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Abstract 

Research advancement in polymer flooding for Enhanced Oil Recovery (EOR) has been 

growing over the last decade. This growth can be tied to increased funding towards the 

development of superior polymers such as hydrophobically associating polymers when oil 

prices were high and increasing concern that “easy oil”  has been exploited with the focus 

now on “difficult to extract”  oil. The use of hydrophobically associating polymers for EOR 

was discussed along with its limitations. In this context, the improved rheological properties 

of associating polymers cannot only be linked to the molecular structures arising from 

different synthesis methods. Equally, external parameters similar to conditions of oil 

reservoirs affect the rheological properties of these polymers. As such, this review placed 

critical emphasis on the molecular architecture of the polymer and the synthesis route and this 

was linked to the observed rheological properties. In addition, the influence of some key 

oilfield parameters such as temperature, salinity, pH, and reservoir heterogeneity on the 

rheological behaviour of hydrophobically associating polymers were reviewed. In this 

respect, the various findings garnered in understanding the correlation between polymer 

rheological properties and oilfield parameters were critically reviewed. For associating 

polymers, an understanding of the molecular architecture (and hence the synthesis method) is 

crucial for its successful design. However, this must be theoretically linked to the preferred 

EOR application requirements (based on oilfield parameters).   

Keywords: Enhanced Oil Recovery; Polymer Flooding; Associating Polymers; Associative 

Polymers; Hydrophobic Interactions; Oilfield Polymers   
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1. Introduction    

Global energy demand in the 21st century is heavily reliant on crude oil despite the decline in 

discovery of oil reservoirs (Sabhapondit et al., 2003). Research into the use of alternative 

sources of energy in place of that generated from crude oil is proven but yet to be fully 

developed to meet the world’s burgeoning energy needs. Hence, the present energy demand 

is met by a mix of traditional energy sources (from crude oil) and alternative energy sources 

(such as wind or solar) (Wever et al., 2011). “Easy to Extract Oil” which mainly represents 

oil recovered by conventional primary and secondary means is generally running out. It is 

estimated that 7.0 x 1012 barrels of “Difficult to Extract Oil” will remain in matured fields 

after conventional methods have been utilized (Wever et al., 2011; Wever et al., 2013; Li et 

al., 2017). This amount of oil remaining represents the focus of various tertiary recovery 

schemes for which Enhanced Oil Recovery (EOR) constitutes the umbrella (Silva et al., 

2018; Sharafi et al., 2018). With over a trillion barrels of oil estimated to remain globally, 

multinational oil companies have increased their research and development investment over 

the last decade. When oil prices were high, the EOR researches conducted by oil companies 

were armed with huge budgets. This resulted in significant advances through the 

developments of new chemicals in the form of hydrophobically associating polymers, 

surfactants, and gels (Taylor and Nasr El-Din, 1998; Levitt and Pope, 2008; Wever et al., 

2013; Al-Sabagh et al., 2016; Raffa et al., 2016). China remains the largest employer of 

polymer flooding for EOR (Zhong et al., 2017). The Shengli and Daqing fields in China were 

effectively produced using polymer flooding (Bai et al., 2018). It was estimated in 2015 that 

the cumulative oil reserve produced using polymer flooding in China was one billion tons 

(1	x	10�	tons) which is about 13 % of the Original Oil in Place (OOIP) (Liao et al., 2017; Bai 

et al., 2018). Furthermore, polymer-flooding technology was applied in heavy oil recovery in 

the Pelican Lake field in Alberta, Canada with oil viscosity in the range of 1000 – 2500 cp. 
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This represents a major breakthrough in heavy oil production where thermal recovery 

mechanisms have failed (Delamaide et al., 2013; Li et al., 2018). Recently, Chevron 

commenced polymer flooding at the Captain Field in the North Sea. The offshore location of 

the field required that the polymer was procured in liquid emulsion (Beckham, 2018). The 

key objective of using polymers is to increase the viscosity of the aqueous phase after 

secondary recovery scheme in matured oil reservoirs (Abidin et al., 2012; Kamal et al., 2015; 

Silva et al., 2018). This is achieved through improved microscopic sweep and displacement 

efficiency (Sun et al., 2015; Akbulut and Temizel, 2017; El-Hoshoudy et al., 2017; Li et al., 

2018). Polymers are classified as viscoelastic in nature with shear thinning and thickening 

behaviour in porous media (Yin et al., 2006; Zhang et al., 2008; Gong and Zhang, 2009; 

Skauge, et al., 2018). A water-soluble polymer should characteristically withstand the 

inherent conditions associated with an oil reservoir. This is particularly important as oil 

reservoirs are mostly under high salinity, temperature and divalent ion concentration 

(Oruwori and Ikiensikimama, 2010; Wever et al., 2011; Lai et al., 2013; Choi et al., 2014; Al-

Sabagh et al., 2016; Raffa et al., 2016; Das et al., 2017; Sarsenbekuly et al., 2017; Bai et al., 

2018; Silva et al., 2018). Furthermore, the search for new oil reserves has pushed the bounds 

of the industry into deep offshore locations which are under extreme reservoir conditions. 

Moreover, polymers employed should also be able to withstand lengthy injection time and 

shear. Beyond the identified oilfield parameters, offshore application of polymer flooding 

requires it to satisfy the requirements of offshore platforms (Zhou et al., 2008; Gao, 2011; 

Kang et al., 2016). The lifespan of offshore platforms is limited and this requires oilfield 

operators to identify an effective and efficient EOR scheme to extract oil (Zhou et al., 2008). 

Therefore, application of polymer flooding is often conducted early in the development of an 

oil reservoir (Wei et al., 2007; Zhou et al., 2008; Delamaide et al., 2013).  
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The field of polymer flooding still remains thought provoking due to the broad variety of 

polymers which have been developed and studied at academic and industrial level for over 

two decades (Wever et al., 2011). Undeniably, hydrophobically associating polymers remains 

a fundamental paradigmatic polymer product developed over this period of time. Scientific 

studies which have linked hydrophobically associating polymers to chemical flooding have 

focused on its sustained thickening ability under conditions including temperature, salinity 

and ion concentration. This was explained by the intermolecular association between the 

polymer chains at a concentration above the critical aggregation concentration (CAC) (Figure 

1). The CAC of hydrophobically associating polymers can be described as the threshold 

concentration that characterizes the behavior of the polymers. Below the CAC, 

intramolecular interaction within the polymer chain dominates the rheology (Taylor and Nasr 

El-Din, 1998; Yabin et al., 2001; Feng et al., 2005; Lu et al., 2010; Afolabi, 2015). This 

theoretical understanding has paved the way for the potential application of hydrophobically 

associating polymers for EOR operations. However, this common understanding has been a 

subject of intellectual probing and discussion in the last decade. This is evident from the 

numerous scientific publications on the subject of associating polymers over this period. The 

last dedicated review article on hydrophobically associating polymers for enhanced oil 

recovery by Taylor and Nasr El-Din (1998) has been made obsolete by new discoveries 

emanating especially from field trials. In 2005, hydrophobically associating polymers were 

successfully tested for an EOR scheme in Bohai Bay, China. The incremental oil recovery 

was recorded to be 25,000 m3 with water cut decreasing from 95 to 54 % (Wei et al., 2007; 

Kamal et al., 2015). More recently, production from the Perm field in Russia was 

implemented using hydrophobically associating polyacrylamide in 2013 (Patokina, 2015). In 

2018, a binary system consisting of an associative polymer and surfactant was evaluated for a 

flooding pilot scheme in Guan-109 faulted blocked reservoir in Dagang, China (Guo et al., 
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2018). The valuable findings from these field trials can form the basis of future research 

targeted toward the full implementation of hydrophobically associating polymers. For 

example, recent studies on the adsorption phenomenon associated with hydrophobically 

modified polymers have been attributed to some “minor polymeric species” (Dupuis et al., 

2011; Seright et al., 2011). As such, new knowledge is required on the origin of these species 

and how they can be effectively filtered from the bulk polymer. Consequently, this review 

focuses on the following: 

a) Developmental strides gained through the synthesis of new polymers such as 

hydrophobically associating polymers and comparison of its solution properties with 

conventional polymers; 

b) Explanation of the correlation between the solution properties and the polymer molecular 

structure; 

c) The impact of oilfield parameters such as salinity, temperature, ion concentration, shear 

and reservoir heterogeneity on thickening properties of hydrophobically associating 

polymers.  

2. Hydrophobically Associating Polymers 

Conventional polymers such as polyacrylamide (PAM), hydrolyzed polyacrylamide (HPAM) 

and Xanthan Gum employed for EOR operations have a number of challenges associated 

with them. PAM/HPAM polymers are susceptible to loss of viscosity under extreme reservoir 

conditions. On the other hand, while Xanthan Gum may withstand high salinity conditions, 

its biodegradability has hampered its sustained use for EOR operations. These strengths and 

weaknesses are reflected in their field applications as shown in Table 1. From Table 1, 

Xanthan Gum and hydroxyethyl cellulose (HEC) show good field applicability under high 

salinity conditions compared to HPAM/PAM. Above all, the need to mitigate the challenges 

associated with the use of PAM/HPAM and biodegradable polymers for EOR purpose has 
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necessitated increased research into chemical derivatives of polyacrylamide (Taylor and Nasr 

El-Din, 1998; Guo et al., 2012; Ye et al., 2013; Chen, 2016; Dai et al., 2017). An important 

derivative is a hydrophobically associating polyacrylamide (HAPAM). The underlying goal 

for these derivatives was to improve the thickening capability of polyacrylamides under harsh 

reservoir conditions such as high temperature high salinity (HTHS) (Wever et al., 2013; 

Chen, 2016; Dai et al., 2017). The improved thickening capability of associative polymers 

ensures that it has a higher mobility reduction compared to HPAM polymers. This high 

mobility reduction by associative polymers translates to higher incremental oil recovery 

compared to HPAM polymers. Recently, it has been shown that for viscoelastic polymers, 

there is a transition from steady laminar flow to a strongly fluctuating flow consistent with 

elastic turbulence (Clarke et al., 2015; Cui et al., 2016). The onset of this elastic turbulence 

(or flow fluctuations) has been identified as the mechanism behind the additional 

mobilization of trapped oil (capillary desaturation through destabilization of trapped oil). At 

flow rate greater than the onset for shear thickening, extensional viscosity cannot be taken as 

the reason for additional oil recovery when the capillary number (Ca) is less than the 

threshold (Ca ≤ 1). Thus, the degree of trapped oil mobilization is a function of the extent of 

elastic turbulence generated. Therefore, the incremental recovery of associating polymers 

could be due to the additional effect of intermolecular association (hydrophobic interaction) 

on elastic turbulence for flow in porous media. Laboratory studies on HAPAM as shown in 

Table 2 are numerous however, comparison with Table 1 indicate limited field application. 

