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Abstract 

Traditional machine learning (ML) and deep learning (DL)-based acoustic emission (AE) 

data-driven condition monitoring models face several reliability issues due to factors such 

as fluid pressure changes, flange vibrations, inconsistent leak lengths, and noise in AE 

signals, which vary with pipeline conditions. Additionally, the noise, and variable 

pressure conditions complicate the interpretation of sensor data, especially in multi-

variate setups where understanding spatial relationships between sensors is challenging. 

In response, we have introduced Graph Convolutional Networks (GCNs) to overcome 

these challenges in AE-based pipeline monitoring for the first time. Our proposed method 

utilizes a publicly available pipeline monitoring dataset, named GPLA-12, which 

comprises AE signals to train and evaluate the GCN-based model. This innovative graph 

construction technique is designed to decipher and comprehend the subtleties in AE 

signals gathered under various pressure conditions from a multi-variate sensor setup. This 

approach can potentially establish a new standard in pipeline monitoring research and 

applications. 
 

 

1 Introduction 

Pipelines play a pivotal role in transporting gases and fluids, with affordability and safety 

being paramount concerns. Despite their importance, pipelines are prone to leaks caused 

by various factors such as corrosion, fatigue cracks, material defects, environmental 

discontinuities, and seismic activities [1, 2]. These leaks can lead to severe economic 
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losses, safety hazards, and environmental damage [3]. Statistics reflect the gravity of these 

incidents: the European Gas Pipeline Incident Data Group (EGIG) recorded 1,366 

incidents in Europe between 1970 and 2016, with a failure frequency of 31% per year per 

1,000 km [4]. In the US, significant incidents have also been documented, including 652 

pipeline incidents up to February 2020, resulting in 36 injuries, 88 fires, and over $333 

million in property damages. Additionally, between 2019 and 2021, the US Pipeline and 

Hazardous Materials Safety Administration (PHMSA) reported 267 incidents, 11 injuries, 

21 fires, and $264 million in property damages [4, 5]. Given these alarming statistics, 

early leak detection and prevention strategies are crucial for mitigating such 

consequences.  

Several techniques are available for detecting pipeline leaks, including negative pressure 

wave analysis, accelerometer-based detection, magnetic flux leakage detection, and 

acoustic emission (AE) technology [6, 7]. AE inspection is particularly favored for its 

early leak detection capabilities, real-time response, ease of installation, and sensitivity. 

Nevertheless, AE monitoring is challenged by the complexity of the signals, which 

require sophisticated algorithms for denoising, feature extraction, and analysis. These 

algorithms, however, typically cater to offline data and struggle with noise interference, 

making accurate categorization of AE events difficult under variable conditions. AE 

signals are inherently nonlinear and nonstationary, influenced by fluid dynamics and 

stress wave mechanics, necessitating advanced processing techniques and a deep 

understanding of the underlying physical processes [8, 9]. 

Recent advancements in machine learning (ML) and deep learning (DL) have 

transformed the field of condition monitoring by facilitating the representation of 

complex features, crucial for analyzing the intricate datasets generated in pipeline 

monitoring scenarios [10, 11, 12]. However, traditional AE monitoring methods still face 

issues such as fluid pressure variations, flange vibrations, and inconsistent leak lengths, 

which compromise data reliability [13,14]. Furthermore, noise in AE signals complicates 

the interpretation of data from sensors distributed along pipelines, especially under 

varying pressure conditions and in multi-variate sensor setups. This complexity is 

exacerbated by the necessity to analyze data within the confines of Euclidean space, 

which inadequately represents the nonlinear relationships found in real-world scenarios. 

To address these challenges, we propose the use of Graph Neural Networks (GNNs) 

[15,16,17], an approach yet to be fully exploited in AE-based pipeline monitoring. Our 

study introduces a novel methodology that employs GNNs alongside a publicly available 

pipeline AE dataset, called GPLA-12 [18]. This innovative graph construction method is 

designed to enhance the understanding of AE signal nuances under different pressure 

conditions from a multi-variate sensor setup. We incorporated statistical properties from 

multiple sensors to train the model, enabling the network to learn the spatial relationships 

between sensors while simultaneously understanding the temporal dynamics within the 

data from individual sensors. Our approach successfully achieved a 96.2% accuracy rate 

in detecting changes under variable pressure conditions. 

