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Abstract
This paper provides a strategic classification of artificial intelligence (AI) techniques based on a systematic
literature review and four levels of potential: the levels of input, output, collaboration and creativity. The
classification demonstrates the potential and challenges of the AI techniques when used in early stages of
architectural design.We aspire to help architects, researchers and developers to choose which AI techniques
might be worth pursuing for specific tasks, optimising the use of today’s computational power in architectural
design workflows. The results of the classification strongly indicate that Evolutionary Computing, Trans-
former Models and Graph Machine Learning hold the greatest potential for impact in early architectural
design, and thus merit the attention to achieve that potential. Moreover, the classification assists with building
multi-technique applications and helps to identify the most suitable AI technique for different circumstances
such as the architect’s programming skills, the availability of training data or the nature of the design problem.
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Introduction

This paper provides a strategic classification of artificial intelligence (AI) techniques that helps architects,
researchers and developers assess which AI techniques maximise the available computational power for
different design tasks in early architectural design stages. Artificial intelligence is an umbrella term that covers
a wide range of techniques, and depending on the nature of the task and the availability of the (training) data,
some AI techniques are better suited than others. Rather than classifying AI techniques on computational or
technical features, this paper reframes AI techniques in relation to their potential applicability in early stages
of architectural design.
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Background

State of the art research1–3 indicates that AI techniques can be implemented in various tasks for early
architectural design: from performance based goals to form finding, spatial programming and multi-
objective optimization. While the state of the art shows which AI techniques have been used in research,
it fails to provide a strategic overview on which AI techniques are useful for architectural design practice.
A classification that shows the potential and challenges of the AI techniques in relation to early stages of
architectural design could help future architects, researchers and developers to choose which AI
techniques might be worth pursuing for specific tasks at hand. This leads to the main research question of
this paper:

RQ: Which AI techniques hold the greatest potential for architecture in early design stages, and what are
the challenges associated with each of those AI techniques?

Research methodology

Definitions

Before we can classify AI techniques in relation to early stages of architectural design, we define the scope of
artificial intelligence techniques as a whole and identify each AI technique relevant to early architectural
design.

Scope of artificial intelligence techniques. Artificial intelligence was first coined by John McCarthy and
Marvin Minsky in 19554 to find out how machines could attain a level of intelligence comparable to
human cognition. The field of artificial intelligence – or ‘machine intelligence’ as it was originally
introduced by Alan Turing in his groundbreaking paper Computing Machinery and Intelligence5 – has
evolved steadily and resulted in various definitions of ‘intelligent’ machines. This paper adheres to
Margaret Boden’s view on AI techniques to narrow the scope of the perceived intelligence. Boden is an
authority at the intersection of cognitive sciences and artificial intelligence. She describes intelligence as
a wide spectrum of information-processing capacities, which results in AI using different techniques to
solve different tasks. Boden states that these AI techniques aren’t usually considered to be ‘intelligent’
(e.g. computer vision), but do involve humans’ psychological skills such as prediction, perception,
association, etc.6 Therefore, this paper only considers computational techniques that have a psycho-
logical evaluation aspect as artificially intelligent techniques. Thus, we do not consider computational
techniques such as rule-based generative production systems (e.g. cellular automata, shape grammars) to
be AI techniques in this paper.

