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ABSTRACT
We introduce Partial Solutions to improve the explainability of
genetic algorithms for combinatorial optimization. Partial Solutions
represent beneficial traits found by analyzing a population, and
are presented to the user for explainability, but also provide an
explicit model from which new solutions can be generated. We
present an algorithm that assembles a collection of explanatory
Partial Solutions chosen to strike a balance between simplicity, high
fitness and atomicity, that are shown to be able to solve standard
optimization benchmarks.
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 INTRODUCTION

Genetic Algorithms (GAs) have proven their ability to solve many 
optimization problems, but have made relatively little progress in 
the aspect of explainability and still struggle to gain the user’s 
trust. As GAs are adopted in critical applications [9, 16], the pro-
posed solutions cannot be accepted at face value due to the many 
issues that can negatively affect the search process [16].

Combinatorial optimization problems are often tackled using
GAs, since they are known to be computationally hard (such as
Graph Coloring [6], Knapsack [15] and resource allocation [12]).
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These kinds of problems are the topic of this paper, as they present
open questions relating to explainability:
• What characterizes good solutions?
• Why is a solution good, or better than another?

This work offers one way to address these questions and intro-
duces the concept of a Partial Solution (PS), a positive trait com-
monly found in high-fitness solutions. More specifically, in this
work they are patterns where certain variables are fixed and others
can vary (indicated using *). For example, if the solutions 0001,
0011, 0101 and 0111 have high fitness, these would be described
using 0**1. A population of solutions is analyzed to find a set of
recurring positive traits, the Partial Solution catalog. This acts
as a model that is then sampled to generate new solutions. In do-
ing so, the algorithm is inherently explainable, offering the ability
for the end user to identify key components of the recommended
solutions. Partial Solutions are an explicit decomposition of the
problem, which offers the benefits suggested in [4]. Partial Solu-
tions are interpretable:
• Global explanations: describing the fitness landscape by
finding simple and atomic Partial Solutions which are asso-
ciated with high-fitness.
• Local explanations: describing a solution by pointing out
the Partial Solutions it contains.

Addionally, Partial Solutions assist the search process, because
they act as a model that describes high-fitness regions of the solu-
tion space (similar to Probabilistic Graphical Models) from which
solutions may be constructed. The system we propose consists of:
• PS Miner: an algorithm which obtains the PS catalog from
a reference population (Section 4),
• Pick & Merge: the algorithm which forms full solutions by
combining elements from the PS catalog (Section 5).

They are composed in the following (one pass) sequence:
(1) Generate a reference population 𝑃Ref, and evaluate it.
(2) Apply the PS Miner on 𝑃Ref to generate the PS catalog.
(3) Apply Pick &Merge on the PS catalog to obtain full solutions.
These Partial Solutions offer a novel way of providing both global

and local explanations, but at the same time improve the search
efficiency when solving the problem. Using benchmark functions
which have known underlying structures, in Section 6 we test
whether we’re able to consistently find these Partial Solutions, and
how their ability to solve the optimization problem by finding the
optima compares against traditional methods.
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2 RELATEDWORK
Schemata and backbones are similarly structured to Partial Solu-
tions, but they are used very differently. Schemata are abstractions
that were used for theoretical work on GAs, although there are
works which do explicitly construct them in order to improve the
search efficiency [5, 8], but they are not used for explainability.

Backbones relate to SAT problems where multiple satisfactory
solutions share a common sub-configuration. For most problems
there is only one backbone, and it is preferred for it to have many
fixed variables in order to shrink the search space [13], which is in
contrast with the objectives used here.

Since in this work the PS catalog is treated as a model, EDAs are
also an adjacent topic. In this sense, there are some related works:
Linkage learning [1, 10] and Family-of-Subsets [14] aim to find
which variables are interacting in the fitness function, and are then
assembled into structures such as sets or cliques. These structures
only determine which variables are interacting, but their optimal
value assignments are not specified, whereas PSs contain both. In
other words, PSs are instances of the cliques / linked sets found by
the aforementioned approaches.