More importantly, this comparison indicate that with the level of scientific research on 

HAPAM, it would eventually replace HPAM for polymer flooding operations. These 

associative polymers are synthesized or produced with the incorporation of hydrophobic 

comonomers along the polymer backbone. Accordingly, these hydrophobic monomers 

contribute to the overall molecular weight of the polymers. In addition, HAPAM polymers 
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are characterized by a CAC (see Figure 1). The enhanced rheological properties of HAPAM 

is obvious above the CAC, which can be traced to the intermolecular association between 

polymer chains (Zhu et al., 2014; Cui et al., 2016; Wever et al., 2011). However, these 

interactions between polymer chains above the CAC is dependent on the distribution of the 

hydrophobic comonomers along the polymer chain. These distributions can be random or 

block-like and it is determined by the conditions of the synthesis procedure (Wever et al., 

2011). As mentioned earlier, the method of synthesizing HAPAM polymers significantly 

influences the hydrophobe distribution on the polymer chain. The chemical synthesis of 

polyacrylamide is via a free radical polymerization (Giz et al., 2001; Qavi et al. 2014; 

Rintoul, 2017; Yamamoto et al., 2017; Shatat and Niazi, 2018). Notwithstanding, the 

insoluble nature of the hydrophobic comonomer has led to the chemical modification of the 

synthesis route for HAPAM polymers (Zhang et al., 2017). Hence, the different methods 

available for synthesizing HAPAM polymers include homogeneous, heterogeneous and 

micellar copolymerization (Taylor and Nasr El-Din, 1998; Wever et al., 2011). Each method 

ensures the solubility of the hydrophobe with either a surfactant or co-solvent as in the case 

of micellar and homogenous copolymerization respectively. However, the heterogeneous 

copolymerization method does not use any additive in ensuring the dispersion of the 

hydrophobic comonomer. The most widely used polymerization technique for HAPAM is the 

micellar copolymerization method in comparison with the other techniques (Candau et al., 

1994; Candau and Selb, 1999; Taylor and Nasr El-Din, 1998; Wever et al., 2011; Chen, 

2016). Significantly, the key advantage of this method is that the produced polymer ends up 

with a block-like distribution of the hydrophobic comonomer on the polymer chain.  

However, this is particularly dependent on the molar ratio of the surfactant employed to the 

hydrophobic comonomer (Candau et al., 1994; Taylor and Nasr El-Din, 1998; Candau and 

Selb, 1999; Wever et al., 2011; Kamal et al., 2015). A molar ratio involving a single 
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hydrophobic unit contained in a single micelle would increase the randomness of the 

distribution of hydrophobe on the polymer chain. On the other hand, where the number of 

hydrophobe units contained in a particular micelle is greater than one, a block-like 

distribution of the hydrophobe would be obtained. Alternatively, while micellar 

copolymerization uses a surfactant in solubilizing the hydrophobe, another modification to 

the process involves the use of a polymerizable surfactant (Wever et al., 2011). The use of a 

polymerizable surfactant ensures that the purification process of the final polymer product for 

removal of surfactants may not be required. Nevertheless, the challenge with this approach 

lies in the identification of the desired polymerizable surfactant (Wever et al., 2011). Other 

parameters which affect the synthesis of HAPAM polymers via micellar copolymerization 

include type of initiator, temperature, type and content of surfactant and the molar ratio of 

monomers (Candau et al., 1994; Taylor and Nasr El-Din, 1998; Wever et al., 2011; Kamal et 

al., 2015). Another synthesis approach to HAPAM polymers involves the technique of 

template copolymerization (Yan and Row, 2006; Hood et al., 2014; Feng et al., 2017; 

Szymański et al., 2018). A template predefines the molecular configuration of the associating 

polymer, which ensures that the block-like distribution of the hydrophobe constituents is well 

ordered. The consequence of this is that the block of hydrophobe content on the polymer 

chain can be extensive. The thickening capability of water-soluble polymers relates to its 

hydrodynamic volume in aqueous solution (Deen 2012; Chen, 2016; Feng et al., 2017). For 

PAM/HPAM polymers, this is dependent on electrostatic repulsion between charged 

carboxylate groups along the chain (Abidin et al., 2012; Choi et al., 2015; Gong et al., 2017). 

In the case of HAPAM, this can be achieved using zwitterion monomers, which have 

negative and positive charges. The thickening ability is controlled by external parameters on 

the polymers such as ionic strength and pH (Nesrinne and Djamel, 2017). However, polymers 

for EOR applications would require that the thickening ability of the polymers is independent 
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of/or can tolerate these conditions. Therefore, having HAPAM polymers with charge 

distribution along the polymer chain would ensure control over the rheology in aqueous 

solution (Wever et al., 2011). In addition, the associative behavior of HAPAM polymers can 

be increased by the amount of hydrophobe (hydrophobicity) present in the polymer chain. 

Whereas, when the hydrophobe length on the polymer chain becomes too long, the solubility 

of the polymer is affected and this may result in polymer dissolution challenges for field 

application. Consequently, there is a need for an optimum hydrophobe content when 

synthesizing HAPAM polymers. The determination of this optimum concentration of 

hydrophobic comonomer required has not been a subject of extensive research. However, the 

synthesis of associating polymers for EOR application would require the knowledge of the 

predefined conditions of oil reservoirs. This is important as an excess amount of hydrophobe 

content may have far-reaching implications when the solubility of HAPAM polymers is 

considered. In like manner, the thickening properties of HAPAM polymers can be influenced 

by the introduction of water-soluble chemical spacers in the molecular configuration (Li-Bin 

et al., 2010; Wever et al., 2011). The chemical spacers are there to link the hydrophilic 

backbone of the polymer to the hydrophobic group. Li-Bin et al. (2010) investigated the 

effect of ethylene oxide spacer length on the solution properties of water‐soluble 

hydrophobically associating poly (acrylic acid-co-Rf-PEG Macromonomer) containing 

fluorocarbon. From the rheological study carried out, the authors discovered that the 

hydrophobic association increased with ethylene-oxide spacer length. This, in turn, influences 

the thickening performance of the polymer with a similar result on the effect of spacer length 

reported by Noda et al. (2001). Characterization of the hydrophobic interactions have been 

investigated extensively using pyrene, which is a probe employed for fluorescence 

spectroscopy (Prazeres et al., 2001; Tang et al., 2003; Pandey et al. 2003; Bains et al., 2011; 

Mei et al., 2016). The low solubility of pyrene in water and its unique emission spectrum 
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makes it the preferred choice in the study of hydrophobic interactions in molecules (Siu and 

Duhamel, 2008; Jordan and Gibb, 2015). The fluorescence spectroscopy studies on 

hydrophobically associating polymers using pyrene have shown that there are three distinct 

flow regimes characterizing such polymers (Gong and Zhang, 2009; Duhamel, 2012). At 

polymer concentration below the CAC, the associative interactions are more intramolecular 

in nature. It has been discovered that the onset of hydrophobic association between polymer 

chains occurs at concentration values closer to the CAC (Taylor and Nasr El-Din, 1998). 

Using fluorescence spectroscopy, this is manifested in a shift in the emission spectrum 

associated with the solubilization of pyrene by hydrophobic clusters. Between this onset 

concentration value and the CAC, there exists some form of hydrophobic interactive 

influence but its dominant effect is minimal. Although CAC is regarded as the start of 

associative characteristics in hydrophobically associating polymers, the proper 

characterization of the onset concentration value mentioned earlier may change this 

knowledge. Furthermore, the minimal hydrophobic clusters may not solubilize pyrene enough 

for a unique emission spectrum to be detected. This onset concentration value differs from 

the CAC based on the extent of hydrophobic association and may be classified as a transition 

period. At polymer concentrations above the CAC, there tends to be an extensive network of 

intermolecular association between polymer chains, which leads to an increase in the polymer 

viscosity. This is captured in fluorescence spectroscopy by a characteristic emission 

spectrum, which is not the case at the onset concentration value. Table 3 presents some of the 

comonomers usually employed in modifying the rheology of both acrylamide-based polymers 

and other types of polymers made from the different monomeric units. Additionally, these 

comonomers ensure that the modified polymer is resistant to conditions, which may initiate 

chemical and mechanical degradation. Moreover, these comonomers ensure that the modified 

polymer maintains a substantial part of its hydrodynamic volume, hence its viscosity, under 
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the conditions obtainable in an oil reservoir (Kamal et al., 2015; Das et al., 2017; 

Sarsenbekuly et al., 2017; Bai et al., 2018; Silva et al., 2018). Characterization of the 

molecular architecture of HAPAM polymers have been conducted using infrared (IR) 

spectroscopy and nuclear magnetic resonance (NMR) spectra (Lai et al., 2013). This allow 

determination of the chemical bonding arising from the presence of certain functional groups. 

