
ARIFEEN, M. and PETROVSKI, A. 2024. Temporal graph convolutional autoencoder based fault detection for
renewable energy applications. In Proceedings of the 7th IEEE (Institute of Electrical and Electronics Engineers)
Industrial cyber-physical systems international conference 2024 (ICPS 2024), 12-15 May 2024, St. Louis, USA.

Piscataway: IEEE [online], article number 10639998. Available from:
https://doi.org/10.1109/ICPS59941.2024.10639998

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

This document was downloaded from
https://openair.rgu.ac.uk

Temporal graph convolutional autoencoder
based fault detection for renewable energy

applications.

ARIFEEN, M. and PETROVSKI, A.

2024

https://doi.org/10.1109/ICPS59941.2024.10639998

Temporal Graph Convolutional Autoencoder based
Fault Detection for Renewable Energy Applications

1st Murshedul Arifeen
School of Computing

Robert Gordon University
Aberdeen, Scotland
d.arifeen@rgu.ac.uk

2nd Andrei Petrovski
National Subsea Centre

Robert Gordon University
Aberdeen, Scotland

a.petrovski@rgu.ac.uk

Abstract—Detecting faults in energy generation systems is
a challenging task due to the complex nature of the system,
measurement noise, and outliers. Recently, researchers have
shown an increasing interest in using data-driven models that
utilize sensor data for fault detection and diagnosis. However,
the nonlinearities, spatial and temporal dependencies in time-
series sensor data make it difficult to develop an effective data-
driven fault detection model. To address this issue, we propose
an autoencoder model that uses a temporal graph convolutional
layer to detect faults in the energy generation process. The
proposed model has exceptional spatiotemporal feature learning
capabilities, making it ideal for fault detection applications. In
addition, we have included a data processing module to reduce
noise and eliminate outliers from sensor data. We evaluated the
model’s performance using wind turbine blades and photovoltaic
microgrid datasets. Experimental results have demonstrated that
the proposed model outperforms other fault detection models
based on graph convolutional autoencoders.

Index Terms—Temporal Graph Convolutional Autoencoder,
Fault Detection, Wind Turbine, Photovoltaic Microgrid

I. INTRODUCTION

Fossil fuels have been the primary source of energy for
decades, but their combustion emits greenhouse gases, causing
global warming [1]. Renewable energy is a clean, abundant,
and sustainable alternative, including solar, wind, tidal, and
geothermal. Although reliable, technical faults can damage the
energy generation process, making it critical to identify and
diagnose the root cause of these faults [1] [2].

There are two methods for detecting faults in a system:
model-driven and data-driven approaches [3] [4]. The former
creates a physical model, while the latter relies on Supervisory
Control and Data Acquisition (SCADA) sensor data [4]. These
data-driven models can be implemented using shallow or deep
learning (DL) techniques, making them reliable and efficient
solutions for fault detection over model-driven approaches. DL
is more effective than shallow learning in analyzing complex
SCADA data, and there are two approaches to fault detection
using DL: forecasting and reconstruction-based techniques [2].
This study focuses solely on reconstruction-based techniques.

Autoencoders (AE) (such as long short-term memory
(LSTM) or convolutional neural network (CNN)-based stacked
AE, variational, sparse, or denoising AE) are reconstruction-
based models used in industrial applications for fault detec-
tion [5]. However, most models have limitations in learning

spatial and temporal relations from SCADA data [6] [7].
It is necessary to consider spatial and temporal relations
simultaneously to extract comprehensive information from
SCADA data [7]. Graph neural networks (GNN) can learn
spatiotemporal data effectively due to their unique features,
such as permutation invariance, local connectivity, and com-
putationality [2]. Researchers have utilized GNN, particularly
graph convolutional networks (GCN), to construct spatiotem-
poral AE for identifying and diagnosing faults in various
process monitoring applications, outperforming traditional AE
models [6] [8] [9] [10] [11]. The recently proposed model,
temporal graph convolutional network (T-GCN) combining
GCN and gated recurrent unit (GRU), can exceed the GCN
in learning spatiotemporal SCADA data by explicitly learning
the temporal pattern through the GRU [12].

