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A B S T R A C T

In recent years, the dual-function radar and communication (DFRC) paradigm has emerged as a
focal point in addressing spectrum congestion challenges. However, prevailing research heavily
relies on computationally complex likelihood-based approaches for communication signals with
an added Gaussian noise based single waveform. Note that, a single waveform for diverse
scenarios e.g., presence of a communication receiver in the radar main lobe, side lobe, etc.,
may lead to a deteriorated detection performance in a DFRC design. Therefore, in this paper,
we present a cognitive DFRC architecture that utilizes a diverse set of orthogonal waveforms
at the transmitter. Specifically, based on a perception-action cycle, a QAM-based waveform
is employed for communication when both the radar target and communication receiver are
within the main lobe, while a PSK-based waveform is used when the radar target is in the main
lobe and the communication receiver is in the side lobes. Furthermore, to enhance the feature-
based estimation, the communication receiver integrates a Convolutional Neural Network (CNN)
architecture designed to autonomously learn and extract features from received signals with
different Signal-to-Noise ratio (SNR). Next, the adaptive nature of the system enables proficient
discernment of the received signal type and its corresponding SNR value. Moreover, deep
learning techniques are applied in realistic scenarios with various channel impairments to
extract features from received signals, departing significantly from likelihood-based methods
and reducing computational complexity. The proposed methodology’s effectiveness is validated
through Monte Carlo simulations, underscoring its potential to address challenges associated
with DFRC under real-world conditions.

. Introduction

Rapid growth in radar-based applications and wireless communicating devices especially 5G and beyond (B5G) desires to
ncrease the bandwidth for better quality of service [1]. It is important to remember that millimeter-waves, multiple-input multiple-
utput (MIMO), massive MIMO and non-orthogonal multiple access (NOMA) are the key technologies associated with 5G [2–5].
y leveraging these techniques, wireless technologies have the potential to make communication more efficient, reliable, and
ost-effective. Wireless technology today aims to reduce hardware and installation costs and maximize radio frequency (RF)
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spectrum utilization. To satisfy this demand, creative solutions must be developed to optimize the use of the limited radio spectrum
resources [6]. Initially, the radio spectrum was allocated to radar-based operations and was used for military purposes only, but
with the advent of time, demand in the civilian sector grew exponentially and spectrum scarcity was produced [7]. To overcome this
issue, cognitive behavior was adopted to facilitate both entities. Radars were allowed to act as primary users while communication
was done as the secondary user under the constraint of power threshold [8]. Several researchers from different parts of the world
have been working together to design a unified aperture that can be used for both radar operations as well as communication
functions. Through this joint architecture, communication users are provided with a share of the bandwidth originally allocated to
radar operations [9].

Generally, spectrum sharing can be done in the time domain or the spectral domain [7]. In the time domain, a strobe switch is
sed for switching while the spectral coexistence is further divided into two broad fields: Joint radar and communications (JRC)
nd dual function radar and communications (DFRC) [10]. In JRC both entities share spectrum only while in DFRC, the unified
ransmitter is used for both radar and communication operations. DFRC utilizes three different categories of waveforms. These
aveforms are radar-based waveform design, communication-derived waveform design, and the sub-beam approach [11]. The
adars and wireless devices can share spectrum and hardware simultaneously using the DFRC approach. This technology maximizes
pectrum efficiency by reducing the need for a dedicated spectrum for each service, thereby allowing more users to access the
pectrum [12,13]. There has been considerable interest in the subject of spectrum congestion among researchers. Nevertheless,
wo broad categories of algorithms can be applied to received signals: likelihood-based (LB) and feature-based (FB). The first
ategory applies spectral densities (PSD), calculating the probabilities ratio between the signals and applying matched filtering-
elated techniques, whereas, in the second category, features are extracted from the received signal and used to make a decision.
he results of the LB-based approach are reliable, provide us optimal solution but the computation complexity is high. In contrast, the
B approach is easy to implement and gives us the freedom to ignore transmission schemes and the nature of devices. Furthermore,
hey are robust enough to take account of channel mismatches.

.1. Likelihood based estimation

Likelihood-based detection is one type of spectrum-sharing solution as explained above. It uses the likelihood of a signal
eceived by a communication user determined by its channel impairments such as noise, fading and other distortions to estimate
hether that signal belongs to another spectrum user or not [14]. The approaches used in likelihood-based detection include

alculating conditional probabilities through Bayesian modeling, using pattern recognition techniques, and involving artificial
ntelligence algorithms like neural networks [15–17]. LB offers a high degree of accuracy in detecting spectrum signals from other
pectrum users without introducing any false alarms or miss-detections [18]. Also, they can detect low-power signals amidst strong
nterference. Furthermore, they can also reject narrowband interference and identify multiple users transmitting simultaneously with
ifferent modulations [19]. Spectrum-sharing systems benefit significantly from advanced detectors, leading to enhanced accuracy.
ikelihood-based detectors’ performance relies on various factors including signal-to-noise ratio, the number of available samples
er interval, and the number of modulation types [20].

To achieve more efficient and secure transmission, researchers propose using amplitude shift keying to embed information for
ommunication receivers positioned in sidelobes of radar beams [21]. ASK modulation has performance constraints and lower bit
ates when the radar and communication receivers are positioned in the main lobe. This technique suffers from reduced performance
nd bit rate. [22]. To address this issue, a PSK-based technique has been proposed in [23]. This approach performs well when the
ommunication receiver is positioned within the main lobe of the radar beam. Moreover, recent research [24] suggests that utilizing
quadrature amplitude modulation (QAM)-based approach for information embedding yields improved performance compared to

xisting ASK methods based on sidelobe level (SLL), waveform diversity, and PSK. Additionally, insights provided by [9] delve into
ikelihood-based estimation techniques and various information-embedding strategies.

