months. Injector wells 

will be drilled when the producer wells are complete. The 

rig contract for the full six-well block will generate savings 

compared with drilling each well separately.

4.1.2  With information

The second option is to acquire additional information prior 

to deciding whether to develop block C. The main uncer-

tainty lies in the well’s productivity, although well produc-

tivity has been shown to be related to the size of the OCT. 

It is believed that drilling an appraisal well in block C can 

unlock this project and generate the information necessary 

to decide whether the development of block C would be 

financially profitable.

It has been estimated that if the final decision is to 

develop block C, the with information alternative will be 

delayed by 1 year compared to the without information alter-

native, due to the time needed to gather and analyse the 

data. In addition, the with information alternative will incur 

additional drilling costs due to the difference in the drilling 

contract strategies in both cases.

4.1.3  Relinquish the development of block C

The third option is to relinquish block C and only continue 

with the development of blocks A and B. This alternative 

will incur a loss of US$34 million due to the fraction of the 

total cost of the reservoir development (seismic, offer, etc.) 

that has already been spent.

5  Classical approach for VOI

In this section of the paper, the classical approach for VOI 

is used to assess the best alternative to the decision problem 

described in Sect. 4.1.

As discussed in Sect. 3.2, the IOR in wells in block A 

ranges from 3200 to 5000 stb/d, corresponding to wells of 

high productivity, while the IOR in wells in block B ranges 

from 20 to 250 stb/d, corresponding to wells of low produc-

tivity. Based on geophysical and geological data and the IOR 

versus OCT correlation, it is estimated that the minimum 

IOR and maximum IOR for wells in block C are 20 and 

5000 stb/d, respectively, which will have consequences for 

the predicted C block profiles and the corresponding finan-

cial strength of this development.

For this analysis, there are three discrete production levels 

for block C: high-, medium- and low-production cases. The 

high case (state s1 ) corresponds to the situation where the 

estimated IOR of block C is between 3200 and 5000 stb/d, 

the low case (state s3 ) corresponds to an IOR of between 20 

and 250 stb/d, and the medium case (state s2 ) corresponds 

to an OCT of between 250 and 3200 stb/d.

Due to the limited vertical area of each block and to 

avoid possible interference between the wells, blocks A and 

B include only three wells; this is also the number of wells 

planned for the development of block C.
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The high-production case for block C is based on a three-

well development, constructed using a well type which is 

an average of the well types in block A. The low-production 

case was built similarly, but using a well type which is an 

average of the well types in block B. The medium-produc-

tion case is constructed as the arithmetic mean of the high 

and low cases; the use of this method is based on the linear 

correlation found between the OCT and the IOR.

5.1  Without information

In the option where the project moves to the development 

phase without data acquisition, there are three potential pro-

duction profiles for block C, corresponding to the high, low 

and medium cases, as shown in Fig. 4. These cases cor-

respond to the chances of finding: (1) “high-IOR” wells or 

similar to what was found in block A, (2) “low-IOR” wells 

or similar to what was found in block B or, (3) “medium 

IOR” wells or at an average value between what was found 

in blocks A and B. The prior probability assigned to each 

state of nature (for each case) is based on the experts’ judg-

ment of the likelihood of realising that state. The value of 

each state is equal to the net present value of the project 

associated with the corresponding profile (high, medium and 

low), each with a 20-year horizon. Table 1 shows the prior 

probabilities that were assigned, and the net present values 

calculated for each state of nature.

Based on the prior probabilities and values shown in 

Table 2 and using Eqs. (3) and (4) in Sect. 2, the EV of this 

project is estimated to be US$261 million for the without 

information option. 

5.2  With information

When assessing the with information option, the objec-

tive is to estimate the value added to the project from the 

additional information gathered. To assess the value of 

acquiring new data, the range of possible outcomes for 

OCT (11–47 ft) is discretised into 12 intervals, each being 

3 ft in length.

The reliability probability (the conditioned probabil-

ity that the data outcome accurately predicts the state of 

nature) is assigned by the expert members of the technical 

team, based on their knowledge of the geological setting 

and previous exploration activities in the area or in simi-

lar settings. The reliability probabilities assigned by the 

expert members of the technical team for this case study 

are shown in Table 3. Figure 5 displays the reliability 

probability used in this assessment, where the overlapping 

curve is characteristic of the imperfect nature of the data.

