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Abstract
Degradation of coatings and structural materials due to high temperature corrosion 
in the presence of molten salt environment is a major concern for critical infrastruc-
ture applications to meet its commercial viability. The choice of high value coatings 
and structural (construction parts) materials comes with challenges, and therefore 
data centric approach may accelerate change in discovery and data practices. This 
research aims to use machine learning (ML) approach to estimate corrosion rates of 
materials when operated at high temperatures conditions (e.g., nuclear, geothermal, 
oxidation (dry/wet), solar applications) but geared towards nuclear thermochemical 
cycles. Published data related to materials (structural and coatings materials), their 
composition and manufacturing, including corrosion environment were gathered 
and analysed. Analysis demonstrated that random forest regression model is highly 
precise compared to other models. Assessment indicates that very limited sets of 
materials are likely to survive high temperature corrosive environment for extended 
period of exposure. While a higher quality and larger dataset are required to accu-
rately predict the corrosion rate, the findings demonstrated the value of ML’s regres-
sion and data mining capabilities for corrosion data analysis. With the research 
gap in material selection strategies, proposed research will be critical to advancing 
data analytics approach exploiting their properties for high temperature corrosion 
applications.
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Introduction

Molten salts have considerable potential in energy applications, including generation 
and storage [1]. An example of energy generation systems could be a thermochemi-
cal cycle reactor where high temperature molten salt and steam could be used for 
water splitting leading to hydrogen production. However, one of the critical chal-
lenges facing the development of high temperature thermochemical cycle-based 
hydrogen production pilot plant is the identification of suitable materials for fabri-
cating structural and coating parts of such plant [2]. Current nuclear reactors oper-
ate on a 12–18 months cycle of operation (limited by refueling, reactor design and 
operation duration) [3], where structural parts, coatings and auxiliary components 
exposed to molten salts in a thermochemical cycle will have to maintain integrity 
for at least this period before they could be replaced without impacting plant avail-
ability. It is an important challenge which needs to be addressed as such plants (i.e., 
structural parts) need to sustain a high temperature molten salt corrosive environ-
ment for a prolonged duration (Fig. 1).

Various thermochemical cycles such as cerium–iodine (Ce–I) [4], iron–chloride 
(Fe–Cl) [5], iodine–sulphur (I–S)  [6], and Cu–Cl [7, 8] can be used for splitting 
water by using heat sources (nuclear or in some cases solar). Depending on the spe-
cific cycle, some common components in nuclear thermochemical cycles include 
nuclear reactor, heat exchanger, chemical reactors, separation units, recuperator, heat 
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rejection system, and containment structure. Since thermochemical cycles operate at 
high temperatures with corrosive environment, the structural parts require special 
considerations. The accelerated degradation results in economic problems for the 
thermochemical cycle operation since the maintenance costs are greatly high. As 
the temperature of the thermochemical cycle is increased for higher efficiency, the 
severity of the materials degradation is even further accelerated. Overall, the design 
and composition of multi-material layers can be tailored to specific thermochemi-
cal cycle requirements, aiming to optimise performance, stability, and cost-effective-
ness. The choice of materials plays a crucial role in achieving desired properties and 
overall performance. Addressing material issues requires a combination of material 
selection and manufacturing strategies, and optimisation of the composition and 
operating conditions.

There are numerous examples that have been published where the application of 
advanced alloys (as structural parts for heat exchangers, reactors, or containment 
structures) and coatings has been deployed in thermochemical molten salt at high 
temperature environment. Coatings of specialised feedstock materials have been 
proposed for such harsh environments [9]. These include ceramics, refractory met-
als, superalloys, and graphite-based materials, as the most suitable overlaid materials 
(on base metals or substrates) for high temperature corrosion. Research has shown 
how to improve materials performance through development of new candidate feed-
stock materials and using a range of advanced manufacturing routes. However, more 
research is needed to achieve durability of structural and coating parts [2].

For a range of applications, analysis of corrosion data is important. Particularly, 
corrosion time-series modelling, and analysis may be used to forecast failure times 
and the remaining lifetimes of equipment and materials [10]. To date, no model has 
been established to model the corrosion behaviour of materials used in thermochem-
ical cycle structural and coating parts and correctly predicts the corrosion rates, 
largely due to corrosion rate modelling complexity. Literature shows that machine 
learning (ML) methods could be able to accurately reproduce first principles data 

Fig. 1  An illustration of a molten salt reactor (MSR) nuclear power plant and location of molten salt-
based thermochemical system
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for a range of applications, which refers to data from fundamental principles, laws, 
or equations. It has been extensively employed in material investigations because 
of its enhanced modelling libraries and increased functionality [11]. ML approach 
can help in identification of patterns, correlation, and trends in the datasets that 
may not be apparent otherwise. ML approach can make informed predictions about 
performance of materials. It could assist in identifying the key factors influencing 
the materials’ performance. It can complement physical models by providing data-
driven insights and can enable more accurate predictions of materials’ behaviour. It 
can help in learning from multi-scale datasets and make predictions with different 
levels of complexity.

