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Abstract. This paper is False 
The paper presents a critique of the Shape Grammar paradigm viewed 

through the lens of the incompleteness theorem of Gödel. Shape Grammars 
have been extensively researched through many lenses. Their productive 
systemic nature was the focus of the first papers along with more recent treatises 
in the field while their use in analysis of known building styles has been 
extensive and a proven mechanism for style analysis. It is surprising though 
that use of Shape Grammars in actual design in practice however has been 
minimal. The architectural community has not actively used the paradigm in the 
design of real buildings, probably because of the rigid analytical approach to 
style and rules,  following from the academic analysis the paradigm has been 
subjected to. However I propose that there is another underlying reason, 
other than the rigid approach to construct a Shape Grammar. The nature of the 
concurrent application and creation of the rules lies close to the incompleteness 
theorem of Gödel, that uses a multitude of Turing Machines to prove that a from 
a set of True Axioms -A- we will never be able to determine if all sentences are 
true, without having to invent new axioms, outside the initial set -A-, thus 
unproven in terms of their true or false nature. Negation of this possibility drives 
us to the conclusion that true Design can never be feature -complete and thus 
can never be placed in a trusted framework that we all agree or believe it to be 
the complete truth.
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1 Introduction 

The paper is concerned with the application of shape grammars in the practice 
of architectural design. Specifically it tries to address the issue of predictability of 
shape studies and the application of rules, the creation of rules and timing there of, in 
contrast with architectural design in its applied forms. It first develops a limited 
typology of shape grammars based on precedent work [19] with the addition of two 
examples, then a critique of the types of shape grammars, developing then the 
discussion  of analytical versus design grammars, feature parity between Turing 
machines and Shape Grammars and concludes with a discussion on the 
incompleteness theorem by Gödel and its possible application in the Shape Grammar 
paradigm.

mailto:Theodoros.dounas@xjtlu.edu.cn


2 Typology of Shape Grammars 

Shape grammars are formal systems, consisting of an initial set of shapes, an initial 
set of rules and their termination shapes that end the application of the grammar. 
The classic definition of Shape Grammars is as follows: [17] 

A shape grammar is a 4-tuple (Vt, Vm, R, I) where : 
Vt is the initial set of shapes from where we are going to pick our starting shapes.  
Vt* is a set that contains any number of elements formed from elements belonging 

to Vt, combined, rearranged and transformed in any number of ways 
Vm is a finite set of shapes so that the common set between Vt and Vm is null (Vm 

+ Vt*) =0 meaning that Vm does not contain any element belonging to Vt*.
R is a set consisting of pairs of shapes, which when taken together form rules of 

the U>V type. I is a set of shapes that consist of termination shapes, ie the shapes that 
when found by the user of the grammar terminate any further application of the rules. 
The use of the computer in the application of shape grammars encourages the 
generation of design alternatives, than in a “traditional” design process would 
happen “by hand”. Apart from the philosophical question on whether a user simulates a 
computer when generating design alternatives by hand the application of the rules 
and the choice of the initial shapes give infinite combinations within the 
possibilities of the grammar, even accounting for emergent shapes that did not 
belong in the initial Vt set, however it is impossible to go beyond the initial set of 
possibilities the grammar allows. This impossibility stems for the fact that the 
enumeration of rules and the enumeration of shapes initially in the shape grammar 
already restrict the number of different possible designs or different alternatives, even 
if only from a purely numerical point of view. 

However looking carefully at the mechanisms of creating a shape grammar one can 
make a different case. The literature suggests that a user has in her hands a shape 
grammar, complete with termination rules, before she starts to design. However the 
design process does not operate in such a manner. In real life the designer does not 
possess a well thought-out map before the design begins, but the map, ie the grammar, 
is created at the same time the design process is getting negotiated. Contrasting well 
constructed shape grammar mechanisms [5,7,8,12,21] with the output and interim 
stages of a design process initially results in the view that design in real life is a 
unorganized and naive process rather than the well constructed, actively reasoned, 
and feature complete process of shape grammars. By feature complete we ascertain 
the completeness of the design process with a clear starting point and a clear end, 
while at the same time the set of rules is identified and enumerated in full. This 
rigorous structure and the completeness of shape grammars originates from the 
‘Turing machine’ algorithmic paradigm with which they have feature parity [10]. The 
‘Turing Machine’ paradigm also presents processes with a clear start, clear specific 
rules for elements manipulation and clear termination rules and elements. This feature 
makes them an excellent metaphor for computing, but a misunderstood metaphor for 
design. From a computational point of view the classic design process looks like an 
infinite number of Turing Machines working together, but with a probabilistic, random 
factor built in when making choices to transcribe - Change- one element to another, 
with the rules being created at the time they are applied.