.2. Feature based estimation

The feature-based estimation technique extracts multiple features from the received signal to estimate the characteristics of
he transmitted signal, such as its range, velocity, amplitude, phase frequency, and modulation type [25]. By using FB estimation
echniques, cognitive radio systems can determine if a signal is legitimate and thus help prevent false alarm detection [26].
ltimately, FB estimation is essential for reliable spectrum sharing and efficient cognitive radio networks. Additionally, with im-
roved communications performance and efficient spectrum exploitation, FB estimation can provide a valuable tool for interference
voidance in wireless networks [27]. The FB classification can be implemented by Combining with Kalman Filtering [28] or Hidden
arkov Models (HMM) to improve the efficacy of results and prevent false detections [29].

The sub-optimal Feature-based method is developed to classify signals by identifying useful features before the classification
rocess [30]. These features can include instantaneously calculated values, transformed representations, statistical measures, or
haracteristics derived from constellation shapes. Extensive research has been conducted on both methods, revealing that the LB
ethod offers the most effective solution but demands significant computational resources and prior knowledge of the signal.
n the other hand, although less optimal in terms of accuracy, the FB method provides a faster response time due to its lack
f dependence on prior information. In ML-based techniques, feature extraction becomes a task requiring expertise when employing
hese methods [31]. To overcome this challenge in FB methods and enhance their efficacy in recognizing complex patterns effectively

ompared to shallow models do deep learning approaches have drawn considerable attention for reducing reliance on traditional
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feature engineering methodologies. Due to the rapid advancements in DL technologies, numerous methods have been developed to
self-learn the features, and DL is preferred because it requires large datasets, which are easily obtained from communication systems.
The complexity of DL is a major concern since it involves training and testing phases, many applications have utilized depthwise
convolutional networks. As a result of depth-wise convolutions, the model size is reduced significantly, but accuracy remains the
same. Compared to conventional convolution, this model has fewer parameters, making it suitable for small devices in cognitive
environments. In [32], authors applied a Markov-based decision process and Deep Q network to estimate the target parameters
for cognitive radar. The main achievement is to minimize the interference between radar and the communication user. In [31]
separable convolutional neural network (CNN) is applied to estimate features of the received signal at the communication receiver.
The authors have applied CNN architecture to the signal received from a highly noise-impaired channel. Similarly, in [33] long
short-term memory (LSTM) with a gated recurrent unit (GRU) layer is applied to obtain higher accuracy for B5G wireless networks
and Internet of Things (IoT) networks. The efficacy of results is measured in terms of accuracy, training loss, and confusion matrix.
The value of the SNR is used between −20 dB to 20 dB. A few more models based on CNN architectures are studied in [34–
36] mainly focusing on the extraction of features and calculating the computational complexity and accuracy of proposed models.
In [37,38], researchers skipped the features extraction step to further reduce the computational complexities. Similarly, to increase
the performance while keeping low computational complexities, the combination of CNN with recurrent neural network (RNN) is
presented in [39,40]. More details about the use of CNN, RNN, and other variants of DL algorithms have been widely discussed in
literature by [41,42].

In this investigation, we introduce a methodology that employs multiple orthogonal waveforms for information embedding,
encompassing the following key aspects:

• Diverse Waveform Usage: A QAM-based waveform is chosen for communication when both the radar target and the
communication receiver are positioned within the main lobe. Alternatively, a PSK-based waveform is employed when the
radar target is within the main lobe and the communication receiver is situated in the side lobes.

• CNN-Based Feature Extraction: The CNN-based architecture presented in this study is meticulously designed to autonomously
learn and extract features from received signals characterized by a specified SNR.

• Cognitive System Capabilities: This proposed cognitive system (based on the perception-action cycle) proficiently identifies
both the type of received signal and its corresponding SNR value. Additionally, these acquired statistics are subsequently
communicated to the DFRC fusion center through the communication receiver’s uplink.

The subsequent sections of this paper follow a structured arrangement. Section 2 provides insights into the conventional data
model. Section 2 details the proposed architecture for Dual-Function Radar and Communication (DFRC). This section covers the
discussion on the suggested information embedding methodology at the transmitter side, and the design aspects of both the radar
receiver and the communication receiver. Additionally, a thorough examination of the deep learning-based architecture is presented,
elucidating detailed information on the path leading to information decoding. Section 3 is dedicated to the presentation and
discussion of results, while Section 4 discusses the conclusion, presenting a synthesis of key findings and conclusive remarks drawn
from the research.

2. The proposed architecture

Consider the DFRC transmitter with a uniform linear array spaced half the wavelength. The radar receiver is placed adjacent
to the DFRC transmitter so that both the DFRC transmitter and the radar receiver observe the same spatial angle. Moreover, We
have one communication receiver equipped with both a transmitter array and a receiver array. The DFRC transmitter and the
radar receiver contain 𝑀𝑇 and 𝑀𝑅 antenna elements, while the communication receiver contains 𝑁𝑇 and 𝑁𝑅 antenna elements in
ransmitter and receiver arrays respectively. The receiver array at the communication receiver is employed to receive signals from
he DFRC transmitter. Meanwhile, the transmitter array at the communication receiver facilitates sending feedback to the fusion
enter as shown in Fig. 1 and discussed in [13].

The main aim of this data model is to develop a cognition between the DFRC transmitter and the communication receiver.
here are two types of feedback received at the fusion center, the first feedback contains the geographical information of the target

.e. angle of arrival and SNR while the information of data will be obtained from the communication as shown in Fig. 2. The objective
f the communication uplink path is to provide the knowledge of the channel state information.

The DFRC transmitter generates an omnidirectional waveform that strikes both the target and the communication receiver. The
ignal strikes back from both the radar receiver and the communication receiver which may or may not be partially overlapped.
urther, the communication receiver scans the entire environment and obtains the locations of the target and DFRC transmitter.
he communication receiver sends the channel information to the DFRC receiver via the uplink path. Once the channel information

s updated, the fusion center designs the DFRC transmit beamformer. When the target lies in the main lobe and the communication
eceiver lies in the side lobes, a QAM-based waveform will be used. Similarly, when both the target and communication receiver
xist in the main lobe, a PSK-based waveform will be used.