This paper uses the T-GCN model to build an AE for
detecting faults in renewable energy applications such as wind
turbines and photovoltaic microgrids. The T-GCN’s ability
to learn spatiotemporal features makes it an ideal choice for
complex nonlinear spatiotemporal modelling of SCADA data.
The GCN component of TGCN learns the spatial dependence
of SCADA features, while the GRU learns temporal depen-
dencies [12]. We have also used skip connections between
the layers to reduce information loss during the encoding-
decoding process. The main contributions of this paper are
summarized as follows.

• A T-GCN layer-based AE model is developed for detect-
ing faults in energy industry applications. The T-GCN
model can effectively learn the spatiotemporal nature of
the SCADA data compared to the GCN-based AE model.

• We used the Fast Fourier Transform (FFT) to reduce
noise, boxplot, and isolation forest (IF) to remove outliers
from the highly noisy SCADA data.

• We compared the performance of the TGCN-AE model
with GCN AE using wind turbine blades and photovoltaic
microgrid datasets.

• T-GCN AE outperforms GCN-AE in false alarm rate
(FAR) and fault detection rate (FDR).

Section II briefly discussed the recently published GCN-
based forecasting or reconstruction models for fault detection
works. Section III has addressed the noise reduction technique,

In
pu

t S
CA

DA
 d

at
a

O
ut

pu
t S

CA
DA

 d
at

a

TGCN layers

+
Skip connection

Fig. 1: Architecture of an Autoencoder where the layers are
replaced by the T-GCN layer. Also, skip connections are added
to reduce the information loss during the feature compression
and reconstruction process.

outlier removing methods, and T-GCN AE-based fault detec-
tion model. Then, in section IV, we explained the dataset,
experimental procedure, and comparison results of T-GCN
regarding FAR and FDR. Finally, section V concludes this
paper.

II. LITERATURE REVIEW

Data-driven models such as neural networks, CNN, and
LSTM-based AE are highly effective in detecting faults by
monitoring the deviation of real-time data from the learned
patterns. Still, they need to improve in learning spatiotem-
poral data simultaneously. For instance, CNN-based models
recognize only local spatial features [6] [12]. In contrast, the
authors in [6] proposed a GCN AE-based fault detection model
that uses graph structure data to understand spatiotemporal
relations from data, thus detecting faults more accurately. Liu
et al. [8] introduce a novel graph dynamic autoencoder method
that uses GCN to monitor the Tennessee Eastman process. Yu
et al. [3] proposed a fast deep graph convolutional network to
diagnose wind turbine gearbox faults using wavelet decompo-
sition, resulting in a high fault recognition accuracy of 99.60%
Similarly, Yang et al. [13] proposed a 94.75% accurate GNN
and one-shot learning-based model for wind turbine gearbox
monitoring. Lai et al. [14] presented a wavelet-driven GCN for
detecting blade icing in wind turbines by capturing multiscale
features of SCADA data in time and frequency domains. A
GCN-SA hybrid model is proposed for fault diagnosis in a
traction system by combining the GCN model and prior system
knowledge [4]. Liu et al. [7] proposed a novel spatiotemporal
model that monitors wind turbine conditions by accurately
learning multiple features’ spatial and temporal dependencies,
combining a GCN and GRU. Multiple spatiotemporal blocks
are stacked to extract high-level features from the graph-
structured sensor data. GNN-based model is also proposed
in [2] to learn complex interactions and coupling relations
between sensors of wind turbines for early fault diagnosis. The
review shows that the GCN-based model is becoming popular
for condition monitoring by learning spatiotemporal features.
It uses forecasting to identify faults, while GCN AE-based

models use a reconstruction approach. However, T-GCN based
AE model is not well studied for fault detection problems.