3 PARTIAL SOLUTIONS
3.1 Formal definition

Table 1: Notation

Symbol Meaning

𝐹 Fitness function to be maximized
𝐹𝜓 Fitness function for partial solutions
𝑛 The number of parameters in the solutions

𝑎, 𝑏, . . . , 𝑥 Variables used to denote a full solution
𝑥1, 𝑥2, . . . , 𝑥𝑛 The parameters of 𝑥 , a full solution
𝑎𝜓 , 𝑏𝜓 , . . . , 𝑥𝜓 Variables used to denote a Partial Solution
𝑥
𝜓

1 , 𝑥
𝜓

2 , . . . , 𝑥
𝜓
𝑛 The parameters of 𝑥𝜓 , a Partial Solution

𝑃Ref A collection of evaluated full solutions

Table 1 summarizes our notation. A Partial Solution 𝑥𝜓 can
be described as “a sub-configuration of parameter values which is
associated with high-fitness solutions within a reference population”,
where that reference population will be denoted as 𝑃Ref.
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Figure 1: The positive traits in a collection of full solutions
PRef can be described the PS catalog 𝑋𝜓

In the same way that a full solution is a tuple of values 𝑥 =

(𝑥1, 𝑥2, ..., 𝑥2), a Partial Solution is 𝑥𝜓 = (𝑥𝜓1 , 𝑥
𝜓

2 , ...𝑥
𝜓
𝑛 ) where each

𝑥
𝜓

𝑖
can take any value that 𝑥𝑖 can, as well as “*”, the “any” value.

A solution 𝑥 is said to “contain” the Partial Solution 𝑥𝜓 when they
agree on the fixed values found in 𝑥𝜓 (Equation (1)). Conversely, it
is possible to find all the solutions in 𝑃Ref which contain the Partial
Solution 𝑥𝜓 , the observations (Equation (2)).

contains(𝑥, 𝑥𝜓 ) ⇔ 𝑥𝑖 = 𝑥
𝜓

𝑖
∀ 𝑖 ∈ [1, 𝑛], 𝑥𝜓

𝑖
≠ * (1)

obs𝑃Ref (𝑥
𝜓 ) = {𝑥 ∈ 𝑃Ref | contains(𝑥, 𝑥𝜓 )} (2)

Within all of possible PSs for an optimization problem, there is
a small subset which is preferable for explainability: the catalog.
These are the PSs which are optimal with respect to threemetrics de-
scribed in Section 3.3: simplicity, mean fitness and atomicity.

3.2 Explainability of Partial Solutions
A collection of PSs, found by analyzing a population, provides a
succinct and expressive representation of positive traits (as seen in
Figure 1), also described as “innovization” in the literature [4]. In
a real problem, PSs can offer useful insight into what variables are
linked, and what values they should take.

In an employee-allocation problem, for instance, these subconfig-
urations might indicate that it is beneficial to assign certain groups
of employees to specific tasks. The solution 1111111 might have
its high fitness explained by the presence of 111*** and 1****1,
although 111001 is even better because of the presence of ***00*.

Additionally, PSs might show the presence of positive traits that
cannot coexist (e.g., **00 and *11*), which might be otherwise un-
clear. The ability to find such disagreeing PSs can help in explaining
situations where generally positive traits are not necessarily found
in the global optima.

3.3 Partial Solution metrics
This sectionwill define threemetrics, which are used as objectives in
the search process to find PSs. simplicity (Equation (3)) represents
the idea that having more parameters with value * (as opposed to
fixed values) improves interpretability. meanFitness (Equation (4))
is the mean fitness of the observations of a PS, measuring to the
effect the PSs generally has on fitness. atomicity (Equation (5)) is
the more novel of the metrics, and represents the idea that a PSs
should be “irreducible” and not “composite”. This is motivated by
explainability, since we’re aiming to break down the problem into
small, atomic parts. This is detected by measuring the contribution
of each variable to the rest of the PS (Equation (6)).

simplicity(𝑥𝜓 ) = |{𝑖 𝑠 .𝑡 . 𝑥𝜓
𝑖
= ∗}| (3)

meanFitness(𝑥𝜓 ) = average(𝐹 (obs𝑃Ref (𝑥
𝜓 )) (4)

atomicity(𝑥𝜓 ) = min
{
contribution(𝑥𝜓 , 𝑘))

��� 𝑘 ∈ [1, 𝑛]
𝑥
𝜓

𝑘
≠ *

}
(5)
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contribution(𝑥𝜓 , 𝑘) = 𝐹Σ (𝑥𝜓 ) · log
(

𝐹Σ (𝑥𝜓 )

𝐹Σ (𝑘𝜓 ) · 𝐹Σ (𝑘𝜓 )

