
DANG, T., NGUYEN, T.T., LIEW, A.W.-C., ELYAN, E. and MCCALL, J. 2024. Which classifiers are connected to others?
An optimal connection framework for multi-layer ensemble systems. Knowledge-based systems [online], 304, article

number 112522. Available from: https://doi.org/10.1016/j.knosys.2024.112522

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

This document was downloaded from
https://openair.rgu.ac.uk

Which classifiers are connected to others? An
optimal connection framework for multi-layer

ensemble systems.

DANG, T., NGUYEN, T.T., LIEW, A.W.-C., ELYAN, E. and MCCALL, J.

2024

https://doi.org/10.1016/j.knosys.2024.112522
http://creativecommons.org/licenses/by/4.0/

Which classifiers are connected to others? An optimal connection
framework for multi-layer ensemble systems

Truong Dang a, Tien Thanh Nguyen a,*, Alan Wee-Chung Liew b, Eyad Elyan c, John McCall a

a National Subsea Centre, Robert Gordon University, Aberdeen, UK
b School of Information and Communication Technology, Griffith University, Gold Coast, Australia
c School of Computing, Robert Gordon University, Aberdeen, UK

A R T I C L E I N F O

Keywords:
Ensemble learning
Ensemble selection
Classifier selection
Ensemble of classifiers
Differential evolution

A B S T R A C T

Ensemble learning is a powerful machine learning strategy that combines multiple models e.g. classifiers to
improve predictions beyond what any single model can achieve. Until recently, traditional ensemble methods
typically use only one layer of models which limits the exploration of different aspects in the classifiers’ pre-
dictions. On the other hand, the rise of deep learning has introduced multi-layer architectures that can learn
complex functions by transforming data into multiple levels of representation. This characteristic of deep
learning suggests that multi-layer ensembles may potentially provide better performance compared to single-
layer ensembles. However, a problem which might arise is that in the subsequent layers, not all the inputs to
a classifier are desirable, leading to lower performance. In this paper, we introduce a novel multi-layer ensemble
of classifiers named COME in which each classifier at a specific layer is connected to multiple classifiers in the
previous layer. These connections signify the use of the previous-layer-classifiers’ outputs as inputs for training
the current layer’s classifier. Each classifier can be connected to different classifiers in the previous layer, which
allows inputs in each layer to be optimally selected. We propose a binary encoding scheme to encode the to-
pology of the proposed multi-layer ensemble with defined connections between layers. Differential Evolution, a
popular evolutionary computation method, is used as the optimisation algorithm to search for the optimal set of
connections. Experimental results on 30 datasets from the UCI Machine Learning Repository and OpenML
demonstrate that our proposed ensemble outperforms many state-of-the-art ensemble learning algorithms.

1. Introduction

Machine learning is a field of computer science focusing on creating
data-driven algorithms that can perform tasks at a level comparable to
humans. It is important to note that each machine learning model has its
own strengths and limitations, and the choice of the most suitable model
depends on the characteristics of the data and the specific task at hand.
One approach to enhance predictions is to combine diverse machine
learning models into an Ensemble of Classifiers (EoC). Many studies
have shown that an EoC can achieve better results compared to using a
single classifier. The past decades have witnessed many successes of
ensemble learning on international machine learning competitions, such
as Kaggle and KDD-Cups [1]. Ensemble learning leverages the diversity
and collective intelligence of multiple models to improve accuracy and
robustness, making it an effective strategy for solving complex
problems.

There are three stages in designing an EoC, namely ensemble gen-
eration, ensemble combination, and ensemble selection. In ensemble
generation, the classifiers are generated by either training different al-
gorithms on the same training set (heterogeneous ensemble method) or
training a single algorithm on many different training sets (homoge-
neous ensemble method) [2]. Afterward, an ensemble combination
method is used to combine the output of the different models to obtain
the final result [3]. Ensemble selection, an intermediate stage, is per-
formed to choose a subset of diverse classifiers from a larger pool to form
the final ensemble. The goal is to improve performance by selecting
models that complement each other, allowing for the construction of an
ensemble that optimally combines the strengths of different models. The
selection process can be performed using a heuristic criterion or using an
optimisation algorithm.

Traditionally, the majority of ensemble learning methods have been
limited to utilising just a single layer of ensembles. In recent years, deep

* Corresponding author.
E-mail address: t.nguyen11@rgu.ac.uk (T.T. Nguyen).

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

https://doi.org/10.1016/j.knosys.2024.112522
Received 14 June 2024; Received in revised form 2 September 2024; Accepted 13 September 2024

Knowledge-Based Systems 304 (2024) 112522

Available online 28 September 2024
0950-7051/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

learning has achieved great success in multiple areas. Deep learning is
based on layer-by-layer processing, in which the original data is trans-
formed into multiple levels of representation. This allows deep learning
models to learn very complex relationships within the data. This
consequently means that using multiple layers of ensembles can
potentially achieve better results compared to traditional single-layer
ensembles. Multi-layer ensembles involve stacking multiple layers of
EoCs, with each layer contributing to the final prediction. This hierar-
chical structure allows for capturing complex relationships in the data
by combining models with different levels of abstraction [4]. Recog-
nising the need to enhance the performance of multi-layer ensembles, it
is acknowledged that ensemble selection is necessary for identifying the
optimal structure tailored to a specific dataset. It is also necessary to
design a multi-layer ensemble that would facilitate diversity amongst
the base classifiers in each layer since it is known that diversity is very
important in creating an effective ensemble system.

In this paper, we propose a novel optimal connection framework for
multi-layer heterogeneous ensemble systems named COME. The main
contributions of our work are as follows:

• In existing multi-layer EoC approaches, classifiers in a layer are
typically trained using predictions from all classifiers in the pre-
ceding layer [2]. However, this method may not always be effective,
as different learning algorithms should ideally be trained on different
data. In this study, we propose a novel multi-layer EoC, where each
classifier in a specific layer is connected to a subset of classifiers from
the previous layer. The connection between a classifier in one layer
and those in the previous layer implies using the output from the
preceding-layer classifier as input for training the current-layer
classifier. At each layer, each classifier is trained solely on the in-
puts from its connected classifiers. The process continues through all
layers of the multi-layer ensemble until reaching the last layer. The
predictions of the EoC in the final layer are combined using the Sum
Rule, a simple but popular combining method, to generate the final
prediction. To our best knowledge, our work is the first approach to
investigating the concept of connections in multi-layer ensemble
systems.

• We propose a binary encoding to represent the topology of the multi-
layer ensemble with the defined connections. As the number of
connections to each classifier at each layer may vary, the length of
the encoding at each layer also varies accordingly. The encoding for
the entire multi-layer ensemble is generated by concatenating the
encodings for each layer. The search process iterates through mul-
tiple layers until a predefined threshold is reached. The optimal
encoding obtained from the last layer is used to train the multi-layer
ensemble.

• We conducted experiments on 30 datasets from the UCI Machine
Learning repository. The proposed ensemble is compared to several
popular benchmark algorithms including multi-layer ensemble and
state-of-the-art ensemble methods. We used 3 popular nature-based
optimisation methods namely Differential Evolution (DE), Genetic
Algorithm (GA) and Particle Swarm Optimisation (PSO) to search for
optimal ensemble topology. The results show that DE is a better
choice to find optimal topology for the proposed ensemble compared
to GA and PSO. We then show the effectiveness of our proposed
method compared to several popular benchmark algorithms.