Artificial intelligence techniques relevant to early architectural design. We investigated past research to identify AI
techniques relevant to architectural design, starting with three state of the art reviews. The 1995-2021 review
from Pena et al. covers articles on the use of AI in conceptual architectural design and shows that a majority of
the 75 studied articles made use of Evolutionary Computing techniques.1 The 2007-2022 review from Topuz
et al. covers the use of Machine Learning for architectural design – a subset of AI that categorizes AI
techniques that ‘learn’ from training data – and shows that a majority of the 60 studied articles made use of
Neural Networks and their subcategories, such as Artificial Neural Networks (ANN), Convolution Neural
Networks (CNN), Deep Neural Networks (DNN) or Generative Adversarial Networks (GAN).2 These
findings are consistent with the 2012-2022 review from Bölek et al. which showed a dominance of both
Evolutionary Computing and Neural Networks in past research.3
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Because the three examined state of the art reviews do not clearly indicate which specific AI techniques
have been used, we conduct an additional systematic literature search through the databases Science-Direct,
Web of Science, ResearchGate and CumInCAD. This heterogenic group of databases was purposefully
selected to conduct a broad and varied search of different AI techniques. We combined the keywords ‘AI’
or ‘artificial intelligence’ with ‘architectural design’ and variants such as ‘architecture’ and ‘building’.
The search focuses on the early design stages of architectural design and therefore excludes results of
urban design, fabrication or construction. As ‘architecture’ and ‘design’ often appear in the context of
computer science (e.g. ‘computer architecture’ or ‘system design’), the search was further restricted in
terms of subject areas. On Science-Direct this meant only the subject areas ‘engineering’ and ‘social
sciences’ were included, which reduced the results from 82.815 to 29.085 articles. Furthermore, out of
the first 200 results, only 11 articles covered the pursued use of AI in architectural design and most of
them appeared in the top 50 results. Therefore, those results were considered as a basis for this paper. On
Web of Science, the results were restricted to the category ‘architecture’, yielding a total of 219 results.
Out of those results, 21 articles covered the pursued use of AI in architectural design. On ResearchGate
the search term yielded 53.880 results. Out of the first 100 results, five articles covered the use of AI in
architectural design and appeared mostly in the first 50 results. Therefore, those results were considered
for this paper. On CumInCAD, the search for ‘artificial intelligence’ or ‘AI’ in either the title or keywords
led to 2.083 results. Out of the first 400 results, 26 articles covered the pursued use of AI in architectural
design and appeared mostly in the first 200 results. Therefore, only those results were considered as a
basis for this paper Figure 1.

The systematic search yields 63 academic publications about the use of AI for a specific task during
early architectural design.7–69 Since 67% of the articles was published during or after 2020, the results
can be seen as a representation of recent research. The sum of the techniques in the articles that adhere to
the above defined scope of artificial intelligence leads to the following distribution of AI techniques:
Agent-based System (6), Reinforcement Learning (3), Swarm Intelligence (3), Graph Machine Learning
(4), Generative Adversarial Networks (14), Neural Network (14), Genetic Algorithm (1), Evolutionary
Computing (2), Expert System (8), Cellular Automata (2), Support Vector Machine (1), Gradient
Boosting (1), Auto Encoder (3), Natural Language Processing (1), Large Language Model (1), Diffusion
Model (7).69

Figure 1. Systematic literature search. Created by first author (2024).
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In order to keep the classification clear and useful, we group some of the identified techniques together
in super categories. This leads to seven AI techniques that will be classified in this paper. Reinforcement
learning and swarm intelligence are both subcategories of agent-based systems (ABS), which consist of
agents that have a certain rule-based autonomy and are often able to learn from training data. Graph
machine learning (GML) is a subfield of machine learning that works with graphs – mathematical data
constructs that hold information about entities and the relationships between those entities. Classic
machine learning (CML) contains techniques that use training data to learn in order to perform ‘classic’
tasks such as regression, classification and prediction, which includes neural networks, support vector
machines and gradient boosting. Generative machine learning (GenML) contains techniques that learn
from training data to create new data, such as generative adversarial networks or variational au-
toencoders. Diffusion models and large language models are subcategories of Transformer models (TM),
which are extensively trained on large datasets and able to generate new data based on other kinds of data,
for example generating images based on textual input. Genetic algorithms are a subcategory of evo-
lutionary computing (EC), a field where algorithms are based on biological rules. Expert systems (ES)
contain an embedded database of expert knowledge and are able to infer new knowledge by applying
rules to the existing knowledge.

Figure 2 shows the origin of the seven AI techniques and their relationships, while indicating whether the
techniques are rule- or data-based. Rule-based AI techniques achieve their inherent intelligence by applying
rules to the input data in order to produce novel output. Data-based AI techniques achieve their inherent
intelligence by studying both the input and output data (referred to as training data) to resolve the rules of the
problem.