Machine learning can obtain complicated interactions between objectives and 
multi-dimension parameters [12, 13]. Researchers have been using neural networks 
(NN) with artificial intelligence (AI) and other ML methods since the 1980’s to 
forecast materials corrosion and create novel corrosion-resistant metals, making 
significant advancements in corrosion issue [14, 15]. This has aided in forecasting 
the local corrosion performance of any material with fixed corrosion circumstances, 
temperatures, preparation procedures, various compositions, and corrosion periods. 
It has also assisted with anticipating the corrosion rate in substrates and feedstock-
applied substrates [11, 16]. ML-based forecasting of electrochemical corrosion is 
an expanding area of research, and it also shares a data-driven outline of this realm 
[17]. They emphasize evaluating the forecast efficacy of several methods and elabo-
rate on the state of regression modelling for numerous corrosion subjects. Recently 
random forest (RF) approach was utilised to model corrosion rate observations of 
carbon steel [18]. And still, conventional statistical analysis techniques like gradi-
ent boosting regression (GBR), support vector machines (SVM), and random forests 
(RF) operate under the underlying presumption that the datasets have self-sufficient 
and equal distributions [19].

Moreover, systems for time-series analysis of data, such as the popular long 
short-term memory (LSTM) neural network, may perform dependency mining on 
a series of data and train functions that convert a succession of previous inspections 
from a feed input to an outcome observation [20]. In this way, the time-series data 
analysis technique can offer a chance for the development forecast of pitting gen-
eration [21, 22]. To forecast corrosion rates and analyse data, several research have 
so far employed support vector regression (SVR) and back-propagation neural net-
works (BPNN), which are dependent on statistical principles and need a lot of data 
to assure model accuracy [23, 24]. By utilising the SVR and BPNN approaches, it 
is challenging to create a consistent corrosion time-series model [10]. Furthermore, 
measurements of corrosion data from multiple publications are often made under 
numerous testing circumstances [25, 26]. It is important to note that the corrosion 
data is challenging to employ for modelling research due to the varied testing condi-
tions [27, 28]. These drawbacks of experiential modelling severely restrict how cor-
rosion data may be used [16].

Previous research demonstrates that their approach can successfully handle a 
range of situations. Unfortunately, these models’ predictive ability to anticipate cor-
rosion rates is sporadic at best. For evaluating the data series on corrosion rate, a 
unique model is required. The latest model, which has greater flexibility than the 
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existing model, may be used to implement the modelling and fitting of nonlinear 
series [10].

The overall goal of this research was to investigate the prospective uses of ML in 
the domain of corrosion and more needs to be investigated. This becomes important 
as the global cost of corrosion is estimated to be US$2.5  trillion, and on a global 
basis between US$375 billion and US$875 billion can be saved by using corrosion 
control practices [29]. Among many practices, the application of coatings on struc-
tural parts is common practice to control corrosion, a market which is estimated to 
be US$25.80  billion in 2024 and is expected to reach US$32.01  billion by 2029 
[30]. In this work, corrosion data was gathered from various published literature. 
Although the overarching subject is of current research interest, published data in 
relation to nuclear thermochemical materials corrosion is very sparse. Where some 
work in this area has been published, very limited information is given on the mate-
rials used, or corrosion data which is needed for this research. Therefore, due to 
limited datasets available in relation to nuclear thermochemical corrosion of materi-
als, the datasets from other high temperature aggressive corrosion of materials (e.g., 
geothermal, oxidation (wet/dry), solar) were included in the analysis. Also, as typi-
cal of any data analytics work, overfitting and inaccurate results are bound to occur 
when models are trained on very limited data [31]. We therefore aim to avoid such 
problems by choosing and training the most suitable regression model. Exploratory 
analysis of the collated dataset was carried out before the predictive analytics was 
carried out by implementing different regression models to predict the corrosion 
rate.

The aim of this research is to use ML approach to investigate high temperature 
aggressive corrosion of materials, and meaningfully analyses complex datasets to 
extract valuable insights, accelerate materials discovery, and enhance our under-
standing of materials behaviour. The outcome from this research is a first step 
towards development of material informatics for applications in high temperature 
aggressive corrosion, such as nuclear, geothermal, oxidation, and solar sectors 
which can address the above challenges, as well as enable opportunities for thermo-
chemical cycle electrolysis and hydrogen production.

Data Analytics Methodology

Data Background

Corrosion, which is an electrochemical process, has always been a multi-dimen-
sional problem, as materials deteriorate due to reactions with their environment. 
Further on, corrosion at high temperature exposes the structures to new challenges 
such as material compatibility and operation durations. Various features and fac-
tors influence the rate and extent of corrosion, which can be broadly categorised 
into material properties (composition, microstructure, surface condition, mechani-
cal properties), environmental conditions (moisture, temperature, chemical compo-
sition, oxygen concentration), electrochemical factors (electrode potential, electro-
lyte conductivity), and corrosion types (uniform, pitting, crevice, stress corrosion 
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cracking, and galvanic corrosion), etc. Considering multiple features and factors, 
identification and selection of suitable materials is one of the major difficulties fac-
ing the development of high temperature corrosion resistant critical infrastructure 
that can sustain the corrosive and harsh environment for a prolonged use [32].

Overall, the accurate and reliable performance of the ML models either during 
training or testing requires large sets of data of high quality, and the process of label-
ling corrosion features should be based on the know-how of domain expert [17]. 
In the current analysis, the dataset was created which included comprehensive and 
well-structured data that can be effectively used for training and testing ML mod-
els. The dataset included a CSV file with each row (total 155) representing a single 
observation, and each column (total 16) representing a feature related to the obser-
vation (Note: The CSV file can be found at the GitHub link, which is provided in 
the data availability section. We primarily used the data file for rudimental analysis 
and corrosion rate prediction using the Jupyter notebook (Corrosion_rate_predic-
tion_using_ML.ipynb), which is also available on the GitHub link. Both files can be 
found in the ‘code notebook’ folder).