The use of FTIR alone cannot give a complete description of the molecular structure of a 

polymer, hence it is used along with NMR for a complete characterization of the molecular 

configuration. This was the case when Quan et al. (2019) characterized a hydrophobically 

associating polymers which was abbreviated as HPAAT. The polymer was synthesized from 

acrylamide (AM), allyl polyethylene-1000 (APEG), octadecyl dimethyl allyl ammonium 

chloride (DMDAAC-18) and sodium styrene sulfonate (SSS) using FTIR and 1H-NMR 

spectroscopy. Figure 2 shows the FTIR spectrum of the synthesized polymer with the 

absorption bands at 1715 cm-1 and 3448 cm-1 corresponding to C=O and N-H stretching 

vibrations of the amide groups. The peaks at 778 cm-1 and 1414 cm-1 corresponds to benzene 

ring and S=O which confirms the presence of SSS. Furthermore, the peak at 1128 cm-1 

shows C-O-C stretching vibrations which confirms the existence of APEG in the associative 

polymer HPAAT. The peaks at 2920 cm-1 and 2855 cm-1 indicates the existence of 

hydrocarbon groups –CH3 and –CH2- in the polymer. The result of the characterization study 

using FTIR was consistent with molecular design structure of the polymer as shown in Figure 

3. Equally important is the 1H-NMR analysis of the HPAAT polymer carried out by the 

authors. The analysis indicate a shift of the hydrogen spectrum of the associative polymer in 

the following manner: 1.09(m, –CH3), 1.25–1.36 (c, –(CH2)15–), 1.62 (r, l, g, –CH2–CH–C–

O–NH2, –CH2–CH–CH2–, –CH2–CH–C), 1.71 (q, –N–CH2–CH2–), 2.14 (n, b, –CH–CH2–O–

, –CH–CH2–N), 2.26 (s, –CH–C–O–NH2), 3.22 (z, x, –n–CH2–, CH2–N–), 3.30 (j, –N–CH3), 

3.63 (k, –CH2–O–, –CH2–CH2–O–), 7.21 (t, –NH2), 7.67 (h, –CH–CH–C). Similarly, El-
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Hoshoudy et al. (2015) used FTIR,  13C-NMR, 1H-NMR, scanning electron microscope 

(SEM), thermogravimetric analysis (TGA) and high resolution transmission electron 

microscope (HRTEM) to characterize a HAPAM polymer (Acrylamide-4-Dodecyl-

benzenesulfonate-1-vinylimidazol-3-ium-Divinyl sulfone). Using a similar approach to Quan 

et al. (2019), the authors used the FTIR and 1H-NMR spectra to propose a chemical structure 

for the associative polymer. Similarly, the SEM image of the studied HAPAM polymer 

indicated a 3-dimensional structure arising from intra and intermolecular association between 

polymer chains. The authors concluded that the mesoporous structure of the polymer surface 

from the SEM analysis can be attributed to the crystallinity of the polymer due to the polar 

amide group which ensures a secondary attractive force arises from hydrogen bonding. This 

was also the case for studies carried out on types other polyacrylamide based hydrophobically 

associating polymers (El-Hoshoudy et al., 2017). However, Sheng (2011) reported that the 3-

dimensional structural network formed by hydrophobically associative polymers occurs due 

to a combination of strong electrostatic force, hydrogen bonding and van der Waals forces. 

Other forms of associating polymers based on ethoxylated urethane (EUR), 

hydroxyethylcellulose (HEC) derivatives and alkali swellable emulsion (ASE) have been 

described in literature (Tam et al. 1998; Xu et al. 1996; Kastner et al. 1996; Ihara et al. 2004; 

Kawakami et al. 2006; Zhao and Chen, 2007; Kjoniksen et al. 2008; Wever et al. 2011). 

Some of these polymers were produced because of the demand for eco-friendly materials. 

Associating polymers based on EUR are classified as telechelic associative polymers with 

enhanced rheological features even at low concentration and molecular weight. Moreover, 

these unique characteristics have made hydrophobically modified EUR polymers the focus of 

research for various commercial applications (Wever et al. 2011; Wang et al. 2016). The 

synthesis of hydrophobically modified EUR polymers results in a hydrophilic polyethylene 

glycol (PEG) main chain with hydrophobic groups attached to the polymer chain through the 
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urethane functional group (Barmar et al. 2010; Wang et al. 2016). Additionally, the 

associative behavior in these polymers occurs at low concentration values of CAC. Above the 

CAC, the molecular arrangement of these polymers in aqueous solution ranges from flower-

like micelles with micellar cores of hydrophobes to flower-loops of the hydrophilic main 

chain. Moreover, there is a critical percolation concentration aside the CAC where polymer 

viscosity increases. This arises from the formation of a network of micelles containing 

hydrophobes connecting together (Wang et al. 2016). However, the use of hydrophobically 

modified EUR polymers for polymer flooding is not known despite its enhanced rheological 

attributes. Similarly, hydrophobically modified ASE polymers made up of three components 

mainly methacrylic acid, ethyl acrylate, and a hydrophobic group is insoluble under low pH 

conditions. Therefore, its solubility under high pH conditions would be beneficial for 

polymer flooding in high salinity oil reservoirs. Overall, the use of hydrophobically 

associating EUR, HEC, and ASE for enhanced oil recovery is not well known. Currently, the 

domain on polymer research is focussed towards the application of HAPAM polymers for 

EOR operations. As a result, the remainder of this review would be focussed on 

hydrophobically associating polyacrylamide. 

3. Effect of Reservoir Conditions on Hydrophobically Associating Polymers    

As mentioned before, the rheological behavior of hydrophobically associating 

polyacrylamide is governed by CAC. The hydrophobic blocks on the polymer chain confer 

on it its unique solution properties. Accordingly, at low polymer concentrations, which 

represents the dilute region, the viscosity of the polymer is low (as well as its hydrodynamic 

volume). Here, intramolecular association dominates the rheological behavior. In contrast, 

high polymer concentration above the CAC (semi-dilute region) would bring about a sharp 

increase in polymer hydrodynamic volume due to the intermolecular association between 

polymer chains. Consequently, the viscosity of HAPAM is increased and application of these 
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polymers would require that their solution properties arising from hydrophobic interactions 

withstand the conditions inherent in an oil reservoir. 

3.1. Effect of Salinity and Hardness 

Ordinarily, increasing concentration of salts and divalent ions causes a reduction in the 

viscosity of HPAM due to the screening effect of the cations present in solution. However, 

the rheological behavior of HAPAM polymers under increasing salinity and divalent ion 

concentration often exhibits different trends depending on a number of factors such as the 

type of hydrophobe, the molecular structure of the HAPAM polymer and polymer 

concentration (Jincheng et al. 2018). Deng et al. (2014) conducted the synthesis of 

acrylamide based associating polymer using sodium 2-acrylamido-2-methylpropanesulfonic 

sulfonate as the hydrophobic comonomer. The viscosity of a 1 wt.% solution of the prepared 

HAPAM polymer decreased with increasing NaCl concentration (up to 0.2 wt.% NaCl) under 

various shear rates. Between 0.2 and 0.4 wt.% NaCl, the viscosity of the associating 

polyacrylamide solution increased. Likewise, Quan et al. (2016), El-Hoshoudy et al. (2017) 

and Sarsenbekuly et al. (2017) reported similar trends with HAPAM polymers in solutions 

containing monovalent and divalent ions. According to El-Hoshoudy et al. (2017), 

acrylamide based poly (4-dodecyl-benzenesulfonate-3-[5-(butane-2-sulfonyl)-3-carbamoyl-1-

methyl-heptyl] imidazol-3-ium) showed an initial decrease in polymer viscosity with NaCl 

concentration after which the viscosity increased with increasing NaCl concentration. The 

same effect was also reported for HAPAM polymers reported by Sarsenbekuly et al. (2017) 

and Quan et al. (2016). This phenomenon associated with HAPAM polymers was attributed 

to: 

a) Screening/Shielding Effect: The presence of cations in salts reduce the electric double 

layer and hydration layer thereby reducing the electrostatic repulsion between charged 

groups on the polymer chain (Quan et al. 2016; El-Hoshoudy et al. 2017; Sarsenbekuly et 
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al. 2017). In effect, chain contraction is experienced and a reduction in the hydrodynamic 

volume of the polymer in solution. This initial effect was responsible for the reduction of 

the polymer viscosity. 

b) Hydrophobic Associative Effect: A further increase in the concentration of salt and 

divalent ions would ensure contact of the hydrophobic groups on the polymer chain. The 

effect of this was the formation of aggregates of polymer chains (El-Hoshoudy et al. 

2017). The impact of this aggregation of polymer chains was that it nullifies the initial 

screening effect, which brought about the reduction in the hydrodynamic volume of the 

polymer through a contraction. As a result, the polymer is stretched and its hydrodynamic 

volume was increased.  

The various polymer solutions containing salts described above can simply be prepared by 

dissolving the polymer in an appropriate amount of salt/divalent ion solution. Other 

approaches include adding a sufficient quantity of salt to an already prepared polymer 

solution or adding salt water to the polymer solution. Nevertheless, the approach used in 

preparing HAPAM polymers both in aqueous and brine solutions has been demonstrated to 

affect the rheological behavior of the HAPAM polymers (Maia et al. 2005; Wever et al. 

2011). Maia et al. (2005) synthesized an acrylamide-N, N-dihexylacrylamide copolymer and 

evaluated its rheological behavior under monovalent (Na�) ion concentration. The three 

procedures mentioned earlier were applied by the authors in evaluating how the mode of 

contact of HAPAM polymers with Na� ions affects its rheology. The copolymer exhibited 

different tolerances to Na� ions. Firstly, with the copolymer dissolved in salt solution, the 

viscosity of the polymer solution decreased with increasing NaCl concentration. This was 

ascribed to the screening effect of the cations on the charged moieties present on the polymer 

chain. Secondly, when salt powder was added to the copolymer solution, the viscosity 

increased up to a maximum after which there was a reduction. The authors in explaining why 
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the viscosity passed through a maximum identified the presence of surfactant in solution. 

Thirdly, when salt water or brine solution was added to the polymer solution, the viscosity of 

the polymer increased with increasing salinity. The authors attributed this third phenomenon 

to “Easiness of Interaction” when salt and polymer exist already in solutions, which leads to 

the formation of a network of polymer chains.  Al-Sabagh et al. (2016) evaluated the effect of 

divalent ions (Ca�) at 30 0C and shear rate of 6 s�� on HAPAM polymers with different type 

and quantities of hyrophobic monomers. A general observation was that the associative 

effects of the polymers (or cation resistance) can only be maitained at low concentrations of 

divalent ions compared to monovalent ions. This was the case irrespective of the type of 

hydrophobic content of the polymer. This can be expalined in terms of the strong sheilding 

effect of divalent ions compared to monovalent ions. Asides the findings of the authors, there 

is limited understanding of this phenomenon associated with HAPAM polymers. In addition 

to the method of preparation, the concentration regime (dilute or semi-dilute) of 

hydrophobically associating polymers plays a role in its salt tolerance (Kamal et al. 2015). In 

general, the salt-thickening ability of associating polymers in brine solutions can be 

maintained up to a particular concentration of monovalent or divalent ion depending on the 

type of hydrophobic comonomer employed (Wyatt et al. 2011; Chen et al., 2012; Zhong et al. 