)
(6)

where 𝑘𝜓
𝑖
= (𝑥𝜓

𝑖
if 𝑖 = 𝑘, * otherwise)

𝑘
𝜓

𝑖 = (* if 𝑖 = 𝑘, 𝑥
𝜓

𝑖
otherwise)

𝑚 = min
𝑥 ∈ 𝑃Ref

𝐹 (𝑥)

𝑆 = sum{𝐹 (𝑥) −𝑚 | 𝑥 ∈ 𝑃Ref}

𝐹Σ (𝑥𝜓 ) = sum{(𝐹 (𝑥) −𝑚) / 𝑆 | 𝑥 ∈ obs𝑃𝑅𝑒𝑓 (𝑥
𝜓 )}

4 FINDING PARTIAL SOLUTION CATALOGS
The algorithm to find the PS catalog (Algorithm 1) is implemented
using the metrics in Section 3.1, but the design of the search method
involves some non-trivial design choices:
• The Reference Population remains fixed throughout the
process, making the system usable within a GA
• The three metrics are treated as a single objective by nor-
malizing all their values in the range [0, 1] between individ-
uals, and averaging them within individuals.
• An archive is used in the search, storing all of the individuals
which have been selected and that are not allowed in any
future population. The final outputs come from the archive.
• The search could be implemented using a standard GA, or by
starting from empty PSswhich get progressively "specialized",
or even from full solutionswhich get progressively "simplified"
as PSs. All are tested via different implementations of get_local
and get_init in Algorithm 1.

5 PICK & MERGE ALGORITHM
The PS catalog 𝑋𝜓 obtained via Algorithm 1 can be used as a model
to construct high-quality full solutions.Pick&Merge (Algorithm 2)
simply picks items from the PS catalog and merges them when
possible. At the end, any remaining unfixed parameters are filled
with random values, so that a full solution can be returned.

6 EXPERIMENTS
We designed tests to answer the following research questions:
• RQ1: Which algorithm parameters are best for finding the
PS catalog ?
• RQ2: How is the ability to extract PSs from a reference
population affected by evolution
• RQ3: Can the PS catalog be used to construct good solutions?

These were answered with testing rounds T1, T2 and T3 respec-
tively. T1 and T2 consist of hyperparameter tuning, and T3 checks
whether the original optimization problem is still being solved, all
using the benchmark problems discussed in the next section.

6.1 Benchmark Problems
Three problems were chosen as benchmarks: Royal Road (RR, de-
fined as [11], Trap-k (defined as [7]) and Royal Road with Over-
laps (RRO). Each problem instance was constructed to have 5 “tar-
get” PSs: the cliques that we know the algorithm should find (e.g.
111**..** for Royal Road). Royal Road with Overlaps is a novel

Algorithm 1: Archive-based PS Miner
1 Def normalize(values):
2 return 𝑣𝑎𝑙𝑢𝑒𝑠−min(𝑣𝑎𝑙𝑢𝑒𝑠 )

max(𝑣𝑎𝑙𝑢𝑒𝑠 )−min(𝑣𝑎𝑙𝑢𝑒𝑠 )

3 Def 𝐹𝜓 (𝑋𝜓 ):
4 𝑀 ← normalize(meanFitness(𝑋𝜓 ))
5 𝑆 ← normalize(simplicity(𝑋𝜓 ))
6 𝐴← normalize(atomicity(𝑋𝜓 ))
7 return {avg(𝑚, 𝑠, 𝑎) for𝑚, 𝑠, 𝑎 ∈ zip(𝑀, 𝑆,𝐴)}
8 Def top(𝑋𝜓 , quantity):
9 sorted← sort(𝑋𝜓 , key = 𝐹𝜓 , order = descending)

10 return sorted[:quantity]

11
get_init and get_local are discussed in Section 4

12 Def mine_ps(get_init, get_local, pop_size, qty_ret):
13 𝑋𝜓 ← get_init()

14 archive← {}
15 while termination_criteria_not_met do
16 selected← TournamentSelection(𝑋𝜓 )
17 localities← ⋃

𝑥𝜓 ∈ seleted get_local(𝑥𝜓 )
18 archive← archive ∪ selected
19 𝑋𝜓 ← (𝑋𝜓 ∪ localities) ∖ archive
20 𝑋𝜓 ← top(𝑋𝜓 , pop_size)
21 return top(archive, qty_ret)