While we recognise that our systematic literature search will not have detected all articles relating to the
use of artificial intelligence in early architectural design, we are confident to have identified the relevant

Figure 2. AI techniques in this paper. Created by first author (2024).
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categories for AI techniques for early architectural design. Furthermore, the AI techniques from the sys-
tematic literature search are grouped in the established categories and sorted by year of publication to indicate
research trends. Figure 3 shows the dominance of Classic and Generative Machine Learning over the past
years, and the rise of Transformer Models – bearing in mind that Diffusion Models70 were only discovered in
2021 and the first publicly available Large Language Model71 was launched in 2022.

Methods

Figure 4 The AI techniques are mapped to their potential applicability in early stages of architectural design
by evaluating four levels of potential: the level of input, the level of output, the level of creativity and the level

Figure 4. Levels of potential and the limits of machine learning techniques for architectural design. Created by first
author (2024).

Figure 3. Distribution of AI techniques from the systematic literature search, by year of publication, created by first
author (2024).
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of collaboration. These criteria are adapted from Joyce & Nazim, who established the limits of machine
learning techniques relevant to design tasks.72 Joyce & Nazim’s original limit of design quality has been
omitted, as the discussion of good or bad architecture is part of a larger debate that is out of the scope of this
paper.

The level of input refers to all that is necessary to use a certain AI technique, such as training data,
input data, the design problem definition, the architect’s expertise, etc. The level of input includes Joyce
& Nazim’s original limits of representation and input-data. The level of output refers to the desired output
from the AI technique, such as textual or geometric data. The level of output includes the original limits
of scale and resolved-ness as defined by Joyce & Nazim. The level of creativity refers to the creative
freedom that can be achieved by the AI technique, where creativity is regarded as “the ability to come up
with ideas or artifacts that are new, surprising, and valuable” as defined by Margaret Boden.73 The level
of collaboration is based on Joyce & Nazim’s original limit of autonomy and refers to the human-machine
interaction, collaboration with partners and the integration of the AI techniques into the architect’s
workflows.

The level of input merits two additional notes. Firstly, training and input data can take on any format,
from textual city regulations to drawings in PNG or OBJ files. However, there is a lack of large qualitative
training datasets for architectural design,64 which highly impacts data-based techniques. The datasets are
often restricted to the architectural design data that are most commonly available to the public – i.e.
images of rasterized floorplans. Therefore, those AI techniques that can make use of architectural design
data that are available (i.e. using floorplans or the architect’s own expertise as input data) or that can
generate their own synthetic datasets, are favoured for the level of input. Secondly, architectural design
problems can either be well- or ill-defined, which also makes a difference for the level of input. As a
whole, design problems are wicked74 and therefore ill-defined by nature: they consist of a complex
mixture of client demands, city regulations, energetic requirements, social aspects, cultural layers,
personal preferences etc. However, certain design tasks could be isolated and considered as well-defined
problems for the level of input.

Each AI technique is evaluated for each level of potential, which results in a set of potentials and/or
challenges. Those are then visually mapped onto a classification structure as proposed in Figure 5. The
classification structure is composed of hierarchical diagrams that visually map each level of potential.
Values are attributed to the smaller, outer diagrams and projected onto the larger, inner diagram. The
levels of output and input are mapped together to create a classification for the design problem. The levels
of creativity and collaboration are mapped together to create a classification for the design process. The
results of both diagrams are projected onto the larger diagram, which unites them to map the potential of
the AI techniques in early architectural design. The classification structure can be interpreted in various
ways. e.g., the largest diagram (i.e. the final classification) not only shows the potential of the AI
techniques on the resulting diagonal, but also shows whether the AI techniques are more suited towards
solving the design problem or being integrated into the design process. Similar interpretations apply to
each of the smaller diagrams.
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Classification

Each AI technique is evaluated for each level of potential in the tables below, resulting in sets of potentials and
challenges for each AI technique. Those challenges and potentials are then visually mapped onto the
classification structure Tables 1, 2, 3, 4, 5, 6 and 7.