2014; Kamal et al. 2015). However, beyond this salt concentration value, the polymer 

viscosity thins out with increasing salinity in the presence of monovalent and divalent ions. 

The ensuing effect sometimes is the precipitation of HAPAM polymers out of solutions 

(salting-out effect) and this can impact on the polymer concentration required. With polymer 

concentration often limited in high permeable reservoirs, improving the salt-thickening 

capability of hydrophobically associating polyacrylamide had resorted to cross-linking of the 

polymer chains (Zhong et al. 2014). The essence of cross-linking of HAPAM polymer chains 

is to: 
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a) Offset the effect of having a long hydrophobic group on the polymer backbone which 

might minimize its solubility in solution. 

b) Decrease the volume available per molecule without necessarily increasing the polymer 

concentration.  

c) Ensure that salt-thickening capability of HAPAM polymers is enhanced (over a wide 

range of salinity) within a predetermined polymer concentration value in permeable 

formations. 

The molecular conformation of the cross-linked polymer enables it to have an expanded 

configuration compared to linear associative polymers without side chains. This ensures the 

average diameter of the polymer aggregates is higher under monovalent or divalent 

conditions. Therefore, the salt-thickening capability of the associative polymer is increased 

when cross-linked. However, the resulting molecular weight of cross-linked polymers may be 

too high as control over the degree of crosslinking can be difficult to maintain. This may 

subsequently cause formation damage in sections of oil reservoirs with low permeability. 

With applied polymer concentration in most permeable formations constrained in order to 

ensure salt tolerance, a proper understanding of CAC under aqueous and high salinity 

conditions is required (Zhong et al. 2014). The salinity effect on the CAC of the some 

polymers from the work of Rashidi et al. (2010) are presented in Table 4. As seen from the 

table, the CAC of the polymers were observed to increase with the degree of salinity. The 

increment in CAC can be ascribed to an increase in charge density on the polymer chain 

which decreases polymer hydrodynamic volume. As such, a higher threshold value of CAC 

would be required for a meaningful hydrophobic associative effect to take place. To express 

this, a mathematical relationship by Hayahara and Takao (1968) can be used as shown in 

Equation (1): 

V� = ��
����

                  (1) 
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Where V� is the volume available per polymer chain, M� is the molecular weight of polymer, 

C� is the CAC of the polymer and N� is the Avogadro’s number. An increase in the CAC, 

(denoted by C�), would bring about a decrease in the volume available per polymer chain, V� 

and vice versa. When V� is reduced polymer chains come together and the hydrophobic 

associative effect is enhanced. This incremental effect of salinity on CAC was also validated 

by the work of Saeed et al. (2017). However, the implication of this on EOR operations 

would mean:  

a) High polymer concentration would be needed, if not above the limit for EOR operations, 

and this could be detrimental to the economics of the flooding process; 

b) Polymer injectivity would be affected and this is often constrained by formation fracture 

pressure.  

Ultimately, a salt-tolerant HAPAM polymer is one whose thickening properties are enhanced 

under increasing salinity. However, the choice of a particular HAPAM for high salinity 

condition depends on a number of factors inherent in both the polymer architecture (and 

hence its synthesis method) and reservoir. As such, the applicability of associating polymers 

for EOR operations would essentially be specific to the reservoir conditions.  

3.2. Effect of Temperature 

Thermal effects on the rheological properties of HAPAM polymers have been reported 

widely in the literature (Taylor and Nasr El-Din, 1998; Hourdet et al., 2005; Al-Sabagh et al., 

2016; Dai et al., 2017; Bai et al., 2018). Various HAPAM polymers with different 

hydrophobic moieties on the polymer backbone have been reported with diverse response 

under varied temperature conditions. However, the temperature dependence of HAPAM 

polymers is affected by the concentration regime (dilute and semi-dilute regime). When 

polymer concentration is less than the CAC of the HAPAM polymer, there is a decrease in 

polymer viscosity with increasing temperature. Yang et al. (2015) demonstrated this using 
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synthesized hydrophobically associating cationic perfluorinated polyacrylamide (HACFP). 

The polymer viscosity at a concentration of 0.2 wt.% (< CAC value of 0.24 wt.%) decreased 

with temperature over the range of 20 – 85 0C. The authors attributed this phenomenon to 

weak intermolecular associative effect between hydrophobic groups in the dilute 

concentration regime (C < CAC, where C is polymer concentration). Besides the explanation 

offered by the authors, this could also be attributed to the intramolecular associative effect 

being an endothermic process under this concentration regime. Polymer chains would coil up 

under these conditions thereby reducing the hydrodynamic volume and hence the viscosity of 

the polymer solution. With further increase in temperature, the thermal induced motion of 

water molecules and the polymer chains would further strengthen the hydrodynamic volume 

reduction through clustering of coiled polymer chains hence further reducing the polymer 

viscosity. A similar phenomenon was reported for HAPAM modified with 2-

phenoxylethylacrylate by Dai et al. (2008) at a polymer concentration less than the CAC. A 

consensus in the literature on the thermal behavior of HAPAM polymers is that the viscosity 

of the polymers increase with temperature up to a maximum after which there is a decrease in 

viscosity with a further increase in temperature. Such a trend is obtainable when the polymer 

concentration exceeds the CAC i.e. semi-dilute concentration regime. El-Hoshoudy et al. 

(2017) revealed this fact with synthesized acrylamide based poly (4-dodecyl-

benzenesulfonate-3-[5-(butane-2-sulfonyl)-3-carbamoyl-1-methyl-heptyl] imidazol-3-ium) 

through evaluation of its thermal resistance between 25 and 100 0C at a concentration of 2 

g/L and a shear rate of 7.34 /s. The viscosity of the HAPAM polymer increased up to a 

maximum at 50 0C after which there was a decrease in viscosity up to 100 0C. This can be 

explained by the endothermic driven process of hydrophobic intermolecular association 

between polymer chains in solution. This leads to a network/micro-domain of polymer chains 

with an increase in hydrodynamic volume with regards to polymer viscosity. When the 
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temperature exceeds the 50 0C mark, thermal induced motion of the water molecules would 

weaken the super-aggregate structure formed by the hydrophobic interactions between the 

polymer chains thereby weakening the intermolecular association between the chains. The 

outcome of this is a reduction in polymer viscosity with increasing temperature. Equally, Lai 

et al. (2013), Zou et al. (2013) and Sun et al. (2015) reported a similar trend for synthesized 

HAPAM polymers poly (AM-NaAA-DNDA), cyclodextrin functionalized associating 

acrylamide, and poly (AM-AMC12S-DPP) respectively. The maximum viscosity for the 

HAPAM polymers was obtained at 40 0C [for poly (AM-NaAA-DNDA)], 80 0C [for 

cyclodextrin functionalized associating acrylamide polymer] and 35 0C [for poly (AM-

AMC12S-DPP)]. Additionally, Gou et al. (2015) reported maximum viscosity at temperatures 

of 35 and 42 0C respectively for poly (AM-AA-NDS-NIMA) and poly (AM-AA-NIMA). 

Therefore, the type, amount and molecular composition of the hydrophobic comonomers 

employed in the synthesis of HAPAM polymers play a role in its temperature tolerance. 

Table 5 shows the maximum temperature tolerance of some HAPAM polymers in the semi-

dilute concentration regime. The copolymerization of acrylamide with these hydrophobic 

comonomers is partly aimed at improving its temperature tolerance. However, some of the 

HAPAM arising from the copolymerization process may not achieve high polymerization 

activity and as a result experience low intrinsic viscosity and molecular weight (Zhong et al., 

2014; Li et al., 2017). The implication of this is that the maximum temperature tolerance of 

some of these polymers may vary as indicated in Table 5. As such, thermo-thinning defects 

tend to set in beyond temperature values for maximum viscosity. Furthermore, the molar ratio 

of hydrophobic comonomers employed in the copolymerization process is in the range of 10 

– 30 % (Li et al., 2017). While an increment would improve the performance of the polymer, 

it may create additional cost for production. Temperature effect on the CAC of HAPAM is 

limited and not widely reported. Nevertheless, this may have a significant impact, in the same 
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manner, as earlier reported for salinity effects. El-Hoshoudy et al. (2017) reported the 

temperature tolerance of synthesized acrylamide based poly (4-dodecyl-benzenesulfonate-3-

[5-(butane-2-sulfonyl)-3-carbamoyl-1-methyl-heptyl] imidazol-3-ium) at the critical 

aggregation concentration. However, there was no reported indication of its effect on the 

CAC of the polymer. A general understanding of this effect could be linked to the description 

given by Hourdet et al. (2005). The dynamics of the associative network formed by HAPAM 

polymers is tied to the strength of the hydrophobic interactions (as measured as the binding 

energy/energy barrier) between polymer chains. Accordingly, the Andrade’s equation 

(Equation 2) can be applied to hydrophobically associating polymers, where the activation 

energy can be closely compared to the energy barrier.  

η = Be 
!�
"#$                  (2) 

Where η is the polymer viscosity, E� is the activation energy (kJ/mol), B and k are constants, 

T is the temperature in kelvin. The relationship between the CAC of associating polymers 

and the intrinsic viscosity is represented in Equation (3): 

C∗ = �
)*+                  (3) 

Where the CAC is C∗ and the intrinsic viscosity of the polymer solution  )η+ is represented in 

Equation (4) where	η, is the viscosity of the solvent:  

)η+ = lim�→1  *�*2*2
$                 (4) 

From the expressions in Equations (2) to (4), the dynamics of the hydrophobic association 

between polymer chains is dependent on temperature and the degree of hydrophobicity 

(which is described by the activation energy). Apparently, the outcome can be described in 

two ways: 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 
 

a) For a given degree of hydrophobicity, an increase in temperature would bring about a 

reduction in polymer viscosity, η, likewise the intrinsic viscosity, )η+. This would imply 

an increase in the critical aggregation concentration, C∗. What this simply means is that a 

higher polymer concentration would be required to sustain the associative effect of the 

hydrophobic groups present in the polymer backbone. 

b) Where the degree of hydrophobicity is increased, the energy barrier/activation energy is 

intensified likewise the intrinsic viscosity. As such, the critical aggregation concentration 

would decrease. However, polymers with a high degree of hydrophobicity would 

experience a larger drop in viscosity with temperature. 