III. SYSTEM MODEL

A. Noise Reduction using FFT

Reducing noise is vital in enhancing DL models, and one
way to do that is by using the Fourier Transform (FT) to
transform time domain data into the frequency domain. FT
has proven to be a highly efficient tool for reducing noise
in various applications [15] [16]. In this study, we have used
the FFT algorithm to eliminate noisy components from the
SCADA data by decomposing a complex function (signal) into
a linear combination of trigonometric functions (sinusoidal
signals) [17]. Mathematically, we can represent the FT of
a function f(t) as: f̃(ω) =

∫ +∞
−∞ f(t)e−iωtdt, where, f̃ is

the FT of f which depends on the frequency ω. However,
the SCADA data from wind turbines and microgrid are dis-
crete in practice. Therefore, we apply discrete FT (DFT) as:
Zk =

∑N−1
j=0 Xje

−2πi
N kj , where, Zk is the k′th element of the

DFT and Xj is the original SCADA data. The FFT algorithm
produces the one dimensional DFT of the input data, and
multiplying the output with the conjugate produces the noisy
input SCADA data’s power spectral density (PSD). From the
PSD, the dominant components of the time series data can be
identified, and other (noisy) components can be eliminated by
thresholding.

B. Outlier Removal

We used Boxplot and IF to remove SCADA data outliers.
One outlier removal method wasn’t enough, so we first used
Boxplot and then IF to suppress the remaining outliers.

1) Boxplot: Boxplot is a simple and effective way to
eliminate outliers from the data [18]. Boxplot generates a five-
number summary of a data series [19]: the minimum value
(Min), the maximum value (Max), the first quartile (Q1),
the median value (the second quartile (Q2)), the third quartile
(Q3). This method produces the (Max − Min) range and
the interquartile range(IQR(Q3 − Q1)); using these ranges,
we can get a boundary to distinguish the outliers from the
standard data samples. Mathematically, any data points above
(Q3+1.5× IQR) and below (Q1− 1.5× IQR) are outliers,
and we can remove these data points from the original data
series.

2) Isolation Forest: The IF algorithm is a variation of
the Decision tree algorithm [20]. It identifies outliers by
randomly selecting a feature from the set of features and then
selecting a split value between that feature’s maximum and
minimum values. This random partitioning of features creates
shorter paths in trees for anomalous data points, making them
distinguishable from the rest of the data.

C. Autoencoder

AE is a robust DL algorithm that excels in learning data
representation. It has an encoder, a decoder, and a latent
representation layer [21]. AE uses unsupervised learning and is
versatile for various tasks. Let’s consider an unlabelled training

SC
AD

A
da

ta

No
rm

al
 d

at
a

Data
collection

Te
st

 d
at

a

Data processing

No
is

e
re

du
ct

io
n

Ou
tli

er
 re

m
ov

al
 1

Ou
tli

er
 re

m
ov

al
 2

Model training

No
rm

al
iza

tio
n

Gr
ap

h
co

ns
tru

ct
io

n

TG
CN

 A
E

Trained model

No
rm

al
iza

tio
n

Gr
ap

h
co

ns
tru

ct
io

n

TG
CN

 A
E

Threshold (Th)
computation

Va
lid

at
io

n
da

ta

SP
E

re
si

du
al

Ga
us

si
an

KD
E

Th
's

 fo
r f

ea
tu

re
s Tr
ai

ni
ng

da
ta

SP
E

re
si

du
al

SP
E

re
si

du
al

Th
re

sh
ol

ds

Feature1 (below threshold)
- Normal

Offline model
training phase

Online condition
monitoring phase

Feature2 (above threshold)
- Faulty

Wind turbine

Fig. 2: TGCN AE model based faulty condition detection process. The normal data collected from the SCADA system is first
used to train the TGCN AE model after cleaning (noise reduction and outlier elimination) through the data processing module.

dataset X consisting of N samples xi with dimension n. Then
the encoder function can be defined as βi = g(xi), where
βi is the latent representation layer with dimension q. The
encoder reduces the input data dimension from n to q. The
decoder reconstructs the input data from βi of dimension q
back to n. An AE trains by minimizing a loss function that
represents the difference of reconstructed samples x̄ and the
original samples x using a learning algorithm. The typical loss
function for a deterministic AE is Mean Square Error (MSE)
[22], i.e., Loss = 1

N

∑N
i |xi − x̄i|2.

D. Temporal Graph Convolutional Network
GCN based DL models work on graph structured data. A

graph can be denoted as G = (V,E,A), which comprises a
set of nodes V , |V | = K, a set of edges E, |E| = L, and
an adjacency matrix A. The adjacency matrix A ∈ RK×K

represents the weights and edges among the nodes V . That is,
if there is an edge between node vi ∈ V and vj ∈ V , then they
are neighbors (i ̸= j), and the entry A(i, j) in the adjacency
matrix A denotes the weights of their edge. The weights of
the edges can be computed through various techniques, for
example, euclidean similarity, correlation matrix, or cosine
similarity. On the contrary, for an unweighted graph, the
entries of the adjacency matrix A can be set as (i, j) = 1.
Time series data needs to be transformed into graph structure
data to use a GCN based model. We followed the procedure
of GDA [8] to construct graph attributes from SCADA data.