The rest of the paper is organized as follows: Section 2 refers to the experimental set up 

and framework strategy, Section 3 discusses the experimental finding, and finally, Section 

4 concludes the paper. 
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2 Experimental setup and framework strategy 

Fig. 1 depicts the complete framework for the validation of our case study. The process 

begins with data collection by the only open access AE pipeline dataset, GPLA-12 [18], 

followed by calculating statistical properties, denoted as AE-prop (Fig. 2). With the AE-

prop step, we convert the data to be suitable for use as the input node in a GNN. We 

considered multiple training models with different layer and hyperparameter strategy, 

incorporating stratified k-fold cross-validation (CV) to determine the optimal model. 

Once satisfactory performance is achieved, the optimal model is selected for evaluating 

performance on test data. 

 
Fig. 1. Proposed method. 

2.1 Dataset Description 

In this study, we utilized the GPLA-12 dataset [18], which is publicly available and 

comprises multi-band sound sensors specifically designed to capture AE signals under 

various pipeline conditions within a simulated engineering environment. The dataset 

underwent a rigorous filtration process to eliminate contaminants such as moisture, dust, 

and oil. Data collection was performed using a custom-built signal transmission module, 

a single-chip microcomputer, and two audio sensors tailored to different frequency 

ranges. The pre-amplifier parameters are reported as follows: sensor 1 (MAX4466) is 

from 1000 Hz to 10 kHz, whereas sensor 2 (LM38) is from 0 Hz to 600 kHz. However, 

the microphones used are electret of which there are no references present in the dataset 

description. Despite the dataset's challenges, such as the lack of baseline signals, absence 

of leak size and location details, unstructured category arrangement, low feature density, 

and significant intra-class variance [12], we chose to employ it to validate our method 

because of its ability to address these limitations effectively. In this study, we analysed 

the dataset for 3 categories, each containing 228 AE samples with a discrete variable 

length of 1460 for 3 different gas pressure conditions. Table 1 provides category-specific 

information. 
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2.2 Model Training Strategy, and Evaluation 

We have divided our training and testing strategy into two phases: online and offline. In 

the offline phase, we evaluate the model's performance using the training and validation 

sets. Once the optimal model is selected based on the highest accuracy, we use this model 

to assess performance on the test data during the online phase. According to our empirical 

study [19], we randomly allocated 80% of the data for training (offline phase) and 20% 

for testing (online phase). For the offline phase, we used stratified k-fold CV, allocating 

(1/k) % of the data for validation. To reserve approximately 30% of the data for 

validation, we set k to 5. Each fold involved 1600 epochs. While running each fold, we 

changed the hyperparameters, and layer architecture. Given the limited number of 

samples, constructing a generalized DL model was challenging. To address this, we 

employed a skimming window technique to further segment the signal and enhance 

feature density, as detailed in [20, 21, 22]. In the upcoming extension of this work, we 

are considering details of this aspect. 

Table 1. Dataset details. 

 

Pressure  

 Data amount  

Total  

Defined 

Offline phase (80%) Online phase (20%) 

Training Validation* Testing 

0.2 MP Label 1 146 36 46 228 

0.4 MP Label 2 146 36 46 228 

0.5 MP Label 3 146 36 46 228 

 * Validation is done with Stratified k fold CV 
 

2.3 Graph Neural Network – Brief Description 

In our study, as a part of GNN, we have considered Graph Convolution Neural (GCN) 

models work on our graph structured data. Therefore, time series data first needs to be 

transformed into graph structure to apply GCN. A graph G = (V, E, A), comprises a set 

of nodes V, | V | = K, a set of edges E, | E | = L, and an adjacency matrix A. The adjacency 

matrix A ∈ 𝑅𝐾×𝐾 contains the weights and edges among the graph nodes V.  If there is 

an edge between node vi  ∈ V and vj ∈ V, then they are neighbours i ≠ j, and the entry of 

A (i, j) in the adjacency matrix A depicts the weights of their edge. The weights of the 

edges can be calculated using various techniques, for example, Euclidean similarity, 

correlation matrix, or cosine similarity. GCN performs convolution in the vertex domain 

and updates a node's representation by recursively aggregating information from its 

neighbor nodes [15]. By representing neighborhood information as graph substructures, 

these substructures can be modelled using differentiable functions that recursively project 

different or identical substructures into other or the same feature spaces [16]. Messages, 

also known as information flow between neighbors and centre nodes [17]. Propagation 

rules of messages characterize network architecture based on message passing. The 

message passing rules among the nodes can be defined into two stages— the message 

passing stage and readout stage. Mathematically, we can represent these two stages as 

[17]: 

𝑀𝑖
𝑙+1 = ∑ 𝑀𝑒𝑠𝑠𝑎𝑔𝑒(ℎ𝑖

𝑙 , ℎ𝑗
𝑙 , ℎ𝑖𝑗

𝑙 )

𝑗∈𝑁𝑖

 (1) 
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ℎ𝑖
𝑙+1 = 𝑈𝑝𝑑𝑎𝑡𝑒(ℎ𝑖

𝑙𝑀𝑖
𝑙+1) (2) 

Where, hi, hj, and hij represent two specific nodes and their connecting edge feature. Node 

i's neighboring nodes are represented by the set Ni. The neighboring information is 

transformed into a hidden representation by the Message (·) function and passed to the 

centre node. Update (·) function aggregates and updates the centre node's representation. 