More details about the radar and communication feedback processor are discussed in the communication receiver section. The
ntire activity is summarized in the following algorithm (see Table 1).
3 
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Fig. 1. Data model of existing DFRC [13].

Fig. 2. Flowchart of proposed System.

2.1. DFRC transmitter design

In Fig. 2, the initial module under discussion is the DFRC transmitter. The signal transmitted undergoes channel impairments
and interacts with the target in the far-field, as well as the communication receiver. Subsequent sections develop a signal data model
for the DFRC design, employing various modulation schemes. DFRC transmitters, radar receivers, and communication receivers are
all equipped with uniform linear arrays (ULAs) utilizing 𝑀𝑇 , 𝑀𝑅, 𝑁𝑇 , and 𝑁𝑅 antenna elements, respectively, for the transmission
and reception of various signals. The spacing between each element in an array is generally half a wavelength, consistent across
all arrays. It is assumed that the DFRC transmitter and radar receiver are positioned so closely that they receive the same angle of
radiation. Detection and tracking of radar targets are primarily achieved with the transmitter array. Additionally, the transmitter
array encapsulates communication bits without affecting radar operation. DFRC transmitting arrays steer power within the main
beam, where radars operate, using this beam of radiation for object detection and location. The radar receiver then interprets the
received signal, enabling the user to determine the object’s location. At the input of the transmit antenna, the 𝑀 × 1 vector form
𝑇

4 
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Table 1
Radar target search and communication channel estimation.
Algorithm: Radar target search and communication channel

estimation.

Step 1∶ DFRC transmitter generates omnidirectional signal to
search the target and communication receiver.

Step 2∶ Radar receiver receives the echo from target and estimates
its angle and reflection coefficients.

Step 3∶ Communication receiver estimates the location of DFRC
transmitter and target by using the MUSIC algorithm.

Step 4∶ Communication receiver decodes the information
received in step 2 and sends feedback to DFRC
transmitter via Uplink.

Step 5∶ DFRC receives the feedback from communication receiver
and updates the waveform according to channel behavior.

Table 2
List of symbols.

Symbol Dimensions Description

𝜓1(𝑡) 𝑀𝑇 × 1 PSK based waveform
𝜓2(𝑡) 𝑀𝑇 × 1 QAM based waveform
𝑔(𝑡) 1 × 1 Pulse shaping filter
𝐴𝐼 1 × 1 QAM amplitude information In phase
𝐴𝑄 1 × 1 QAM amplitude information Quadrature
t 1 × 1 Time period of each radar pulse
𝜏 1 × 1 Pulse number
𝐴 1 × 1 Power assigned to each waveform
𝐰 𝑀𝑇 × 1 Beamforming weights
(⋅)∗ 𝑀𝑇 × 1 Complex conjugate operator
𝜓(𝑡) 𝑀𝑇 × 1 Orthogonal waveform
𝛿 1 × 1 Kroneker delta
𝐡(𝑡) 𝑁𝑅 × 1 Channel impulse response
(∗) 1 × 1 Convolutional operator
𝐧(𝑡) 𝑀𝑅 × 1 The AWG noise vector
𝐴𝑝 1 × 1 Received signal power
𝛽𝑝 1 × 1 Reflection coefficient
𝐚(𝜃𝑝) 𝑀𝑇 × 1 Transmitter steering vector
𝜃𝑝 1 × 1 Direction of radar target
𝐬(𝑡, 𝜏) 𝑀𝑇 × 1 Transmitted baseband signal
𝐛(𝜃𝑝) 𝑀𝑅 × 1 Receiver array steering vector
𝐞𝑟(𝑡, 𝜏) 𝑀𝑅 × 1 Interference encountered at the radar receiver
𝐧𝑟(𝑡, 𝜏) 𝑀𝑅 × 1 Additive white Gaussian noise
d 1 × 1 Inter element spacing
𝜆 1 × 1 Wavelength

of the baseband signal for the 𝜏𝑡ℎ pulse is

𝐬(𝑡, 𝜏) = 𝐬𝑟𝑎𝑑𝑎𝑟(𝑡, 𝜏) + 𝐬𝑐𝑜𝑚(𝑡, 𝜏) (1)

In this formula, the signal transmitted from DFRC contains the information of both the radar signal and communication signal.

2.2. Proposed information embedding methodology

Transmitted signals encapsulate binary data conveyed through waveform characteristics, encompassing amplitude, phase, and
frequency. Both radar and communication receivers intercept these signals emanating from the DFRC transmitter. The radar
receiver employs the MUSIC algorithm to ascertain the object’s directional information, whereas the communication receiver
deciphers the symbolic information using CNN. On the transmitter side, a single symbol is transmitted within each pulse repetition
interval. The choice of this symbol may vary from pulse to pulse, contingent upon the characteristics of the channel. The lookup
table comprises numerous waveforms and diverse modulation schemes, including BPSK, QPSK, 8 PSK, 16 𝑄𝐴𝑀 , and 64 𝑄𝐴𝑀 .
Subsequently, the transmitter selects a singular symbol from the assortment of available options for modulation, as illustrated in
Fig. 3. The communication receiver identifies the modulation scheme and corresponding waveform, facilitating the extraction of
binary information. The list of abbreviations used in this manuscript is mentioned in the below Table 2.