The paper is organised as follows. In Section 2, we briefly review the
existing approaches in ensemble learning and topology optimisation for
deep neural networks. In Section 3, we give a detailed description of the
proposed method. Experimental studies on 30 datasets are provided in
Section 4, followed by conclusions in Section 5.

2. Background and related work

2.1. Ensemble learning

Ensemble learning refers to a sub-field of supervised machine
learning algorithms in which the decisions of a number of classifiers are
combined to improve the final prediction. In recent decades, the use of
ensemble learning has significantly increased across multiple fields such
as engineering, physics, earth sciences, and planetary sciences. It is
known that ensemble learning-based algorithms usually achieve better
classification results compared to single machine learning algorithms
[1], and ensemble learning was used in many best solutions in data
science and machine learning competitions [5,6].

With the successes of deep learning models since 2013, there has
been a growing number of works on building an ensemble of deep
learning models. Calisto et al. proposed AdaEn-Net [7], which is an
ensemble of deep 2D-3D fully convolutional networks for medical image
segmentation. In [8], the authors proposed a novel Monte-Carlo-based
ensemble of 2D CNNs to learn the 3D relevance of the features across
multiple slices of brain images and showed that the proposed method is
competitive on several brain image datasets. He et al. [6] proposed
ResNet, a deep residual learning-based neural network that can extend
deeply into hundreds of layers. The ensemble of these networks ach-
ieved an error rate of 3.57% on the ImageNet dataset, ranking first place
in the ILSVRC 2015 competition. Xie et al. [9] proposed a stacked
ensemble of 18 1D and 2D CNN models based on the classic LeNet5
framework for daily runoff predictions. Dvornik et al. [10] explored the
application of ensemble methods in few-shot classification, proposing an
ensemble of deep networks that assesses classifier variance. They also
introduced new strategies to promote a cooperative learning scheme
among networks while preserving diversity in predictions.

On the other hand, one of the most popular approaches in ensemble
learning is Stacking, in which classifiers first predict on the training
data, and then a meta-classifier i.e. combiner would be used to learn
from these predictions to output the final predictions [2]. It is noted that
research on Stacking only used one layer of ensemble, and this has a
restriction on the ability to harness the predictions of classifiers on the
training data. In recent years, deep neural networks have achieved great
successes in multiple areas. Deep neural networks rely on composing
multiple layers of functions to create increasingly complex representa-
tions of the data. Based on this observation, there has been significant
interest in developing multi-layer ensembles, which is a generalisation
of stacking, drawing inspiration from the mechanisms of DNNs. By
exploring predictions through several layers (creating several repre-
sentations of predictions), it is expected to capture more information
from the predictions to train the combiner compared to the traditional
Stacking algorithm.

One of the first multiple layer ensembles is gcForest [4], a deep
cascade of completely random trees and random forests in which the
output of each layer is used as the input to the next layer, and new layers
are automatically added until the result does not improve compared to
the last layer. A weight average approach for gcForest was proposed by
Utkin et al. [11] to combine class distribution vectors. The weight vec-
tors of the trees in a forest in one layer are found by minimising the
distance between the class label vector in a binary encoding scheme and
the weighted prediction vector of this forest. To reduce the number of
weight vectors, the authors grouped the class distribution vectors of the
trees and set a weight vector for each group. Nguyen et al. [2] proposed
a novel multi-layer heterogeneous ensemble that automatically selects
the best classifiers and features in each layer. The selection process at
each layer is modelled as a bi-optimisation problem, with the objectives
being the classification accuracy and the diversity of the ensemble at the
current layer. A two-layer ensemble of deep learning models for medical
image segmentation was proposed by Dang et al. [12], in which the
predictions of each pixel for each training image produced by the first
layer’s models are used as augmented data for the models in the second

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

2

layer. The predictions of the second layer are then combined using a
weighted approach. Luong et al. [13] proposed a multi-layer ensemble
for the data stream setting and used a dynamic Genetic Algorithm (GA)
to develop an online ensemble selection method to find the optimal
subset of classifiers at each layer.

2.2. Ensemble selection and optimisation approaches

Ensemble selection refers to an intermediate stage in the ensemble
design process in which classifiers that contribute the most to the overall
result are selected, leading to better performance. There are several
approaches in ensemble selection, namely ordering-based, optimisation-
based, and dynamic techniques. Ordering-based ensemble selection
methods try to order the classifiers based on ranking criteria, such as
validation error. In [14], the authors proposed the Complementariness
measure which chooses new classifiers that have the highest prediction
accuracy over the set of instances misclassified by the chosen classifiers
so far. Cao et al. [15] proposed Discriminant classifier pruning (DISC),
which maximises the relevancy between correct decisions made by the
candidate classifier and the chosen classifiers so far and maximises the
relevancy between correct decisions by the candidate classifier and
target classifier in terms of misclassified instance made by currently
selected classifier subset simultaneously. In [16], the authors proposed
Margin and Diversity-based Ensemble Pruning (MDEP), which is based
on a heuristic measure for evaluating the importance of each classifier in
the ensemble that explicitly considers both sample margins and
ensemble diversity.

Optimisation-based ensemble selection methods formulate the
ensemble selection process as an optimisation problem, which is then
solved by heuristic optimisation or mathematical programming. Nguyen
et al. proposed MULES [2], which is a multi-layer ensemble system that
performs both classifier and feature selection at each layer. The optimal
configuration of each layer is found by formulating a bi-objective opti-
misation problem, with the objectives being classification accuracy and
ensemble diversity. Dang et al. [17] proposed a weighted ensemble of
deep learning models, in which the optimal weights are found by using
Comprehensive Learning Particle Swarm Optimisation (CLPSO), and the
Dice coefficient, a popular performance metric for image segmentation,
is used as the fitness criteria. In [18], the authors proposed an ensemble
selection algorithm that simultaneously selects the optimal set of
meta-data and features to be used for each classifier using Ant Colony
Optimisation (ACO). In [19], the authors introduced the multi-objective
semi-supervised classifier ensemble (MOSSCE) approach for classifica-
tion of high-dimensional data with limited labels. Firstly, the optimal
combination of feature subspaces is generated using a multiobjective
subspace selection process based on three objective criteria. Secondly,
an auxiliary training set is generated based on the sample confidence.
Finally, the training set and the auxiliary training set are used to select
the optimal subset of the ensemble. In [20], the authors proposed a
Multiview optimization (MVO) based ensemble system for imbalanced
data. Multiple subviews are generated from the data, combined with a
new evaluation criterion ensemble selection based on subviews, and an
oversampling approach to obtain a new class rebalanced subset for the
classifier.