Key components of the dataset included substrates (structural part), such as 
steel and Ni-based alloys (steel-stainless steel, 4340 steel, low-carbon steel, fer-
ritic stainless steel, Ti-stabilised high-carbon stainless steel, SAN25 steel, SA516 
steel, Ni-based superalloys-12H18N10T, HN80MT, HN80MTY, HN80M-VI, 
MONICR, HN80MTW, AP164, Hastelloy, Nimonic alloy 263, Inconel 713LC). 
Coatings of specialised materials have been considered for harsh environments. 
These include superalloys, ceramics, refractory metals, and others as the most 
suitable coating materials (on base metal or substrate) for high temperature cor-
rosive environments. Noteworthy, coating materials can fail due to reasons not 
related to layer adhesion to substrates, but other factors can be important. These 
can be geometry of the specimen, factors associated with coating integrity (chemi-
cal resistance, thermo-mechanical durability, surface preparation), as well as fail-
ure of equipment that failed to prevent leaking of oxygen, etc. [32]. Similarly, key 
components of the feedstock (coating) materials included Ni, Ni–Cr, Inconel 625 
(Ni–Cr–Fe–Mo–Nb–Co alloy), NiCoCrAlY + YSZ, NiCoCrAlTaY + ScYSZ, LZ-
LZC/YSZ/NiCoCrAlY, ([La(NO3)3.6H2O],  [Ce(NO3)3.6H2O], and  [Zr(C2H4O2)4]), 
SHS9172 (Fe–25Cr–15W–12Nb–6Mo), Diamalloy 4006 (Ni-based superalloys), 
YSZ, and  Al2O3. Manufacturing (coating deposition) processes included high veloc-
ity oxy-fuel (HVOF), air plasma spray (APS), and cold gas dynamics spray (CGDS).

Corrosive environment (electrolyte or salt) included NaCl, HCl, LiCl-
KCl-CsCl, 46.5LiF-11.5NaF-42KF,  92NaBF4-8NaF, 71.7LiF-16BeF2-
12ThF4-0.3UF4 + Te, 66LiF-34BeF2 +  UF4, 15LiF-58NaF-27BeF2 +  PuF3, 
15LiF-58NaF +  27BeF2 +  Cr3Te4, 73LiF-5BeF2-20ThF4-2UF4 +  Cr3Te4, 
71LiF-27BeF2-2UF4 +  Cr3Te4, LiCl-Li2O-Li, 71LiF-29BeF2, 53LiF-46BeF2-
1UF4, 62LiF-36.5BeF2-1ThF4-0.5UF4, 70LiF-10BeF2-20UF4, 62LiF-
37BeF2-1UF4, 71LiF-16BeF2-13ThF4, 58LiF-35BeF2-7ThF4, 53LiF-46BeF2-
0.5ThF4-0.5UF4, 60LiF-36BeF2-4UF4, 62LiF-36.5BeF2-1ThF4-0.5UF4, 
(NaCl-Na2SO4-KCl) + 10%H2O, FLiNaK, 50wt% Na2SO4 + 50wt%V2O5, 
 Na2SO4 +  V2O5, 50%Na2SO4 + 50%V2O5, NaCl +  Na2SO4 + KCl, LiCl-Li2O, and 
LiCl–KCl. Other range of key conditions included, such as testing temperature 
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(25–1000  °C), testing duration (0–20,000  h), corrosion rate (0–610  µm/year), 
feedstock (particle) powder size (11–53  µm), melting point (1260–2700  °C), 
density (3–9.01  g/cm3), porosity (1.1–11%), hardness (8–22,050  MPa), tensile 
strength (69–2500 MPa), elasticity modulus (126–413 GPa), electrical resistivity 
(0.0000064–1 ×  1026 Ω-cm), and thermal conductivity (5.7–60.7 W/m.K).

Regression Models

Application of data analytics approach and regression models for high-tempera-
ture corrosion prediction or analysis involves correlating various factors with the 
corrosion rate or some relevant outcome. In all cases, the approach includes data 
collection, feature selection, pre-processing of data, exploratory data analysis, 
regression model selection, uncertainty analysis, followed by model training and 
its evaluation, interpretation, deployment, and validation.

Regression models help estimate  the relationships between a dependent vari-
able and one or more independent variables. Machine learning regression models 
predict values based on various input data. Overall, the regression models choice 
should align with the underlying corrosion mechanisms and the data available. 
Through various regression models [33, 34], we can learn patterns and relation-
ships from the training data which can then be used to make predictions on new 
data. There are many regression models, however in this research, seven mod-
els were used to evaluate their performance: (i) linear regression (LiR), (ii) lasso 
regression (LaR), (iii) ridge regression (RR), (iv) support vector regression 
(SVR), (v) random forest regression (RFR), (vi) gradient boosting regression 
(GBR), and (vii) ada boost regression (ABR). Review of various machine learn-
ing and regression models can be cited elsewhere [35], however some rationale 
on the selection of regression models is provided below.