A complete typology of Shape Grammars cannot be presented in the confines of 
this paper, however a critique is presented bellow based on a precedent analysis 
conducted by [19] with the addition two specific cases, the grammatical basis of 
Chinese traditional architecture by [4] and the implementation of curved Shape 
Grammars by [11]. In our case the analysis of precedent case studies is extended 
here specifically through the classification of grammars in terms of dealing with 
emergence, since this is one of the core features of shape grammars that provide 
design robustness in the production of alternative designs. In the analysis of the 
grammatical basis of Chinese traditional architecture [4] document the building steps 
of a traditional Chinese house in Taiwan, based on Yingzhao Fashi - the manual of 
traditional Chinese architecture, and derive a grammar from the documentation of the 
building steps. Their method of building the grammar brings forward the main 
characteristics of the traditional Chinese architecture: Axial symmetry, in one axis or 
in parallel axes, Additive composition and a Top-Down Approach in classic 
architectural composition terms. Here the analysis is predictable to the last piece of 
timber used in the construction. Emergence does not happen, as the manual -or the 
grammar- is followed to the last iota. However one can make the case that 
emergence does happen, but the rigid system employed does not allow the designer 
to recognize emergent shapes and employ them since the compositional and 
construction path is laid before her from the beginning. The second case, the 
implementation of curved grammars by [11] is “stemming from Krishnamourti’s 
maximal line solution and using a solution based on the theorem of space curves: any 
two continuous functions of a real variable define a space curve. These functions 
serve as its curvature and torsion, with the variable acting as a natural distance 
parameter.”  This analysis uses explicitly the embedding of shapes in Shape 
Grammars that is considered the generative power of the Shape Grammar Paradigm. 
A single part of a Curve can belong in more than one whole curves at the same time, 
allowing the designer the freedom to choose which curve to use when moving 
forward [Figure 1] 



Fig. 1. : Embedding of the same part of a curve in two different curves. 

This freedom is embedded in the shapes and is not a characteristic explicitly 
put forward by the designer, at the initial stages of building the grammar. In a sense it is 
a freedom that cannot be avoided, intrinsic of the Shape Grammar paradigm when 
applied to curves. However emergence can be dealt with by the designer directly 
by creating rule(s) of recognition of the curve. At the same time this shape 
grammar example intimately shows the creative power of shape grammars and their 
encapsulation for novelty, if used in a creative manner, full of exploration of 
different alternatives; in this case the application of different embedding rules.  

3 Analysis vs Design 

Shape grammars in analysis perform predictably. In analyzing a style the grammarist 
does not consider variations where the outcome of a termination rule lies outside the 
body of work that represents the style under analysis. The distinction between 
classical and non-classical computation in architecture [16] provides a clear example 
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of the issue addressed in the present paper: In non-classical computation the 
computing algorithm is decoupled or even divorced from the parameters that 
formulated the problem. In other words, the explanation of the results, the issues 
that the observer sees are divorced from the computation mechanics, even if the 
representation is highly classical, ie architectural. In the same book [16] a 
classification of shape grammar constructs is provided: Analytical and Design. The 
analytical shape grammars are used to formulate a hypothesis of how a style is 
constructed. The analysis breaks down the style into two sets of parts and rules, to be 
used in reconstructing instances of the architectural style. Analytic shape grammars 
aim in describing rather than pre-scribing design. In their application the sets of 
geometric shapes and rules are given before design of the stylistic instances begin- 
however it would be interesting to observe the process of a shape grammarist in the 
process of deconstructing a style to the set of rules and initial proto-shapes that 
constitute any given analytical grammar. To understand this one can look at the 
differences in initial shapes and initial rules that the literature provides: Analysis of 
the same stylistic example, Palladian Grammars [18], has been conducted by two 
teams of researchers [2] with a span of 34 years between the two instances of 
analysis. From the two Palladian Grammars of Stiny and Mitchel and Benros et al, 
one cannot identify the ‘correct’ in terms of Palladian style grammar, even though the 
example by Benros et al is much more economical in number of rules.  

Few examples of ‘design’ shape grammars exist: the Froebel block grammar 
from [16], The Malageira housing grammar by [6] or the animation parity grammars 
designed by the author [5]. In these examples the creation of the grammar is 
simple and straight forward. No explanation is needed as long as the grammar 
performs as the designer intended, pedagogically in the case of Stiny, creating new 
designs that belong into an established architectural language in the case of 
Duarte’s discursive housing grammar or creating new buildings that respond to 
certain conditions in the case of the author. However one can propose that in 
these cases the design of the grammar happens simultaneously with the application 
of the grammar. Some prediction of unexpected results can be incorporated inside the 
rules of the grammar, when emergence is expected. Expectation of emergent shapes 
is though a contradiction and in most cases the grammarist will have to create rules 
as she goes along, ie creation and completion of the full set of rules for a style is 
dependent on the grammarist assuming the role of designer and grammarist at the 
same time, concurrently. Like a classic design process, initial rules are applied, 
emergence is noticed and at that mo-ment the designer of the grammar can decide to 
ignore (thereby nullifying the emergent shape) or exploit the emergent shape by 
creating, modifying or adapting rules so that the emergent shape is used in the initial 
set. The critical point in Emergence is its definition [13]. Surprise is the 
characteristic most designers subscribe to emergent behaviors or shapes in 
generative or production systems and one could attribute surprise to the limits of the 
knowledge of the designer rather than emergence itself [13]. 



