
DOUNAS, T. 2013. Some notes on the incompleteness theorem and shape grammars. In Zhang, J. and Sun, C. (eds.)
Global design and local materialization: proceedings of the 15th International conference on Computer-aided
architectural design features 2013 (CAAD Futures 2013), 3-5 July 2013, Shanghai, China. Communications in

computer and information science, 369. Cham: Springer [online], pages 368-375. Available from:
https://doi.org/10.1007/978-3-642-38974-0_35

This version of the contribution has been accepted for publication, after peer review (when
applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or
any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-3-642-
38974-0_35. Use of this Accepted Version is subject to the publisher's Accepted Manuscript terms of
use.

This document was downloaded from
https://openair.rgu.ac.uk

Some notes on the incompleteness theorem and
shape grammars.

DOUNAS, T.

2013

https://doi.org/10.1007/978-3-642-38974-0_35
https://doi.org/10.1007/978-3-642-38974-0_35
https://doi.org/10.1007/978-3-642-38974-0_35
https://www.springernature.com/gp/open-science/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-science/policies/accepted-manuscript-terms

Some notes on the incompleteness Theorem and Shape
grammars

Dounas Theodoros

Theodoros.dounas@xjtlu.edu.cn
Xi’an Jiaotong Liverpool University

Abstract. This paper is False
The paper presents a critique of the Shape Grammar paradigm viewed

through the lens of the incompleteness theorem of Gödel. Shape Grammars
have been extensively researched through many lenses. Their productive
systemic nature was the focus of the first papers along with more recent treatises
in the field while their use in analysis of known building styles has been
extensive and a proven mechanism for style analysis. It is surprising though
that use of Shape Grammars in actual design in practice however has been
minimal. The architectural community has not actively used the paradigm in the
design of real buildings, probably because of the rigid analytical approach to
style and rules, following from the academic analysis the paradigm has been
subjected to. However I propose that there is another underlying reason,
other than the rigid approach to construct a Shape Grammar. The nature of the
concurrent application and creation of the rules lies close to the incompleteness
theorem of Gödel, that uses a multitude of Turing Machines to prove that a from
a set of True Axioms -A- we will never be able to determine if all sentences are
true, without having to invent new axioms, outside the initial set -A-, thus
unproven in terms of their true or false nature. Negation of this possibility drives
us to the conclusion that true Design can never be feature -complete and thus
can never be placed in a trusted framework that we all agree or believe it to be
the complete truth.

Keywords: Incompleteness Theorem, Incomputability of Shape Grammars

1 Introduction

The paper is concerned with the application of shape grammars in the practice
of architectural design. Specifically it tries to address the issue of predictability of
shape studies and the application of rules, the creation of rules and timing there of, in
contrast with architectural design in its applied forms. It first develops a limited
typology of shape grammars based on precedent work [19] with the addition of two
examples, then a critique of the types of shape grammars, developing then the
discussion of analytical versus design grammars, feature parity between Turing
machines and Shape Grammars and concludes with a discussion on the
incompleteness theorem by Gödel and its possible application in the Shape Grammar
paradigm.

mailto:Theodoros.dounas@xjtlu.edu.cn

2 Typology of Shape Grammars

Shape grammars are formal systems, consisting of an initial set of shapes, an initial
set of rules and their termination shapes that end the application of the grammar.
The classic definition of Shape Grammars is as follows: [17]

A shape grammar is a 4-tuple (Vt, Vm, R, I) where :
Vt is the initial set of shapes from where we are going to pick our starting shapes.
Vt* is a set that contains any number of elements formed from elements belonging

to Vt, combined, rearranged and transformed in any number of ways
Vm is a finite set of shapes so that the common set between Vt and Vm is null (Vm