The choice of Message (·) and Update (·) functions may vary. 

3 Result analysis and discussion 

 
Fig. 2. AE-prop. 
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Fig. 3. AE-prop correlation. 

 
Fig. 4. 3D PCA for AE-prop. 
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Initially, we calculated the statistical properties of the data, which included the standard 

deviation (std), skewness, mean, maximum value, kurtosis, and root mean square (RMS) 

of the signal. The details of these analyses are presented in Fig. 2. Subsequently, we 

investigated the feature correlation, as shown in Fig.  3. However, we did not address the 

issue of multicollinearity by removing highly correlated features in this study, as it serves 

as a baseline for experimenting with GCN for AE based condition monitoring. In our 

forthcoming study, which extends this work, we will consider this aspect. 

Following this, we employed Principal Component Analysis (PCA) to examine feature 

separation, depicted in Fig. 4. In both Fig. 2 and 4, it is evident that the feature separation 

for each label falls into two distinct ranges. For instance, the RMS values for label 1, as 

shown in Figure 2, drop after the 120th index, a pattern that is consistent across all labels. 

This observation suggests that the data was collected using two different sensors with 

varying pre-amplifier settings, as detailed in the dataset description. However, the 

objective of this study was not to consider these variances, but rather to classify the data 

as a whole under three different pressure conditions. 

Once the AE-prop were calculated, we transformed the AE data into graph nodes using 

these properties. Subsequently, we commenced the training process in the offline phase. 

We employed 5-fold stratified CV across five variants of GCN. For each model variant, 

we reported the accuracy of the best-performing fold. Then, we selected the model variant 

that demonstrated the highest accuracy as the optimal one. Detailed information about the 

training process is presented in Table 2 and Fig. 5. Here, M3 and M5 performs very 

similarly, however, M5 is stable (Fig. 5) in terms of loss curve, and accuracy fluctuations. 

Therefore, as optimal model, we have chosen M5. However, on the online phase, the 

performance dropped, and we achieved 94.21% accuracy. 

Table 2. Model performance details. 

Phase Models Specifications Performance Remarks 

Offline Variants Layer details Accuracy (%)  

M1 1 Convolution 

1 Dropout 

82.30  

M2 2 Convolution 

1 Dropout 

83.91  

M3 2 Convolution 

2 Dropouts 

95.13  

M4 3 Convolution 

1 Dropout 

85.21  

M5 3 Convolution 

2 Dropouts 

95.62 Optimal 

Online Optimal  95.62  
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Fig. 5. Model performance (training loss and validation Accuracy – offline phase). 

4 Conclusions 

In this study, we have explored the use of GCN for AE driven pipeline condition 

monitoring. This case study was conducted using the only available online dataset for 

pipeline condition monitoring, the GPLA-12 dataset. A significant challenge was the lack 

of detailed information about this dataset, making it difficult to validate outcomes against 

sensor specifications. Additionally, during the design of this experiment, we did not 

address the multicollinearity of statistical features, AE-driven feature analysis, or the 

generation of synthetic data to increase the sample size. Omitting these considerations 

poses challenges in achieving generalized performance, as indicated by our online phase 

test accuracy of 95.62%. This study establishes the baseline for our ongoing case study. 

In the extended version of our work, we will address these issues and offer a detailed 

analysis. Nevertheless, the aim of this initial study is to demonstrate the potential of GCNs 

to handle multi-sensor setups and to explore temporal and spatial relationships while 

reporting performance metrics. Although the results are comparable to those of 

conventional ML/DL approaches, these considerations justify further exploration of 

GNNs. 

Declaration of generative AI and AI-assisted technologies in the 

writing process 

During the preparation of this work the author(s) used ChatGPT, and Quill Bot in order 

to refine the writing, in-terms of language. After using this tool/service, the author(s) 

reviewed and edited the content as needed and take(s) full responsibility for the content 

of the publication. 
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