In dynamic ensemble selection, an EoC is selected differently for each
test sample based on the competence level of the classifiers, which are
calculated according to some criteria on a local region [21]. In [22], the
authors proposed a novel dynamic ensemble selection strategy based on
Error Correcting Output Code by matching each column in the coding
matrix with a set of feature subsets generated by various feature selec-
tion methods. In the decoding process, a criterion based on data
complexity theory is used to select the optimal feature subset of the
ensemble. Garcia et al. [23] proposed DES-MI, a novel dynamic
ensemble selection method which can handle multi-class imbalanced
datasets. DES-MI performs preprocessing to rebalance the dataset using
random balance, and uses a weighting mechanism to highlight the

competence of classifiers that are more powerful in classifying samples
in the region of underrepresented competence. In [24], the authors
proposed to incorporate dynamic ensemble selection, an adaptive
technique for managing imbalanced multiclass data streams, and a
K-nearest neighbor (KNN) algorithm-based concept drift detector, to
improve the classification of imbalanced multiclass drifted data streams.
While the adaptive oversampling method ensures that the data is not
imbalanced, KNN is used to make sure that the generated samples do not
overlap, and the classifiers are selected dynamically based on incoming
data by using the concept drift detector. Luong et al. [13] proposed a
streaming multi-layer dynamic ensemble selection algorithm based on a
dynamic GA and dropout and demonstrated the effectiveness of the
proposed ensemble on an insect stream classification dataset. Zhu et al.
[25] proposed MLDE, a novel dynamic ensemble selection algorithm for
multi-label classification. Initially, classifiers are generated by parti-
tioning the original multi-label dataset into single-label datasets, with
individual classifiers constructed for each label. Then, ranking loss,
single-label, and multi-label accuracy are used to improve the model’s
label correlation exploiting abilities. Finally, a novel integration mech-
anism is proposed that fuses the outputs of the base classifiers.

2.3. Topology optimisation for deep neural networks

There have been many approaches in topology optimisation for
DNNs which aim to search for optimal configuration of DNNs for a
particular dataset. In reinforcement learning-based approaches, an
agent executes an action at a specific timestep to sample a new candidate
DNN, and the network’s performance on a validation set is used as a
reward to update the agent [26]. An example is [27] in which the au-
thors used a RNN (Recurrent Neural Network) policy to sample a string
that sequentially encodes the DNN. Another approach is Bayesian
optimisation, which constructs a probability model between DNN ar-
chitecture and its performance by using a training dataset of sampled
architectures. At each step, the next promising candidate is selected
using a probability model, then the model is updated based on the new
samples until a termination criterion is satisfied [28]. The
gradient-based approach transforms the discrete hyperparameter search
space into a continuous one, employing gradient-based methods to find
the optimal architecture. A notable example is DARTS [29] in which the
output of each layer is considered as a convex combination of a set of
operations. A bi-level optimisation method is then applied to find the
optimal architecture. Another approach is Evolutionary Computation
(EC), a generic population-based metaheuristic optimisation algorithm
that takes inspiration from biological processes [28]. In this approach,
each candidate DNN is encoded, and a number of biologically inspired
operations, such as crossover and mutations, are applied at each gen-
eration to evolve the optimal DNN architecture. Among these ap-
proaches, EC has been shown to have several advantages, such as faster
convergence, and diverse representational abilities, and its
multi-objective extension has been shown to have been successfully
applied to solve problems with multiple objective functions [7].

Evolutionary DL approaches typically encode the network hyper-
parameters before applying an EC method to find the optimal network.
There are two types of encoding strategies: Fixed-length encoding and
variable-length encoding [28]. In fixed-length encoding, the individuals
have the same length during the evolutionary process while in
variable-length encoding, the individuals can have different lengths
during evolution. An example of fixed-length encoding as described by
[30], involves proposing a fixed-length encoding for CNN where node
connections are represented as a binary string. The authors utilised
Genetic Algorithms to discover the optimal architecture. An example of
variable-length encoding is CoDeepNEAT [31] which was based on
NEAT [32], a popular evolutionary algorithm. NEAT begins with a
minimal encoding and during evolution, new connections and nodes are
added, and each gene in an encoding has a global innovation number for
crossover. Within CoDeepNEAT, two populations evolve: blueprints,

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

3

representing the overall structure of the deep neural network (DNN),
and modules, representing each component. For every candidate, each
blueprint node is substituted with a randomly selected chromosome
module. The fitness of each blueprint and module is calculated as the
average of the fitness scores of all DNN chromosomes associated with
that blueprint or module. In [33], the authors proposed to evolve DNNs
based on an Inception-based module called cells, with each being con-
nected to the previous two cells. Each cell is either a normal cell, which
preserves the image size, or reduction size, which has a pooling operator
of stride 2. The cells are constructed by applying five different pairwise
combinations of the hidden states, and afterward, the remaining hidden
states are concatenated to give the final results.

It should be noted that evolving DNNs usually require a lot of
computation time. For example, the Genetic CNN method, proposed in
[30] required 17 GPU days to optimise a 3-stage LeNet network on the
CIFAR-10 dataset. Another example is the evolved model in [33] which
use 450 GPUs to train the model in 3150 GPU days [28]. In recent years,
there has been many works in overcoming this limitation. In [34], the
authors used a weight-sharing mechanism in which the weights in each
component of a trained SuperNet will be used by the candidates in the
next generations, thereby reducing computation time. Sun et al. [35]
proposed E2EPP (End-to-End Performance Predictor), in which a num-
ber of candidate CNNs are trained, and then their discrete encodings are
fed into a regressor. During evolution, given a new architecture encod-
ing, the average prediction of a number of surrogate trees in the re-
gressor is used as the fitness value instead of training the network, and
the proposed method could save 2/3 of computation time while
retaining the same accuracy. Domhan et al. [36] used parametric
learning models to model the partially observed learning curve during
the training process to extrapolate the performance and terminate the
training of models that are expected to perform poorly. Dang et al. [37]
proposed an ensemble framework of DNNs for medical image segmen-
tation, in which the outputs of the deep segmentation models are com-
bined using a weighted mechanism obtained by using a swarm-based EC
method. Radial Basis Function (RBF) is used as the surrogate model to
reduce the computational time by half.

3. Proposed method

3.1. General architecture

We denote D to be the training data with N observations
{(
xn,

ŷn
)}

n = 1,…,N, where xn =
(
xn1,xn2,…, xnD

)
is the D − feature vector

of the nth training instance and ŷn is its true label. We also denote

X =

⎡

⎢
⎢
⎣

x11, x12,…, x1D
x21, x22,…, x2D

…
xN1, xN2,…, xND

⎤

⎥
⎥
⎦, Y =

⎡

⎢
⎢
⎣

ŷ1
ŷ2
…
ŷN

⎤

⎥
⎥
⎦ (1)

as the set of feature vectors and ground truths of all training instances.
For supervised learning (i.e. classification), we learn a hypothesis h (i.e.,
classifier) to approximate the unknown relationship between the feature
vector and its corresponding label. This hypothesis will be used to assign
a label for each unlabelled instance. In single-layer ensemble learning,
we learn K hypotheses {hk} by training K learning algorithms {K k} on
the training data D and then use a combining algorithm C on {hk}:
h̃ = C{{hk}, k= 1,…,K} to combine K hypothesis to reach the final
decision. Recently, multi-layer ensemble learning has captured the
attention of the machine learning community because this approach can
further improve the performance of the conventional one-layer
ensemble [2]. A multiple layer ensemble system consists of S layers,

each of which has K classifiers
{
h(i)k , k= 1,…,K

}
for i = 1, …, S. The

classifiers in one layer are obtained by training {K k} on training data
generated by the subsequent layer. A combining algorithm C works on

the outputs of the classifiers in the last layer
{
h(S)k

}
:

h̃ = C
{
h(S)k , k= 1,…,K

}
to generate a combined hypothesis.