+ Vt*) =0 meaning that Vm does not contain any element belonging to Vt*.
R is a set consisting of pairs of shapes, which when taken together form rules of

the U>V type. I is a set of shapes that consist of termination shapes, ie the shapes that
when found by the user of the grammar terminate any further application of the rules.
The use of the computer in the application of shape grammars encourages the
generation of design alternatives, than in a “traditional” design process would
happen “by hand”. Apart from the philosophical question on whether a user simulates a
computer when generating design alternatives by hand the application of the rules
and the choice of the initial shapes give infinite combinations within the
possibilities of the grammar, even accounting for emergent shapes that did not
belong in the initial Vt set, however it is impossible to go beyond the initial set of
possibilities the grammar allows. This impossibility stems for the fact that the
enumeration of rules and the enumeration of shapes initially in the shape grammar
already restrict the number of different possible designs or different alternatives, even
if only from a purely numerical point of view.

However looking carefully at the mechanisms of creating a shape grammar one can
make a different case. The literature suggests that a user has in her hands a shape
grammar, complete with termination rules, before she starts to design. However the
design process does not operate in such a manner. In real life the designer does not
possess a well thought-out map before the design begins, but the map, ie the grammar,
is created at the same time the design process is getting negotiated. Contrasting well
constructed shape grammar mechanisms [5,7,8,12,21] with the output and interim
stages of a design process initially results in the view that design in real life is a
unorganized and naive process rather than the well constructed, actively reasoned,
and feature complete process of shape grammars. By feature complete we ascertain
the completeness of the design process with a clear starting point and a clear end,
while at the same time the set of rules is identified and enumerated in full. This
rigorous structure and the completeness of shape grammars originates from the
‘Turing machine’ algorithmic paradigm with which they have feature parity [10]. The
‘Turing Machine’ paradigm also presents processes with a clear start, clear specific
rules for elements manipulation and clear termination rules and elements. This feature
makes them an excellent metaphor for computing, but a misunderstood metaphor for
design. From a computational point of view the classic design process looks like an
infinite number of Turing Machines working together, but with a probabilistic, random
factor built in when making choices to transcribe - Change- one element to another,
with the rules being created at the time they are applied.

A complete typology of Shape Grammars cannot be presented in the confines of
this paper, however a critique is presented bellow based on a precedent analysis
conducted by [19] with the addition two specific cases, the grammatical basis of
Chinese traditional architecture by [4] and the implementation of curved Shape
Grammars by [11]. In our case the analysis of precedent case studies is extended
here specifically through the classification of grammars in terms of dealing with
emergence, since this is one of the core features of shape grammars that provide
design robustness in the production of alternative designs. In the analysis of the
grammatical basis of Chinese traditional architecture [4] document the building steps
of a traditional Chinese house in Taiwan, based on Yingzhao Fashi - the manual of
traditional Chinese architecture, and derive a grammar from the documentation of the
building steps. Their method of building the grammar brings forward the main
characteristics of the traditional Chinese architecture: Axial symmetry, in one axis or
in parallel axes, Additive composition and a Top-Down Approach in classic
architectural composition terms. Here the analysis is predictable to the last piece of
timber used in the construction. Emergence does not happen, as the manual -or the
grammar- is followed to the last iota. However one can make the case that
emergence does happen, but the rigid system employed does not allow the designer
to recognize emergent shapes and employ them since the compositional and
construction path is laid before her from the beginning. The second case, the
implementation of curved grammars by [11] is “stemming from Krishnamourti’s
maximal line solution and using a solution based on the theorem of space curves: any
two continuous functions of a real variable define a space curve. These functions
serve as its curvature and torsion, with the variable acting as a natural distance
parameter.” This analysis uses explicitly the embedding of shapes in Shape
Grammars that is considered the generative power of the Shape Grammar Paradigm.
A single part of a Curve can belong in more than one whole curves at the same time,
allowing the designer the freedom to choose which curve to use when moving
forward [Figure 1]

Fig. 1. : Embedding of the same part of a curve in two different curves.