Algorithm 2: Pick & Merge algorithm

1 Def merge(𝑥𝜓 , 𝑦𝜓 ):
2 return 𝑧𝜓 𝑠 .𝑡 . 𝑧

𝜓

𝑖
= 𝑥

𝜓

𝑖
if 𝑥𝜓

𝑖
≠ * else 𝑦𝜓

𝑖

3 Def merge_from(𝑋𝜓 , limit = ⌈
√
𝑛⌉):

4 𝑌𝜓 ← copy(𝑋𝜓 )
5 𝑥𝜓 ← **..**

6 added← 0
7 while 𝑌𝜓 ≠ ∅ & added < limit & has_*(𝑥𝜓 ) do
8 𝑦𝜓 ←weighted_random_choice(𝑌𝜓 )

9 𝑌𝜓 ← 𝑌𝜓 ∖ {𝑦𝜓 }
10 if mergeable(𝑥𝜓 , 𝑦𝜓 ) then
11 𝑥𝜓 ← merge(𝑥𝜓 , 𝑦𝜓 )
12 added← added + 1

13 return 𝑥𝜓

14 Def fill_gaps(𝑥𝜓 ):
15 for 𝑥𝜓

𝑖
∈ 𝑥𝜓 do

16 if 𝑥𝜓 = ∗ then
17 𝑥

𝜓

𝑖
← random.randrange(cardinalities[𝑖])

18 return as_solution(𝑥𝜓 )

19 Def generate_via_pick_and_merge(𝑋𝜓 , merge_limit):
20 return fill_gaps(merge_from(𝑋𝜓 , merge_limit))



GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Catalano et al.

problem introduced here to test whether the algorithms struggle
with overlapping building blocks. The fitness function of the prob-
lem is similar to Royal Road, but the groups of interest are allowed
to overlap and to consists of all 0’s as well. The cliques of RR and
RRO consist of 4 bits, whereas Trap-k will have cliques of 5 bits.

6.2 Setup
Each algorithm configuration is executed 100 times, with a freshly
generated 𝑃Ref, and restricted to return at most 50 PSs.

T1 consists of Hyper-parameter tuning the PS Miner in PS popu-
lation size, use of archive and other aspects, with fixed |𝑃Ref | = 104

(uniformly randomly generated) and 𝐹𝜓 evaluation budget of 105.
A run is considered successful if all the target PSs of the problem
are returned.

T2 investigates the effect of 𝑃Ref on the miner, based on its size
and the generations it has been evolved for.

Finally, in T3 the entire system is used: a run consists of finding
the PS Catalog using the PS miner (configured using T1 and T2)
and passing it to Pick & Merge to generate 100 full solutions. The
total evaluation budget varies, with differing percentages being
dedicated to 𝐹𝜓 evaluations. A run is considered successful when
the global optima is found.

7 CONCLUSION
The results of the experiments are the following:
• RQ1: The best approach to finding PSs was specialization:
to start from empty items and gradually fix the variables.

Generations PRef has been evolved for
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Total F + F^ψ Evaluations

%
 o

f r
un

s 
th

e 
gl

ob
al

 o
pt

im
a 

w
as

 fo
un

d

0%

25%

50%

75%

100
%

5000 10000 15000 20000 25000 30000

RRO Trap-k RR

Figure 3: Plot for T3, percentage of runs where the global
optima was found, with 𝐹𝜓 consuming 50% of the budget.

• RQ2: The proposed PS mining algorithm performs better on
a large unevolved population
• RQ3 Applying Pick & Merge on the PS Catalog allows for
the global optima to be found consistently, especially when
𝐹 budget is close to the 𝐹𝜓 budget.

The system proposed in this paper is capable of finding the
intended PSs for the benchmark problems, and to solve the original
optimization problem, at the cost of extra 𝐹𝜓 evaluations. Source
code for the system can be found at [2], and an extended version of
this document can be found at [3].

8 FUTUREWORK
Overall, the system could be readapted to be a full EDA, for example
by feeding the outputs of pick_and_merge into 𝑃Ref.

The problems discussed in this document are admittedly simpler
than real-world problems, and therefore it would be useful to
see how well the PSs perform with some inherently inelegant
problems, such as rostering and scheduling tasks.
Acknowledgment: PhD project supported by The Data Lab and
BT Group plc. Many thanks go to the patience of my supervisors.
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