We first describe the mechanism to populate the training data
through layers of the ensemble. In the first layer, we obtain EoC
{
h(1)k , k= 1,…,K

}
by training K learning algorithms on the original

training data D . The first layer also generates input data for the second
layer by using the Stacking algorithm with the set of learning algorithms
K [2,4]. Specifically, D is divided into T1 disjoint parts in which the
cardinality of each part is nearly similar. For each part, we train clas-
sifiers on its complementary and use these classifiers to predict for

Fig. 1. An illustration of the original multi-layer ensemble system. means the concatenation between the training data and predictions of classifiers.

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

4

observations of this part. If we solve aM-class classification problem, for
observation xn,we obtain p(1)k,m(xn) as the prediction of the k

th classifier in
the first layer that observation belongs to the class label ym (m = 1…M).

The predictions of the EoC in the first layer for xn in terms ofM class

labels are given in the form of (M×K) probability vector P(1)(xn) =
[
p(1)1,1(xn), p(1)1,2(xn),…, p(1)K,M(xn)

]
. The prediction vectors for all observa-

tions in D are given in the form of a N× (MK) matrix.

P 1 =
[
P(1)(x1) P(1)(x2) … P(1)(xN)

]T (2)

The study in [4] claimed that by concatenating the original training
data to the predictions, the discriminative characteristic of the input
training data is likely to improve when growing to the next layer. A
similar scheme will be conducted on the 2nd layer in terms of generating
EoC and populating input training data for the 3rd layer.

We let L 1 be the new data generated by the 1st layer which serves as
the input for the 2nd layer. Normally, L 1 is created by concatenating
the original feature vectors of training instances and the predictions of
EoC of the 1st layer as below:

(3)

in which denotes the concatenation operator between two matrices
X of size N× D and P 1 of size N× (MK). Thus L 1 is obtained in the
form of a N× (D+MK+1) matrix including D features of original data,
M× K prediction values, and ground truth of training instances. A
similar process is conducted on the next layers until reaching the last
layer in which at the ith layer, we train the EoC of K classifiers
{
h(i)k , k= 1,…,K

}
on the input data L i− 1 generated by (i − 1)th layer

and generate input data L i for the (i+ 1)th layer

(4)

The predictions of EoC of the last layer i.e. Sth layer are combined for
the collaborated decision. In this study, the Sum rule is used for the
combination [2]. For an instance x, the Sum rule summarises the pre-
dictions of EoC of the last layer concerning each class label. The label
associated with the maximum value is assigned to this instance as
follows:

h̃ : x ∈ yt if t = argmaxm=1,…,M

{
∑K

k=1

p(S)k,m(x)

}

(5)

in which p(S)k,m(x) denotes the probability assigned by the kth classifier in
layer S of the ensemble for the mth class. In the classification process,
each unseen instance is fed forward through the layers until reaching the

last layer. The predictions of K classifier at the last layer i.e. P(S)(.) =
[
p(S)1,1(.), p(S)1,2(.),…, p(S)K,M(.)

]
are combined by the Sum Rule in (5) to

obtain the predicted label.
An example of a multiple layer ensemble system with 3 layers is

presented in Fig. 1. In each layer, we choose three machine learning
algorithms namely SVM, KNN, and LDA to train the classifiers. In the
first layer, the KNN, SVM, and LDA algorithms train on the original
training data to obtain the EoC of the first layer. The T-fold cross-
validation procedure is also applied to the original training data to
split the training data into T separated parts. SVM, LDA, and KNN train
on the (T − 1) parts and predict for observations on the remained part.
The outputs of the classifiers are concatenated with the original training
data to generate the input training data for the second layer. A similar
scheme is used for the second layer and the third layer. A combiner
finally is applied to the output of the third layer to obtain the combining
result of the ensemble.

3.2. Optimal connections

In multiple layer ensemble systems, the original training data is
concatenated to the predictions of classifiers to generate the input for
the next layer. Thus, unique input data will be used for all learning al-
gorithms in a layer to train EoC. This approach has two issues: (1) there
is no evidence to show that the concatenation of original training data
and the predictions can improve the discriminative characteristic of
data. Some research has even shown the effectiveness of using the pre-
dictions of only the new training data on some datasets [2]. (2) Learning
algorithms use different approaches in approximating the relationship
between the feature vectors of training instances and their class labels.
In fact, different learning algorithms should use different sets of training
data when training classifiers. Based on these observations, we propose
an optimal connection approach to optimise the topology of multiple
layer ensemble systems. We aim to choose suitable input data among the

Fig. 2. An illustration of the proposed multiple layers ensemble system. means the concatenation between the training data and predictions of classifiers.

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

5

original training data and the predictions of classifiers in the preceding
layer to a machine learning algorithm in the next layer to work on. First,
we propose the following definition of a connection in a multiple layer
ensemble system:

Definition 1. The ith classifier of the sth layer and the jth classifier of the
(s+ 1)th layer are said to be connected if the output of the ith classifier of
the sth layer is used in the training data for the jth classifier of the (s+ 1)th

layer.

Fig. 3. An example of the training data flow in Fig. 2.
Fig. 3 shows an example of the new input training data generated by the first and second layers in Fig. 2 for a three class-classification problem. In the first layer, only the
connection between the training data and SVM is kept meaning that only SVM classifier is generated. The prediction of the SVM classifier is given in the form of 3-dimension
vectors of probabilities showing an observation belongs to a class. In layer 2, since the connections between the original training data and LDA and SVM, and the connection
between the SVM classifier in the 1st layer to LDA are kept, there are two classifiers generated in the 2nd layer: LDA classifier by training LDA on (D + 3) dimensional new
training data, SVM classifier by training SVM on original training data. The LDA and SVM classifiers in the 2nd layer will output 3-dimension prediction vectors for each
observation. At the 3rd layer, KNN classifier is generated by training KNN on the (D + 6) dimensional new training data (original training data + predictions of LDA and SVM
classifier in the 2nd layer) while LDA classifier is generated by training LDA on the (D + 3) dimensional new training data (original training data + predictions of SVM classifier
in the 2nd layer).

Fig. 4. Proposed encoding for selection of classifiers in the multi-layer ensemble model.

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

6

Fig. 2 shows an example of the optimal connection topology for the
system in Fig. 1. In the 1st layer, since only the connection between SVM
and the training data is formed, one classifier is generated by training
SVM on the training data. In the 2nd layer, there are 2 connections from
the training data to SVM and LDA and one connection from the SVM
classifier in the 1st layer to LDA. Therefore, in the 2nd layer, there are
two classifiers: one classifier is generated by training LDA on the
concatenation of the training data and the prediction of the SVM clas-
sifier in the 1st layer, and the other classifier is generated by training
SVM on the training data. Similarly, in the 3rd layer, there are two
classifiers: one classifier is generated by training KNN on the concate-
nation of the predictions of SVM and LDA classifier in the 2nd layer
while the other classifier is generated by training LDA on the concate-
nation of the training data and the prediction of SVM classifier in the 2nd
layer. Fig. 3 shows which predictions and training data are used by each
machine learning algorithm in each layer. The predictions of KNN and
LDA are combined to obtain the combined result.