The classification structure is extended (Figure 6) to incorporate the various lessons-learned from the
evaluations in the tables. The availability of architectural design data, the ill-defined nature of design
problems, the compatibility of the output with 3D geometry and the need for architects to possess basic or
advanced programming skills –which impacts both the necessary interface and the current design workflow –

lead to the addition of four new diagrams in the classification structure. The level of output (Figure 6(a)) is
composed by data (i.e. analyses and diagrams vs plain text) and geometry (i.e. 3D models vs 2D images). The
level of input (Figure 6(c)) is composed by the capability to solve ill-defined design problems and the
availability of data (Figure 6(b)), which in turn is composed by the compatibility with existing architectural
design data or the capability to generate new data. The level of collaboration (Figure 6(e)) is composed by

Figure 5. Classification structure to classify the potential of AI techniques for architectural design. Created by first
author (2023).
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Table 1. Levels of potential for expert system.

Expert System

Level of input [challenge] Not suited for ill-defined problems as the expert system requires the problem and rules to
be clearly described and explicitly coded

[potential] Suited for well-defined problems
[potential] expert Systems are based on the architect’s own expertise, which means the required data

will always be available
Level of output [potential] The output of an expert system can facilitate diagrams or analyses or can be mapped on

geometric rules
Level of
collaboration

[challenge] Translating spatial problems into rules and constraints can be counter-intuitive for
architects and may require a strong mathematical and/or programming foundation

[challenge] expertise is very specific and takes a long time to convert into strict rules and constraints,
which might nullify any productivity gains of using the expert system

Level of creativity [challenge] New and surprising results are limited to the well-defined partial-problems that fit within
expert Systems and rely on a very thorough level of human-machine collaboration

Table 2. Levels of potential for classic machine learning.

Classic machine learning

Level of input [potential] Can discover latent patterns or hidden connections and could potentially bridge the gap
between ill-defined problems and well-defined solutions

[challenge] Data-based techniques need suitable datasets, in quality and quantity
Level of output [potential] Suited for decision-making and analysis of well-defined sub-problems
Level of
collaboration

[challenge] dealing with data is counterintuitive for architects with a graphical workflow: gathering
large quantities, pre-processing data into the right format, etc.

[challenge] in order to apply machine learning techniques, the architect would need a small
background in programming languages

Level of creativity [potential/challenge] The discovery of latent patterns or hidden connections could lead to new,
surprising and valuable results; but is also highly dependent on large enough quantities of training
data to start with

Table 3. Levels of potential for graph machine learning.

Graph machine learning

Level of input [potential] possibility to work with the architect’s expertise – which is always available – or generate
new datasets in a format that allows for further Machine learning techniques. Furthermore, graphs
can be extracted from 3D modelling environments, since 3D models are essentially hierarchical
data structures as well

[potential] graphs are a verywell-defined data structure. As such, they cannot represent ill-defined problems.
However, their machine learning capabilities can discover latent patterns or hidden connections, making
them a candidate to bridge the gap between ill-defined problems and well-defined solutions

Level of output [potential] The structured data of a graph can be further analysed or mapped onto geometry
Level of
collaboration

[potential] in general, data structures are not intuitive for architects to work with. However, graphs
are graphical data structures with a strong emphasis on the relationship between entities. They
share similar properties to elements from the architect’s usual workflow, such as bubble diagrams
that show relationships between spaces. In that regard, graphs can be seen as an advanced extension
of the architect’s usual diagram tools

[challenge] in order to apply graphMachine Learning techniques – to use the full potential of graphs, the
architect would need a small background in programming languages

Level of creativity [potential/challenge] The discovery of latent patterns or hidden connections could lead to new, surprising
and valuable results; but is also highly dependent on large enough quantities of training data to start with
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Table 4. Levels of potential for generative machine learning.