While these are plausible theoretical explanations to thermal effects on the CAC of 

associating polymers, further research into this trend would be beneficial where polymer 

injectivity is paramount. As previously stated, EOR involving the use of polymers requires 

concentration values set to a particular limit based on the economics of the project. In 

improving the thermal resistance of hydrophobically associating polymers, grafting of the 

copolymers with a temperature responsive side chain have been reported (Barker et al., 2003; 

Hourdet et al., 2005; Brassinne et al., 2014; Lee et al., 2015; Victor et al., 2016; Li et al., 

2017). Such “smart polymers” are characterized by a critical association temperature (CAT) 

above which polymers self-assemble into hydrophobic microdomains (Hourdet et al., 2005; 

Li et al., 2017). In other words, there is a change in character from hydrophilicity to 

hydrophobicity (Li et al., 2017). This CAT is determined by the critical solution temperature 

of the graft monomer employed. N-isopropylacrylamide (NIPA) is a commonly employed 

monomer in preparing thermos-responsive polymers and it is characterized by a low critical 

solution temperature (LCST) (Oh et al., 2013; Zhang and Hoogenboom, 2015; Victor et al., 

2016; Badi, 2017; Santis et al., 2017). The LCST represents the temperature value below 

which components of a mixture are miscible. In addition, some monomers are characterized 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

24 
 

by an upper critical solution temperature (UCST) above which components in the mixture are 

miscible in all proportions (Badi, 2017; Niskanen and Tenhu, 2017). The smart tuning of the 

viscosity of these polymers ensures that they are applicable in high-temperature oil 

reservoirs. However, the critical solution temperature values of the grafted polymers are 

dependent on the degree of polymerization, branching and polydispersity. As such, some 

HAPAM molecules grafted with thermos-responsive comonomer may still exhibit low 

molecular weight with high polymer concentration needed for thermo-thickening. 

Furtherance to this, Li et al. (2017) pointed out that an expensive coupling agent is necessary 

for the polymerization process of thermo-responsive polymers and reactions are conducted at 

low polymer loadings. Increasing the hydrophobic length would strengthen intermolecular 

associative effect for high-temperature applications, however, there is a limit that would 

ensure polymer solubility is maintained. Also, some grafted polymers may exhibit an LCST 

lower than the UCST. This simply means such polymers can only exhibit thermo-thickening 

over a particular temperature interval while thermo-thinning will set in at lower and higher 

temperatures. For polymers exhibiting both LCST and UCST, a favorable disposition is for 

LCST to be higher than the UCST. This would ensure the temperature tolerance of the 

polymer at high temperatures. Some thermo-responsive associating polymers may require 

some stimulating effect for thermal response to take place between grafts on the polymers (Li 

et al., 2017). This may limit the acceptance of thermo-responsive hydrophobically associating 

polymers in the oil and gas industry as this would contribute to cost. The long-term stability 

of HAPAM polymers in porous media depends on the sustainability of its associative 

characteristics under different conditions of temperature, salinity, pH and divalent ion 

concentration. In addition, the CAC which is a critical parameter of associative polymers 

have been reported in literature to be susceptible to reservoir conditions (El-Hoshoudy et al., 

2017; Saeed et al., 2017). However, an explanation for the susceptibility of the CAC to 
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different reservoir conditions could mean that intramolecular interactions could transit to 

intermolecular interactions and vice versa. Recently, Guo et al. (2016) showed this possibility 

by conducting core flooding through three serially mounted cores with very similar rock 

properties (permeability and porosity). It was observed that for associative polymers namely 

HNT-3.28 and HNT-4.32 (containing 3.28 and 4.32 mol % hydrophobic monomer 

respectively), the resistance factors (RF) of the polymers were much greater in the second 

and third cores compared to the first core. Plausible explanation given by the authors was the 

conversion of intramolecular interactions to intermolecular interactions due to elongational or 

extensional flow in the porous media. However, this transition between the two interactions 

depends on the hydrophobic monomer content. It was observed that similar trend of transition 

was not observed with associative polymers HNT-1.1 and HNT-2.2 (containing 1.1 and 2.2 

mol % hydrophobic monomer) respectively. It was put forward by the authors that this may 

be due to low intramolecular interactions such that any transition to intermolecular interaction 

has been counteracted by polymer-rock interaction such as adsorption. Similarly, this trend of 

intramolecular to intermolecular transition and vice versa may explain why the CAC of 

associative polymers change under different reservior conditions. However, an understanding 

of this phenomenon could eventually explain the stability of associative polymers under 

different reservior conditions.  

3.3. Effect of pH 

The charged nature of polyelectrolytes makes it easily affected by the degree of ionization of 

solution (Wever et al., 2011). For polyelectrolytes with more than one negative group 

(polyanion), they experience high viscosity at high pH and low viscosity at low pH (Wever et 

al., 2011). Whereas, for polycations, they experience low viscosity at high pH and high 

viscosity at low pH (Wever et al., 2011).  However, typical polyelectrolytes are polyanionic 

in nature with pH response as earlier described for polyanions. Zhou et al. (2001) showed this 
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with polyacrylic acid with the polymer viscosity increasing with pH up to a maximum at pH 

values between 8 and 9. The decrease in the viscosity value beyond the pH value was 

attributed to the salting effect, which is similar to what is obtained from NaCl. The response 

of hydrophobically associating polymers to pH is rather complex (Zhou et al., 2001). A 

balance between electrostatic repulsion between charged moieties on the chain and 

hydrophobic interactions characterizes the pH responsiveness of HAPAM (Branham et al., 

1996; Smith and McCormick, 2001; Zhou et al., 2001; Zhuang et al., 2001; Huaiping et al., 

2008; Wever et al., 2011). In other words, the viscosity of hydrophobically associating 

polymers with an increase in pH is dependent on the transition between intramolecular and 

intermolecular interaction. In demonstrating this effect, Zhou et al. (2001) synthesized a 

copolymer of acrylic acid and 2-(N-ethylperfluorooctanesulfoamido) ethyl acrylate or 2-(N-

ethylperfluorooctanesulfoamido) ethyl methacrylate. It was observed that two increments in 

polymer viscosity were achieved. Beyond a pH value of 4, polymer viscosity increased to a 

maximum in the range of 5 – 6. Further increment leads to a decrease in polymer viscosity 

followed by another increase beyond pH of 11. This behavior of the polymer is captured in 

Figure 4. An explanation for this trend can be grouped into three categories according to the 

authors: 

a) Between pH 5 – 7, the ionic character of the polyacrylic acid copolymers is not fully 

developed and as such hydrophobic interactions occur in solution. 

b) Between pH 7 – 11, the polyelectrolyte character of the copolymers is developed with 

chain expansion. However, a lack of mobility prevents the hydrophobic interaction. 

c) Beyond pH 11, the screening effect similar to what is experienced under increasing 

salinity allow for the exposure of hydrophobic groups for associative interaction.  

Although, the authors did not discuss the pH range of 1 – 4, however under this condition the 

intramolecular associative effect is dominant hence the viscosity of the HAPAM is low 
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without any noticeable increase. Similarly, Zhuang et al. (2001) demonstrated the above 

trends highlighted from (a) to (c) using poly (acrylate-co-alkyl acrylate) as shown in Figure 5. 

For the poly (acrylic acid) (PAA) polymer, under low pH conditions (acidic conditions), there 

is a low charge density due to the undissociated state of the carboxylic groups on the polymer 

chain. This minimizes electrostatic repulsion hence chain retraction resulting in a decrease in 

polymer viscosity. As the pH increases, there is a gradual increase in charge density due to 

the gradual dissociation of the carboxylic groups on the polymer chain. At maximum 

viscosity, there is a complete dissociation of the carboxylic groups and a further increase in 

pH would result in a salt effect on the polymer. This is similar to the effect reported by Zhou, 

et al. (2001) on PAA polymers in Figure 4. However, the modified PAA copolymers i.e. poly 

(acrylate-co- alkyl acrylate) by Zhuang et al. (2001) showed the same trend described by 

Zhou et al. (2001). The behavior of the associating polymer is essentially a balance between 

electrostatic repulsion between charged moieties on the chain and hydrophobic interactions.  

4. Inaccessible Pore Volume (IPV) of Associating Polymers 

The IPV can be described as the fraction of the rock pore volume which remain inaccessible 

to the polymer due to the polymer size (Pancharoen et al., 2010; Sheng, 2011; Al-Hajri et al., 

2018; Torrealba and Hoteit, 2019). According to Sheng (2011), when polymer molecular 

sizes are larger than some pores in a porous medium, the polymer molecules cannot flow 

through those pores. Consequently, the volume of those pores that cannot be accessed by 

polymer molecules is called the IPV (Sheng, 2011). Asides the polymer size, this 

phenomenon depends on salinity, divalent ion concentration, rock surface effect, temperature, 

polymer charge and concentration and the pore-size distribution of the rock (including dead-

end pores) (Al-Hajri et al., 2018; Torrealba and Hoteit, 2019). Pancharoen et al. (2010) 

studied the effect of different associating polymers on the IPV of a sand-packed column with 

an absolute permeability of 21.6 D. The molecular weight of associating polymers was 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

28 
 

identified as a key factor which influence the IPV of associating polymers. High molecular 

weight associating polymers are characterized with large molecular volume and more 

hydrophobic regions on the polymer chain. As such, associating polymers with large 

molecular weight would result in polymer chains with large molecular clew dimension 

compared to pore throat sizes. According to the experimental work of Pancharoen et al. 

(2010), low molecular weight associating polymers displayed 12 and 20 % of IPV using 

superposition and simulation methods respectively. However, the high molecular weight 

associating polymers showed IPV between 33 – 49 % depending on the approach used. An 

explanation for this could still be explained in terms of the hydrophobic interactions which 

increases with polymer molecular weight. In like manner, the concentration regime of 

associating polymers eithier dilute or semi-dilute can influence the IPV. At concentrations 

representative of dilute regime, hydrophobic interactions are absent, polymer resistance factor 

is reduced and as such injectivity increasd thereby reducing IPV. However, when polymer 

concentration represents the semi-dilute regime, hydrophobic interactions dominate and 

polymer resistance factor is increased and as such injectivity decreased thereby increasing 

IPV. The IPV represents one of many mechanisms of polymer transport in porous media and 

where this is dominat, it may lead to the process of polymer accelaration. This would occur 

when polymer solution is injected at salinity lower than the reservoir salinity. However, 

where polymer adsorption is dominant, the process of polymer transport is different as 

discussed below.  