It is important to note that we have to use such orthogonal waveforms whose time-bandwidth product is large. Such waveform
gives maximum detectable range and better resolution. The generalized waveform of 𝑀 − 𝑎𝑟𝑦𝑃𝑆𝐾 and 𝑀 − 𝑎𝑟𝑦𝑄𝐴𝑀 modulated
5 
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Fig. 3. The proposed information embedding methodology at the DFRC transmitter.

signal is represented by [43]:

𝜓1,𝑗 (𝑡) = 𝑔(𝑡)𝑐𝑜𝑠(2𝜋𝑓𝑐 𝑡 + 𝜃𝑗 )

𝜃𝑗 =
2𝜋
𝐽

(𝑗 − 1), 𝑗 = 1,… , 𝐽 .
(2)

𝜓2,𝑗 (𝑡) =𝐴𝐼𝑔(𝑡)𝑐𝑜𝑠(2𝜋𝑓𝑐 𝑡 + 𝜃𝑗 ) − 𝐴𝑄𝑔(𝑡)𝑠𝑖𝑛(2𝜋𝑓𝑐 𝑡 + 𝜃𝑗 )

𝜃𝑗 =
2𝜋
𝐽

(𝑗 − 1), 𝑗 = 1,… , 𝐽 .
(3)

As depicted in Fig. 3, the value of 𝐽 for PSK-based waveforms is 2, 4, 8 and for QAM-based waveforms, it is 16 and 64. Thus, at the
input of the DFRC transmitter, the combined form of the signals is given by [44]

𝐬(𝑡, 𝜏) = 𝐴(𝜏)𝐰∗𝜓(𝑡) (4)

The orthogonality of waveform can be written as:

∫𝑡
∣ 𝜓(𝑡) ∣2 𝑑𝑡 = 1 (5)

and

∫𝑡
𝜓𝑘𝜓

∗
𝑘 (𝑡)𝑑𝑡 = 𝛿(𝑘 − 𝑘′) (6)

where 𝛿 is kroneker delta.
Training data is transmitted over a multi-tap rician wireless channel after modulation. The signal passed through the wireless

channel looks like

𝐫(𝑡) = 𝐬(𝑡) ∗ 𝐡(𝑡) + 𝐧(𝑡), (7)

In matrix-vector form

𝐫(𝑡) = 𝐇𝐬 + 𝐧(𝑡), (8)

where 𝐇 = 𝑑𝑖𝑎𝑔(𝐡) with 𝐡 = [ℎ1, ℎ2,… , ℎ𝑀𝑅
]𝑇 is 𝑀𝑅 × 1 vector containing channel information and 𝐬 = [𝑠1, 𝑠2,… , 𝑠𝑀𝑅

]𝑇 contains
the information in the form of amplitudes and phases. Furthermore, due to the multipath channel effect, the complexities of the
received signal in Eq. (7) increases as expressed mathematically,

𝑟(𝑡) =(𝑠(𝑡 − 𝛥𝑡) ∗
𝑁
∑

𝑖=1
𝜌𝑖𝛿(𝑡 − 𝑡𝑖)𝑒𝑗(𝜙𝑖+𝛥𝜙))

𝑒𝑗2𝜋𝛥𝑓𝑡 + 𝑛(𝑡)

(9)

where, 𝑠(𝑡 − 𝛥𝑡) accounts for timing offset, 𝑒𝑗(𝜙𝑖+𝛥𝜙) represents the phase offset added to each multipath component and 𝑒𝑗2𝜋𝛥𝑓𝑡

accounts for the frequency offset. Moreover, ∑𝑁
𝑖=1 𝜌𝑖 ⋅ 𝛿(𝑡− 𝑡𝑖) ⋅ 𝑒

𝑗(𝜙𝑖+𝛥𝜙) represents the multipath channel response with N multipath
components. Each component includes a delay (𝑡𝑖), complex attenuation (𝜌𝑖), and phase shift (𝜙𝑖). These offsets are all introduced
simultaneously, and their specific values will depend on the impairments introduced by the channel or other factors in the
communication system. Consequently, as a result, the constellation image looks messy due to these channel-introduced impairments,
which result in overlapping points. In such constellation images, it is extremely difficult to determine whether the modulation scheme
selected is right or wrong.
6 
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2.3. Radar receiver design

Suppose there are P distant targets within the radar’s main beam. The baseband signal received by the radar receiver can be
epresented in vector form as follows:

𝐱𝑟𝑎𝑑𝑎𝑟(𝑡, 𝜏) =𝐴𝑝
𝑃
∑

𝑝=1
𝛽𝑝(𝐚𝑇 (𝜃𝑝)𝐬(𝑡, 𝜏))𝐛(𝜃𝑝)+

𝐞𝑟(𝑡, 𝜏) + 𝐧𝑟(𝑡, 𝜏)

(10)

The steering vector for the radar receiver array can be written as

𝐛(𝜃𝑝) = [1, 𝑒𝑗
2𝜋
𝜆 𝑑 sin(𝜃𝑝),… , 𝑒𝑗

2𝜋
𝜆 𝑑(𝑀𝑅−1) sin(𝜃𝑝)]𝑇 (11)

For enhanced clarity, Table 2 provides a thorough list of symbols, including their corresponding dimensions and descriptive
explanations for Eqs. (10) and (11).

2.4. Communication receiver design

In the far field, there exist J communication receivers, each equipped with 𝑁𝑇 and 𝑁𝑅 antenna elements for uplink and downlink
purposes. To facilitate prior communication, a lookup table containing the dictionary of orthogonal symbols at the dual-function
transmitter is known to each communication receiver. The proposed system extracts SNR information from the received signal
and subsequently transmits it back to the DFRC transmitter via an uplink antenna array. In literature, this technique is recognized
as uplink channel estimation [45]. Assuming that the 𝑗th communication receiver, furnished with 𝑁𝑅 antenna elements arranged
uniformly in a linear configuration, receives the following signal.

𝐱𝑐𝑜𝑚(𝑡, 𝜏) = 𝐴𝑗𝛼𝑗 (𝐚𝑇 (𝜙𝑗 )𝐬(𝑡, 𝜏))𝐜𝑗 (𝜙𝑗 ) + 𝐧𝑗 (𝑡, 𝜏) (12)

The received power at the communication receiver is denoted by 𝐴𝑗 . The parameter 𝛼𝑗 represents the constant channel coefficient
originating from the transmitter array towards the 𝑗th communication receiver, summarizing the propagation characteristics. On
the other hand, 𝐚(𝜙𝑗 ) corresponds to the steering vector in the direction of 𝜃𝑗 for the communication receiver from the dual-function
transmitter. Moreover, 𝐬(𝑡, 𝜏) represents the baseband signal carrying actual information. The 𝐜𝑗 (𝜙𝑗 ) characterizes the steering vector
from the receive array, which is related to the communication receiver’s location. The noise component 𝐧𝑗 (𝑡, 𝜏) is an additive
white Gaussian noise vector with a zero mean and variance 𝜎2𝐈. Furthermore, (𝜙𝑗 ) designates the direction associated with the
𝑘th communication receiver.

