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Abstract: Externally applied stress on the rock matrix plays a crucial role in oil recovery from naturally
fractured tight reservoirs, as local variations in pore pressure and in-situ tension are expected. The
published literature severely lacks in evaluations of the characteristics of hydrocarbons, displaced
by water, in fractured reservoirs under the action of externally applied stress. This study intends to
overcome this knowledge gap by resolving complex time- and stress-dependent multiphase flow by
employing a coupled Finite Element Method (FEM) and Computational Fluid Dynamics (CFD) solver.
Extensive three-dimensional numerical investigations have been carried out to estimate the effects of
externally applied stress on the multiphase flow characteristics at the fracture–matrix interface by
adding a viscous loss term to the momentum conservation equations. The well-validated numerical
predictions show that as the stress loading increases, the porosity and permeability of the rock matrix
and capillary pressure at the fracture–matrix interface decrease. Specifically, matrix porosity decreases
by 0.13% and permeability reduces by 1.3% as stress increases 1.5-fold. Additionally, stress loading
causes a decrease in fracture permeability by up to 29%. The fracture–matrix interface becomes more
water-soaked as the stress loading on the rock matrix increases, and thus, the relative permeability
curves shift to the right.

Keywords: multiphase flow; structural mechanics; rock mechanics; naturally fractured tight reservoir;
finite element method; computational fluid dynamics; fracture-matrix interface

1. Introduction

The exploitation of hydrocarbon resources from subsurface reservoirs has been a cor-
nerstone of modern industrial civilization. As global energy demands continue to rise, the
development and optimization of unconventional resources have taken on an increasingly
critical role in meeting these demands. Among these unconventional resources, naturally,
fractured tight reservoirs have gained significant attention due to their vast hydrocar-
bon potential. These reservoirs, characterized by low permeability and complex fracture
networks, present unique challenges and opportunities for exploration and production.
Therefore, the significance of tight reservoirs in the energy industry cannot be overstated.
These reservoirs, which encompass a wide range of geological formations, including shale,
sandstone, and carbonate rocks, hold vast quantities of hydrocarbons. The exploitation
of these resources has transformed the energy landscape, particularly in regions such as
North America, where the shale revolution has led to a surge in oil and gas production [1].
One key aspect that has garnered attention in recent years is the effect of externally applied
stress on the multiphase flow characteristics within the naturally fractured tight reservoirs.

Tight reservoirs, commonly referred to as unconventional reservoirs, have become
the focal point of the energy industry’s quest to meet the world’s ever-growing energy
demands [2]. These reservoirs are characterized by low permeability, which hinders the
flow of hydrocarbons through the rock matrix [3]. Consequently, unconventional reservoirs
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require advanced drilling and stimulation techniques to make hydrocarbon extraction
economically viable [4]. Naturally fractured tight reservoirs, in particular, are a subset
of these unconventional reservoirs and possess dual challenges, i.e., their inherent low
permeability and the presence of fractures that significantly affect fluid flow [5–7]. The
flow of fluids in naturally fractured tight reservoirs is a multifaceted phenomenon, often
involving the coexistence of different phases, including oil, gas, and water [8,9]. Multiphase
flow in such reservoirs is inherently complex, with interactions between the phases and rock
matrix playing a decisive role in determining production performance [10]. The presence
of fractures, which serve as preferential pathways for fluid flow, further complicates the
picture. While the influence of fractures on multiphase flow in tight reservoirs is well
documented, the impact of externally applied stressors has received comparatively less
attention. External stresses, including tectonic forces, reservoir compaction, and hydraulic
fracturing operations, can alter the subsurface stress field [11,12].

2. Literature Review

Externally applied stress refers to the forces acting on the reservoir rock due to vari-
ous factors, including tectonic stresses, overburden pressure, and fluid injection or with-
drawal [13–15]. External stressors induce reservoir deformation, leading to changes in the
rock’s mechanical properties, such as porosity, permeability, and fracture aperture [16,17].
These changes, including stress-dependent permeability, porosity, and fracture aperture
alterations, have significant implications for reservoir management and ultimately influ-
ence the flow of fluids within the reservoir [18–20]. The relationship between externally
applied stress and multiphase flow characteristics in naturally fractured tight reservoirs is
a complex and multifaceted topic that requires careful investigation because the behavior
of multiphase fluids within naturally fractured tight reservoirs is profoundly affected by
externally applied stress [21–23]. The interaction between hydrocarbons, water, and rock
under stress conditions leads to complex phenomena, including capillary pressure varia-
tions, relative permeability alterations, and changes in wettability [24–26]. These factors
have a direct impact on reservoir production rates and ultimate recovery. Understanding
how these external stresses affect fluid flow through fractures is crucial for optimizing
production and reservoir management.