Next, we propose a binary encoding representation to encode the
connections in the multiple layer ensemble systems. Fig. 4 shows the
encoding representation for the connection from the original training
data and the 1st, to the Sth layer. Firstly, since there are K learning al-
gorithms to train classifiers for the 1st layer, there are K genes encode for
the connections from the original training data to these learning algo-

rithms. The encoding is given in the binary format E1 =
[
e(1)0,k, k= 1…K

]

showing which connection is absent or present. The presence of a
connection means the associated learning algorithm will train on the
original training data to generate a classifier for the 1st layer. Assume
that K1 connections are present in the final solution i.e. K1 ≤ K classi-
fiers are generated in the 1st layer. In the 2nd layer, there are K genes
encode for the connections from the original training data and K genes
encode for the connections from one classifier in the 1st layer to K
learning algorithms, therefore, there are K+ K× K1 = (K1 +1) ×K

genes encode for the connections E2 =
[
e(2)j,k ,k = 1…K, j = 0…K1

]
. It is

recognised that the length of encoding of one layer depends on the
number of remaining connections (i.e., the number of classifiers) in the
preceding layer. Similar encoding representations will be used for the
2nd, 3rd,…, and Sth layer with (K2 + 1)× K, (K3 + 1)× K,
…,(KS +1) × K genes respectively.

Each element is defined as follows:

j = 0 shows the connections from the original training data.
The search process is conducted in each layer to obtain the optimal

set of connections. First, we search among K connections from the

training set to K learning algorithms to obtain the optimal set. Based on
the configuration of the optimal set, we train classifiers for the 1st layer.
The search process continues with the 2nd layer in which the length of
encoding representation depends on the number of classifiers in the 1st
layer. For a S layers-ensemble system, we need to conduct the search
process S times. In this study, the search for the optimal set of connec-
tions in each layer is done by using Binary Differential Evolution (Binary
DE) [38,39], since it is generally recognised that DE is a reliable and
versatile algorithm [39]. Here the objective function is the accuracy of
the classification task on the validation set. In this way, we solve S
optimisation problems for the S layers - ensemble systems:

maxE1

{
1

|V 1|

∑|V 1 |

n=1
⟦C(xn)= ŷn⟧

}

maxE2

{
1

|V 2|

∑|V 2 |

n=1
⟦C(xn)= ŷn⟧

}

… (7)

maxES

{
1

|V S|

∑|V S |

n=1
⟦C(xn)= ŷn⟧

}

where C(.) is the combiner working on the predictions of the classifiers
at the ith layer, V i is the validation set at the ith layer (i = 1,…,S), | ⋅ |
denotes the cardinality of a set, and ⟦.⟧ is equal to 1 if the condition is
true, otherwise equal to 0. In this study, the Sum Rule method was used
to summarise the predictions of each instance concerning each class
label and assign the instance to the class label associated with the
maximum value. The combined prediction on an instance x at the ith
layer is given by:

x ∈ yt if t = argmaxm=1,…,M

{
∑K

k=1
p(i)k,m(x)

}

(8)

3.3. Algorithms

We describe Differential Evolution (DE) algorithm which is used to
solve the optimisation problem in (7). Let popSize be the number of
candidates in the population, nGen be the number of generations, fn be

the fitness value of the n-th candidate in the population. The DE algo-
rithm [38,39] maintains a number of candidates u1,…, upopSize ∈ RD

where D is the number of dimensions. Let ui,d denotes the dth dimension
of the ith candidate (with 1 ≤ i ≤ popSize, 1 ≤ d ≤ D). At each

Algorithm 1
Stacking.

Input: T training set folds
{(

X train,i, Y train,i
)
, i = 1,…,T

}
, validation set X val, learning algorithm K

Output: The predicted values for all observations in the training set and validation set, and the trained classifier
1. P train = ϕ,P val = ϕ
2. For t from 1 to T do
3. Train K on the

{(
X train,i, Y train,i

)
, i= 1,…,T; i ∕= t

}
to obtain a classifier, predict on X train,t

4. Add the results to P train

5. End for
6. Train K on (X train, Y train) to obtain classifier H

7. H predicts on X val, add the results to P val

8. Return P train ,P val, and H

e(i)j,k =
{
1, the connection from jth classifier at layer (i − 1) to kth classifier at layer i is made∗

0, otherwise (6)

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

7

generation, and for each candidate ur(t), three random candidates ur1 (t),
ur2 (t), ur3 (t) are chosen, where r1,r2,r3 ∈ {1,2,...,popSize}/{r}, and a new
offspring is created by the following mutation process:

uoff (t) = ur1 (t) + F ∗
(
ur2 (t) − ur3 (t)

)
(9)

where F ∈ [0, 2] is a scaling factor. Afterwards, to increase the diversity,
the following crossover is performed on the offspring for each dimension
to create the trial vector:

utr,d(t) =
{

ur,d(t) if rand() ≤ CR
uoff ,d(t) if rand() > CR (10)

Algorithm 2
Sum_Rule.

Input: Predictions P of size (N, MK1), the number of instances N, the number of classes M, the number of classifiers used in the current layer K1.
Output: The prediction by the ensemble
1. pred = ∅
2. For n from 1 to N do
3. sum = ∅
4. For m from 1 to M do
5. summ = 0
6. For k from 1 to K1 do
7. summ = summ + pn,m+(k− 1)∗M

8. End for
9. End for
10. mpred = argmax(sum)

11. Add mpred to pred
12. End for

13. Return pred

Algorithm 3
Create_Predictions_First_Layer.

Require: Training set (X train, Y train), validation set X val, K classifiers {K k}
K
k=1, number of folds T, encoding of the first layer E1 =

{
e(1)0, k

}K

k=1
.

Output: The predictions on the training and validation set.
1. Divide (X train, Y train) into

{(
X train,i, Y train,i

)
, i = 1,…,T

}

2. P train
1 = ∅, P val

1 = ∅, H 1 = ∅
3. For k from 1 to K do
4. If e(1)0, k == 1 then

5.
(
P train

1,k , P val
1,k ,H 1,k

)
= Stacking

({(
X train,i, Y train,i

)
, i = 1,…,T

}
,K k

)

6. Add P train
1,k and P val

1,k to P train
1 and P val

1 respectively
7. Add H 1,k to H 1

8. End if
9. End for

10. Return
(
P train

1 , P val
1 , H 1

)

Algorithm 4
Create_Predictions_and_Classifiers_Subsequent_Layers.

Input: Training set (X train,Y train), validation setX val, K learning algorithm {K i}
K
i=1, number of folds T, encoding of the current layer Ei, outputs from the previous layer

(
P train

i− 1 ,P
val
i− 1)

Output: The predictions of the current layer on the training and validation set and trained classifiers
1. Kprev = Number of classifiers used in Ei− 1
2. prevList = The list of classifiers which were used in Ei− 1

3. P train
i =∅,P val

i =∅, H i=∅
4. For k from 1 to K do
5. L

train
k = ∅,L

val
k = ∅

6. //Add inputs based on connections from the previous layer
7. For j from 0 to Kprev do

8. If q(i)j,k == 1 then
9. If j == 0 then
10. Add X train and X val to L

train
k and L

val
k respectively.