Linear, Lasso and Ridge Regression

The most straightforward regression approach is linear regression (LiR). It is 
made up of a dependent variable that depends linearly on the independent vari-
able and two variables. Lasso regression (LaR) linear regression techniques add 
penalty terms to the linear regression objective function. Lasso supports sim-
ple models with limited features, which is ideal for models with large degrees 
of multi-collinearity. This approach regularises the model to make it general so 
that it can function for a broad range of data points, which also helps to pre-
vent the problem of overfitting. The ridge regression (RR) model is a method for 
analysing data from linear regression and multiple regression that exhibits multi-
collinearity. Ridge regression pre-supposes a linear connection between both the 
destination values and the individual values, much like simple linear regression 
does. When the individual values in the set of data have a strong correlation, 
ridge regression is applied.
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Support Vector and Random Forest Regression

Support vector regression (SVR) can effectively achieve a nonlinear classification by 
utilising the kernel trick, indirectly locating their input data into high feature spaces, 
with the goal of minimizing the error whereas random forest regression (RFR) is 
an ensemble (“together”) learning approach that functions by building a wide range 
of decision trees and merging the multiple trees together to get a more accurate and 
stable prediction. SVR’s premise is to locate the better-fit line. The hyperplane with 
the greatest quantity of points is the better-fit line in SVR, whereas RFR employs a 
method that integrates estimations from various machine learning models to provide 
forecasts which are precise than those from an individual model.

Gradient Boost and Ada Boost Regression

Like the RFR model, the gradient boosting regression (GBR) and ada boost or adap-
tive boosting regression (ABR) are ensemble learning techniques, although they 
employ several unique calculation methodologies [11]. GBR builds a model in a 
stage-wise fashion, where each stage corrects the errors of the previous one. ABR 
combines multiple weak learners to create a strong learner, and is commonly used 
for classification tasks, but it can also be adapted for regression tasks. The mecha-
nisms of each technique have been described in various literature [36, 37].

Machine Learning Approach

Research on localised corrosion has garnered a lot of attention [24]. For predicting 
localised corrosion effects, conceptual deterministic approaches are often devised. 
To comprehend how long-term corrosion of metal behaves, it is crucial to antici-
pate the rate of corrosion and its progression [38]. As summarised in section above, 
a set of datasets were collected from public sources and literature studies. Due to 
limited datasets available in relation to nuclear thermochemical corrosion of materi-
als, the datasets from other high temperature aggressive corrosion of materials (e.g., 
geothermal, oxidation (wet/dry), solar) were included in the analysis. Such data sets 
were included from other high temperature aggressive corrosion of materials, as 
similarities in such types of corrosion and materials degradation can be observed 
across different application, materials and environments, and several common fac-
tors contribute to the degradation process.

Before initiating the analysis and training section, collected datasets were 
deployed in proper order. Through the data analysis, it helps find the correlation 
between collected datasets [10, 39]. Thereafter, datasets were divided into train-
ing and test parts. A training dataset was utilised by different models (which are 
imported from the Scikit-learn library in Python programming) to train a corrosion 
prediction model, and it was evaluated by test and training datasets (representation is 
depicted in Fig. 2). It is important to note that Scikit-learn is a library that provides 
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many supervised and unsupervised learning algorithms which is better suited for 
ML applications with smaller datasets (unlike TensorFlow which is better in deep 
learning and large-scale datasets).

To investigate the multi-dimensional relationships between materials and cor-
rosion rates, an ML algorithm was implemented using Python 3 package. Model 
training was performed using the collated datasets gathered from previous studies 
on the corrosion rates of structural and coating parts. The prepared algorithm was 
utilised to conduct a preliminary analysis test, which supported checking the cor-
relation between each input parameter and corrosion rate. It also helped to visualise 
the number of collected corrosion data based on different aggressive corrosion pro-
cesses with varying temperatures.

Some of the collected datasets are required to be converted from string to numeri-
cal format, which was done in advance of model training to get the best regression 
model, and it also helps to easily access those collected datasets for any ML regres-
sion models. The overall collected dataset with 16 input parameters was used during 
the training phase for corrosion rate prediction. The entire dataset was divided at 
random, with 10% as the testing set and 90% as the training set [24]. The testing set 
was solely utilised to validate the predicted performance of the improved model; 
the training set was primarily utilised for training purposes. The seven models—
LiR, LaR, RR, SVR, RFR, GBR, and ABR were each independently used to create a 
corrosion rate prediction model during the training phase. The improved predictive 
capability was then established as an optimised model. Finally, to confirm the effec-
tiveness of the improved corrosion rate prediction model, a testing set was used. The 
scikit-learn library [40] was used for all the statistical investigation and information 
mining tasks.

Furthermore, we directly imported all regression models from the scikit-learn 
library [40], ensuring no hyperparameter tuning changes were necessary. We 
imported regression models from the scikit-learn library, as well as metrics for 

Fig. 2  Working process flowchart for the proposed research
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validation. We also used the Matplotlib library [41] for data visualization and the 
Pandas library [42] for working with the collected datasets.

The random forest model (scheme shown in Fig. 3) was proposed to train the 
collected data set, as it is a commonly used supervised ML technique which can 
be employed to address classification and regression issues. Noteworthy, a forest 
consists of a large number of trees, and the more trees it has, the sturdier it will 
be (typically combines multiple decision trees output to reach a single result). In 
contrast, the precision and capacity to solve problems of a random forest algo-
rithm increases with the number of trees in the approach. To increase the data-
set’s accuracy of prediction, it uses many decision trees on different subsets of the 
input data. The random forest algorithm’s operation steps were as follows; Step 
1: a particular data sets random samples are first chosen, Step 2: it then builds a 
decision tree for each batch of data sets, Step 3: additionally, the decision tree is 
then averaged during voting, and Step 4: it chooses the final forecast outcome that 
received most of the votes.