5. Adsorption Properties of Associating Polymers 

The size of associating polymer cluster depends on polymer concentration and the level of 

hydrophobe content that can lead to polymer adsorption and retention in porous media 

(Taylor and Nasr El-Din, 1998). This is particularly the case when the hydrophobe 

distribution along the polymer chain is blocky rather than random. In the case of block 
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distribution of hydrophobe content, the concept of multilayer adsorption has been proposed 

as an explanation (Page et al., 1993; Volpert. et al., 1998; Dupuis et al., 2011; Kamal et al., 

2015; Zhao et al., 2017). The adsorbed layer of the associating polymer has a segment of the 

hydrophobic group interacting with the rock surface, while another portion of the 

hydrophobic group tends to interact with other polymer chains forming another layer of 

adsorption. As a result, an increase in the polymer concentration of associating polymer 

would continuously increase the level of polymer adsorption on the rock surface. Most of the 

experimental studies on HAPAM have focused on using sand-pack columns. As such, the 

mechanism of polymer-rock interaction for hydrophobically modified polymers may differ 

for calcite, sandstone and dolomite reservoirs. El-Hoshoudy et al. (2015) reported the 

interaction of associative polymers with sandstone rocks. From Zeta potential measurements, 

the polymers exhibited values of -50.3 and -21.8 mV with an average value of -46.3 mV. 

Thus, such associative polymers are capable of causing a wettability alteration on positively 

charged sandstone reservoirs during polymer flooding processes. However, at a pH value 

greater than 2, it was reported that sandstone rock can exhibit a negatively charged surface in 

which the positively charged nitrogen bases can adsorb on rock surface and alter wettability 

(El-Hoshoudy et al., 2015). In addition, Chiappa et al. (1999) reported the effect of polymer 

charge (anionic, weakly anionic and cationic) from a 2 % KCl solution on its adsorption on a 

quartzite rock surface which was negatively charged at pH greater than 2. It was obvious 

from their findings that polymer adsorption increases from anionic to weakly anionic to 

cationic polymers. However, when these polymers were exposed to a reservoir sand (49wt.% 

Quartz and 21 wt.% Calcite), the anionic polymer exhibited negligible adsorption 

phenomenon while adsorption increased form the weakly ionic to the cationic polymer. It 

should be noted that calcite has a positively charged surface at pH values less than 9.5. 

Therefore, polymer intercation with rock surface may reflect a much more complex behavoir 
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at the calcite surface. The presence of divalent ions can enhance the adsorption of anionic 

polymers onto a quartzite surface which can be achieved in two ways (Chiappa et al., 1999). 

Firstly, the divalent ion creates a link (or act as a bridge) between the anionic polymer and the 

negatively charged quartz surface. Secondly, the divalent ions can neutralize part of the 

negative sites on the anionic polymer thereby reducing electrostatic repulsion.  Similarly, the 

adsorption of crude oil tends to reduce the tendency of polymer-rock interaction (Chiappa et 

al., 1999; Taheri-Shakib et al., 2019(a); Taheri-Shakib et al., 2019(b)). Quan et al. (2019) 

reported the use of HAPAM polymers in the acidification process of carbonate rocks. The 

adsorption of the associative polymer was such that it forms a protective film on the 

carbonate rock. The authors reported that the adsorption and desorption of associative 

polymers on the carbonate surface tends to influence the reaction rate between the acid and 

the carbonate. However, after the desorption process at the end of the reaction, small amounts 

of the associative polymers remain on the rock surface thereby creating cracks and voids 

(Figure 6). The adosrption isotherm of HAPAM polymers does not follow the classical 

approach which is often characterized by a plateau region. This is often attributed to the 

continous interaction between the hydrophobic regions of the polymer chains in solution. 

Concerning this, Volpert et al. (1998) reported on the interaction between HAPAM polymers 

and an alumina silicate surface. The adsorption isotherm of the HAPAM was characterized 

by a continuous increase in the adsorbed polymer and the absence of a plateau region. This 

phenomenon was explained in terms of classical multilayer adsorption which arises due to the 

hydrophobic interaction between polymer chains. However, recent studies on the rock 

adsorption (in sand-pack column) phenomenon associated with hydrophobically modified 

polymers have been attributed to some “minor polymeric species” (Dupuis et al., 2011; 

Seright et al., 2011). This implies that for hydrophobically associating polymers, adsorption 

does not mean the deposition of a substantial quantity of polymer molecules from solution to 
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the rock surface. Accordingly, Dupuis et al. (2010) experimentally showed that the classical 

theory of multilayer adsorption does not apply to hydrophobically associating polymers. 

Rather, adsorption of hydrophobically associating polymers is controlled by the presence of 

“minor polymeric species”. The authors injected an associating polymer with sulfonated 

polyacrylamide backbones and alkyl hydrophobic side chains into a cylindrical chamber with 

granular packs. As expected, a high resistance factor was obtained with the associating 

polymers. However, core-plugging did not take place as evident from the stabilization trend 

obtained from the resistance factor curves and no loss in viscosity of the polymer effluent. 

The polymer effluent was re-injected into a fresh core and resistance factor values were stable 

with no increase. According to Dupuis et al. (2011) and Seright et al. (2011), removal of 

these “minor polymeric species” with an appropriate filtration method without degrading the 

thickening capability of the polymer will ensure less adsorption. However, selection of an 

appropriate filtration method, which will ensure that the associating polymers do not lose 

their viscous properties may be challenging. Moreover, investigating the origin of these 

“minor polymeric species” would help understand how to properly design the synthesis and 

treatment process of hydrophobically associating polymers. Core flooding experiments 

carried out show an irreversible reduction in permeability without filtration of the precursor 

polymer solution. The resistance to adsorption of associating polymers can also be improved 

by using hydrophobes, which contain sulfonate groups (Taylor and Nasr El-Din, 1998; 

Seright et al., 2011; Wever et al., 2011). The use of 2-acrylamido-2-methyl propane sulfonate 

(AMPS) as a comonomer in the modifying polyacrylamide have been reported to produce 

less adsorption compared to HPAM polymers. However, this phenomenon appears to be 

peculiar with associating polymers made of 2-acrylamido-2-methyl propane sulfonate.  Other 

factors such as salinity may influence the adsorption of associating polymers in porous media 

(Rashidi et al., 2009; Li et al., 2016; Akbari et al., 2017; Amirian et al., 2018). This may 
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manifest in the form of ion competition with polymer molecules for adsorption sites and may 

result in less adsorption (Torrealba and Hoteit, 2019). It has been reported that where 

polymer adsorption is the prevailing transport mechanism in porous media, an injection of 

polymer solution at salinities lower than that of the reservoir would lead to polymer 

retardation where the salinity front accelerates faster than the polymer front.  

6. Injectivity of Associating Polymers and Permeability Reduction. 

Polymer injectivity can be predicted and monitored from values obtained for resistance factor 

(RF) and residual resistance factor (RRF) (Al-Shakry et al., 2019). The injectivity of 

associating polymers is low compared to conventional HPAM polymers and is characterize 

by large RFs (Seright et al., 2011; Azad and Trivedi, 2017). Furthermore, this low injectivity 

can be attributed to the nature of the polymer hydrophobic interaction which is concentration 

dependent (Dupuis et al., 2011; Xie et al., 2016; Azad and Trivedi, 2017). Azad and Trivedi 

(2017) carried out an injectivity study on associative polymers in comparison with HPAM 

polymers. It was observed that at a concentration of 2000 ppm, the associative polymers 

exhibited higher RFs than HPAM polymers at the concentration for all shear rates studied. 

Furthermore, the concentration value of 2000 ppm represents the CAC of the associative 

polymer and the polymer showed decreased resistance for values at high shear rates.  The 

decreased values of the RFs can be explained in terms of a transition of the associative effect 

from intermolecular to intramolecular interaction at high shear rates (Seright et al., 2011; 

Reichenbach-Klinke et al., 2016; Azad and Trivedi, 2017). However, at a concentration of 

1000 ppm for the associative polymers and HPAM, the RFs exhibited by both polymers were 

similar. For the associative polymer, this could be explained by intramolecular interaction 

dominating the rheology of the polymer.  On the other hand, the amount and type of 

hydrophobe content in the polymer could also play an important role on the injectivity of 

associative polymers. Reichenbach-Klinke et al. (2016) investigated the performance of 
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different associative polymers in terms of molecular weights and hydrophobic contents. The 

RF and viscosity were observed to increase with hydrophobic content and the reverse was the 

case with polymer injectivity (Seright et al., 2011; Reichenbach-Klinke et al., 2016; Azad and 

Trivedi, 2017). However, in oil saturated cores, it has been reported that the presence of oil 

weakens the intermolecular interactions with the degree of weakening is dependent on the 

hydrophobic content (Reichenbach-Klinke et al., 2016). Also, the presence of surfactants tend 

to reduce the high RF of associative polymers by competeing with the hydrophobic 

interactions thereby creating a surfactant-polymer interaction. Equally important from the 

work of Reichenbach-Klinke et al. (2016) is the impact of associative polymer on 

permeability reduction. Using polymer concentrations of 1000 ppm and 2000 ppm for the 

associative polymer and HPAM respectively showed that associative polymers have higher 

values for the RRF compared to HPAM. This was explained in terms of the mechanism of 

multilyer adsorption which is further enhanced by hydrophobic interactions. However, this 

phenomenon of multilayer adsorption remained debatable as shown by the works of Dupuis 

et al. (2011) and Seright et al. (2011) who attributed the permeability reduction to the 

presence of some “minor polymeric species”. Therefore, permeability reduction by 

associative polymers depends on the type of hydrophobic comonomer that make up the 

polymer chain. In like manner, at a concentration of 1000 ppm, the HPAM showed higher 

values for the RRF compared to the associative polymer. This implies that the dilute 

concentration regime where intramolecular interaction dominates ensures that the RRF is 

low. Under these circumstances discussed, it is obvious that the properties of associative 

polymers can be tuned and adjusted to achieve the desired injectivity, propagation, RF and 

RRF. Furtherance to this, the mechanism of polymer-rock interaction (IPV and adsorption) as 

discussed earlier can be employed in improving the injectivity and propagation of associative 

polymers as proposed by Torrealba and Hoteit (2019). The authors proposed a 
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compositionally-tuned polymer injection process which takes into account polymer transport 

under salinity, adsorption and IPV. This specifically takes into account polymer retardation 

and acceleration effects arising from adsorption and IPV respectively. The proposed injection 

scheme appears viable under simulation however, experimental study is still required in 

validating the outcome. The application of this study to associative polymers would require 

optimizing in terms of slug composition, injection cycle size and number of cycles.  