These reliability probabilities cannot be used directly 

in the VOI assessment and Bayes’ theorem is thus used 

to flip the reliability probabilities to obtain the posterior 

probabilities (the probabilities of each state of nature con-

ditioned to each possible outcome of the data acquisition), 

which are then used in the VOI assessment.

One additional probability is computed during the 

application of Bayes’ theorem, and this is associated with 

realising each of the outcomes from the data acquisition 

and is known as the marginal probability. Table 4 shows 

the posterior probabilities, marginal probabilities and EV.

Using the data in Table 4 and Eqs. (9)–(11), the EV of 

this project (with information) is estimated to be US$267 

million.

The project’s value for the relinquish alternative (A2) is 

− US$34 million. This means that EV(A2|xk) is − US$34 

million for all the values of xk.

A comparison of the values of the project with and 

without information shows that there is a total positive 

gain in acquiring information. Using Eq. (12), the VOI is 

estimated to be US$6 million. Based on this assessment, it 

is recommended that new data should be acquired before 

developing block C.

This means that, of the three alternatives evaluated, the 

optimal choice is for data acquisition, although this is only 

minimally better than the alternative of continuing the pro-

ject without acquiring new data.
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Fig. 4  Predicted profiles for the three states of nature in the without 
information option. “w/o info” means the case without new informa-
tion

Table 2  Prior probabilities and values for the three states of nature

State of nature Prior probability (fraction) Value, 
US$ mil-
lion

s
1
 = high 0.25 636

s
2
 = medium 0.50 263

s
3
 = low 0.25 − 119
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6  Application of fuzzy logic approach 
for VOI

The VOI discussed in Sect. 3.2 assumes that the outcomes 

of OCT measurements are crisp values. For the decision 

problem under discussion, crisp measurements assume that:

(1) Saturation logs developed from the electrical response 

and fluid density data from RFT pressure tests carried 

out on the appraisal well in block C will clearly define 

the location of the oil–water contact and the transition 

zone.

(2) The top of the structure in block C is well defined and, 

with the proposed appraisal well tied to the structure, 

it will be possible to accurately describe the structure 

of the rest of block C. In these blocks, oil is under-

saturated and no gas cap is expected, meaning that the 

Table 3  Reliability probabilities showing the mid-value of each interval

x
1
= 45 x

2
= 42 x

3
= 39 x

4
= 36 x

5
= 33 x

6
= 30

p(xk|s1
) 0.250 0.250 0.230 0.180 0.100 0.000

p(xk|s2
) 0.000 0.000 0.000 0.050 0.200 0.250

p(xk|s3
) 0.000 0.000 0.000 0.000 0.000 0.000

x
7
= 27 x

8
= 24 x

9
= 21 x

10
= 18 x

11
= 15 x

12
= 12

p(xk|s1
) 0.000 0.000 0.000 0.000 0.000 0.000

p(xk|s2
) 0.250 0.200 0.050 0.000 0.000 0.000

p(xk|s3
) 0.000 0.100 0.180 0.230 0.250 0.250
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Fig. 5  Reliability probability assigned by technical experts

Table 4  Posterior probabilities, marginal probabilities and EVs

x
1
= 45 x

2
= 42 x

3
= 39 x

4
= 36 x

5
= 33 x

6
= 30

p(s
1
|xk) 1.000 1.000 1.000 0.643 0.2000 0.000

p(s
2
|xk) 0.000 0.000 0.000 0.357 0.8000 1.000

p(s
3
|xk) 0.000 0.000 0.00 0.000 0.0000 0.000

p(xk) 0.063 0.063 0.058 0.070 0.125 0.125

EV(A
1
|xk) 621 621 621 488 324 250

EV(A
2
|xk) − 34 − 34 − 34 − 34 − 34 − 34

EV(∗ |xk) 621 621 621 488 324 250

x
7
= 27 x

8
= 24 x

9
= 21 x

10
= 18 x

11
= 15 x

12
= 12

p(s
1
|xk) 0.000 0.000 0.000 0.000 0.000 0.000

p(s
2
|xk) 1.000 0.800 0.357 0.000 0.000 0.000

p(s
3
|xk) 0.000 0.200 0.643 1.000 1.000 1.000

p(xk) 0.125 0.125 0.070 0.058 0.063 0.063

EV(A
1
|xk) 250 175 11 − 122 − 122 − 122

EV(A
2
|xk) − 34 − 34 − 34 − 34 − 34 − 34

EV(∗ |xk) 250 175 11 − 34 − 34 − 34
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upper limit of the oil column is at the top of the struc-

ture.