Understanding how externally applied stress influences multiphase flow within natu-
rally fractured tight reservoirs is essential for several reasons. First, it can provide valuable
insights into reservoir behavior, which can inform reservoir management strategies and
enhance hydrocarbon recovery [27,28]. Second, it can help mitigate the risks associated
with hydraulic fracturing operations, ensuring that fractures propagate in a controlled
manner and do not interfere with nearby wells or environmental factors [29,30]. Third, it
can contribute to the development of advanced modelling and simulation tools that can
predict reservoir response to stress changes, leading to more accurate reservoir performance
predictions [31].

There are numerous numerical approaches for modelling poroelastic issues. Gao et al. [32],
for example, developed a coupled stress and reservoir simulator with a staggered grid
Finite Difference Method (FDM) to improve wellbore stability. On the other hand, Sangn-
imnuan et al. [33] developed a coupled fluid–flow/stress model to forecast stress evolution
using the Finite Volume Method (FVM) in unconventional reservoirs. Ashworth and
Doster [34] have reported a similar implementation of FVM because of the advantage of
full cell-centered variables across fluid flow and solid mechanics. Furthermore, due to
its robustness in solving diverse solid mechanics equations, the Finite Element Method
(FEM) is a popular alternative, and it has been widely employed in the literature to tackle
complex poroelastic situations [35]. Many research efforts and signs of progress have been
made toward understanding and modelling fluid flow in fractured porous media in the
past half-century. However, most studies focused on the single-phase flow [36–38] without
taking into account multiphase flow and an understanding of the phase flow characteristics
and development at the fracture–matrix interaction. The fracture–matrix interface is an
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important area to consider because it can significantly impact fluid flow in the reservoir.
The properties of the interface, such as the roughness and wettability, can affect how fluids
move through the fractures and into the matrix. Additionally, the stress applied to the
interface can affect the connectivity between the fractures and the matrix, which can impact
the overall flow behavior of the reservoir.

The motivation for studying the effects of externally applied stress on multiphase flow
characteristics at the fracture–matrix interface in naturally fractured tight reservoirs stems
from the increasing importance of unconventional resources in global energy production.
As conventional oil and gas reserves continue to decline, unconventional resources, in-
cluding tight reservoirs, have become a critical component of the energy mix. However,
the exploitation of these resources presents unique challenges, including low permeability
and complex fracture networks, which can significantly impact production rates. Recently,
due to decreased production rates and unfavorable recovery factors during hydrocarbon
production, there has been an increased focus on the characterization of multiphase fluid
flow behavior under different stress loadings at the fracture–matrix interface. Further
research and advancements in numerical modelling techniques are needed to accurately
capture the complex phenomena associated with production from tight reservoirs, includ-
ing the impact of fractures, stress changes, and multiphase flow interactions. For precise oil
recovery predictions, this research aims to establish the connection between external stress
and multiphase flow at the fracture–matrix interface in naturally fractured tight reservoirs.

3. Materials and Methods

In this study, a coupled Finite Element Method–Computational Fluid Dynamics (FEM–
CFD) model to investigate the effect of externally applied stress on multiphase flow in tight
reservoirs is proposed. The numerical model has been developed using ANSYS® 2024 R2
modules for fluid flow (CFD: FLUENT) and solid mechanics (FEA: Static Structural).

3.1. Geometry of Naturally Fractured Tight Reservoir

The core scale (Darcy scale) is chosen to represent fractured tight reservoirs in this
study. Figure 1a,b depicts the three-dimensional geometry of the sample tight reservoir.
The sample’s geometric design is based on Clashach’s Core Flood laboratory experiments,
which will be used later for validation purposes. The core sample resembles a cylinder,
with a rectangular fracture region in the middle. The diameter of the core (D) is 3.79 cm,
while its length (L) is 7.54 cm. The aperture (h) of the fracture is 130 µm. Both regions have
been modelled such that fluid flow can take place in them.
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Figure 1. Naturally fractured tight reservoir sample: (a) 3D model; (b) geometric dimensions.