7. Interfacial Tension, Foam Stability and Emulsion Properties of Associating Polymers. 

A challenge associated with polymer flooding is the separation of water from crude oil. This 

difficulty is traced to the interfacial tension (IFT) characteristics of polymers to enhance the 

stability of crude oil emulsions (Deng et al., 2002; Meiqin et al., 2008; Pancharoen, 2009; 

Pancharoen et al., 2010; Al-Sabagh et al., 2016). The interfacial tension characteristics of 

associating polymers can be attributed to the distribution of both hydrophilic and 

hydrophobic blocks along the polymer backbone (Pancharoen, 2009; Pancharoen et al., 

2010). According to Pancharoen et al. (2010), the hydrophobic groups on the polymer 

backbone align themselves in the oil phase which contains interfacial active components such 

as asphaltenes and resins while the hydrophilic part remain in the aqueous phase. This 

behaviour of associating polymers reduces the contact area between oil and water thereby 

reducing the interfacial tension and enhancing crude oil emulsion stability. Comparison with 

low molecular weight surfactants show that the abilities of these polymers in reducing IFT 

was less. Therefore, the authors pointed out the magnitude of this IFT reduction does not 

appear to be significant enough to contribute to added oil recovery. However, the strength of 

the emulsion stability effect of associative polymers depend on a number of factors such as 

type of associative polymer and polymer concentration. Meiqin et al. (2008) investigated the 

effect of polymer concentration on the interfacial tension caharacteristics of associative 

polymers. The measured interfacial shear viscosity of the water-oil film was used to 
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characterise stability of the water-oil emulsion. It was observed that the interfacial shear 

viscosity of the oil-water film increased with associative polymer concentration hence its 

emulsion stability. Consequently, the rate of demulsification and the rate of oil-water 

separation would decrease with increased polymer concentration. Hence, the strength of the 

emusion stability caused by increased polymer concentration can be explained in terms of 

increased number of hydrophobic groups available to the oil phase. As such, IFT reduction 

does not contribute to the mechanism by which associating polymers improve the recovery of 

oil (Pancharoen et al., 2010). However, Reichenbach-Klinke et al. (2016) reported that 

additional oil recovery using associative polymers could take place with a combination of 

IFT reduction and mobility reduction. While this remain debatable, the increased oil-water 

emulsion stability arising from the application of associating polymers remains a challenge 

towards its application.  

A foam can be described as having a gas phase dispersed in a liquid phase and often used in 

improving the mobility of gas (such as CO2) during EOR operations (Zhang et al., 2015; Xu 

et al., 2016; Ahmed et al., 2017). However, it is very important that the foam remains stable 

in the presence of oil as its longevity is what determines it efficiency. Ahmed et al. (2017) 

compared the use of conventional HPAM polymer with an associative polymer in the 

preparation of polymer enhanced foams (PEFs) with polymer concentration kept at 2000 ppm 

and operating temperature and pressure at 80 0C and 14.5 psi respectively. Figures 7 and 8 

show the comparison between HPAM and HAPAM polymers in terms of foam stability and 

foam volume respectively. The stability of the PEF was observed to be more pronouced using 

an associative polymer compared to HPAM polymer. This can be explained by the enhanced 

thickening ability (arising from hydrophobic interactions) of the associative polymer 

compared to HPAM. This enhanced thickening effect of the associative polymer tend to limit 

gas diffussion thereby enhancing foam stability through a gradual reduction in foam volume. 
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However, the thickening capability of associative polymers differs for different hydrophobic 

content and under varying reservior conditions. Hence, enhancing the preformance of PEFs 

would require optimizing for different hydrophobe content and reservior conditions.  

8. Effect of Reservoir Heterogeneity on Associating Polymers 

The influence of polymer concentration and reservoir heterogeneities on polymer flooding 

performance are among paramount factors that determines the success of the oil recovery 

process (Han et al., 2006; Wei et al. 2007; Wassmuth et al., 2012; Patokina, 2015; Xie et al., 

2016).  Reservoir heterogeneities arise from the depositional history of the oil formation and 

this creates a difference in physical properties between the high permeability layer and low 

permeability layer (Xie et al., 2016). For a homogenous reservoir with uniform rock 

properties, the propagation of hydrophobically associating polymers depends on polymer 

concentration (Wassmuth et al., 2012). Furthermore, the state of molecular 

interaction/aggregation of associating polymers for mobility control can be regulated by 

changing the polymer concentration. Xie et al. (2016) evaluated the applicability of 

hydrophobically associating polymers in a heterogeneous reservoir system. It was confirmed 

by the authors that there exists compatibility between polymer molecular 

aggregation/association and pore-throat size. In other words, there exists a matching 

relationship between the size of an associated polymer cluster and the size of the pore-throat 

of the reservoir. Where the size of the associated polymer cluster matches well with the pore-

throat size, the pressure drop was observed to be stable as pore volume increased. 

Alternatively, at a given polymer concentration, there could be a mismatch between the size 

of the cluster and the pore-throat, therefore, the pressure drop due to polymer injection 

increases with pore volume. As such, a heterogeneous reservoir provides a scenario where 

rock properties play an important role along with the polymer concentration (Wassmuth et 

al., 2012; Xie et al., 2016). A change in polymer concentration will control the mobility of 
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polymer solution in the different permeable layers of the reservoir. Accordingly, Xie et al. 

(2016) considered the following as crucial for associating polymer in a heterogeneous 

reservoir: 

a) The size of the associating polymer cluster which is regulated from polymer 

concentration thereby ensuring passage through low pore-throat zones.  

b) Reservoir fluid diversion arising from polymer jam/retention in high permeability zone. 

This is a result of the size of the associating polymer cluster.  

Thus, the different molecular association between polymer molecules and the size of the 

associating polymer cluster arises from varied polymer concentrations. The size of the 

associating polymer cluster at a given concentration needs to be optimally matched with the 

average heterogeneities and permeability of the different layers in the reservoir. The essence 

of optimally matching the size of the aggregates arising from the associating polymer clusters 

and the reservoir heterogeneities can be tied to the following:  

a) High polymer concentration would be needed, if not above the limit for EOR operations, 

and this could be detrimental to the economics of the flooding process; 

b) For a heterogeneous reservoir, finding an optimum concentration for associating 

polymers would help prevent the occurrence of a profile reversal where polymer mobility 

is enhanced in the permeable layer with little residual oil. 

c) In addition, polymer injectivity would be affected and this is often constrained by 

formation fracture pressure. Furthermore, high polymer injection pressure can make 

associating polymers lose their space-network structure resulting in a reduced 

hydrodynamic size for the polymer molecules.  
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Conclusion and Recommendations     

The last decade of research on hydrophobically associating polymers has witnessed the 

development of polymers tolerant to a wide range of conditions reminiscent of an oil 

reservoir. The conditions of the reservoir would properly define the required properties of 

these associating polymers. This, in turn, would determine the synthesis method/procedure, 

molecular structure and type of hydrophobic comonomer to be employed.  In this regard, the 

rheological behavior of hydrophobically associating polymers cannot be entirely linked to the 

molecular structure in aqueous solution alone. Rather, the behavior is a combination of the 

influence of oilfield parameters (such as temperature, salinity, ion concentration, pH and 

reservoir heterogeneity) and the molecular structure of the polymer (arising from the 

synthesis method/procedure and the hydrophobic comonomer used). Therefore, finding an 

optimal scenario between the oilfield parameters and the molecular architecture of the 

polymer could define an appropraite use for associating polymers. This is imperative because 

a predominantly weak associative effect would not necessarily guarantee the needed 

rheological impact in terms of recovery efficiency even if polymer injectivity is not affected. 

Also, an excessively strong associative effect may affect polymer injectivity and propagation 

even if the needed polymer mobility and oil recovery are obtained. Consequently, the 

following recommendations have been made based on the issues identified in this review: 

a) The sensitivity of the critical aggregation concentration of associating polymers to oilfield 

conditions such as temperature, salinity/hardness and pH. The impact of this on the 

performance of the polymers would be a key area of investigation.  

b) Sustaining and maintaining the associative effect of these polymers (long-term stability) 

during propagation in porous media while taking into consideration the sensitivity of the 

critical aggregation concentration as highlighted in (a). 
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c) The impact of the associative effect on polymer injectivity as measured by polymer 

concentration above the critical aggregation concentration. An understanding of its effect 

on the onset of shear thickening in porous media is important and has the potential to be a 

key focus of research activities in this field. 

d) The possibility of a change in the critical aggregation concentration of the produced 

associating polymer and what this change means on the solution properties of the 

polymer.  

e) Investigation of the effect of injection rate on the compatibility of the size of associating 

polymer cluster and reservoir pore-throat. Previous studies have focused on the use of a 

single injection rate in optimizing solution properties of associating polymers and 

reservoir heterogeneity.  

f) Investigation of the use of brackish water in the preparation of associating polymer 

solution. This study can help in investigating the influence of wastewater mineralization 

and hardness on the properties of hydrophobically associating polymers.  

g) Investigation of the origin of the “minor polymeric species” connected to 

hydrophobically associating polymers. These species are often tagged as “pre-gel 

aggregates”, however, understanding how to properly design the synthesis and treatment 

process of these hydrophobically associating polymers would reduce the likely 

occurrence of permeability impairment. 