11. Else
12. H = prevListj
13. Add the predictions of H in P train

i− 1 and P val
i− 1 to L

train
k and L

val
k respectively.

14. End if
15. End if
16. End for
17. //Train on the current layer

18. Divide
(
L

train
k ,Y train

)
into

{ (
L

train
k,i , Y train,i

)
, i = 1,…,T

}

19. (P train
i,k , P val

i,k , H i,k) = Stacking
({ (

L
train
k,i , Y train,i

)
, i = 1,…,T

})

20. Add P train
i,k and P val

i,k to P train
i and P val

i respectively
21. Add H i,k to H i

22. End for
23. Return

(
P train

i , P val
i ,H i)

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

8

Where CR is the crossover rate and rand() denotes the random
function (within the [0, 1] range). This is known as the DE/rand/1/bin
strategy, which is one of the most popular strategies in DE. The objective
value of utr(t) is then compared with that of ur(t), and the one with the
better objective value is chosen for the next generation.

ur(t+1) =
{

ur(t)if obj(ur(t)) ≥ obj(utr(t))
utr(t) if obj(ur(t)) < obj(utr(t))

(11)

Since the proposed encoding is of binary form, during the optimi-
sation process, the candidates are constrained to be within the [0, 1]
range, and each value is rounded off to either 0 or 1 based on its value.

The pseudo-code of the proposed method is presented in Algorithms
1-5. Algorithm 1 describes the Stacking procedure. Given T training set
folds

{(
X train,i, Y train,i

)
, i = 1, …, T

}
, validation set X val, number of

cross-validation folds T, learning algorithm K , the algorithm first sets
the predictions of the training and validation sets to the empty set (line
1). Then, for each fold, the algorithm trains a classifier by using K on
the remainder of that fold and then uses this classifier to predict ob-
servations on that fold. The predictions are added toP train (lines 2–5). In
lines 6–7, a classifier H is trained on the entire training set and predict
on the validation set, then the result is added to P val. Finally, the pre-
dictions for the training and validation set and the classifier H are
returned in line 8.

Algorithm 2 describes the sum rule procedure to evaluate the pre-
dictions at each layer. The algorithm receives the predictions P of size
(N, MK1) where N is the number of observations, M is the number of
classes, and K1 is the number of classifiers used in the current layer.
Initially, the output predictions pred is set to the empty set (line 1). For
each observation, the probabilities of each classifier for each class are
summed (line 7) where pn,m+(k− 1)∗M is the prediction of kth classifier for
the mth class on the nth observation. The output is the class with the
highest sum value (line 10). Finally, in line 13, the final prediction is
returned.

Algorithm 3 describes the procedure to create the predictions for the

first layer given an encoding. The algorithm receives as inputs the
training set (X train, Y train), validation set X val, K learning algorithms
{K k}

K
k=1, number of cross-validation folds T, and encoding of the first

layer E1 =
{
e(1)0, k

}K

k=1
. In lines 1–2, the training set is first divided into T

disjoint folds, and the predictions of the training and validation sets are
set to the empty set. Then, in lines 3–8, for each learning algorithm, if
the corresponding value in the encoding is 1, Algorithm 1 is called. The
outputs of Algorithm 1 are added to the predictions of the training and
validation sets as well as the ensemble of classifiers for layer 1.

Algorithm 4 describes the procedure to create the predictions for an
ith layer with an encoding. The inputs of the algorithm are the training
set (X train, Y train), validation set X val, K learning algorithm {K i}

K
i=1,

number of cross-validation folds T, encoding of the current layer Ei and
outputs from the previous layer

(
P train

i− 1 , P
val
i− 1). In lines 1–3, the number

and list of classifiers used in the previous layers are retrieved while the
predictions of the training and validation set by the current layer are set
to the empty set. In lines 4–16, the inputs to each classifier L

train
k and

L
val
k are added based on connections from the previous layer, as well as

connections to the original data (lines 8–15). Afterwards, in lines 18–20,
L

train
k is divided into T folds, then the Stacking procedure (Algorithm 1)

is performed, and the results are added to P train
i and P val

i as well as the
ensemble of classifiers of ith layerH i. Finally, in line 22,P train

i ,P val
i , and

H i are returned.
Algorithm 5 describes the training procedure. The algorithm receives

as inputs the training set (X train, Y train), validation set (X val,Y val), K
learning algorithm {K i}

K
i=1, number of cross-validation folds T, number

of maximum layers Tstop, number of early stopping epochs TearlyStopping,
and the binary DE parameters including the number of generations
maxGen, number of individuals popSize, the scaling factor F, and the
crossover rate CR. In lines 1–8, Kprev is set to 0 for the first layer, or to the
number of classifiers used in the previous layer, and popSize binary ar-
rays of size

(
Kprev +1, K

)
are randomly initialized. From lines 9–15, for

Algorithm 5
Training multi-layer ensemble.

Input: Training set (X train, Y train), validation set (X val,Y val), K learning algorithms {K i}
K
i=1, number of folds T, number of maximum layers Tstop, number of early stopping epochs

TearlyStopping. Binary DE parameters: number of generations maxGen, number of individuals popSize, the scaling factor F, the crossover rate CR.
Output: Optimal encoding of connections E1 ,E2,…,Es

1. i = 1
2. While True do
3. If i == 1 then
4. Kprev= 0
5. Else
6. Kprev= Number of classifiers used in the previous layer
7. End if
8. Randomly initialize popSize binary arrays of size

(
Kprev + 1, K

)

9. For gen from 1 to maxGen do
10. For pop from 1 to popSize do
11. Let q(i,pop) be the pop -th candidate for the i-th layer
12. If i == 1 then
13.

(
P train

i , P val
i ,H i) = Create_Predictions_First_Layer(X train, Y train, X val, {K k}

K
k=1,T,q(i,pop))

14. Else
15.

(
P train

i , P val
i ,H i) = Create_Predictions_Subsequent_Layer(X train, Y train, X val, {K k}

K
k=1,T,q(i,pop), (P

train
i− 1 , P val

i− 1))
16. End if
17. predpop = Sum Rule

(
P val

i
)

18. fitnesspop = Accuracy(predpop , Y val)
19. End for
20. Perform crossover and mutation procedures according to Eq. (12), (13) and (14)
21. End for
22. Let Ei be the candidate with the highest fitness value
23. If i == Tstop or the result has not improved after TearlyStopping then
24. S = i
25. Break.
26. End if
27. i = i+ 1
28. End while

29. Return (E1,E2,…,Es)

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

9

each candidate encoding, Algorithm 3 is called for the first layer, or
Algorithm 4 is called for the subsequent layers, and the output of the
current layer is created. Then, in lines 17–18, Algorithm 2 is called to
output the final predictions so as to calculate the fitness of the candidate
encoding.

In line 20, crossover and mutation are performed using the following
equations:

eoffj,k = ei,r1j,k + F ∗
(
ei,r2j,k − ei,r3j,k

)
(12)

etrj,k =

⎧
⎨

⎩

ei,rj,k if rand() ≤ CR

eoffj,k if rand() > CR
(13)

ei,rj,k =

⎧
⎨

⎩

ei,rj,k if obj
(
ei,rj,k

)
≥ obj

(
etrj,k

)

etrj,k if obj
(
ei,rj,k

)
< obj

(
etrj,k

) (14)

The algorithm retrieves the candidate Ei with the highest fitness
value. In lines 23–28, if the maximum number of layers has been ach-
ieved or the result has not improved after TearlyStopping layers, and then the
algorithm terminates. Finally, in line 29, the optimal encodings for each
layer are returned.