3.2. Meshing of the Flow Domain

The flow domain has been spatially discretized with an unstructured tetrahedral
to reduce the skewness of the mesh elements, as shown in Figure 2a. The mesh density
has been kept significantly higher in the aperture region as it is the primary area of
interest in the current investigations. In order to ensure that the numerically predicted
results are independent of the mesh sizing used [39,40], five different meshes have been
generated and compared for accuracy in predicting the multiphase flow behavior at the
fracture–matrix interface. These meshes correspond to element sizes of 5 mm, 3.5 mm,
2.8 mm, 2 mm, and 1.8 mm. The resulting number of elements in the flow domain is
summarized in Table 1.
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Table 1. Meshes generated in the flow domain.

Mesh Total Number of Elements

M(1) 1.27 × 104

M(2) 2.7 × 104

M(3) 3.7 × 104

M(4) 7.4 × 104

M(5) 9.5 × 104

The mesh sensitivity analysis results are shown in Figure 2b. It can be seen that as the
number of mesh elements increases from M1 to M3, the stress fluctuations (∆σ) and overall
displacement of the rock matrix (d) increase. When the number of mesh elements increases
from M3 to M5, there is a negligibly small change in ∆σ and d. Thus, it is clear from the mesh
sensitivity analysis that M3 (shown in Figure 2a) is the most suitable mesh and accurately
predicts the petrophysical properties of naturally fractured tight reservoirs, and hence it has
been chosen to conduct further investigations in this study.

3.3. Multiphase Flow Modelling in Naturally Fractured Tight Reservoir

The multiphase flow within the naturally fractured tight reservoir sample has been
modelled using the Volume of Fluid (VOF) method. The VOF model is a free-surface
modelling technique that can locate and monitor fluid–fluid interfaces, with the present one
occurring between oil and water. The saturation (S) of each fluid phase is determined in
the control volumes; the sum of S for all fluid phases present is equal to 1. When a control
volume is filled with oil, the saturation of oil is 1 (i.e., So = 1), while the saturation of water
is 0 (i.e., Sw = 0). Thus, if a control volume contains a mixture of both oil and water, So and
Sw are between 0 and 1, and Sm ̸= 0.

Both the rock matrix and the fracture zone have been modelled as porous media. In the real
world, a porous material consists of many tortuous routes (or pores) with varying flow velocity
vectors. When a porous media is numerically modelled, as in this study, no such routes exist.
This is introduced indirectly in the modelling by defining the porosity (φ) and permeability (k)
of the material. The resulting mass conservation equation can thus be written as [41]:

∂

∂t

(
φ Sβ ρβ

)
+∇·

(
φ Sβ ρβ

→
Uβ

)
+

µ

k

→
Uβ = 0 (1)

where β represents the phase. The third term in the equation is the source term representing
viscous losses due to Darcy effects. The same viscous loss term is added to the momentum
conservation equation as well.

The momentum conservation equation is given as:(
φ

k f
+ (αB − φ)

1 − φ

Kd

)
∂
(
Sβρβ pβ

)
∂t

−∇·
(
−

kaKrβ ρβ

µβ

(
∇Pβ − ρβg∇D

))
= ρβαB

(
∂εvol

∂t

)
(2)

The mixture density (ρm) and the mixture dynamic viscosity (µm) are given as [41]:

ρm = Sw ρw + (1 − Sw) ρo (3)

µm = Sw µw + (1 − Sw) µo (4)

3.4. Modelling of Applied External Stress in Naturally Fractured Tight Reservoir

Externally applied stress loading has a significant impact on the multiphase flow and
thus on oil recovery from naturally fractured tight reservoirs. When the rock is subjected to
compressive stresses, although it stays reasonably stiff with low volumetric deformation,
the vacant spaces (such as fractures) undergo geometric strain. The strain is sufficiently
small because the rock behaves like a linear elastic material [42,43]. The rock deformation
can be described using the stress–strain relationship, i.e., Hooke’s law, as [44]:
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∆σel = C ∆εel (5)

where σel is the elastic stress tensor, εel is the elastic strain tensor, and C is the linearized
elastic stiffness tensor, provided by the bulk (Kb) and shear (R) modulus as [45]:

C = Kb I + 2 R Idev (6)

where I is the second-order identity tensor and Idev is the 4th-order deviatoric projection ten-
sor. Furthermore, changes in pore spaces are proportional to the logarithmic pressure [46]
when the rock is subjected to elastic stress loading, which can be expressed as:

∆eel = −X ∆
(

ln
(

σ + ζel
t

))
(7)

where eel is the elastic pore space (or void ratio), X is the swell index of rock material, σ is
the mean effective stress (MPa), and ζel

t is the elastic limit of the tensile strength.
Void spaces cause non-linear behavior in the porous medium, resulting in changes in

the void ratio; therefore, the void spaces’ dimensions change during stress loading [47,48].
Hence, a non-linear elastic model called the porous elastic model is employed in the present
study [49]. The relationship between the elastic void ratio (eel) and the elastic volumetric
strain (εel

vol) is given as [50,51]:

εel
vol = ln

(
1 + eel

1 + ei

)
(8)

where ei is the initial void ratio. Substituting the porous elasticity relationship (7) into (8)
provides the mean effective stress (σ) as a function of the elastic volumetric strain, as:

σ = −ζel
t +

(
σi + ζel

t

)
exp
(

1 + ei
X

(
1 − exp

(
εel

vol

)))
(9)

where σi is the initial mean stress.
The bulk modulus (Kb) is also based on the stress and elastic volumetric strain [52]

and can be expressed as:

Kb =
(

σ + ζel
t

) (1 + ei
X

exp
(

εel
vol

))
(10)

The shear modulus (R) also depends on the void ratio and pressure indirectly because
Poisson’s ratio (ν) is a constant [53,54]. The shear modulus can be expressed as:

R =
3 kb (1 − 2ν)

2(1 + ν)
(11)

3.5. Material Properties

The two fluids being considered are oil and water, as in the case of Clashach’s Core
Flood experiments [55]. They have densities of ρo = 846 kg/m3 and ρw = 1000 kg/m3,
respectively. The dynamic viscosities of oil and water (o and w) are 0.00046 Pa·s and
0.001 Pa·s, respectively. The rock matrix has been considered as a porous medium in the
present study, having a porosity (φ) of 15.4%, permeability (k) of 315 mD and density
of 2500 kg/m3. Furthermore, the pore size distribution index (λp) in the core region is
taken as 0.674, and the entry capillary pressure (Pc) is 345 Pa. The fracture region is also
modelled as a porous medium with a porosity and permeability of 100% and 3.1 × 105 mD,
respectively. The Poisson’s ratio specified in the present study is 0.14, and the Young’s
Modulus is 40 GPa. The swell index is 0.0052 [56].

3.6. Initial and Boundary Conditions

The initial and boundary conditions specified in the numerical solver are based on
Clashach’s Core Flood laboratory experiments [55]. The solver is initialized with So = 1
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within the flow domain. This means that both the core and fracture regions are filled with
oil before starting the solution. The fracture inlet has been modelled as a velocity inlet, with
a water injection velocity (U) of 3.9 × 10−5 m/s, resulting in Re~3, and thus Laminar flow
modelling has been employed. The outlet of the fracture region has been modelled as a
pressure outlet, with atmospheric pressure conditions specified [57,58]. The rest of the flow
boundaries have been modelled as stationary walls. External stress loading of 21.4 MPa
(from Clashach’s experiments), 6.9 MPa, 9 MPa, 11 MPa, 13.1 MPa, 15.2 MPa, and 17.2 MPa
have been considered for numerical investigations in the present study.

4. Numerical Solution Strategy

The time-dependent solution strategy adopted in the present study is based on the volume
of water being injected from the inlet. Based on the fracture’s geometric dimensions and the
water injection velocity, the volumetric flow rate is computed. From this, the total volume of
water being injected (Vw) in the flow domain for specific time intervals is calculated. The time
step size used in the present study is 0.1 s, while the solution data are saved when the injected
volume of water is equal to 10% of the pore volume (i.e., 10% of the volume of all the pores
together). This is then repeated for 20%, 30%, 40%, 50%, 60%, and 70% of the pore volume.