Nomenclature 

Abbreviations 

AA  Acrylic Acid 

AMC12S 2-(acrylamido)-dodecanesulfonic acid 

AMPS  2-acrylamido-2-methyl propane sulfonate 

ASE  Alkali Swellable Emulsion 
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CAC  Critical Aggregation Concentration 

DOAC  N,N-dimethyloctadeyl allyl ammonium chloride 

DPP  1-(4-dodecyloxy-phenyl)-propenone 

EOR  Enhanced Oil Recovery 

EUR  Ethoxylated Urethane  

FTIR  Fourier Transform Infrared 

HEC  Hydroxyethylcellulose 

HAPAM Hydrophobically Associating Polyacrylamide 

HPAM  Hydrolyzed Polyacrylamide 

HRTEM High Resolution Transmission Electron Microscope  

IFT  Interfacial Tension 

LCST  Lower Critical Solution Temperature 

NDS  3-(diallyl-amino)-2- hydroxypropyl sulfonate 

NIMA  3-(2-(2-Heptadec-8-enyl-4,5-dihydro-imidazol-1-yl)ethylcarbamoyl)acrylic      

  acid  

NIPA  N-isopropylacrylamide 

NMR  Nuclear Magnetic Resonance 

OOIP  Original Oil in Place 

PAM  Polyacrylamide 

PAA  Poly Acrylic Acid 

PEF  Polymer Enhanced Foam 

RF  Resistance Factor 

RRF  Residual Resistance Factor 

PEG  Poly Ethylene Glycol 

SSS  Sodium 4-styrenesulfonate 
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TEM  Transmission Electron Microscope 

UCST  Upper Critical Solution Temperature 

Symbols 

B and k Parameter Constants 

Ca  Capillary Number 

C  Polymer Concentration 

C�or	C∗ Critical Aggregation Concentration 

E�  Activation Energy 

M�  Molecular Weight of Polymer 

N�  Avogadro’s number 

)η+  Intrinsic Viscosity 

η,  Solvent Viscosity 

μ	or	η  Polymer Viscosity 

	T  Temperature 

V�  Volume Occupied per Polymer Chain 

γ  Shear Rate 
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Table 1: Example of field applications of different polymer types under different conditions (modified from Kamal et al., 2015) 

Country Field Polymer Type T (◦C) Formation Salinity (mg/L) Reference 

China 

Daqing HPAM 45.0 9000 (Pu and Xu, 2009) 

Gudong HPAM 68.0 3022 (Zhijian et al., 1998) 

Bohai Bay HPAM 65.0 6070 
(Mogollon and Lokhandwala, 

2013) 

Xing Long Tai HPAM 56.6 3112 (Zhang et al., 1999) 

Bohai oil field HAPAM 65.0 32423 (Han et al., 2006) 

Henan oil field HPAM 75.0 5060 (Chen et al., 1998) 

Shengli HPAM 70.0 10000 (Gao, 2014) 

USA 

Cambridge Minnelusa PAM 55.6 Not specified (Vargo et al., 2000) 

Tambaredjo HPAM 36.0 Not Specified 
(Mogollon and Lokhandwala, 

2013) 

Tanner PAM 80.0 66800 (P)a (Pitts et al., 2006) 

West Khiel HPAM 57.0 46,480 (P)a (Meyers et al., 1992) 

Canada 
Pelican HPAM 23.0 6800 

(Mogollon and Lokhandwala, 
2013) 

David pool PAM 31.0 6660 (I)b (Pitts et al., 2004) 

Germany 
Eddesse-Nord Xanthan Gum 22.0 120,000 (Abbas et al., 2013) 

Vorhop-Knesebeck Xanthan Gum 56.0 210,000 (Abbas et al., 2013) 
Austria Matzen HPAM 50.0 20,000 (Kornberger et al., 2013) 

India 
Viraj HPAM 81.0 13,250 (Pratap and Gauma, 2004) 

Sanand PAM 85.0 Not specified (Tiwari et al., 2008) 
Russia Romashkino (Tatarstan) HEC 36.0 250,000 (Abbas et al., 2013)  

aProduced water salinity. bInjection water salinity. 
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Table 2: Core flooding studies on some selected polymers (modified from Kamal et al., 2015) 

Polymer Type  
Polymer Concentration 

(ppm) T (◦ C) 
Salinity 
(mg/L) 

Core Type Recovery a (%) Reference 

Xanthan Gum 500 50 - Sandstone 66 T (Austad et al., 1997) 

HAPAM 1000 50 - Sandstone 53.6 T (Austad et al., 1997) 

HAPAM 5000 60 5000 Sandstone 8.5 (Liu et al., 2012) 

HAPAM 2000 60 5000 Sandstone 11 (Sabhapondit et al., 2003) 

HPAM 2000 70 10000 Sandstone 34 (Gong et al., 2008) 

HAPAM 7000 60 5000 Sandstone 10.6 (Ye et al., 2013) 

HPAM 1100 75 12000 Sandstone 9.8 (Chen et al., 1998) 

HPAM 2500 45 508 - 6778 Sandstone 16.7 
(Yang et al., 2006; Liu et 

al., 2007) 

HPAM 4500 38 30700 Carbonate 45 (Panthi et al., 2013) 

HAPAM 2000 60 - Not specifiedb 12 (Liu et al., 2013) 

HAPAM 2000 60 - Not specifiedb 18 (Liu et al., 2013) 

HAPAM 2000 65 5000 Sandstone 5.7 (Lai et al., 2013) 
aRecovery reported with T as total recovery while remaining value are additional recovery due to PF. bNot indicated in the corresponding 
article. 
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Table 3: Example of monomers employed in polymer modification.  

Monomer Reference 

N, N-dimethyl Acrylamide (Algi and Okay, 2014; Fang et al., 2016) 

2-vinylnaphtahlene (Zeng et al., 2002) 

Methacrylic Acid (Fernyhough et al., 2009; Bang et al., 2017) 

N-vinylpyrrolidinone (Taghizadeh and Foroutan, 2004; Willersinn and Schmidt, 2017) 

4-vinylbenzenesulfonate (Kang et al., 2015) 

2-Acrylamido-2-methyl-1-propanesulfonic acid (Çavuş, 2010; Kundakci et al., 2011) 

Methyl methacrylate (Cilurzo et al., 2014; Khromiak et al., 2018) 

Poly(propylene glycol) methacrylate (Shemper et al., 2002) 

Sodium vinylsulfonate (Mori et al., 2010; Mori et al., 2012) 

Carboxymethyl cellulose (Han et al., 2010; Han et al., 2013) 

N-phenylacrylamide (Zhou and Lai, 2004) 

N-tert-Octylacrylamide (Zhu et al., 2012) 

N-dodecylacrylamide (Wan et al., 2014) 

N-methyl-N-vinyl acetamide (Pavlov et al., 2018) 

N-(n-octadecyl)acrylamide (Principi et al., 2000) 
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Table 4: Critical Aggregation Concentration (ppm) data as a function of salinity for the studied sulfonated polymers (AN105 – AN132) at 20 0C 

(Rashidi et al., 2010) 

Polymers 

Solvents 

CAC (at 0.1 wt.% NaCl) CAC (at 10 wt.% NaCl) 

AN105 264 625 

AN113 250 556 

AN125 244 527 

AN132 200 434 
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Table 5: Maximum temperature tolerance of some selected HAPAM polymers. Polymers were evaluated under a shear rate of 170 /s and 

temperature range of 20 – 140 0C. 

Polymer* Maximum Temperature (℃) CAC (� �⁄ ) Concentration Regime Reference 

AM-AA-NIMA 1 42 0.80 Semi-dilute (Gou et al. 2015) 

AM-AA-NDS-NIMA 2 35 1.00 Semi-dilute (Gou et al. 2015) 

AM-AMC 12S-DPP 3 35 0.20 Semi-dilute (Sun et al. 2015) 

AM-DOAC-SSS 4 

80 

1.65 

Semi-dilute (0.3 wt.%) 

(Quan et al. 2016) 100 Semi-dilute (0.4 wt.%) 

120 Semi-dilute (0.5 wt.%) 

 

*The abbreviations denoting the polymers are: 

1. AM-AA-NIMA – HAPAM containing 3-(2-(2-Heptadec-8-enyl-4,5-dihydro-imidazol-1-yl)ethylcarbamoyl)acrylic acid (NIMA) and 

acrylic acid (AA) 

2. AM-AA-NDS-NIMA – HAPAM containing 3-(2-(2-Heptadec-8-enyl-4,5-dihydro-imidazol-1-yl)ethylcarbamoyl)acrylic acid (NIMA), 3-

(diallyl-amino)-2- hydroxypropyl sulfonate (NDS) and acrylic acid (AA) 

3. AM-AMC 12S-DPP – HAPAM containing 1-(4-dodecyloxy-phenyl)-propenone (DPP) and 2-(acrylamido)-dodecanesulfonic acid 

(AMC12S) 

4. AM-DOAC-SSS – HAPAM containing ionic hydrophobic monomer N,N-dimethyloctadeyl allyl ammonium chloride (DOAC) and the 

anionic monomer sodium 4-styrenesulfonate (SSS) 
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Figure 1: Viscosity behavior of hydrophobically associating polymers (HAPAM) before and after the critical aggregation concentration. 
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Figure 2: FTIR spectrum of a hydrophobically associating polymer (HPAAT) (Quan et al., 2019) 
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Figure 3: 1H-NMR spectrum of a hydrophobically associating polymer HPAAT by (Quan et al., 2019).  
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Figure 4: Effect of pH on the solution viscosity of poly (acrylic acid) (PAA) and their modified polymers (FMA) at temperature 25 0C and a 

shear rate of 0.4 /s (Zhou et al., 2001). 
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Figure 5: Effect of pH on polymer viscosity of PAA and PAA modified with n-dodecyl acrylate/2-ethylhexyl acrylate (PAA-C) (Zhuang et al. 

2001). 
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Figure 6: SEM images of the associative polymer (HPAAT) at various dissolution times: (a) the untreated carbonate sample, (b) 5000 mg L-1 

HPAAT-40 min (c) 8000 mg L-1 HPAAT-50 min, (d) 5000 mg L-1 HPAAT-55 min, and (e) 8000 mg L-1 HPAAT-65 min. (Quan et al., 2019). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

Figure 7: Foam stability comparison of PEFs containing no polymer, conventional polymer (FP3330s) and associative polymer (Superpusher 

B192) CO2 foams. The polymer concentration was 2000 ppm at 3 wt% NaCl, 80 0C and 14.5 psi (modified from Ahmed et al. (2017)). 
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Figure 8: Foam volume comparison of PEFs containing no polymer, conventional polymer (FP3330s) and associative polymer (Superpusher 

B192) CO2 foams. The polymer concentration was 2000 ppm at 3 wt% NaCl, 80 0C and 14.5 psi (modified from Ahmed et al. (2017)). 
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