Each test sample will pass through layers in the ensemble and be
predicted by the ensemble of classifiers in each layer. The test data is
populated based on the connections between two layers until the last
layer. Afterward, the Sum rule is applied to the predictions of the
ensemble of classifiers in the last layer to get the final prediction.

Fig. 5 shows the block diagram of the algorithms. The numbers
denote the calling sequence during the training and testing process.
Firstly, Algorithm 5 is called to begin the training process to create the
multi-layer ensemble. Then, Algorithm 3 is called to create the pre-
dictions for the first layer (step 1), and within this algorithm, for each
candidate, Algorithm 1 is also called as well (step 2). Then, Algorithm 2
is called to return the fitness result (step 3). Afterwards, the predictions
for the first layer are returned, and Algorithm 4 is called to create the
predictions and classifiers for the subsequent layers (step 4). For each
candidate, Algorithm 1 is called (step 5), and afterwards, Algorithm 2 is
called to return the fitness result (step 6).

4. Experimental studies

4.1. Configurations

We chose 30 datasets from the UCI Machine Learning Repository and

Fig. 5. The flows between algorithms of the proposed multi-layer ensemble model.

Table 1
Information of experimental datasets.

Dataset Number of
instances

Number of
dimensions

Number of
classes

Balance 625 4 3
Banana 5300 2 2
Breast-Tissue 106 9 6
Cleveland 297 13 5
Colon 62 2000 2
Conn-Bench-Vowel 528 10 11
Contraceptive 1473 9 3
Electricity-
Normalised

45,312 8 2

Embryonal 60 7129 2
Fertility 100 9 2
GM4 1000 1000 3
Heart 270 13 2
Isolet 7797 617 26
Leukemia 72 7129 2
Madelon 2000 500 2
Mammographic 830 5 2
Multiple-Features 2000 649 10
Musk1 476 166 2
Musk2 6598 166 2
Newthyroid 215 5 3
Penbased 10,992 16 10
Phoneme 5404 5 2
Plant-Margin 1600 64 100
Ringnorm 7400 20 2
Satimage 6435 36 6
Sonar 208 60 2
Tic-Tac-Toe 958 9 2
Titanic 2201 3 2
Vertebral-3C 310 6 3
Wine-Red 1599 11 6

Table 2
Classification algorithms and their parameters in the experiments.

Classification
algorithms

Parameters Number of
classifiers

Decision Tree Split criterion: “gini”, “entropy”. Split
strategy: “best”, “random”.

4

KNN Number of neighbours: 1, 3, 5, 7, 9. 5
Random Forest Number of estimators: 200. 1
Bagging Number of estimators: 200. 1
XgBoost Number of estimators: 200. 1
MLP Size of hidden layer: 20, 40, 60, 80, 100.

Learning rate: 0.3, 0.6.
10

Gaussian Naive
Bayes

Default. 1

AdaBoost Number of estimators: 200. 1
Logistic regression Inverse of regularisation strength: 0.001,

0.01, 0.1, 1, 10, 100.
6

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

10

OpenML for the experiment. The information of these datasets including
the number of observations, the number of classes, and the number of
dimensions is given in Table 1. To generate the set of classifiers, we
trained 30 machine learning algorithms on the layer’s training data.
These classifiers are based on the following algorithms: Decision Tree,
kNN, Random Forest, Bagging, XgBoost, MLP, Gaussian Naïve Bayes,
AdaBoost, and Logistic regression. The classifiers were created using
different sets of hyperparameters for these algorithms. The detailed in-
formation of these hyperparameters is presented in Table 2. The training
data for one layer was generated by using the 5-fold cross-validation on
the output of the subsequent layer. The validation set was formed by
choosing 20% training observations.

We first compared COME using three different optimisation algo-
rithms namely Genetic Algorithm, Particle Swarm Optimisation, and
Differential Evolution, which are denoted COME-GA, COME-PSO, and
COME-DE respectively. For all three methods, we set the maximum
number of generations as 50, and the population size as 100. For COME-
GA, the crossover and mutation probability were set as 0.8 and 0.2,
respectively. For COME-PSO, the cognitive and social parameters c1 and
c2 were set to 0.5 and the inertia parameter w was set to 0.9. For COME-
DE, the scaling factor F was set to 2.0, and the crossover rate CR was set
to 0.7 [40,41]. The proposed method was also compared with some
benchmark algorithms in terms of classification accuracy and F1 score.
We chose 2 well-known ensemble methods namely Random Forest and
XgBoost in which each method included 200 classifiers. These algo-
rithms were shown to be top-performing methods based on the experi-
ments in [2]. We also chose two multiple layer ensemble models as the
benchmark algorithms: gcForest [4] and MULES [2]. For gcForest, 4
forests with 200 trees in each forest like in the original papers were
implemented while the parameters of MULES were set similarly to the
original papers. We also choose Multiple Linear Regression (MLR) [42],
a popular weighted combining ensemble learning method, as a bench-
mark algorithm.

We used the Friedman test to test the null hypothesis “the perfor-
mance of the benchmark algorithms and proposed methods is equal”. In
this study, the significant threshold was set to 0.05. If the P-value of this

test is smaller than a significant threshold, we reject the null hypothesis,
whichmeans there is a difference in the performance results. In this case,
we compared each pair among 6 methods by using the Nemenyi post-
hoc test [43].

4.2. Comparisons between different optimisation algorithms

Table 3 shows the accuracy of COME-GA, COME-PSO, and COME-
DE. It can be seen that COME-DE achieves the best results on 22 out
of 30 datasets while the others also have high performance on several
datasets. On the Balance, Breast-Tissue, Colon, Embryonal, Heart, and
Madelon datasets, the differences between COME-DE and the other two
methods are significant. For example, on Breast-Tissue, COME-DE ob-
tains an accuracy of 0.7813, which is higher than that of the second-best
(COME-GA) by 6.25%. Similarly, on the Colon dataset, the accuracy of
COME-DE is 0.8421 while both COME-GA and COME-PSO only achieve
a score of 0.6842. On many other datasets, COME-DE also obtains the
best score, however, the difference is not as large as those datasets. For
example, on the Wine-Red dataset, COME-GA obtains an accuracy of
0.6854, which is higher than the second best (COME-PSO) at just around
0.83%. On 8 datasets (Cleveland, Fertility, Leukemia, Newthyroid,
Sonar, Tic-Tac-Toe, Titanic, and Vertebral-3C), COME-DE shares the
best position with one or two other methods. For example, on the Titanic
dataset, all three methods have a score of 0.7595, while on the
Vertebral-3C dataset, both COME-DE and COME-PSO have an accuracy
of 0.8495, while COME-GA only obtains a score of 0.8387. On several
datasets, the performance of COME-DE is lower than that of COME-GA
and COME-PSO. For example, the accuracy of COME-GA on the Plant-
Margin dataset is 0.85, which is higher than that of COME-DE by
around 0.023. However, in most instances, the performance differences
between the methods are not substantial. An example is Electricity-
Normalised, in which the best-performing method is COME-PSO at
0.932, while COME-DE has a score of 0.9311, which is only slightly
worse compared to COME-PSO.