T-GCN combines GCN and GRU to model complex non-
Euclidean data with spatial and temporal dependencies [12].
GCN conducts convolution directly in the vertex domain,
updating node representation by recursively aggregating neigh-
bour information [23]. Messages flow between neighbours and
the centre node to determine the architecture’s propagation
rules [24].The message propagation rules can be reworded into
two stages— the message passing stage and readout stage, as
shown in equation (1) as described in [24].

M l+1
i =

∑
j∈Ni

Message(hli, h
l
j , h

l
ij)

hl+1
i =Update(hli,M

l+1
i)

(1)

hi, hj , and hij represent two specific nodes and their connect-
ing edge feature. Node i’s neighboring nodes are represented
by the set Ni. The neighboring information is transformed into
a hidden representation by the Message() function and passed
to the center node. Update() function aggregates and updates
the center node’s representation. The choice of Message()
and Update() functions may vary.

On the contrary, a GRU [25] is an improved RNN with
reset and update gates that control information flow using
sigmoid activation. The reset gate remembers the previous
state, while the update gate copies the old state. Both gates
use fully connected layers with sigmoid activation. As a result,
T-GCN, the combination of GCN and GRU, significantly
improves performance, making it the ideal choice for modeling
spatiotemporal SCADA data.

E. T-GCN based AE

We have developed an AE model using the T-GCN layer
described in the previous section (figure 1). The T-GCN layer
replaces the layers of the conventional encoder and decoder
architecture, enabling our AE to explicitly learn the spatiotem-
poral relationships of data. This unique feature makes the T-
GCN layer-based AE more robust than GCN-based models.
Initially, the input features are passed to the T-GCN layer of
the AE, along with the edge index and edge weight of the adja-
cency matrix of the input graph-structured sensor data. We also
added skip connections among the T-GCN layers to enhance
our model further by reducing information loss during feature
compression. We have used the MSE function as the loss
function of the T-GCN AE. Let’s consider the T-GCN encoder
is represented as βe = ETGCN (x, ei, ew), then the T-GCN
decoder can be defined as x̄ = DTGCN (ETGCN (x, ei, ew)),
where x, ei, ew, βe and x̄ are the input data, edges of the nodes,
weights of the edges, encoded features and the reconstructed
input data, respectively.

F. T-GCN AE based Fault Detection

This section explains the fault detection process using the
T-GCN AE DL model for industrial environments. Data is
collected from the SCADA network and divided into normal

0 500 1000 1500 2000 2500 3000
epochs

0.4

0.6

0.8

1.0

1.2

lo
ss

TGCNAE
GCNAE1
GCNAE2

0 500 1000 1500 2000 2500 3000
epochs

0.2

0.4

0.6

0.8

1.0

1.2

1.4

lo
ss

TGCNAE
GCNAE1
GCNAE2

(a) (b)

Fig. 3: Training losses of the models for WTB (a) and PVS
(b) dataset.

and faulty parts. The normal and faulty data is processed
using the FFT algorithm and outlier removal methods before
training the T-GCN AE model to overcome the effects of
environmental noise on data quality. The resulting cleaned data
is used to create graph attributes. Following the procedure
from GDA [8], we created the adjacency matrix for the
graph. However, we used cosine similarity

(
CS(X,Y) =

x.y
||x||||y|| ;where, x.y =

∑n
i xiyi and ||x|| =

√
x.x

)
instead of

Euclidean distance to measure the closeness of neighbouring
nodes [8]. We passed the cleaned normal data with the nodes’
edge connectivity and weight values to T-GCN AE for training.

Then, we evaluated the trained model using validation data,
a distinct set of normal data, and computed the squared pre-
diction error (SPE) residuals E ∈ Rm×n of the validation data
∆d and the reconstructed validation data ∆̃d using equation
(2).