This freedom is embedded in the shapes and is not a characteristic explicitly
put forward by the designer, at the initial stages of building the grammar. In a sense it is
a freedom that cannot be avoided, intrinsic of the Shape Grammar paradigm when
applied to curves. However emergence can be dealt with by the designer directly
by creating rule(s) of recognition of the curve. At the same time this shape
grammar example intimately shows the creative power of shape grammars and their
encapsulation for novelty, if used in a creative manner, full of exploration of
different alternatives; in this case the application of different embedding rules.

3 Analysis vs Design

Shape grammars in analysis perform predictably. In analyzing a style the grammarist
does not consider variations where the outcome of a termination rule lies outside the
body of work that represents the style under analysis. The distinction between
classical and non-classical computation in architecture [16] provides a clear example

arlav

of the issue addressed in the present paper: In non-classical computation the
computing algorithm is decoupled or even divorced from the parameters that
formulated the problem. In other words, the explanation of the results, the issues
that the observer sees are divorced from the computation mechanics, even if the
representation is highly classical, ie architectural. In the same book [16] a
classification of shape grammar constructs is provided: Analytical and Design. The
analytical shape grammars are used to formulate a hypothesis of how a style is
constructed. The analysis breaks down the style into two sets of parts and rules, to be
used in reconstructing instances of the architectural style. Analytic shape grammars
aim in describing rather than pre-scribing design. In their application the sets of
geometric shapes and rules are given before design of the stylistic instances begin-
however it would be interesting to observe the process of a shape grammarist in the
process of deconstructing a style to the set of rules and initial proto-shapes that
constitute any given analytical grammar. To understand this one can look at the
differences in initial shapes and initial rules that the literature provides: Analysis of
the same stylistic example, Palladian Grammars [18], has been conducted by two
teams of researchers [2] with a span of 34 years between the two instances of
analysis. From the two Palladian Grammars of Stiny and Mitchel and Benros et al,
one cannot identify the ‘correct’ in terms of Palladian style grammar, even though the
example by Benros et al is much more economical in number of rules.

Few examples of ‘design’ shape grammars exist: the Froebel block grammar
from [16], The Malageira housing grammar by [6] or the animation parity grammars
designed by the author [5]. In these examples the creation of the grammar is
simple and straight forward. No explanation is needed as long as the grammar
performs as the designer intended, pedagogically in the case of Stiny, creating new
designs that belong into an established architectural language in the case of
Duarte’s discursive housing grammar or creating new buildings that respond to
certain conditions in the case of the author. However one can propose that in
these cases the design of the grammar happens simultaneously with the application
of the grammar. Some prediction of unexpected results can be incorporated inside the
rules of the grammar, when emergence is expected. Expectation of emergent shapes
is though a contradiction and in most cases the grammarist will have to create rules
as she goes along, ie creation and completion of the full set of rules for a style is
dependent on the grammarist assuming the role of designer and grammarist at the
same time, concurrently. Like a classic design process, initial rules are applied,
emergence is noticed and at that mo-ment the designer of the grammar can decide to
ignore (thereby nullifying the emergent shape) or exploit the emergent shape by
creating, modifying or adapting rules so that the emergent shape is used in the initial
set. The critical point in Emergence is its definition [13]. Surprise is the
characteristic most designers subscribe to emergent behaviors or shapes in
generative or production systems and one could attribute surprise to the limits of the
knowledge of the designer rather than emergence itself [13].

4 Feature Parity

Feature parity between Turing Machines and Shape Grammars is proven by
implementing a ‘Turing Machine’ inside a Shape Grammar, sacrificing in the process
the graphic visual nature of the Shape Grammar in implementing a universal
symbolic computing system. When we implement this, shapes are treated as symbols
representing an algebraic unit, losing their underlying possibility for emergence and
embedded shapes. Embedding provides some of the creative freedom to the designer
using the grammar, in the sense that in the choice of rules to apply, the designer can
choose to apply different rules in specific stage of the computation, negating the
creation of a predetermined result