Generative machine learning

Level of input [challenge] architectural design data is not sufficiently available for the application of machine learning
techniques. Currently, GenML techniques on the building level mostly focus on floorplan
generation, but deprez et al. concluded that even with sufficient data, pixel-based floorplan
generation takes too much computational time and will remain trivial75

Level of output [challenge] Current machine learning techniques facilitate the creation of 2D images, but struggle with
3D geometry76

Level of
collaboration

[challenge] dealing with data is counterintuitive for architects with a graphical workflow: gathering
large quantities, pre-processing data into the right format, etc.

[challenge] in order to apply machine learning techniques, the architect would need a small
background in programming languages

Level of creativity [potential/challenge] The discovery of latent patterns or hidden connection could lead to new, surprising
and valuable results; but is also highly dependent on large enough quantities of training data to start with

Table 5. Levels of potential for agent-based system.

Agent-based System

Level of input [potential] Can work with qualitative data, which does not require large quantities
[potential] offers a unique way to integrate the architect’s expertise into AI: the architect has full
control over the positive or negative rewards the agent receives

[challenge] The environment in which the agent moves around, needs to be very well-defined
Level of output [potential] The agent is able to learn in a 3D modelling environment
Level of
collaboration

[potential] an agent could make design decisions, after which the designer could assign positive or
negative rewards to each decision, creating an interesting human-machine collaboration during the
training phase of the algorithm

[challenge] in order to apply agent-based techniques, the architect would need a strong background in
programming languages

Level of creativity [potential/challenge] results have a high chance of being new and surprising, since the agents explore
an unknown conceptual space based on the reward system. However, if the reward system is very
straightforward, the results might be exactly what was to be expected

Table 6. Levels of potential for evolutionary computing.

Evolutionary computing

Level of input [potential] Compatible with existing data such as 3D models, and able to generate new data (e.g. new
generations) from it

[challenge] works best with well-defined sub-problems. For example, allowing shapes to optimize to a
form that best achieves a certain goal (view optimization), while taking restrictions into account
(plot and neighbours)

Level of output [potential] Compatible with 3D modelling software to generate geometry or other data
Level of
collaboration

[potential] process of design iterations where artists choose their favourite results, which the
algorithm uses to generate a new set of results: a great human-machine collaboration

[potential] integration in 3Dmodelling software, i.e. integrated in rhinoceros’ visual scripting environment77

Level of creativity [potential] The level of creativity is steered by the architect, who chooses which iteration to develop
further. Furthermore, if the algorithm is allowed to ‘evolve’ some of its own core concepts, it might
to break out of its box and reach completely unexpected results
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how intuitive the interface is for architects and how easy it is to integrate the AI techniques into the ar-
chitectural design workflow (i.e. too time-intensive vs productive design iterations).

The results of the evaluations are mapped onto the final classification structure as output data and
geometry (Figure 6(a)), existing data availability and data generation (Figure 6(b)), ability to solve ill-
defined problems (Figure 6(c)), intuitive interface and workflow integration (Figure 6(e)) and creativity
(Figure 6(f)). This leads to the potential of AI techniques for early architectural design in terms of the
design problem (Figure 6(d)), the design process (Figure 6(f)) and early architectural design as a whole
(Figure 6(g)).

Discussion

The interpretation of the classification results (Figure 6(g)) is as follows, from a high potential to a low
potential: Evolutionary Computing, Transformer Model, Graph Machine Learning, Agent-based System,
Classic Machine Learning, Expert System, Generative Machine Learning. Based on this classification,
there are strong indications that Evolutionary Computing, Transformer Models and Graph Machine
Learning hold the greatest potential for future research on the application of AI in early stages of ar-
chitectural design.

Evolutionary computing

The systematic literature search has shown that Evolutionary Computing techniques for early architectural
design have been studied extensively since the conception of architectural computing, yet lost traction around

Table 7. Levels of potential for transformer model.