Additionally, a bagging approach was used. Bagging is the process of generat-
ing a unique training subset from a sample data set via replacement. The major-
ity of votes determines the outcome (in this research case, it was low, medium, or 
high corrosion (or corrosion rates) outcome based on the majority of votes received, 
which is also depicted in Fig. 3 for easier understanding). Based on the aforemen-
tioned premise, it can be inferred that random forest employs the Bagging code. 
Random forest uses a technique called bagging, sometimes referred to as bootstrap 
aggregation. Any initial random data can be used to start the procedure. It can then 
be arranged into samples called bootstrap samples. Additionally, each model was 
then trained separately, producing unique outcomes known as aggregation. The last 
stage combines all the findings, and the resultant outcome depends on a majority 
vote. Bagging is the term for this action, which is carried out with an ensemble.

Fig. 3  Simplified illustration of random forest model for corrosion analysis
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In the analysis, the data set was crowded with alternatives, for instance, to esti-
mate the corrosion degree of a collection of characteristics based on properties. It 
then provides a training dataset with details on the type of coating, substrate, tem-
perature, type of thermochemical electrolysis, type of salt, duration of time, etc. In 
the analysis, the data must then be divided by selecting the shortest chunk first so 
that it can be divided in as many ways as feasible. Starting by dividing the corrosion 
level by substrate type, followed by coating material, and so on, could be beneficial. 
For example, in Fig. 3, let’s assume those yellow colour nodes are in decision tree 
1, which might hold the first row of data from the collected dataset, and the white 
colour node could be assumed to be irrelevant data. Similarly, the same principle 
was followed in decision tree 2 using the second row of data from the collected data-
set, and so on. It can anticipate a certain corrosion level with the highest degree of 
precision, and it can split continuously until a certain node no longer requires it. The 
level of corrosion rate was predicted based on the major vote count from the deci-
sion trees.

Results and Discussion

Exploratory Data Analysis

Exploratory data analysis was the crucial step that involved summarizing the main 
characteristics of the datasets. It included understanding the structure of datasets, 
handling missing data (imputation, removal), exploring the statistics for categorical 
variables, visualization, correlation, data outliers, analysing the distribution, group-
ing, aggregating to get a high-level understanding, including validating assumptions.

Figure  4 shows the varying corrosion rate with a minimum to maximum tem-
perature range based on different high temperature aggressive corrosion processes 
(i.e., nuclear, geothermal, oxidation, solar), which are all collected from the public 
domain. These processes involve the use of chemical reactions at elevated tempera-
tures that could split water molecules to produce hydrogen through electrolysis [2]. 
As shown in Fig. 4a, the frequency and trend of the plot of the datasets from the lit-
erature studies reviewed presents high temperatures aggressive corrosion processes 
ranging from 250 °C to 2000 °C. Also shown in Fig. 4a, nuclear thermochemical 
processes have temperatures ranging from 470  °C to 1300  °C with most of the 
related studies reviewed operating around 500 °C–1000 °C. Solar processes on the 
other hand had some studies operating at very high temperature of up to 2000 °C, 
although very limited literature studies presented this is very high temperature val-
ues. The spread and centers of each high temperature aggressive corrosion processes 
with available rate of corrosion data points are represented as black dots with respect 
to the varying temperature, shown in Fig. 4b. This shows that most of the studies 
were carried out at temperature values between 500 °C and 1000 °C.

Following the analysis of corrosion rate based on temperature under different 
high temperature aggressive corrosion processes, additional analysis was carried 
out to check the range of corrosion rate counts based on the data collected. This 
included density plotting in different ranges which could also help in identifying 
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density-based thresholds or ranges that could be used for data processing. It could 
also help in creating new features representing the local data point density around 
a given observation. However, in the present analysis, the consideration was to use 
density-driven sampling from regions of higher data density, to improve the model’s 
ability to generalise well in dense regions. As shown in Fig. 5, the collected data 
has a corrosion rate as high as 610 µm/year. Particularly, it clearly shows that the 
collected data from the literature study has a huge number of corrosion data points, 

Fig. 4  a Temperature distribution plot showing the range of temperature under consideration, and b dif-
ferent high temperature aggressive corrosion processes and their respective temperature ranges
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which vary between 0 and 100  µm/year. It is sufficient to train a demonstrable 
model, which has been discussed in the upcoming section (i.e., predictive modelling 
of the corrosion rate).

Beforehand, another analysis was carried out to check the correlation between 
available input parameters and corrosion rate (Fig. 6). In this analysis, a graphical 
heatmap has been shown in a matrix, represented as colours, which are commonly 
used for correlation matrices visualisation (i.e., positive, or negative correlations), 
confusion matrices (i.e., areas of correct and incorrect predictions), and feature 
importance. In such mapping, the correlation matrix shows how strongly different 
variables are correlated (i.e., darker colours indicate stronger correlation, ( +) cor-
relations means when one variable increases, and the other variable increase, and 
(−) correlations means when one variable increases, and the other variable tends to 
decrease). It is important to note that corrosion data are usually measured under sev-
eral testing environments, and then inconsistencies in testing condition can make the 
corrosion results difficult for modelling usage and limiting data utilisation [16]. As 
can be seen from the graphical heatmap analysis (Fig. 6), the features have largely 
nonlinear relationships, i.e., the input parameters have less correlation with the cor-
rosion rate. Graphical heatmap analysis also helps to extract information which are 
dominant and redundant factors. It appears to have a limited relationship with the 
outcome.