SPE = (∆d − ∆̃d)
2; ∆d ∈ Rm×n (2)

To set thresholds for each variable in multivariate SPE E ∈
Rm×n, we estimate their probability density functions using
a non-parametric kernel density estimation (KDE) technique
[26]. KDE is a successful method for processing monitoring
and fault detection and is versatile in determining the threshold
through the estimated PDF. The estimated PDF of some data
points of a variable, say xi, i = 1, 2, .., N at point x can be
defined as

p(x) =
1

NΩ

N∑
i=1

κ
(x− xi

Ω

)
(3)

Where, κ(.) is the kernel function and Ω is the bandwidth.

We have used the gaussian kernel function κ(u) = e− u2

2√
2π

and
silverman bandwidth. Finally, the threshold (γ) of a variable
can be computed using the variable’s monitoring parameter
(SPE) estimated PDF for a given confidence value α by
solving [26] P (x < γ) =

∫ γ

−∞ p(x)γ(x) = α. During online
monitoring phase, any data that surpasses the threshold (γ)
can be defined as faulty samples. The fault detection process
based on T-GCN AE is illustrated in figure 2.

IV. EXPERIMENTS AND RESULTS

In this section, we discussed about the experimental pro-
cedure and outcomes from the experiments. Also, the perfor-

mance of the T-GCN AE model is compared with the baseline
models.

A. Dataset

To conduct the experiment, we have considered two dataset
from wind turbine and photovoltaic system.

1) Wind turbine blade dataset (WTB): Wind turbines are
prone to component failures due to irregular loads caused
by wind turbulence and extreme weather [6]. This study
analyzed vibration data from wind turbine blades operating
under different load conditions, including healthy and faulty
states such as blade erosion, mass imbalance, and cracked
blades [27]. The dataset allows for assessing the impact of
blade faults on power generation due to high vibration levels.
The study considers only crack fault detection to validate the
proposed model based on TGCN AE. The dataset’s features
are Wind Speed, Number of rotors, vibration measurement
(X T.D), T.D (Std Dev), T.D (Variance), T.D (Kurtosis), T.D
(Skewness), T.D (RMS) Max, Crest factor, and Status.

2) PV system dataset (PVS): In a laboratory, a PV micro-
grid system is implemented to collect normal and faulty data
to represent a Grid-connected PV system failure [28]. The
data includes signals such as Time, PV array current, voltage,
DC voltage, 3-phase current measurements, 3-phase voltage
measurements, Current magnitude, Current frequency, Volt-
age magnitude, and Voltage frequency. Faults are introduced
manually, including inverter faults, feedback sensor faults, grid
anomalies, PV array mismatch, and controller and converter
faults. This paper focuses on the inverter fault dataset to
validate the proposed TGCN AE model for fault detection.

B. Baseline models

We have compared the GCN-AE [8] baseline model with
our T-GCN AE model. We’ve made two versions of GCN-AE:
GCN-AE1 uses Euclidean distance as similarity measurement
technique without data processing, while GCN-AE2 uses
cosine distance and applies data processing before training.

C. Experimental setting

1) Data processing: We removed noisy components from
each feature of both datasets using the FFT algorithm with
different thresholds based on visual inspection of the frequency
domain plots. The resulting features were then subjected to
the boxplot method to remove any outliers. However, this was
insufficient for all features, so we utilized the IF method to
suppress the remaining outlier points. We also discarded rows
with missing values in this stage. We used 1000 training,
500 validation, 500 test samples from the WTB dataset and
2000 training, 500 validation, and 500 test samples from the
PVS dataset. The models SPE monitored three features from
the WTB dataset (TD Std, TD V ar, TD RMS) and one
feature (V pv) from the PVS dataset to detect faults in the
wind turbine blade and microgrid. These features are chosen
particularly because the faulty set of only these features shows
high deviation from normal counterparts, as shown in figure
4 for the WTB dataset.