Transformer Model

Level of input [potential] understands explicit and implicit textual input in an intuitive way, incl. Abstractions and
ambiguous concepts

[potential] potential to bridge the gap between textual and visual training data?
[potential] taps into the architect’s own expertise, which is always available
[potential] many open-source models are (freely) available. Furthermore, it is not too complicated for
architects to train their own diffusion or GPT models

[challenge] Currently limited to text or 2D images, so the problem-solving is limited to the textual or
2D visual space

Level of output [challenge] Currently limited to textual or 2D visual output space
[potential] Can be told how to format its output: i.e. exact aspect ratio and resolution, JSON or OBJ
notations for compatibility with 3D modelling software, or writing complex algorithms in specific
programming languages that the architect does not technically master

[challenge] The generated output is dependent on the data the model was trained on, which is usually
very generic

[challenge] Despite understanding implicit input, there is no guarantee it can solve ill-defined problems
Level of
collaboration

[potential] require very little programming skills
[potential] easy and very fast design iterations
[potential] intuitive interface
[potential] easy incorporation in current workflows

Level of creativity [potential]Can attain high levels of creativity due to their ability to mix different concepts into a
conceptual whole
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the 2010’s. This is consistent with the rise of the current ‘summer’ of AI, also known as the era of machine
(deep) learning,78 when focus shifted from rule-based determination towards data-based techniques that rely
on approximation.

Figure 7 The classification indicates that Evolutionary Computing techniques hold the greatest potential
for early architectural design. The deterministic nature of these techniques – meaning that solutions mostly
evolve within an a priori set system – can therefore be seen as both a strength and a question for future
research: can Evolutionary Computing techniques evolve and change their own system over time? We
recommend that research on Evolutionary Computing is continued and viewed through a different lens.
Moreover, in combination with Transformer Models – more specifically, Large Language Models that are

Figure 6. Classification of AI techniques for architectural design created by first author (2023).
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trained to write algorithms in various programming languages – the architect can further explore Evolutionary
Computing techniques without needing to fully master technical programming languages.

Transformer models

Transformer Models score very high on the criteria of the design process (Figure 6(f)): the intuitive interface,
ease to incorporate in current workflows and ability to enhance the creative process makes them very
convenient for architects to experiment with. A logical consequence is the fast increase of research into
Transformer Models – as shown by the systematic literature search. However, more research needs to be
conducted into exactly how and when Transformer Models can be integrated into a productive workflow. Do
they actually accelerate the architect’s process, or do they form an additional step that prolongs the process? Is
there more to them than rapid ideation and visualisation?

Transformer Models score rather low on the criteria of the design problem (Figure 6(d)). This is mostly due to
the fact that TransformerModels are currently only able to generate textual and 2D visual output. However, this is a
rapidly developingfield and the control over the desired output increases every day. The 2Dvisual output is already
compatible with depth maps and line drawings thanks to plugins such as ControlNet,79 which could serve as a
stepping stone towards 3D model output in the future. More research and development on 2D spatial composition
or 3D model output could be conducted to investigate Transformer Models’ true potential for architectural design.
If Transformer models could attain a similar efficiency on 3Dmodel data, that would be amassive leap forward for
the field of architectural computing and the practice of architectural design.

Graph machine learning

Graph Machine Learning vastly outperforms Classic and Generative Machine Learning techniques in the
classification. This is related to the way graphs store data: both information on the entities and information on

Figure 7. History of AI created by first author (2024), redrawn and adapted from Toosi et al.78
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the relationships between those entities is saved and easily accessible to apply rules and machine learning
analyses such as classification or prediction. Those relational data translate well into the field of architectural
design, where spatial relationships are of great importance. Like other machine learning techniques, Graph
Machine Learning depends heavily on the availability of sufficient training data. Since graphs are a
mathematical data construct, the extraction of graphs from IFC Models – a standard for BIM models that
stores shapes, spatial elements, materials etc. in a hierarchical data structure – can be automated,80 or graphs
can be constructed based on floorplans fairly easily with the aid of computer vision techniques.81 Further
research could be conducted into the ideal graph structure for widespread research goals: which information
i.e. relevant in early design stages should or should not be contained in graphs? The most basic graph
configuration (i.e. names of spaces and their spatial relationships) corresponds with the architect’s use of
‘bubble diagrams’. This basic graph structure could be extended with additional information such as: are the
borders between spaces load bearing, what is the energy production/consumption of each space, how is
vertical and horizontal circulation embedded in the graphs, how should graphs handle latent transient spaces,
how can complex data about the environment be integrated, etc.