Due to the availability of limited data, powder particle size, time and temper-
ature alone have a close correlation to the corrosion rate with positive values. 
However, the rest of the input parameters have less correlation with the corrosion 
rate, which are all shown as a negative value in correlation map (except powder 

Fig. 5  Distribution plot for range of corrosion rate from the collected dataset
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particle size, time, and temperature). With other few variables, highly correlated 
features (e.g., correlation coefficient  ≥  0.7) include feedstock materials, sub-
strates, electrolyte molten salt, manufacturing process, melting range, density, 
hardness, tensile strength, modulus of elasticity, electrical resistivity, and thermal 
conductivity. Some of the correlations are strong (e.g., electrical resistivity, hard-
ness), though not have obvious and direct physical meaning. However, the mate-
rials composition and structure (which influence hardness) can influence both 
properties independently. For example, certain materials may have high electri-
cal resistivity due to their electronic structure, while also exhibiting high hard-
ness due to a strong atomic structure and could be part of future investigations. 
Too many input features could reduce the generalisation ability of the model 
[16].  However, the potential analysis could include assessing the effect of con-
founding variables (not directly visible in the datasets), nonlinear relationships, 
effect of outliers, errors, or missing values, creating new features, assess the sta-
tistical significance, or may be visualise it differently. However, in the current 

Fig. 6  Correlation map for checking the correlation between available input parameters and corrosion 
rate
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analysis, a suitable regression model was trained using available data and com-
pared with other regression models, all discussed in the following section.

Predictive Modelling of the Corrosion Rate

After observing the data through exploratory analysis, data point density observa-
tion and graphical heatmap visualisation, this section presents the corrosion estima-
tion outcomes for the seven regression models. For a flawless prediction model, the 
predictive performance was represented as functions of the quantified values, which 
matched the observed data exactly. It can be seen that the data points fall on the 
diagonal lines, and closer the data points are to the diagonal, representing the more 
precise predicted outcomes.

Abundance of noise and overfitting issues occurred frequently when using lin-
ear regression model. Similarly, SVR does not have the capability to perform well 
with noisy data. Due to these, both regression models demonstrated a poor match for 
the corrosion. Additionally, RR and lasso regression both aided in reducing overfit-
ting issues by picking characteristics of lower relevance and reducing the size of 
big coefficients. Thus, the RR and lasso regressions’ fitting effects on the two tar-
get qualities were substantial and effective, and this also made these two regression 
models perform similarly. The ABR model performed well in the training dataset. 
However, it has poor performance in the test dataset due to its progressively learn-
ing-boosting technique. As shown in Figs. 7, and 8, respectively, the GBR and RFR 
models are interconnected strategies that serve to strengthen the model’s capability 
and provide well-fitting outcomes. Additionally, these models have the capability to 
handle multiple types of data, like categorical, textual, and numerical. Therefore, a 
good result was obtained from these models. Nevertheless, RFR (Fig. 8) performed 
well compared to other models due to its precision-improving capability by reducing 
the overfitting issues in the decision tree.

Moreover, each trained model has not predicted the corrosion rate completely. 
It is imperative to remember that there is a finite dataset used to train each model. 
Therefore, we must make sure that this is considered while interpreting the find-
ings. Thus, it shows variation in the x- and y-axes based on each model’s robustness. 

Fig. 7  Prediction accuracy of GBR model: a train datasets, and b test datasets
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However, each model performed badly on the training sets (except ABR, GBR, and 
RFR), possibly because of overfitting while adequately fitting the training dataset 
[43]. The results of the poorly performed regression models are presented in Appen-
dix A as supplementary material.

In this research work, we randomly divided 90% of the data into a training set and 
10% into a test set from the collected dataset. We used this separated data to train 
the optimal model and cross-validate each model. This research work employed two 
metrics: the coefficient of determination 

(
R2

)
 and the mean absolute error (MAE) to 

cross-validate the prediction accuracy and performance of each model.
For evaluating the predictive performance of model’s, the coefficient of deter-

mination 
(
R2

)
 , which analyses two sets of data using a value between real and pre-

dicted, were both used [11]. It provides an indication of how well the model predicts 
the variability in the data (for example, R2 = 0 , where the model does not predict 
any variability in the dependent variable, whereas R2 = 1 , where the model perfectly 
predicts variability in the dependent variable. Additionally, mean absolute error 
(MAE) also used, which can more intuitively reflect the error. The following equa-
tions are used to formulate them:

where y′ is the average target value across all test samples, fi is the predicted value, 
yi is the target value, and n signifies the number of test samples. The MAE is used 
to determine the average absolute variation between the predicted and target val-
ues. A lower MAE value indicates the most accurate model. Most evaluations of 
regression model efficacy use these metrics (R and MAE) . Each improved mod-
el’s R2

and MAE calculation results for the training and testing sets are shown in 

(1)R2 = 1 −

∑n

i=1

�
fi − yi

�2

∑n

i=1

�
yi − y�

�2

(2)MAE =
1

n
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|
|fi − yi
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|

Fig. 8  Prediction accuracy of RFR model: a train datasets, and b test datasets
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Table 1. The outcomes demonstrated that the RF regression’s fitting impact had the 
highest level of accuracy in comparison [43].