TABLE I: Performance comparisons of the models based on the performance metrics

Dataset Models
train valid test

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

WTB

T-GCN AE 0.2741 0.362 1.0801 0.5639 0.5701 1.3853 37.9286 3.8663 6.1743
GCN-AE2 0.409 0.4892 5.4193 0.5833 0.6173 5.55 36.8733 3.9209 6.9573
GCN-AE1 0.4104 0.4445 3.5016 0.8177 0.7073 3.2018 2.0937 1.1845 2.5702

PVS

T-GCN AE 0.2092 0.3420 0.9195 0.5294 0.5384 1.1930 4.8502 1.5002 1326.1900
GCN-AE2 0.2239 0.3242 3.3280 0.4831 0.5056 4.3017 5.0450 1.6651 6.5788
GCN-AE1 0.3021 0.3228 3.0117 0.3300 0.3270 3.7799 2.2618 1.1126 4.9232

Fig. 4: Boxplot of the normal and faulty samples distribution
for WTB dataset of features TDStd, TDV ar and TDRMS

2) Model training: Firstly, we normalized the processed
dataset obtained from the previous stage using pythons
StandardScaler function

(
(Xi −Xmean)/Xstd

)
. Next, we

followed a procedure to generate the edge index and edge
weights. The T-GCN AE and GCN-AE2 models use cosine
distance, whereas GCN-AE1 uses Euclidean metrics for neigh-
borhood similarity measurement. Then, we normalized the
edge weights using the softmax function. Finally, we passed
the processed data, the edge indices, and the edge weights to
the models for training. The models were trained with 3000
epochs, a 0.01 learning rate, Adam Optimizer and the MSE
loss function for evaluation. Figure 3 displays the training
MSE losses of all the models for both dataset.

3) Threshold computation: After training the model, we
passed the validation dataset to the trained model and com-
puted the SPE error for both datasets. The SPE for both
datasets is calculated for each feature. Then, the thresholds
are computed from the SPE using the Gaussian KDE estima-
tion method following the equation (3) for confidence value
α = 0.99.

D. Results

1) Evaluation Metrics: We have considered three evalua-
tion metrics– MSE, mean absolute error (MAE) and mean
absolute percentage error (MAPE) to measure the data re-
construction ability of T-GCN AE, GCNAE1, and GCNAE2
models. The evaluation metrics are defined in equation (4),
Where, N denotes the total number of data samples, yp and ya
states the predicted data sample and actual (input) data samples
respectively. The scores of all three models for MSE, MAE,
and MAPE for training, validation, and test datasets can be
observed in Table I. For WTB dataset, T-GCN AE outperforms
GCN-AE1 and GCN-AE2 regarding data reconstruction ability
for training and validation data splits. However, since the

training and validation data come from the benign part of
the dataset, the reconstruction error should be low compared
to the test samples, which come from the faulty part of the
dataset. Therefore, it can be seen that T-GCN AE has a higher
MSE for the test data split than the training and validation
split. While the MAE and MAPE of T-GCN AE are similar
to the other models, it also has a higher MSE than GCN-
AE1 and GCN-AE2 in test split. On the other hand, for PVS
dataset, the data reconstruction ability of T-GCN AE is almost
identical to GCN-AE1 and GCN-AE2. However, the abnormal
data reconstruction ability of T-GCN AE2 for dataset 2 is still
significantly higher than the other models, as reflected in the
MAPE metrics.

MSE =
1

N

N∑
i=1

(ypi − yai)
2

MAE =
1

N

N∑
i=1

|ypi − yai|

MAPE =
100%

N

N∑
i=1

|ypi − yai
yai

|

(4)

To determine the models performance in terms of fault
detection capability and suppress false alarms, the FDR (tested
on faulty part of SCADA data) and FAR (tested on benign part
of SCADA data) are considered as defined in the following
equations-

FDR =
λ

Λ
(5)

where, λ denotes number of fault data that have been detected
as fault and the Λ refers to total number of faulty samples.

FAR =
ψ

Ψ
(6)

where, ψ stands for number of normal data that have
been detected as fault and Ψ denotes total number of normal
samples. Based on the results shown in table II, it is clear that
the T-GCN AE and GCN-AE1 models have achieved a 100%
FDR score, while the GCN-AE2 model has an FDR of 67.8%,
73.4%, and 65.8% for the three features of the WTB dataset,
respectively. Although the T-GCN AE and GCN-AE1 models
have similar FDR scores, the T-GCN AE model outperforms
the other two regarding FAR. Furthermore, the T-GCN AE
model also outperforms the other two models in detecting
faults and generating false alarms in the PVS dataset.