However, OCT data based on saturation logs and RFTs 

carry a great deal of ambiguity and no clear value was meas-

ured for any of the wells in blocks A and B. The same situ-

ation is expected in block C.

In addition, there is uncertainty in the definition of the 

top of the structure. The seismic data are of medium qual-

ity, with an estimated vertical resolution of between 10 and 

15 ft. Even after the appraisal well in block C is tied to the 

structure, the remaining wells to be drilled in block C are 

expected to show deviation with respect to the structure (the 

same situation holds for blocks A and B).

The factors discussed above mean that the data to be 

acquired are inherently vague or diffuse, and this justifies 

the use of fuzzy concepts in the VOI assessment. Following 

this reasoning, fuzzy logic is applied to the assessment of 

the reliability and posterior probabilities, in order to handle 

the fuzzy nature of the data assessed in the VOI.

6.1  Fuzzy data acquisition

The case study described in Sect. 2 is used for the analysis in 

this section. Three fuzzy events for the OCT are considered: 

large OCT ( M̃1 ), medium OCT ( M̃2 ) and low OCT ( M̃3).

The membership functions describe the “degree of 

belonging” of each interval to each of the fuzzy events, 

as shown in Table 5. Figure 6 presents the shape of the 

curves that describe the membership functions used in this 

assessment.

The shapes of the membership functions in Fig. 6 show 

the ambiguity of the data to be acquired, according to 

expert opinion. In a fuzzy description of the data to be 

gathered, each of the 12 intervals within the range of pos-

sible outcomes belongs to one or more of the member-

ship functions. Due to the fuzziness in the data, a given 

outcome not only belongs to the membership function 

𝜇(M̃1|xk) but also belongs to the membership function 

𝜇(M̃2|xk) . The degree of belonging is different for each 

membership function, and a similar situation holds for the 

other outcomes and membership functions. In general, the 

membership functions were constructed on the assumption 

that when high values of OCT are reported, these values 

have a degree of belonging not only to the “large” OCT 

membership function but also to the “medium” function. 

However, when low values of OCT are reported, the data 

primarily belong to the “low” membership function.

Using Eqs. (17) and (18) and the values in Tables 3 and 

5, the fuzzy reliability probabilities and the fuzzy posterior 

probabilities are computed, and the results are presented 

in Tables 6 and 7.

Table 5  Membership function values for 12 fuzzy intervals

x
1
= 45 x

2
= 42 x

3
= 39 x

4
= 36 x

5
= 33 x

6
= 30

𝜇
(
M̃

1
|xk

)
0.75 0.73 0.67 0.55 0.28 0.10

𝜇(M̃
2
|xk) 0.15 0.15 0.18 0.25 0.44 0.57

𝜇(M̃
3
|xk) 0.10 0.12 0.15 0.20 0.28 0.33

x
7
= 27 x

8
= 24 x

9
= 21 x

10
= 18 x

11
= 15 x

12
= 12

𝜇
(
M̃

1
|xk

)
0.02 0.00 0.00 0.00 0.00 0.00

𝜇(M̃
2
|xk) 0.61 0.59 0.44 0.30 0.12 0.10

𝜇(M̃
3
|xk) 0.37 0.41 0.56 0.70 0.88 0.90
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Fig. 6  Membership functions used in the assessment

Table 6  Fuzzy reliability probabilities

s
1

s
2

s
3

p(M̃
1
|sk) 0.651 0.114 0.000

p(M̃
2
|sk) 0.205 0.536 0.262

p(M̃
3
|sk) 0.154 0.351 0.748
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The EVs of both alternatives are calculated for each fuzzy 

interval using Eq. (20), and the results are summarised in 

Table 8.