Graph Machine Learning scores fairly high on the criteria for the design process – due to the intuitive
overlap with ‘bubble diagrams’ and the integrated 3D modelling that software such as topologic grants,82 and
scores even better on the criteria for the design problem due to the fact that they can output spatial information.
Current research already shows the potential growth by focusing on graph machine learning: classifying
building/ground relationships and enhance energy analysis workflows in architectural practice.83,84 We
recommend that the research community uses the accumulated expertise from classic and generative machine
learning techniques in architectural design to shift the focus on graph machine learning applications.

Multi-technique applications

The proposed classification not only shows which AI techniques hold the greatest potential for architectural
design individually (Figure 6(g)), but also sheds light on which AI techniques perform better in certain
circumstances. For example, when there is no existing training data, architects can opt for Transformer
Models, Evolutionary Computing or Agent-based Systems that can generate data (Figure 6(b)). This opens
the door for a targeted multi-technique approach: applications usually make use of several chained AI
techniques and the proposed classification can help identify which AI techniques are more suitable for each
part of the chain. This may lead to, for example, Transformer Agent-based Models where the Transformer
Model generates a wide variety of custom agents that are fed into an Agent-based Model.

Architectural design data

The accessibility, quantity and quality of architectural design data strongly impacts the level of input. Awide
range of architectural design data – such as material, geometric, social, cultural or site information – remains
untapped in current architectural design datasets, which are often restricted to spatial layout information (i.e.
rasterised floorplans, bubble diagrams). Even so, the existing databases of architectural design data are
comparatively small in relation to databases used for AI techniques in other fields, which often contain
millions of datapoints.85 In architectural design, one of the largest known databases, RPLAN, consists of
80.000 color-coded 255 x 255 pixel images of floorplans.86 Other datasets contain significantly less da-
tapoints, such as the CubiCasa5k dataset of 5.000 floorplans with manually added annotations and the
matching CubiGraph5k dataset of 4.000 graphs.81,87 As more architects integrate AI techniques in their
workflows, disclosing architectural design data might become an evident part of the design process. This
would in turn impact the results of the classification (through Figure 6(b)) in the coming years and potentially
lead to a profound shift in establishing accessible, quantitative and qualitative architectural design datasets.
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As disclosing the data is a crucial factor, we recommend that future research looks into facilitating ways of
sharing data among both researchers and architects.

Conclusion

The proposed classification provides a strategic overview of suitable AI techniques for early architectural
design stages and thus offers a targeted direction for architects, researchers and developers to determine areas
of focus in the coming years. The results strongly indicate that Evolutionary Computing, Transformer Models
and Graph Machine Learning hold the greatest potential for impact in early architectural design, and thus
merit the research community’s attention to achieve that potential. Computer science and AI models develop
rapidly, hence it is not out of the question that an evolution of these or some other models might come to
dominate the landscape in the years to come. As such, we urge the researchers to monitor new developments.
The results of the proposed classification suggest that research and development resources could be optimised
by shifting towards the application of Evolutionary Computing, Transformer Models and Graph Machine
Learning in early architectural design. Moreover, the classification assists with building multi-technique
applications and helps to identify the most suitable AI technique for different circumstances such as the
architect’s programming skills, the availability of training data or the nature of the design problem.
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61. Aksoy Y, Cagdas G and Balaban Ö. A model for sustainable site layout design of social housing with pareto genetic

algorithm. SSPM, 2015, pp. 113–133.
62. Achten HHJAJ. A multi-agent Mah Jong playing system : towards real-time recognition of graphic units in graphic

representations. Acta Polytechnica 2003; 43: 28–33.
63. Belém C, Santos L and Leitão A. On the impact of machine learning. Architecture without architects? In: CAAD