The FEM–CFD coupling strategy adopted in the present study is shown in Figure 3.
The coupled FEM–CFD model enables the evaluation of the dependence of multiphase flow
parameters on externally applied stress in naturally fractured tight reservoirs. It can be seen
that the FEM-predicted geomechanical parameters (displacement and strain) are used to
calculate the updated porosity, permeability, and fracture aperture. These are then input in
the CFD model, which is solved iteratively w.r.t. time in order to obtain flow parameters of
interest, such as the saturation of both phases. CFD-predicted flow parameters are then used
to calculate the capillary pressure and relative permeability using Brook’s and Corey’s method.
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Numerical Model Validation

The coupled FEM–CFD numerical model developed in the present study has been
validated against Clashach’s Core flooding experimental data. The experimental data on the
cumulative outflow of oil (Qc) are based on differential pressure (∆P) applied throughout
the sample reservoir, while the core sample is subjected to an external stress of 21.4 MPa.
Figure 4 depicts the results of the numerical model validation where it can be seen that
both the numerically predicted and experimental Qc increase with increasing ∆P, and the
two agree well with an average difference of <9%. Thus, it can be concluded that the
coupled numerical model developed here captures the stress-dependent multiphase flow
characteristics within a sample of the naturally fractured tight reservoir with reasonable
accuracy, and hence it has been used for further scientific investigations.
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5. Results

Based on detailed numerical investigations, the effects of externally applied stress on
the geomechanical (porosity and permeability) and multiphase flow (saturation, capillary
pressure, and relative permeability) characteristics of naturally fractured tight reservoirs have
been analyzed. Special attention has been given to these at the fracture–matrix interface.

5.1. Stress-Dependent Matrix Porosity

Porosity is conventionally obtained through physical testing such as saturation tests [59].
As the core undergoes compaction, its porosity (φ) changes due to the volumetric strain
(εvol), resulting in geometric variations in the pore spaces, while the solid regions remain
intact. The porosity of the sample can be obtained through constitutive models, such
as [60,61]:

φ =
e

1 + ei
=

ei − (1 + ei) εvol
1 + [ei − (1 + ei) εvol ]

(12)

The stress-dependent porosity (φ) variations in the naturally fractured tight reservoir
sample are shown in Figure 5. It has been observed that as the external stress loading (σ)
increases, the matrix porosity decreases almost linearly, which is expected as observed under
real-world conditions [43]. At a stress loading of 6.9 MPa, the porosity is 15.38%. When
the stress loading is increased to 9 MPa, the porosity decreases to 15.372%. When further
increasing the stress loading to 11 MPa, 13.1 MPa, 15.2 MPa, and 17.2 MPa, the porosity of
the core sample decreases to 15.368%, 15.365%, 15.362%, and 15.36%, respectively. Thus, by
increasing the stress loading on the reservoir sample 1.5-fold, the matrix porosity decreases
by 0.13%.



Appl. Sci. 2024, 14, 8540 9 of 18
Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 20 
 

 
Figure 5. Porosity variations under externally applied stress. 

5.2. Stress-Dependent Matrix Permeability 
As the rock undergoes compression, the ability of multiphase flow through it 

changes. The permeability of the rock matrix (𝑘௧) can be expressed as [36]: 

𝑘௧ = 𝑘ି௧ ቊ1 ± ଵଶ ଽ൫ଵିఔమ൯ଶ ቀగ ௱ఙா ቁଶ൨ଵ ଷ⁄ ቋଶ
  (13)

where 𝑘ି௧ is the initial rock matrix permeability and E is Young’s modulus of the rock 
matrix. The positive sign refers to dilatational loading, and the negative signal corre-
sponds to the compressional loading [62,63]. 

Figure 6 depicts the changes in rock matrix permeability under different stress-loading 
conditions considered in the present study. It can be seen that as stress loading increases, 
the matrix permeability decreases linearly, a trend which has been observed by Haghi et al. 
[23] as well as Zhao and Liu [43]. At a stress loading of 6.9 MPa, the matrix permeability is 
308.4 mD, which decreases to 307.1 mD as the stress loading increases to 9 MPa. When fur-
ther increasing the stress loading to 11 MPa, 13 MPa, 15.2 MPa, and 17.2 MPa, the matrix 
permeability reduces to 306 mD, 305 mD, 304 mD, and 303 mD, respectively. 

 
Figure 6. Matrix permeability variations under externally applied stress loading. 

Figure 5. Porosity variations under externally applied stress.

5.2. Stress-Dependent Matrix Permeability

As the rock undergoes compression, the ability of multiphase flow through it changes.
The permeability of the rock matrix (kmat) can be expressed as [36]:

kmat = ki−mat

1 ± 1
2

[
9
(
1 − ν2)

2

(
π ∆σ

E

)2
]1/3


2

(13)

where ki−mat is the initial rock matrix permeability and E is Young’s modulus of the rock
matrix. The positive sign refers to dilatational loading, and the negative signal corresponds
to the compressional loading [62,63].