In this instance Shape grammars do have one to one mapping with Turing
machines, but not feature parity. Parity would require that a shape grammar could
be implemented as a ‘Turing machine’ at all times, however the creative process
of the designer [15,16] is much more poised towards a cumulative, back-and-forth
process of iteratively building on an initial idea that gets re-interpreted at every step.
For feature parity to exist in the universe of ‘Turing machines’ the actions of the
designer should be recordable, transferable to rules in a Turing machine. After the
act of designing one can always go forward by backtracking on the design steps,
rationalize or generalize from those and create a ‘Turing machine’ specification to
fit the design outcome. Under these conditions feature parity would make possible
the application from Mathematics and Logic Thinking of the Incompleteness theorem
of Gödel.

5 Incompleteness Theorem in Shape Grammars

Turing in his original paper on “Turing Machines” described three states for the
hypothetical “Turing Machine”; based on its internal state and the symbol currently
being read, the machine could do one of three things in the next step: (i)write a new
symbol, (ii)move backwards or forwards one square, or (iii)switch to a new state or
halt. On the halting step there exists the logical paradox that Alan Turing proved to
be “in-computable”: Can we decide whether any given software programme or “Turing
machine” will ever halt? Turing solved this by supposing that there exists a
programme P that can decide whether any given programme Q can halt. If we
now modify programme P to produce a new programme P’ that takes any given
programme Q as in-put and:
1. runs forever if Q halts given its own code for input
2. Halts if Q runs forever given its own code as input

Then all we need to do now is provide P’ with its own code as input. Therefore P’
will run forever if it halts or it will halt if it runs forever, which of course is a logical
paradox, or rather an incomputable situation.

Moving from this, imagine another situation, where we start with the V(i) set
containing all possible architectural designs. Algorithmically it is possible that we
can describe a “Turing Machine” T(a) that will be able to produce all Designs in a
given architectural style, or a given subset of architectural elements that have
common features. Is there a “Universal Turing Machine” T(i) capable of simulating
any T(a)? In effect is there a T(i) capable of simulating any Shape Grammar
known or unknown, allowing us to provide a true formalized framework for
explaining the production of all Designs? To this question Gödel’s Incompleteness
theorem can helps us find the answer.

In simple terms Gödel’s Incompleteness theorem states that there exist systems of
sentences (axioms) where even if we may know that an axiom, or rules of
transformation to produce a certain design, in a system is true, we have no manner in
proving that the axiom is true. Gödel’s hypothesis was concerned with natural
numbers axiomatic systems and number theory, negating Hilbert’s program to find
a set of axioms that would definitely prove that mathematics are a complete
science. Connected with algorithms and their basic mechanism, ie. Turing
Machines, Gödel in essence predicted that given specific problems to solve
algorithmically, there is never a consistent manner to decide that a problem can be
predictably solved, ie computed before we attempt the solution. Translating this in
design and shape grammar terms one can say that Gödel’s incompleteness
theorem could mean that we would never know whether a shape grammar can
predictably produce design results within a known specific design language. This
may seem obvious to a practicing designer but it is not as a simple situation for the
shape grammarist. Shape prediction in shape grammars has been restricted either in
the technique of using multiple classes of rules when needed or in using embedding to
bypass the issue of prediction altogether. By logically following through the
repercussions of the incompleteness theorem of Gödel in Turing machines, to shape
grammars, if and when feature parity exists, the shape grammarist acting as a
logician can never truly predict the results of her shape rules. This may very well be
the reason why some of the shape grammar examples use external to their inherent
system references grammars or productive systems that complement their agility in
design.

6 Conclusions

In critiquing the shape grammar paradigm the present paper attempts to clarify
their inherent logical and algorithmic constraints. However the shape grammarist does
not always retain the knowledge of these constraints in her mind when designing
or applying rules to shapes. This situation of oblivion can very well be connected
with the act of design where consistency, predictability or completeness are not
always desired features in processes. We are aware that the issue of application of the
Incompleteness theorem in shape grammars could provide more issues for clarification
or strengthening of the paradigm in the future.