TABLE II: Performance comparisons of T-GCN AE model
against the GCNAE1 and GCNAE2 for FAR and FDR

Dataset Models Variables FAR(%) FDR(%)

WTB

T-GCN AE

TD Std 0.2 100
TD Var 0.2 100

TD RMS 1.6 100

GCN-AE1

TD Std 4.6 100
TD Var 4 100

TD RMS 6.6 100

GCN-AE2

TD Std 6.4 67.8
TD Var 5.2 73.4

TD RMS 6.6 65.8

PVS

T-GCN AE Vpv 0 100
GCN-AE1 Vpv 59 100
GCN-AE2 Vpv 70.6 91.6

V. CONCLUSION

This paper presents a highly effective AE-based fault detec-
tion model for wind turbine blades and photovoltaic microgrid
dataset. Our proposed model incorporates a T-GCN layer to
learn the spatiotemporal behavior of the components simul-
taneously, which is essential since SCADA data comprises
spatial and temporal correlation among the features. While
GCN-based AE models have been prevalent in recent studies
for detecting faults by learning spatiotemporal data, our study
demonstrates that the T-GCN-based AE model with noise
reduction and outlier removal techniques yields more robust
results with higher precision and fewer false alarms. Our
experimental results show that the T-GCN-based AE model
has achieved 100% FDR and minimal FAR for renewable
energy industrial applications, making it a highly reliable and
effective solution for fault detection. In our future work, we
will develop a hybrid fault detection model by combining
a GCN based forecasting and reconstruction model. Code
will be made available to – https://github.com/ArifeenDipto/
Fault-Diagnosis-Autoencoder

REFERENCES

[1] H. Wang, Z. Lei, X. Zhang, B. Zhou, and J. Peng, “A review of
deep learning for renewable energy forecasting,” Energy Conversion and
Management, vol. 198, p. 111799, 2019.

[2] G. Jiang, W. Li, W. Fan, Q. He, and P. Xie, “Tempgnn: A temperature-
based graph neural network model for system-level monitoring of wind
turbines with scada data,” IEEE Sensors Journal, vol. 22, no. 23, pp.
22 894–22 907, 2022.

[3] X. Yu, B. Tang, and K. Zhang, “Fault diagnosis of wind turbine gearbox
using a novel method of fast deep graph convolutional networks,” IEEE
Transactions on Instrumentation and Measurement, vol. 70, pp. 1–14,
2021.

[4] Z. Chen, J. Xu, T. Peng, and C. Yang, “Graph convolutional network-
based method for fault diagnosis using a hybrid of measurement and
prior knowledge,” IEEE transactions on cybernetics, vol. 52, no. 9, pp.
9157–9169, 2021.

[5] J. Qian, Z. Song, Y. Yao, Z. Zhu, and X. Zhang, “A review on autoen-
coder based representation learning for fault detection and diagnosis in
industrial processes,” Chemometrics and Intelligent Laboratory Systems,
p. 104711, 2022.

[6] E. S. Miele, F. Bonacina, and A. Corsini, “Deep anomaly detection in
horizontal axis wind turbines using graph convolutional autoencoders
for multivariate time series,” Energy and AI, vol. 8, p. 100145, 2022.

[7] J. Liu, X. Wang, F. Xie, S. Wu, and D. Li, “Condition monitoring of
wind turbines with the implementation of spatio-temporal graph neural
network,” Engineering Applications of Artificial Intelligence, vol. 121,
p. 106000, 2023.

[8] L. Liu, H. Zhao, and Z. Hu, “Graph dynamic autoencoder for fault
detection,” Chemical Engineering Science, vol. 254, p. 117637, 2022.

[9] W. Wu, C. Song, J. Zhao, and G. Wang, “Knowledge-enhanced dis-
tributed graph autoencoder for multiunit industrial plant-wide process
monitoring,” IEEE Transactions on Industrial Informatics, 2023.

[10] T. Li, C. Suna, R. Yan, X. Chen, and O. Fink, “A novel unsupervised
graph wavelet autoencoder for mechanical system fault detection,” arXiv
preprint arXiv:2307.10676, 2023.