Figure 6 depicts the changes in rock matrix permeability under different stress-loading
conditions considered in the present study. It can be seen that as stress loading increases, the
matrix permeability decreases linearly, a trend which has been observed by Haghi et al. [23]
as well as Zhao and Liu [43]. At a stress loading of 6.9 MPa, the matrix permeability is
308.4 mD, which decreases to 307.1 mD as the stress loading increases to 9 MPa. When
further increasing the stress loading to 11 MPa, 13 MPa, 15.2 MPa, and 17.2 MPa, the matrix
permeability reduces to 306 mD, 305 mD, 304 mD, and 303 mD, respectively.
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Figure 6 indicates that the matrix permeability of 307.1 D in the intact rock reduces to
303 D due to an increase in external stress loading from 6.9 MPa to 17.2 MPa.

5.3. Stress-Dependent Fracture Aperture

As the core sample is subjected to externally applied stress, the fracture aperture is expected
to decrease due to the vertical displacement. The fracture aperture’s vertical displacement changes
spatially along the core radius, i.e., the vertical displacement is less at the core’s outer surface and
is at a maximum at the core center. These spatial variations in the vertical displacement (δ) along
the core radius are depicted in Figure 7a, where x/X = 0 represents the outer surface of the core
and x/X = 1 represents the core’s center. As expected, the vertical displacement of the fracture
aperture increases when moving inwards toward the core center. It is worth mentioning that the
fracture aperture decreases as the external stress increases. The figure clearly shows this behavior,
i.e., the rate of increase in vertical displacement is relatively higher along the outer edge of the
aperture and gradually decreases towards the core center, where the vertical displacement is at a
maximum. This trend has been observed for all the different stress-loading conditions considered.
From the un-stressed condition where the (uniform) fracture aperture is 130 µm when an external
stress of 6.9 MPa is applied, the average vertical displacement of the fracture region recorded
is 21.54 µm, which means that the new mean fracture aperture (h_mean) is 108.46 µm. When
increasing the stress loading to 9 MPa, 11 MPa, 13.1 MPa, 15.2 MPa, and 17.2 MPa, the vertical
displacement increases to 25.12 µm, 28.05 µm, 30.74 µm, 33.14 µm and 35.19 µm, respectively.
Correspondingly, the mean fracture aperture reduces to 104.88µm, 101.95µm, 99.26µm, 96.86µm,
and 94.81 µm, as shown in Figure 7b.
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5.4. Stress-Dependent Fracture Permeability

Under stress loading, the permeability of the fracture region also changes [64].
Zhang et al. [65] provide a relationship between the fracture permeability (k f ) and stress-
induced fracture aperture change, which can be expressed as:

k f = ki− f

(
1 +

∆h
hi

)3
(14)

where ki− f is the initial fracture permeability and ∆h is the change in the fracture aperture
after the application of stress, i.e., ∆h = hi– h.

Figure 8 depicts the variations in fracture permeability (k f ) under different stress-
loading conditions. It can be seen that the fracture permeability decreases with increasing
stress loading, which is also reported by Cao et al. [17]. The fracture permeability is 180 D
at a stress loading of 6.9 MPa. As the stress loading increases to 9 MPa, the fracture
permeability reduces to 163 D (9.6% decrease). When further increasing the stress loading
to 11 MPa, 15.2 MPa, and 17.2 MPa, the fracture permeability decreases to 150 D (8.1%
decrease), 138 D (7.7% decrease), and 128 D (7% decrease). Thus, by increasing the stress
loading by 120% (from 6.9 MPa to 17.2 MPa), the fracture permeability decreases by 29%.
This provides valuable insights into the relationship between stress loading and fracture
permeability, highlighting the importance of considering this relationship when analyzing
fractures in tight reservoirs.
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5.5. Stress-Dependent Water and Oil Saturation

Brooks and Corey provide a semi-empirical model for determining the unsaturated
hydraulic conductivity [66]. According to this method, the fluid saturation (S) of the phases
can be expressed as:

So =
(Soi − Sro)

(1 − Sro − Srw)
(15)

Sw =
(Swi − Srw)