The steering vector of communication receiver ULA can be written as

𝐜(𝜃) = [1, 𝑒𝑗
2𝜋
𝜆 𝑑 sin(𝜃𝑗 ),… , 𝑒𝑗

2𝜋
𝜆 𝑑(𝑁𝑅−1) sin(𝜃𝑗 )]𝑇 (13)

In the initial stage, beamforming is applied to the received signal. This operation isolates the steering vector by employing
eamforming weights at the communication receiver. Consequently, the desired signal can be extracted from the received signal,
llowing the receiver to focus on the desired signal’s direction while mitigating interference from other directions. This reduction
n interference enhances the signal-to-noise ratio (SNR) at the receiver. The beam-forming operation is mathematically expressed
y Eq. (12). The received signal is comprehensive and contains information on received power, channel impairments, noise, and
odulation scheme. These parameters have both deterministic and stochastic nature. More details about the signal parameters are

hown below:

𝐱𝑐𝑜𝑚(𝑡) = �̂�𝑒𝑗(2𝜋𝛥𝑓𝑡+𝜙𝑗 )𝜂𝑘,𝑖𝑔(𝑡 − 𝑛𝑇𝑠) (14)

The amplitude, phase offset, and residual of carrier frequency are represented by �̂�, 𝜙𝑗 , and 𝛥𝑓 , whereas symbol interval is
ritten as 𝑇𝑠 and g(t) is the pulse shaping. 𝜂𝑘,𝑖 is the modulated symbol with 𝑘th waveform and 𝑖th constellation.

2.4.1. Spectrogram image diagrams
A spectrogram is a visual representation of the frequencies present in a signal over time. To generate a spectrogram image,

a time-domain signal received in Eq. (14) is used. The process involves converting the time-domain signals into frequency-time
representations by short-term Fourier transform (STFT), which can then be fed into a neural network for classification. To analyze
the signal over short time intervals, the signal is multiplied by a window function. Common window functions include the Hamming
window or Gaussian window. The windowed signal is denoted as 𝑥𝑤(𝑡)

𝐱𝑤(𝑡) = 𝐱𝑐𝑜𝑚 ⋅ 𝐰(𝑡) (15)

urthermore, the windowed signal is sampled down and FFT is applied on it as

𝐗𝑑 = 𝐹𝐹𝑇 {𝐱𝑤[𝑛]} (16)

𝑑 represents the complex spectrum matrix of the signal at a given frequency. The spectrogram can be mathematically described
s a 2𝐷 matrix:

𝐒(𝑡, 𝑓 ) = |𝐗 (𝑓, 𝑡)|2 (17)
𝑑
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Fig. 4. Flowchart of paper.

Fig. 5. The proposed layered wise CNN architecture.

where, 𝐒(𝑡, 𝑓 ) represents the magnitude of the spectral content at time t and frequency f.
It is worth noting that the implementation of neural networks varies depending on the complexity of the modulation schemes and

the size of the dataset. The main objective of using CNN-based architecture is to recognize the unique spectral patterns and temporal
characteristics associated with different modulation schemes, enabling it to classify unknown modulation signals accurately.

2.4.2. Proposed convolutional neural network design
In our proposed method, data is effectively classified with the assistance of CNNs. Unlike other classification algorithms, CNNs

do not necessitate extensive pre-processing. Convolutional architectures are available in both 2D and 3D, depending on the user’s
requirements. The structure comprises four layers. The first layer is the convolution layer, responsible for receiving input data and
extracting features. This layer performs the convolution operation between the filter and the input map. The second layer is a pooling
layer, which reduces the dimensionality of the feature map. Compressing the output of the convolution layer is sometimes necessary,
and pooling achieves this by down-sampling the feature map. This enhances feature robustness when there are positional changes.
Common methods for pooling include average pooling and maximum pooling. The third layer is fully connected, and tasked with
classifying the data. Every neuron in each layer is connected with specific weights and activations to the neurons in the layer above.
The fourth layer is the output layer, which delivers the final result. An activation function is utilized to calculate the probability
response at the output layer. The overall flow chart of the study is illustrated in Fig. 4.

The CNN architecture is improved by incorporating a fully connected layer and a Softmax classifier layer to enhance its
effectiveness. We optimized the hyperparameters for the proposed CNN including learning rate, dropout rate, filter size, number
of filters, and network width mentioned in the Tables 5 and 6 respectively. The proposed network, illustrated in Fig. 5, takes
spectrogram images as input with dimensions of 1 × 1024 × 3.

A variety of spatial filters, each with several learnable parameters, are employed in the convolutional layers of the proposed
design. This facilitates the efficient and rapid learning of spatial properties and other pertinent high-level features. In each
convolutional layer, the input undergoes convolution with the filters and is subsequently passed through activation functions. The
mathematical description of a the convolutional layer is as follows:

𝐆 = 𝜁 (𝐒 ⋅𝐊 + 𝑏 ), (18)
𝑐𝑜𝑛𝑣 𝑐𝑜𝑛𝑣
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Fig. 6. The internal mechanism of proposed radar and communication feedback processor.

where, 𝜁 is the activation function, 𝐊 is Convolutional layer kernel matrix, 𝐒 is the raw output images obtained by spectrogram and
𝑏𝑐𝑜𝑛𝑣 is the bias of for symbol decoding. Furthermore, the samples extracted from convolutional layers are fed to pooling layer for
dimensions reduction and feature extraction. The output of the pooling layer can be written as:

𝐃𝑝𝑜𝑜𝑙𝑖𝑛𝑔 = ℸ(𝐆𝑐𝑜𝑛𝑣 + 𝑏𝑝𝑜𝑜𝑙𝑖𝑛𝑔) (19)

in Eq. (19), ℸ represents the pooling layer activation function. There are three different types of pooling operations available, i.e. max
pooling, average pooling, and 𝐿2 −𝑁𝑜𝑟𝑚 pooling. Furthermore, a fully connected layer is responsible for detection of data and it
gives us the final answer. Max pooling takes the maximum value within each pooling window, helping to retain the most significant
features. furthermore, when dealing with multi-class classification problems, the softmax activation function is applied element-wise
to the output vector 𝐃 obtained after the pooling layer. Given an input vector z, the softmax function is defined as:

𝐳𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐃) (20)

The output of the softmax function is a probability distribution over the classes, and it is commonly used in the final layer of a
neural network for classification tasks.

2.5. Proposed cognitive design and adaptive modulation

The design and implementation of a cognitive communication system with adaptive modulation and SNR thresholding present a
sophisticated approach to addressing the dynamic nature of communication channels. The system incorporates a cognitive feedback
loop that continuously monitors key parameters, such as SNR, channel quality, and interference levels, through a dedicated sensing
module. This real-time feedback informs an intelligent decision-making algorithm, enabling the system to dynamically adjust its
configuration based on changing channel conditions. The integration of SNR thresholding establishes predefined thresholds for
different modulation schemes (𝑀−𝑃𝑆𝐾&𝑀−𝑄𝐴𝑀), allowing the system to select the most suitable modulation scheme at any given
moment. This ensures optimal utilization of available bandwidth while balancing the trade-off between data rate and reliability.
The adaptive modulation module seamlessly switches between modulation schemes based on the determined SNR thresholds, while
rate adaptation mechanisms adjust data rates accordingly. Thorough testing and optimization are essential to fine-tune the system’s
parameters, ensuring robust performance across diverse communication scenarios. This cognitive communication system represents a
sophisticated and dynamic solution for addressing the challenges posed by variable channel conditions. Fig. 6 embodies the selection
of waveform and data rate based upon the channel statistics and value of SNR.

The SNR thresholding for the communication receiver to be in the main lobe and in the side lobes are given in Table 3.

2.6. UP link communication channel

Similarly, the signal generated by the communication receiver and transmitted by using ULA having dimension 𝑁𝑇 × 1 towards
DFRC transmitter or fusion center can be written as:

𝐬 (𝑡, 𝜏) = 𝐴 (𝜏)𝐰∗ 𝜓 (𝑡) (21)
𝑈𝐿 𝑈𝐿 𝑈𝐿 𝑈𝐿
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Table 3
SNR threshold for main lobe and side lobes.

Main lobe Side lobes

−15 dB to −5 dB BPSK
−15 dB to 5 dB 16 QAM

−5 dB to 5 dB QPSK

5 dB to 15 dB 8 PSK 5 dB to 15 dB 64 QAM15 dB and above 16 PSK

Table 4
Wireless channel parameters.

Parameter name Parameter value

Modulation schemes 5
Samples of each modulation 1000
Signal dimension 1 × 1024 × 3
Duration of each input frame 5 ms
Center frequency 902 MHz
SNR range −30 dB to +30 dB
Sampling rate 200 kHz
Symbols of each waveform 1024
Samples per symbol 8
Doppler spread 5 Hz
Maximum clock offset 5 ppm
Channel profile Rician
Fading K factor 4
Fading delay ratio 0, 1.8, 3.4
Path gains 0,−2,−10 dB
Maximum doppler shift 4

where, 𝐴𝑈𝐿 is the signal power, 𝐰𝑈𝐿 is the UL steering vector from the communication receiver towards the DFRC transmitter and
𝜓𝑈𝐿(𝑡) is the desired waveform contains snr level information.

3. Simulation results

For any learning task, a recommended initial step involves plotting the input data to identify prominent features. If a clear
direction is discernible through visualization, utilizing a neural network may be excessive or even sub optimal. To generate the
constellation diagram, the receiver must precisely recover the timing, carrier frequency, phase, and waveform of the received signal.
Communications systems cannot eliminate channel effects due to their inherent nondeterministic nature. In real-time communication
scenarios, factors such as increased thermal noise, oscillator drift and temperature variations at the DFRC transmitter, and symbol
timing offset may arise. Additionally, issues such as sample rate degradation and carrier frequency offsets contribute to performance
deterioration. Owing to these impairments, accurately identifying the true modulation and transmitted symbol becomes exceedingly
challenging.

Furthermore, the presence of multipath fading further degrades signal quality, resulting in data loss. This data loss subsequently
exacerbates the performance degradation of the transmission system. The more details about the channel parameters are provided
in the Table 4.

In this received signal classification task, at the receiver, 1000 received samples were collected to make a spectrogram diagram
in image format by applying short-term Fourier transform (STFT). The generated image is then fed to CNN based classifier for
classification. The classification result is a probability vector that indicates the probability of the received constellation being a
particular modulation scheme.

In the next section, we present the performance of the proposed CNN-based system. The proposed system has been evaluated
based on classification accuracy and miss classification error over a wide range of SNRs.

3.1. Proposed CNN classification performance

In the subsequent section, we will examine the CNN-based received signal classifier, its constellation diagram, and the training
procedure. Throughout the CNN training process, various parameters of the optimizer and training algorithm require adjustment to
enhance both the training speed and classification accuracy. Specifically, we adopted batch processing during training, employing
batches of 10, 000 images for each iteration. To facilitate effective learning, the CNN underwent training for 1000 iterations.

dditional details regarding the diverse training parameters of the CNN are provided in Table 5.
Training was done on a standard Intel 11th Gen Intel(R) Core(TM) 𝑖5 1135𝐺7, with 2.40 GHz and 2.42 GHz processors, having 8

B ram and Intel Iris Xe Graphics 𝐺780𝐸𝑈𝑠(400–1300 𝑀𝐻𝑧) GPU cards that took 3 h 10 min approximately.
The details of the CNN network layer parameters are comprehensively discussed in Table 6. This encompasses essential

nformation, including the filter size and the number of filters utilized in each layer. Subsequently, each convolutional layer is
10 
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Table 5
CNN parameters.