Machine learning algorithms are better at making predictions than traditional sta-
tistical approaches because of their strong generalisation capabilities. Nevertheless, 
the research’s training set included a variety of substrates and extra variables, and 
we believe that the volume of data it included was inadequate to accurately capture 
the influence that these variables had on corrosion rate. As a result, the model’s abil-
ity to predict outcomes for the testing set was substantially less accurate than it was 
predicted for the training set. The prediction accuracies for the RFR and GBR mod-
els were all rather good [11]. But in general, to increase accuracy, the Random For-
est model can identify the most essential features from a dataset. It is also quick and 
precise, processing big datasets with smaller parameters. Thus, these features make 
the RF model perform better than other regression models.

Corrosion Rate Modelling Complexity and Model Limitations

Corrosion rate modelling is a critical tool in the design of coating and structural 
parts prone to degradation due to corrosive environment. Materials and corrosion 
engineers often rely on models which can predict corrosion rates to select appro-
priate construction materials for construction. Experimental investigations to deter-
mine corrosion rates of materials under various operational conditions can be costly. 
Therefore, development of ML models, including simulations, mechanistic, empiri-
cal (or semi-empirical), and mathematical models, etc., could play an important role 
in estimating the corrosion rates for various systems.

Application of ML models demonstrates the promise in predicting corrosion 
rates, but they come with some limitations. ML model limitations for evaluating cor-
rosion rates have been well argued [17, 44]. The limitations are due to inherent cor-
rosion processes complexity, challenges with the data, and the ML models. As dem-
onstrated through this work, corrosion data can be inadequate, particularly for high 
temperature corrosion environmental conditions (nuclear, geothermal, oxidation 
(dry/wet), solar applications) which can have very different corrosion mechanisms 
affecting the materials, there can be inconsistencies in data collection methods, 

Table 1  Coefficient of determination 
(
R
2
)
 and mean absolute error (MAE) values of each model

Regression model R2 value MAE value

Train datasets Test datasets Train datasets Test datasets

Linear regression (LiR) 0.001 −0.981 56.926 40.519
Support vector regression (SVR) -0.151 −0.063 40.722 12.116
Ridge regression (RR) 0.205 −2.248 46.216 39.071
Lasso regression (LaR) 0.204 −2.251 45.931 38.319
Ada boost regression (ABR) 0.856 −0.389 28.455 31.827
Gradient boosting regression (GBR) 0.977 0.725 7.763 9.733
Random forest regression (RF) 0.944 0.864 9.388 6.451
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and there can be incomplete datasets. Features identified may not be relevant for 
the models and data processing may result in poor model performance. Prediction 
and comparison of the corrosion rates using different models under nearly identi-
cal conditions for a sample can be complex. Analysis shows that not all corrosion 
rate models demonstrated a high generalisation ability [17]. Also, as seen in current 
analysis (sections above), the features have largely nonlinear relationships, i.e., the 
input parameters have less correlation with the corrosion rate.

We collected several corrosion datasets from the public domain, each related to 
different conditions. All of these datasets are combined based on the same param-
eters (such as feedstock (coating) materials, substrates (structural part), manufactur-
ing (coating deposition) process, corrosive environment (electrolyte or salt), tem-
perature, testing duration, feedstock (particle) powder size, melting temperature, 
density, porosity, hardness, tensile strength, elasticity modulus, electrical resistivity, 
and thermal conductivity), which is used as an input and corrosion rate (µm/year) 
as an output. We deployed the collected datasets into two parts: input and output, as 
previously mentioned. Using the properly deployed dataset for training each regres-
sion model, the RFR model accurately predicted the corrosion rate behavior in both 
the train and test datasets, as illustrated in Fig. 8. The inclusion of various corrosion 
types allowed the model to account for a wide range of conditions during the train-
ing phase. Specifically, it can aid in predicting the behavior of corrosion rates when 
it receives unseen datasets related to various conditions. However, at times, it may 
not be able to accurately predict corrosion rates based on various unexplored corro-
sion condition-related variables. Such an issue can be resolved by incorporating the 
unexplored corrosion datasets into the training phase.

The amount of data including completeness within rows representing observa-
tions and columns representing features would have a significant impact on the 
model’s ability to predict regression since the ML model’s primary mechanism 
of operation was to acquire the dataset’s underlying information. To increase the 
associated forecast accuracy, additional pertinent data must be added. The database 
might be further enhanced, it was thought, to increase the method’s precision as well 
as reliability [11]. Literature trends show that there is a need to incorporate basic 
descriptors based on domain knowledge which could simplify the representation and 
improve the interpretability of ML modelling. Such models should have an in-depth 
knowledge of fundamentals of materials and environment, in particular mechanisms 
related to thermodynamics, reaction kinetics and mass transfer, heat transfer and 
behavior of degradation products on the rate of corrosion [44]. It has also been pro-
posed to select temporal variables which positively affect the overall model’s perfor-
mance [17].