(1 − Sro − Srw)
(16)

where the subscripts i and r represent initial and residual, respectively.
Figure 9 depicts the stress-dependent water saturation (Sw) variations at the fracture–matrix

interface for various injected water volumes (Vw) under different stress-loading conditions.
As the injected water volume increases, water saturation also increases [67,68]. This trend
is observed for all different stress-loading conditions considered in this study. Sw = 0.155 at
6.9 MPa stress loading for Vw = 0.1 (or 10%). Sw increases to 0.166, 0.178, 0.191, 0.211, and
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0.234 as the stress loading increases to 9 MPa, 11 MPa, 13.1 MPa, 15.2 MPa, and 17.2 MPa,
respectively. The same trends have been observed in the case of other water injection values
considered here. However, it is worth noting that after Vw = 0.5, the rate of increase in
water saturation starts to decrease. This is less prominent at lower stress-loading values
and more at higher stress-loading values. The reason for this is evident from the figure, i.e.,
as Vw increases, Sw increases, approaching Sw = 1, which is the maximum water saturation
possible in the rock matrix. As Sw approaches a value of 1, the rate of increase in Sw
decreases, and this happens at higher Vw and stress-loading values. Thus, beyond a certain
Sw value, further injecting water may not significantly enhance oil recovery.
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5.6. Stress-Dependent Capillary Pressure

The Brooks and Corey method is used to compute the capillary pressure as a function
of water saturation at the fracture–matrix interface after running CFD to determine the
saturation values. The capillary pressure (Pc) can be expressed as:

Pc = Pec Sw
−1/λp (17)

where Pec is the entry capillary pressure and λp is the pore size distribution index.
Figure 10 depicts the variations in capillary pressure concerning the injected water

volume (Vw) under different stress-loading conditions. It can be seen that as the volume of
injected water increases, the capillary pressure decreases nonlinearly. At lower Vw values,
the decrease in the capillary pressure is quite significant due to the highest amount of oil
remaining. At higher Vw values, as the capillary pressure approaches close to zero, the
stress loading has a negligible effect on it because the capillary forces are dominant. It can
be seen that the minimum capillary pressure recorded, at Vw = 0.7, is 0.36 kPa. In terms of
stress loading, Pc = 5.46 kPa at a stress loading of 6.9 MPa for Vw = 0.1 (10%). Pc reduces to
4.96 kPa, 4.47 kPa, 4.01 kPa, 3.47 kPa, and 2.98 kPa at the same Vw when the stress loading
increases to 9 MPa, 11 MPa, 13.1 MPa, 15.2 MPa, and 17.2 MPa. The same trend has been
observed for other stress-loading conditions considered here.
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Further analyzing the effects of external stress on the capillary pressure, Figure 11
depicts capillary pressure variations against stress loading for Vw = 0.1. It can be seen that as
the stress loading increases, the capillary pressure decreases linearly. Thus, fracture closure
with effective stress results in a considerable downward shift in the capillary pressure,
leading to an increase in water saturation.
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5.7. Stress-Dependent Relative Permeability

The relative permeability is computed as a function of the water saturation and pore
size distribution index (λp) using the Brooks and Corey method, as below:

Krw = Sw
(3+2/λp) (18)

Kro = (1 − Sw)
2
(

1 − Sw
(1+2/λp)

)
(19)
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The relative permeabilities are computed using the saturation values obtained from
the CFD simulations conducted under different stress loadings during water volume injec-
tions. Figure 12 depicts the variations in the relative permeabilities of water (Krw) and oil
(Kro) at the fracture–matrix interface for different water-saturation (Sw) and stress-loading
conditions. It can be seen that as water saturation increases, the relative permeability of oil
reduces nonlinearly. Water relative permeability has the opposite tendency of oil relative
permeability, i.e., water relative permeability increases as water saturation increases. This
is because injected water pushes the oil out of the fractured reservoir, reducing its relative
permeability, while the water relative permeability increases.
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6. Discussion