References
1. Ahmad, S et al (2004): Design Generation of The Central Asian Caravanserai, 1st

ASCAAD International Conference, e-Design in Architecture, KFUPM, Dhahran, Saudi
Arabia. pp 43-58

2. Benros, D., Duarte, J., Hanna, S: An alternative Palladian shape grammar: A subdivision
grammar for Palladian villas, Proceedings of the 17th International Conference on
Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp.
415–424 (2012)

3. Chase S C, (2002): A model for user interaction in grammar-based design systems''
Automation in Construction 11 pp161-172

4. Chiou, S., Krishnamourti, R: The grammatical basis of Chinese traditional architecture,
Languages of design 3, Formalisms for word, Image and sound, pp 5-31 (1995)

5. Colakoglou, B: An Informal Shape Grammars for Interpolations of Traditional Bosnian
Hayat Houses in a Contemporary Context, Generative Art 2002, pp15.1-15. 15.9 (2002)

6. Dounas, T.,Kotsiopoulos, A: Dynamic (Shape) Grammars, CAADRIA 2008 [Proceedings
of the 13th International Conference on Computer Aided Architectural Design Research in
Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 22-28, (2008)

7. Duarte, J: A Discursive Grammar for Customizing Mass Housing, The case of Sizá’s
houses at Malagueira, Digital Design [21th eCAADe Conference Proceedings / ISBN
0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 665-674 (2003)

8. Downing, F., Flemming, U: The bungalows of Buffalo, Environment and Planning B:
Planning and Design, volume 8, pp. 269-293 (1981)

9. Flemming, U: More than the sum of parts: The grammar of queen Anne houses,
Environment and Planning B: Planning and Design, 1987, volume 14, pp323-350 (1986)

10. Gips, J: Shape Grammars and their uses, Artificial perception, Shape perception and
computer aesthetics. Birkhauser Verlag, Basel und Stuttgart, (1975)

11. Jowers, I., Earl, C: Implementation of curved shape grammars, Environment and Planning
B: Planning and Design, vol 38, pp 616-635 (2011)

12. Koning, H. et al: The language of the prairie: Frank Lloyd Wright’s prairie houses,
Environment and Planning B: Planning and Design, volume 8, pp. 295-323 (1981)

13. Monedero, J: Can a Machine Design? A disturbing recreation of Turing’s Test for the use
of architects, in “Architectural Computing from Turing to 2000” [eCAADe Conference
Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 589-594
(1999)

14. Rao, Z et al: “Emergence in Entity Grammar systems” Kybernetes, Vol.38 Iss:10
pp1856-1861 (2009)

15. Schön, D: The Reflective Practitioner (Basic Books, New York) (1983)
16. Stiny, G: Shape, Talking about seeing and doing, The MIT press, Campridge,

Massachusetts, London, England, (2006)
17. Stiny, G.,Gips,J.: Shape Grammars and the Generative specification of painting and

sculpture. IFIP Congress 71, Area 7 (Sciences and Humanities: Models and Applications
for the Arts) (1971)

18. Stiny, G., Mitchell, W. J.: The Palladian grammar , Environment and Planning B: Planning
and Design, 5(1), 5-18 (1978)

19. Sumbdul, A., Chase, SC: Style Representation in Shape Grammars, Environment and
Planning B: Planning and Design 2012, volume 39, pages 486 – 500 (2011)

20. Tapia, M: A visual implementation of a shape grammar system, Environment and Planning
B: Planning and Design, volume 26, pp 59-73 (1999)

21. Yue, K et al: Determining the interior layout of buildings describable by Shape grammars,
CAADRIA2008, pp117-124 (2008)

	coversheet_template
	DOUNAS 2013 Some notes on the incompleteness (AAM)
	1 Introduction
	2 Typology of Shape Grammars
	3 Analysis vs Design
	4 Feature Parity
	5 Incompleteness Theorem in Shape Grammars
	6 Conclusions
	References