Futures, 2019.
64. Blaas Q, Pelosi A and Brown A. Reconsidering artificial intelligence as Co-designer. Open Access Te Herenga

Waka-Victoria University of Wellington, 2023.
65. Cenani S, Sehnaz CG, et al. Representation of user movements with multi agent systems: shopping malls, 2007.
66. Andersen T and Carlsen NV. Software design of maintainable knowledge-based systems for building design. Autom

ConStruct 1995; 4: 101–110, DOI: 10.1016/0926-5805(94)00042-L
67. Rodrı́guez JA. Trained architectonics. In: Parametricism Vs materialism: evolution of digital technologies for

development, 2016, pp. 461–468.
68. Rossini P. Using expert systems and artificial intelligence for real estate forecasting, 2011.
69. Picon A. What about humans? Artificial intelligence in architecture. In: PF Yuan, M Xie and N Leach (eds).

Architectural Intelligence: Selected Papers from the 1st International Conference on Computational Design and
Robotic Fabrication (CDRF 2019). Singapore: Springer Nature Singapore, 2020, pp. 15–29.

70. Ramesh A, Pavlov M, Goh G, et al. Zero-shot text-to-image generation. Pr Mach Learn Res 2021; 139.
71. OpenAI. Introducing ChatGPT, 2022. https://openai.com/index/chatgpt
72. Joyce S and Nazim I. Limits to applied ML in planning and architecture: understanding and defining extents and

capabilities, 2021.
73. Boden M. The creative mind: myths and mechanisms. 2nd ed. London and New York: Routledge, 2004, p. 344.
74. Rittel HWJ andWebber MM. Dilemmas in a general theory of planning. Policy Sci 1973; 4: 155-169. DOI: 10.1007/

Bf01405730
75. Deprez L, Verstraeten R and Pauwels P. Data-based generation of residential floorplans using. Neural Network 2023:

321–339.
76. Leach N. Architecture in the age of artificial intelligence: an introduction to AI for architects. Bloomsbury Ac-

ademic, 2022.
77. Rutten D. Galapagos: On the Logic and Limitations of Generic Solvers, 2013, vol 83. DOI: 10.1002/ad.1568

Vissers-Similon et al. 17

https://doi.org/10.1016/0926-5805(94)00042-L
https://openai.com/index/chatgpt
https://doi.org/10.1007/Bf01405730
https://doi.org/10.1007/Bf01405730
https://doi.org/10.1002/ad.1568


78. Toosi A, Bottino A, Saboury B, et al. A brief history of AI: how to prevent anotherWinter (A critical review). Pet Clin
2021; 16. DOI: 10.1016/j.cpet.2021.07.001

79. Zhang L, Rao A and Agrawala M. Adding conditional control to text-to-image diffusion models, 2023.

80. Zhu J, Wu P and Lei X. IFC-graph for facilitating building information access and query. Autom ConStruct 2023;
148: 104778, DOI: 10.1016/j.autcon.2023.104778

81. Lu Y, Tian R, Li A, et al. CubiGraph5K: organizational graph generation for structured architectural floor plan
dataset, 2021.

82. Jabi W, Aish R, Lannon S, et al. Topologic - a toolkit for spatial and topological modelling, 2018.

83. Jabi W and Dengusiak M. Topologic and BHoM: enhancing energy analysis workflows through topological
modelling enhancing energy analysis workflows through topological modelling, 2019.

84. Alymani A, Jabi Wand Corcoran P. Graph machine learning classification using architectural 3D topological models.
In: Simulation: Transactions of The Society for Modeling and Simulation International, 2022, pp. 1–15. DOI: 10.
1177/00375497221105894

85. Koch B, Denton E, Hanna A, et al. Reduced, reused and recycled: the life of a dataset in machine learning research,
2021.

86. Wu W, Xiao-Ming F, Tang R, et al. Data-driven interior plan generation for residential buildings. ACM Trans Graph
2019; 38(234): 231–234:212. DOI: 10.1145/3355089.3356556
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