The estimated porosity from numerical modelling concurs with the relatively high
Young’s modulus and rock strength, indicating that Clashach’s core sample is a moderately
hard rock according to the US National Engineering Handbook [69]. The deformation of
the core sample alters the pore volume (porosity) and the pore network. The decrease in
the porosity of the reservoir under the action of externally applied stress enhances the oil
recovery from the reservoir [70]. The study provides insights into the relationship between
stress and porosity in naturally fractured tight reservoir samples. Understanding this
relationship is crucial for predicting fluid flow behavior and devising strategies to enhance
oil recovery from the reservoir. The Clashach core’s permeability reduces by 1.3% with a
nearly 0.13% reduction in porosity, which highlights the pore space’s weak connectivity.
The intact rock’s contribution to the determined strain and conductivity of the fractured
core decreases because of the minimal pore strain and low permeability. Moreover, this
indicates that the intact rock’s contribution to the determined strain and conductivity of the
fractured core is low due to minimal pore strain and low permeability. This implies that
the fractured rock’s properties dominate the overall behavior of the rock mass rather than
the intact rock. The results provide insights into the behavior of fracture apertures under
externally applied stress and highlight the importance of understanding these phenomena
in various geological and engineering applications.
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In addition, when comparing the variations in k f with the variations in kmat (in
Figure 6), it can be observed that the fracture permeability is much higher than the matrix
permeability, as expected [7,71]. Furthermore, the decrease in fracture permeability is more
significant than that in matrix permeability for the same stress loading. This is because
fracture permeability is affected by rock compaction and fracture closure, but matrix per-
meability is affected by rock compaction. Thus, to upgrade computational efficiency, it
is logical to obtain matrix and fracture permeabilities by coupling the fracture with the
matrix, instead of modelling them separately. Consequently, based on the simulation
results, the computational efficiency can be improved by coupling the disconnected and
narrow aperture’s effects under different external stress loadings. These findings show
that stress-dependent fracture closure plays a significant role in the multiphase flow char-
acteristics of fractures in subterranean formations. In terms of the external stress being
applied to the rock matrix, it can be seen that it has a significant impact on the relative
permeabilities of both oil and water, as well as on water saturation. It can be seen that
when increasing external stress loading, the relative permeability of oil decreases, while
the relative permeability of water increases. However, external stress also causes a shift in
water saturation, which in turn affects the relative permeabilities. This is because the water
saturation is dependent on the injected water volume Vw, as discussed earlier in Section 5.5.
Thus, an in-depth understanding of the interdependencies between the injected water vol-
ume, water saturation and the relative permeabilities is essential for petroleum engineers
when predicting oil recovery from fractured tight reservoirs, as this provides a quantifiable
criterion for making informed decisions about the effectiveness of oil recovery methods.

7. Conclusions

Modelling transient multiphase fluid flow in naturally fractured tight reservoirs is a
challenging task that requires careful consideration of the stress-dependent petrophysical
properties and the stress-dependent flow characteristics, especially at the fracture–matrix
interface. This study adopts a coupled FEM–CFD numerical modelling technique in
order to accurately predict oil recovery from fractured reservoirs. The results obtained
through the use of a well-validated coupled FEM–CFD model show that as external stress
loading increases, the porosity and permeability of the naturally fractured tight reservoir
decrease, which is expected under real-world conditions. Increasing the stress loading
on the reservoir sample 1.5-fold, the matrix porosity decreases by 0.13% and the matrix
permeability reduces by 1.3%. The intact rock’s contribution to the determined strain and
conductivity of the fractured core is low due to minimal pore strain and low permeability.
It has been observed that the fracture aperture and its vertical displacement decrease as
the external stress increases, reducing the mean fracture aperture. Therefore, stress also
has a profound impact on fracture permeability, which was found to decrease by up to
29% as external loading increased from 6.9 MPa to 17.2 MPa. Moreover, the capillary
pressure decreases due to an increase in stress loading at the fracture–matrix interface. The
fracture–matrix interface becomes water-wet when the stress loading increases, while the
relative permeability curves shift towards the right. These results provide meaningful
insights into the multiphase flow behavior of naturally fractured tight reservoirs under
externally applied stress and highlight the importance of understanding these phenomena
in various geological and engineering applications. These findings are also invaluable for
optimizing oil recovery strategies and making informed decisions in the field of petroleum
engineering. Further research in this area can help refine models and improve the efficiency
of oil recovery processes in fractured reservoirs. While the current study focuses on the
effects of stress on multiphase flow at the fracture–matrix interface, further research could
involve a more comprehensive analysis of dynamic stress changes, such as those induced
by hydraulic fracturing or reservoir depletion. Incorporating real-time field data and
extending the simulation to include thermal effects could provide deeper insights into
the performance of enhanced oil recovery methods. Additionally, integrating machine-
learning techniques to predict reservoir behavior under varying stress conditions could
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significantly enhance the model’s predictive capabilities and offer a more efficient approach
to reservoir management.
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