Parameter name Parameter value

Percent training samples 80%
Percent validation samples 10%
Percent test samples 10%
Mini batch size 10
Initial learning rate 0.0001
Iteration per epoch 500
Validation frequency 3
Max epochs 10
Solver name Adam

Table 6
CNN layers details.

Layers name Layer dimensions Filter size No. of filters

Input layer 1 × 1024 × 3
Conv. layer 1 1 × 1024 × 32 3 × 3 32
Conv. layer 2 1 × 512 × 32 3 × 3 32
Conv. layer 3 1 × 256 × 32 3 × 3 32
Conv. layer 4 1 × 128 × 48 1 × 8 48
Conv. layer 5 1 × 64 × 64 1 × 8 64
Conv. layer 6 1 × 32 × 96 1 × 8 96
Average pooling layer 1 × 1 × 96 1 × 1 01
Fully connected layer 1 × 1 × 5 5
Softmax layer 1 × 1 × 5
Class output layer 1 × 1 × 5

Table 7
Confusion matrix of proposed CNN at snr −7 dB.

16 QAM 82 17 1 0 0 82%
64 QAM 14 84 1 0 1 84%
8 PSK 3 1 76 0 20 76%
QPSK 6 0 8 0 86 86%
BPSK 0 0 0 0 100 100%

16 QAM 64 QAM 8 PSK QPSK BPSK Accuracy (%)

Table 8
Confusion matrix of proposed CNN at snr 0 dB.

16 QAM 92 6 0 0 2 94%
64 QAM 1 91 0 8 0 91%
8 PSK 4 0 94 0 2 94%
QPSK 1 0 1 0 98 98%
BPSK 0 0 0 0 100 100%

16 QAM 64 QAM 8 PSK QPSK BPSK Accuracy (%)

succeeded by a batch normalization layer, followed by a Rectified Linear Unit (ReLU) activation function and a Max pooling layer.
This proposed architectural configuration is designed to enhance training speed, promote better generalization, and yield improved
performance.

The results in Table 7 show performance accuracy at −7 dB using a confusion matrix. These values show that for lower SNR
alues, the modulation accuracy of less data rate is very high.

The accuracy of BPSK at 0 dB is 100% while the classification accuracy of higher modulation order degrades slightly. This
egradation occurs due same constellation diagrams. The overall accuracy of the proposed system is 92.6%. To mitigate the risk of
ncountering local minima, the ADAM optimization algorithm is employed for training the Convolutional Neural Network (CNN).
he advantages of Adam over stochastic gradient descent (SGD) extend to improved computational complexities and the calculation
f both mean and central variance for the moving average of each parameter. In conjunction with the softmax layer, a cross-entropy
oss function is utilized to quantify the disparities between the detected class and the true class. Therefore, the integration of softmax
ctivation with the cross-entropy loss function is performed to accomplish the classification task. Additionally, the Table 8 shows
erformance accuracy at 0 dB, with an overall accuracy achieved of 94%. In contrast, the BPSK achieves 100% accuracy, whereas
6−QAM achieves 94%.

The training accuracy of the proposed system in terms of SNR is compared with the Zhou [46], Ali [47], Krzystone [48] and
im [49] as depicted in the Table 9.

These results indicate that all waveforms perform relatively well at a moderate SNR level (0 dB), with BPSK and QPSK showing
he highest accuracy. This suggests that these modulation schemes are more robust to noise compared to others. Similarly, at a lower
11 
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Table 9
Comparison of training accuracy vs. SNR.

Accuracy (%)
SNR (dB) −20 −15 −10 −5 0 5 10 15

Zhou [46] 14 15 20 35 65 75 83 87
Krzy [48] 13 14 28 34 60 75 82 88
Ali [47] 12 13 20 36 66 77 84 92
Kim [49] 11 12 21 36 65 74 81 93
Proposed 10 14 22 37 67 78 84 94

Table 10
Comparison of time complexity.

Model Total layers Parameters Epocs Optimizer

Zhou [46] 22 5,71,695 40 SDGM
Krzy [48] 13 27,49,275 72 ADAM
Ali [47] 49 4,27,484 60 ADAM
Kim [49] 22 1,43,760 45 SDGM
Proposed 28 1,41,432 10 ADAM

SNR level (−7 dB), where the noise is more significant, the performance of all waveforms decreases. However, BPSK still achieves
perfect accuracy, demonstrating its exceptional robustness to noise. QPSK also performs well with an accuracy of 86%, followed by
64 QAM and 16 QAM. 8 PSK shows the lowest accuracy at this SNR level, indicating it is more noise-resistant.

The computational complexities of the convolutional layer, fully connected layer, and the pooling layer of the proposed system,
s well as existing models, can be calculated using the following equations:

𝐹𝐿𝑂𝑃𝑠(𝑐𝑜𝑛𝑣) = 2 ×𝐻𝑜𝑢𝑡 ×𝑊𝑜𝑢𝑡 × 𝐶𝑜𝑢𝑡 ×𝐾𝐻 ×𝐾𝑤 × 𝐶𝑖𝑛 (22)

𝐹𝐿𝑂𝑃𝑠(𝐹𝐶) = 2 ×𝑁𝑖𝑛 ×𝑁𝑜𝑢𝑡 (23)