4 Feature Parity 

Feature parity between Turing Machines and Shape Grammars is proven by 
implementing a ‘Turing Machine’ inside a Shape Grammar, sacrificing in the process 
the graphic visual nature of the Shape Grammar in implementing a universal 
symbolic computing system. When we implement this, shapes are treated as symbols 
representing an algebraic unit, losing their underlying possibility for emergence and 
embedded shapes. Embedding provides some of the creative freedom to the designer 
using the grammar, in the sense that in the choice of rules to apply, the designer can 
choose to apply different rules in specific stage of the computation, negating the 
creation of a predetermined result  

In this instance Shape grammars do have one to one mapping with Turing 
machines, but not feature parity. Parity would require that a shape grammar could 
be implemented as a ‘Turing machine’ at all times, however the creative process 
of the designer [15,16] is much more poised towards a cumulative, back-and-forth 
process of iteratively building on an initial idea that gets re-interpreted at every step. 
For feature parity to exist in the universe of ‘Turing machines’ the actions of the 
designer should be recordable, transferable to rules in a Turing machine. After the 
act of designing one can always go forward by backtracking on the design steps, 
rationalize or generalize from those and create a ‘Turing machine’ specification to 
fit the design outcome. Under these conditions feature parity would make possible 
the application from Mathematics and Logic Thinking of the Incompleteness theorem 
of Gödel. 

5 Incompleteness Theorem in Shape Grammars 

Turing in his original paper on “Turing Machines” described three states for the 
hypothetical “Turing Machine”; based on its internal state and the symbol currently 
being read, the machine could do one of three things in the next step: (i)write a new 
symbol, (ii)move backwards or forwards one square, or (iii)switch to a new state or 
halt. On the halting step there exists the logical paradox that Alan Turing proved to 
be “in-computable”: Can we decide whether any given software programme or “Turing 
machine” will ever halt? Turing solved this by supposing that there exists a 
programme P that can decide whether any given programme Q can halt. If we 
now modify programme P to produce a new programme P’ that takes any given 
programme Q as in-put and:
1. runs forever if Q halts given its own code for input
2. Halts if Q runs forever given its own code as input

Then all we need to do now is provide P’ with its own code as input. Therefore P’
will run forever if it halts or it will halt if it runs forever, which of course is a logical 
paradox, or rather an incomputable situation. 



Moving from this, imagine another situation, where we start with the V(i) set 
containing all possible architectural designs. Algorithmically it is possible that we 
can describe a “Turing Machine” T(a) that will be able to produce all Designs in a 
given architectural style, or a given subset of architectural elements that have 
common features. Is there a “Universal Turing Machine” T(i) capable of simulating 
any T(a)? In effect is there a T(i) capable of simulating any Shape Grammar 
known or unknown, allowing us to provide a true formalized framework for 
explaining the production of all Designs? To this question Gödel’s Incompleteness 
theorem can helps us find the answer. 

In simple terms Gödel’s Incompleteness theorem states that there exist systems of 
sentences (axioms) where even if we may know that an axiom, or rules of 
transformation to produce a certain design, in a system is true, we have   no manner in 
proving that the axiom is true. Gödel’s hypothesis was concerned with natural 
numbers axiomatic systems and number theory, negating Hilbert’s program to find 
a set of axioms that would definitely prove that mathematics are a complete 
science. Connected with algorithms and their basic mechanism, ie. Turing 
Machines, Gödel in essence predicted that given specific problems to solve 
algorithmically, there is never a consistent manner to decide that a problem can be 
predictably solved, ie computed before we attempt the solution. Translating this in 
design and shape grammar terms one can say that Gödel’s incompleteness 
theorem could mean that we would never know whether a shape grammar can 
predictably produce design results within a known specific design language. This 
may seem obvious to a practicing designer but it is not as a simple situation for the 
shape grammarist. Shape prediction in shape grammars has been restricted either in 
the technique of using multiple classes of rules when needed or in using embedding to 
bypass the issue of prediction altogether. By logically following through the 
repercussions of the incompleteness theorem of Gödel in Turing machines, to shape 
grammars, if and when feature parity exists, the shape grammarist acting as a 
logician can never truly predict the results of her shape rules. This may very well be 
the reason why some of the shape grammar examples use external to their inherent 
system references grammars or productive systems that complement their agility in 
design. 

6 Conclusions 

In critiquing the shape grammar paradigm the present paper attempts to clarify 
their inherent logical and algorithmic constraints. However the shape grammarist does 
not always retain the knowledge of these constraints in her mind when designing 
or applying rules to shapes. This situation of oblivion can very well be connected 
with the act of design where consistency, predictability or completeness are not 
always desired features in processes. We are aware that the issue of application of the 
Incompleteness theorem in shape grammars could provide more issues for clarification 
or strengthening of the paradigm in the future.  
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