Opportunities

As demonstrated through present work, inclusion of different corrosion environ-
ments in the training data for ML models provides an opportunity to enhance the 
model’s ability to generalise across various conditions. However, inclusion of data 
can impact ML model performance to predict corrosion rates, as the inclusion 
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introduces increased complexity and potential data imbalance. It can be part of fur-
ther analysis, but this offers an opportunity to employ a combination of strategies, 
starting with leveraging domain expertise, hybrid modelling, and feature engineer-
ing, which could potentially mitigate such challenges, and could lead to reliable cor-
rosion prediction models.

In the present work, to begin with, the outcomes of the correlation and multi-
collinearity evaluations assisted in determining which characteristics were most 
important to the corrosion rate. The RFR model then assessed the order of impor-
tance of the dominant characteristics and showed how they affected corrosion rate in 
an intuitive way. ML was able to deliver extra data in numerous formats compared 
to traditional analytical techniques. Consequently, depending on the training data, 
the suggested RFR model could be utilised to provide long-term predictions of cor-
rosion rates for several substrate types during high temperature aggressive corro-
sion processes under varied salt solutions. For data with different variables, such as 
substrates, feedstock materials, manufacturing process, electrolyte molten salt, tem-
perature, melting point, powder particle size, porosity, tensile strength, modulus of 
elasticity, thermal conductivity, electrical resistivity, and corrosion rate data, etc., 
the ML model demonstrated improved regression capability. This corrosion rate pre-
diction model’s efficacy has led to its recognition as a useful tool for ongoing corro-
sion research [11].

Data mining benefits greatly from ML, a common large data processing tech-
nique. Generally, corrosion data is typically sparse, ML’s benefits and requirements 
are not generally clear. The amount and clarity of the data are typically regarded as 
the precision assurance of ML modelling and analysis [45]. There are several corro-
sion test terms, it might be challenging to immediately summaries and utilise corro-
sion data from the publications [45–47]. It is becoming difficult to get sufficient data 
on corrosion, particularly during high temperature aggressive corrosion processes. 
Nevertheless, the substrates and other features might be accurately represented, if 
required data are acquired during high temperature aggressive corrosion of materi-
als. ML just offers some exploratory analysis findings for the hazy phenomena and 
unexplored rules. Technical experiments are also required to be conducted to verify 
and analyse the true process.

This model performs substantially better than other models in modelling the 
limited data series [10]. Unfortunately, because of the limited amount of corrosion 
data, overfitting can quickly result from utilising excessive input characteristics. 
Moreover, a model’s capacity for generalisation may be hampered by an excessive 
number of input characteristics. Hence, the analysis precision and application effi-
cacy of a model are significantly influenced by suitable feature selection, which 
aids in extracting dominant information and removing unnecessary components in 
the original data [16]. Nevertheless, an overfitting issue readily occurs when these 
approaches are applied to the corrosion rate series data, indicating that the model’s 
historical data fitting precision is huge but its ability to forecast upcoming data is 
poor [10].

To solve these problems, it is highly recommended to prepare a miniature high 
temperature aggressive corrosion of materials (e.g., nuclear, geothermal, oxidation, 
solar applications) experimental setup with the required number of substrates and 
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applied feedstock coating materials and salt substances, including other variables. 
Thus, it could help to generate several datasets. However, it requires a substantial 
level of funding to proceed with this approach. Nevertheless, there is another pos-
sibility to generate numerous datasets than the last approach using computational 
simulation approach.

Conclusions

In this work, machine learning approach were to estimate corrosion rates of materi-
als when operated at high temperatures conditions (e.g., nuclear, geothermal, oxi-
dation (dry/wet), solar applications) but geared towards nuclear thermochemical 
cycles. In all cases, the approach includes data collection, feature selection, pre-pro-
cessing of data, exploratory data analysis, regression model selection, uncertainty 
analysis, followed by model training and its evaluation, interpretation, deployment, 
and validation. To estimate the rate of corrosion using a random forest regression 
(RFR), a corrosion growth model was presented utilising the situation of a substrate 
with feedstock applied product. Analysis demonstrated that RFR model is highly 
precise compared to other models. The suggested method’s accuracy percentage 
using coefficient of determination is 94.4% in training datasets, and 86.4% in test 
datasets. These results suggest that machine learning techniques might be helpful 
tools for corrosion research since they offer an effective way to utilise corrosion 
data. Based on this outcome, the model’s applicability was expanded, and machine 
learning was utilised to confirm the precision and viability of forecasting aggressive 
corrosion of materials during high temperature. The approach offers opportunities to 
improve corrosion predictive capabilities and develop materials and corrosion pro-
tection technologies for critical infrastructure applications.

We can say that this is First-Of-A-Kind research where we developed database 
(data classification, algorithm, relationship between materials and information) for 
high temperature aggressive corrosion of materials. As a recommendation, the data-
base can be used as part of further research in relation to electrolyser material selec-
tion, alongside the modular construction of high temperature thermochemical elec-
trolyser for hydrogen production.
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Appendix A. Supplementary material 

  

Fig. A1. Prediction accuracy of LR model: (a) train datasets, and (b) test datasets. 

 

  

Fig. A2. Prediction accuracy of SVR model: (a) train datasets, and (b) test datasets. 

 

  

Fig. A3. Prediction accuracy of RR model: (a) train datasets, and (b) test datasets. 
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Fig. A4. Prediction accuracy of LaR model: (a) train datasets, and (b) test datasets. 

 

  

Fig. A5. Prediction accuracy of ABR model: (a) train datasets, and (b) test datasets. 
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