[11] U. Goswami, J. Rani, H. Kodamana, S. Kumar, and P. K. Tamboli, “Fault
detection and isolation of multi-variate time series data using spectral
weighted graph auto-encoders,” Journal of the Franklin Institute, vol.
360, no. 10, pp. 6783–6803, 2023.

[12] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li,
“T-gcn: A temporal graph convolutional network for traffic prediction,”
IEEE transactions on intelligent transportation systems, vol. 21, no. 9,
pp. 3848–3858, 2019.

[13] S. Yang, Y. Zhou, X. Chen, C. Li, and H. Song, “Fault diagnosis for wind
turbines with graph neural network model based on one-shot learning,”
Royal Society Open Science, vol. 10, no. 7, p. 230706, 2023.

[14] Z. Lai, X. Cheng, X. Liu, L. Huang, and Y. Liu, “Multiscale wavelet-
driven graph convolutional network for blade icing detection of wind
turbines,” IEEE Sensors Journal, vol. 22, no. 22, pp. 21 974–21 985,
2022.

[15] M. H. Raju, L. Friedman, T. Bouman, and O. Komogortsev,
“Filtering eye-tracking data from an eyelink 1000: Comparing
heuristic, savitzky-golay, iir and fir digital filters,” Journal of Eye
Movement Research, vol. 14, no. 3, Oct. 2023. [Online]. Available:
https://bop.unibe.ch/JEMR/article/view/9888

[16] P. Anttonen, “Fourier transform techniques for noise reduction,” 2022.
[17] M. H. Raju, L. Friedman, T. M. Bouman, and O. V. Komogortsev,

“Determining which sine wave frequencies correspond to signal and
which correspond to noise in eye-tracking time-series,” arXiv preprint
arXiv:2302.00029, 2023.

[18] J. Laurikkala, M. Juhola, E. Kentala, N. Lavrac, S. Miksch, and
B. Kavsek, “Informal identification of outliers in medical data,” in Fifth
international workshop on intelligent data analysis in medicine and
pharmacology, vol. 1, 2000, pp. 20–24.

[19] A. Smiti, “A critical overview of outlier detection methods,” Computer
Science Review, vol. 38, p. 100306, 2020.

[20] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth
ieee international conference on data mining. IEEE, 2008, pp. 413–422.

[21] M. Arifeen, T. Ghosh, R. Islam, A. Ashiquzzaman, J. Yoon, and
J. Kim, “Autoencoder based consensus mechanism for blockchain-
enabled industrial internet of things,” Internet of Things, vol. 19, p.
100575, 2022.

[22] M. Arifeen and A. Petrovski, “Bayesian optimized autoencoder for
predictive maintenance of smart packaging machines,” in 2023 IEEE 6th
International Conference on Industrial Cyber-Physical Systems (ICPS).
IEEE, 2023, pp. 1–6.

[23] M. Sun, S. Zhao, C. Gilvary, O. Elemento, J. Zhou, and F. Wang,
“Graph convolutional networks for computational drug development and
discovery,” Briefings in bioinformatics, vol. 21, no. 3, pp. 919–935, 2020.

[24] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning. PMLR, 2017, pp. 1263–1272.

[25] A. Petrovski, M. Arifeen, and S. Petrovski, “Gated recurrent unit
autoencoder for fault detection in penicillin fermentation process,” in
International Conference on Intelligent Information Technologies for
Industry. Springer, 2023, pp. 86–95.

[26] G. Jiang, P. Xie, H. He, and J. Yan, “Wind turbine fault detection
using a denoising autoencoder with temporal information,” IEEE/Asme
transactions on mechatronics, vol. 23, no. 1, pp. 89–100, 2017.

[27] A. A. F. Ogaili, A. A. Jaber, and M. N. Hamzah, “Wind turbine blades
fault diagnosis based on vibration dataset analysis,” Data in Brief,
vol. 49, p. 109414, 2023.

[28] A. Bakdi, W. Bounoua, A. Guichi, and S. Mekhilef, “Real-time fault
detection in pv systems under mppt using pmu and high-frequency multi-
sensor data through online pca-kde-based multivariate kl divergence,”
International Journal of Electrical Power & Energy Systems, vol. 125,
p. 106457, 2021.

	coversheet_template
	ARIFEEN 2024 Temporal graph convolutional (AAM).pdf