𝐹𝐿𝑂𝑃𝑠(𝑃𝑜𝑜𝑙𝑖𝑛𝑔) = 𝐻𝑜𝑢𝑡 ×𝑊𝑜𝑢𝑡 × 𝐶𝑜𝑢𝑡 ×𝐾𝐻 ×𝐾𝑤 (24)

hereas, 𝐻𝑜𝑢𝑡 and 𝑊𝑜𝑢𝑡 are the height and width of the output feature map. 𝐶𝑜𝑢𝑡 is the number of output channels (filters). 𝐾𝐻 and
𝑤 are the height and width of the convolution kernel. 𝐶𝑖𝑛 is the number of input channels. The factor 2 accounts for the multiply
nd add operations. 𝑁𝑖𝑛 is the number of input neurons and 𝑁𝑜𝑢𝑡 is the number of output neurons. In this study, it has been observed
hat deeper architectures are most effective with more complex datasets. Furthermore, there is a notable relationship between the
umber of dense layers, the number of neurons, and the dataset complexity. The number of convolutional and dense layers directly
mpacts the model’s runtime. While using lower filter sizes and higher batch sizes can enhance the model’s performance, it also
ncreases the computational cost. Additionally, a lower batch size yields better results when the learning rate is low. For models
ith a greater number of layers, maintaining a lower learning rate leads to improved outcomes as mentioned in the Table 10.

These insights are critical for selecting appropriate waveforms based on the expected noise conditions in communication systems.
or scenarios with high noise levels, BPSK and QPSK are preferable due to their robustness and high accuracy. For environments
ith lower noise levels, more complex modulation schemes like 16 QAM and 64 QAM can be considered to achieve higher data

ates while maintaining acceptable accuracy. Figs. 7, and 9 depict the received data in the time domain, frequency domain, and
onstellation domain, respectively, before the introduction of any channel effects.

The spectrogram image was generated using raw signals modulated with BPSK, QPSK, 8PSK, 16 QAM, and 64QAM, each consisting
f 1024 samples per waveform. The central frequency employed for modulation is 902 MHz, and each sample has a duration of 5 ms.
wing to the influence of the channel, a Doppler spread of 5 Hz is observed. This comprehensive representation allows for the
nalysis of signal characteristics across different modulation schemes under specific channel conditions. The detailed spectrogram
rovides insights into the temporal and frequency dynamics, offering a valuable resource for understanding the impact of channel
ffects on various modulation signals as shown in Fig. 8.

Fig. 9 shows the scatter plot image of the received modulated signal, where the 𝑥-axis shows the In phase while the 𝑦 axis shows
he quadrature component. These constellations are obtained for 𝐵𝑃𝑆𝐾, 𝑄𝑃𝑆𝐾, 8 − 𝑃𝑆𝐾, 16 − 𝑄𝐴𝑀 and 64 − 𝑄𝐴𝑀 at snr −10
B, −5 dB, 0 dB, 5 dB, 10 dB, and 20 dB respectively.

.2. Radar performance evaluation

In this section, we will highlight the performance of the Radar receiver. Two targets 𝜃𝑟1 = 50 and 𝜃𝑟2 = 70 were assumed to be
ocated in far field. The target reflection coefficients were supposed to follow a swirling 2 model which changes from pulse to pulse

while remains constant during the entire pulse. ULA having a length of 10 sensors are used at radar receiver array spaced half the
wavelength apart. 1000 pulses are used to build data covariance matrix. MUSIC algorithm is used at the radar receiver to perform
DOA estimation. The target resolution can be made by [50]

|𝜃 − 𝜃 | ⩽
|𝜃1 − 𝜃2| , 𝑖 = 1, 2 (25)
𝑖 2
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Fig. 7. The I & Q time domain representation of the signal at SNR = 20 dB.

Fig. 8. The spectrogram representation of the signal at SNR = 20 dB. Time is given by the vertical axis while frequency is along the horizontal axis.

Fig. 10 shows the Radar performance when two targets are very close to each other, while Fig. 11 shows the performance of the
radar receiver under a high value of SNR.

Moreover, we applied the Friedman test to evaluate the training accuracy of various CNN models across a range of SNR values
on the given datasets. The significance of the 𝑝-value (p< 0.005) was assessed for all models, and the proposed model demonstrated
statistical significance, passing all test parameters. For each SNR value, we ranked the performance (training accuracy) of each CNN
model. The Friedman test was then used to determine if there were significant differences in performance among the models. The
Friedman test statistic (𝜒2

𝐹 ) is calculated using the formula:

𝜒2
𝐹 = 12

𝑛𝑘(𝑘 + 1)

𝑘
∑

𝑅2
𝑗 − 3𝑛(𝑘 + 1) (26)
𝑗=1

13 



M.F. Munir et al. Computers and Electrical Engineering 120 (2024) 109663 
Fig. 9. The Constellation diagrams for digital modulation types of the received signal from SNR = −10 dB to SNR= 30 dB,.

Fig. 10. The Robustness of radar receiver in terms of Target separation vs SNR.

where: n is the number of observations (e.g., different SNR levels), k is the number of groups (e.g., different CNN models), Rj is the
sum of ranks for group j. The proposed CNN model showed a statistically significant improvement in training accuracy across the
range of SNR values, as evidenced by the Friedman test. The 𝑝-value was found to be below the threshold for significance, indicating
that the proposed model’s performance is significantly different from that of the other models tested.

4. Conclusion

In this work, we have presented Cognitive architecture for DFRC for a variety of five communication schemes and two different
waveforms. With the aid of deep learning techniques, features are extracted from received signals at the communication receiver.
We have simulated its accuracy over a broad range of SNR. In this, a CNN-based image classifier is employed to categorize images
depicting various constellation schemes. In comparison with existing modulation classification algorithms for received signals, this
CNN-based approach demonstrates superior classification accuracy and avoids the need for manual feature selection. The algorithm
exhibits robustness against carrier frequency variations, phase offset, timing errors, and phase jitter. Moreover, this classifier does
14 
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Fig. 11. The Robustness of radar receiver in terms of RMSE and SNR.

ot rely on noise variance for classification. Simulations indicate that the proposed CNN-based received signal classification achieves
n average classification accuracy above 90.22% and 92.44% for five modulation schemes at −7 dB and 0 dB SNR, respectively.
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