Finally, using Eqs. (21) and (22) in Sect. 2 and the val-

ues given in Tables 7 and 8, the expected fuzzy value for 

the with information alternative is estimated to be US$251 

million.

The VOI for the project with fuzzy data acquisition is 

estimated to be − US$10 million, using Eq. (23) in Sect. 2. 

Based on this assessment, it is not recommended that new 

data be acquired before developing block C since the VOI 

for fuzzy data is lower than the corresponding value for the 

case where crisp data were assumed.

7  Results

When using the classical approach for VOI, the EV for 

the projects is US$261 million for the no data acquisition, 

− US$34 million for the relinquish case and US$267 million 

for the data acquisition alternative. Based on this assess-

ment, the recommended decision is to acquire the data and 

use the outcome of the data acquisition to decide whether 

or not to sanction the project. When using the fuzzy data 

approach for VOI, the value of the projects is still US$261 

million for the no data acquisition, − US$34 million for the 

relinquish alternative and US$251 million for the data acqui-

sition alternative. Based on this approach, the recommended 

decision is to not acquire the data and to sanction the project 

with the existing information.

The results of fuzzy VOI assessments show that the value 

of the data decreases when it is integrated into the assess-

ment compared with the standard VOI. In this case study, 

the value of the project with information decreases from 

US$267 million to US$251 million; the decrease in value 

is enough to change the decision from with information to 

without information, which has a value of US$261 million.

The impact (decision change) of including the impreci-

sion of the data in the assessment depends on the member-

ship functions used and the difference between the with and 

without information alternatives. As a rule, when the data to 

be acquired are imprecise, it is recommended to use fuzzy 

VOI methodology.

The fuzziness of the data reduces the impact that it has 

on the project’s value; if the fuzzy nature of the data is not 

included in the assessment, VOI can result in an optimistic 

assessment of the value of the data, which can lead to bad 

decisions. Including the fuzzy nature of the data in the VOI 

methodology secures a more accurate assessment of the data 

and consequently a better decision process.

8  Conclusions

In this paper, the crisp and fuzzy theoretical formulations 

of VOI are described. The main difference between them 

is that the fuzzy formulation uses membership functions to 

represent the imprecision associated with the data that will 

be gathered, while the classical formulation assumes that the 

data are crisp. In the fuzzy approach, membership functions 

are used in conjunction with Bayes’ theorem in order to con-

vert reliability probabilities into the posterior probabilities.

A case study of an oil and gas development project is 

discussed, in which both crisp and fuzzy VOI methodolo-

gies are applied to a subsurface data acquisition problem for 

which the data are inherently vague. The contrasting results 

of these two assessments suggest that when the data are 

fuzzy, a fuzzy approach to evaluating VOI should be used 

in order to produce a correct assessment of the suitability of 

acquiring such data.

In this case study, the fuzzy assessment assigns a smaller 

value to the with information alternative compared to that of 

the crisp assessment. The consideration of the fuzzy nature 

of the new data to be acquired therefore has an impact on 

the VOI assessment.

The analysis carried out in this paper shows that the out-

comes of the VOI assessment depend on the formulation 

used, i.e. crisp or fuzzy. The selection of the formulation 

should therefore take into consideration the nature of the 

data to be acquired.

Thus, the main contributions of this work can be sum-

marised as follows:

• It is shown that there are situations in the oil and gas 

industry in which the VOI is affected not only by the 

uncertainty associated with a lack of knowledge of the 

project input variables but also by the imprecision associ-

ated with the outcomes of the data to be acquired;

• The use of fuzzy data modelling is proposed to handle 

the data imprecision in the VOI assessment;

Table 7  Fuzzy posterior probabilities

M̃
1

M̃
2

M̃
3

p(s
1
|M̃k) 0.741 0.133 0.096

p(s
2
|M̃k) 0.259 0.696 0.438

p(s
3
|M̃k) 0.000 0.170 0.466

Table 8  Expected fuzzy values

M̃
1

M̃
2

M̃
3

EV(A
1
|M̃k) 525 236 112

EV(A
2
|M̃k) − 34 − 34 − 34
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• A practical application of this methodology is demon-

strated using a case study of an oil and gas project.

Future work will address the problem of applying fuzzy 

inference systems in the assessment of VOI.
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