The F1 scores of COME-GA, COME-PSO, and COME-DE are shown in
Table 4. Similar to the results concerning accuracy score, COME-DE

Table 3
The comparison of the accuracy of COME with GA, PSO, and DE.

Dataset COME-GA COME-PSO COME-DE

Balance 0.9202 0.9202 0.9681
Banana 0.8981 0.8994 0.9013
Breast-Tissue 0.7188 0.6875 0.7813
Cleveland 0.6222 0.6000 0.6222
Colon 0.6842 0.6842 0.8421
Conn-Bench-Vowel 0.9811 0.9874 0.9811
Contraceptive 0.5362 0.5837 0.5814
Electricity-Normalised 0.9288 0.9320 0.9311
Embryonal 0.5000 0.6111 0.6667
Fertility 0.9333 0.9333 0.9333
GM4 0.9967 0.9900 1.0000
Heart 0.8519 0.8272 0.8765
Isolet 0.9564 0.9543 0.9534
Leukemia 0.9545 0.9091 0.9545
Madelon 0.7650 0.7517 0.7983
Mammographic 0.8554 0.8434 0.8594
Multiple-Features 0.9767 0.9833 0.9850
Musk1 0.8811 0.8881 0.8671
Musk2 0.9909 0.9924 0.9934
Newthyroid 0.9692 0.9692 0.9692
Penbased 0.9955 0.9958 0.9951
Phoneme 0.902 0.9069 0.9051
Plant-Margin 0.85 0.8375 0.8271
Ring 0.9802 0.9793 0.9811
Satimage 0.9342 0.9332 0.9358
Sonar 0.9365 0.9048 0.9365
Tic-Tac-Toe 0.9931 1.0000 1.0000
Titanic 0.7595 0.7595 0.7595
Vertebral-3C 0.8387 0.8495 0.8495
Wine-Red 0.6688 0.6771 0.6854

Table 4
The comparisons of the F1 score of COME with GA, PSO, and DE.

Dataset COME-GA COME-PSO COME-DE

Balance 0.8681 0.8783 0.9426
Banana 0.8968 0.8981 0.9003
Breast-Tissue 0.6912 0.6629 0.7650
Cleveland 0.2891 0.2838 0.3013
Colon 0.5250 0.5250 0.8081
Conn-Bench-Vowel 0.9833 0.9891 0.9814
Contraceptive 0.5183 0.5450 0.5514
Electricity-Normalised 0.9270 0.9303 0.9292
Embryonal 0.4582 0.5786 0.6250
Fertility 0.7321 0.7321 0.7321
GM4 0.9969 0.9907 1.0000
Heart 0.8363 0.7975 0.8635
Isolet 0.9567 0.9544 0.9538
Leukemia 0.9454 0.8854 0.9454
Madelon 0.7650 0.7513 0.7983
Mammographic 0.8554 0.8433 0.8594
Multiple-Features 0.9761 0.9827 0.9843
Musk1 0.8796 0.8874 0.8650
Musk2 0.9823 0.9854 0.9874
Newthyroid 0.9453 0.9453 0.9548
Penbased 0.9955 0.9958 0.9952
Phoneme 0.8825 0.8867 0.8851
Plant-Margin 0.8475 0.8307 0.8177
Ringnorm 0.9802 0.9793 0.9811
Satimage 0.9191 0.9176 0.9214
Sonar 0.9357 0.9028 0.9361
Tic-Tac-Toe 0.9921 1.0000 1.0000
Titanic 0.7059 0.7059 0.7059
Vertebral-3C 0.7573 0.7870 0.7772
Wine-Red 0.3245 0.3270 0.3252

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

11

achieves the highest scores on a significant number of datasets. The
highest difference in performance between COME-DE and the other two
methods is in the Colon dataset, in which COME-DE obtains a score of
0.8081, which is higher than both COME-GA and COME-PSO by 0.2831.
On five other datasets, namely Balance, Breast-Tissue, Embryonal,
Heart, andMadelon, COME-DE also perform significantly better than the
others, with an average difference of 4.934%. Unlike the results related
to accuracy score, in this case, only four datasets (Fertility, Leukemia,
Tic-Tac-Toe, and Titanic) in which COME-DE shares the first position
with other methods. There are five datasets in which COME-GA obtains
the best results (Fertility, Isolet, Leukemia, Plant-Margin, and Titanic),
however, the average difference between COME-GA and the second best
on these datasets is only 0.382%. Similarly, COME-PSO has the highest
F1 score on 10 datasets, however, its performance is the same as COME-
DE on three datasets (Fertility, Tic-Tac-Toe, and Titanic). For the
remaining datasets, COME-PSO only scored higher than COME-DE by
around 0.0064 on average.

Figs. 6 and 7 show the Nemenyi test for the accuracy and F1 score of
COME-GA, COME-PSO, and COME-DE. In both cases, it can be seen that
COME-DE is better than COME-GA and that COME-DE ranks first, fol-
lowed by COME-PSO and COME-GA, however, there is no statistical
difference between COME-DE and COME-PSO.

Fig. 8 shows the number of optimal layers found by COME-GA,
COME-PSO, and COME-DE. On average, all three methods found the
same number of optimal layers, however on some datasets, some
methods found more layers compared to the other methods. There are 9
datasets where all three methods found just one optimal layer and 4
datasets where 2 layers are considered optimal by all three methods. In
contrast, on the Colon dataset, COME-DE found 7 layers to be optimal
while both COME-GA and COME-DE found only 1 layer. In this case,
according to Table 3 and 4, COME-DE obtains a much better score
compared to COME-GA and COME-PSO. Another example is Balance, in
which COME-DE found 3 layers and obtained an accuracy of 0.9681, as

opposed to COME-GA and COME-PSO which only found 2 layers while
achieving an accuracy of just slightly over 0.92. However, on the Pen-
based dataset, even though COME-DE found more layers compared to
COME-GA and COME-PSO, the accuracy is slightly lower than that of
these two methods. COME-GA and COME-PSO also found many more
layers compared to the other methods on several datasets. For example,
on the Contraceptive dataset, the optimised ensemble found by COME-
PSO has 8 layers, compared to just 4 layers by COME-GA and 2 layers
by COME-DE.

Table 5 shows the optimisation time (in hours) of COME-GA, COME-
PSO, and COME-DE. COME-DE requires the most time for optimisation
on most datasets, however, the differences in time on many datasets are
negligible. On the Isolet dataset, COME-DE took 100 h compared to just
around 63 and 36 h for COME-GA and COME-PSO, while on the Plant-
margin dataset, COME-DE took 119 h, which is significantly higher as
that of COME-PSO. However, for other datasets, the difference in opti-
misation time between COME-DE and the other two methods are not
very significant. For example, on the Balance dataset, COME-DE took 1.5
h, which is higher than COME-GA and COME-PSO by just 0.5 and 1.0 h
respectively. There are five datasets in which COME-GA requires more
time than COME-DE (Breast-Tissue, Cleveland, Mammographic, Musk2,
Wine-Red) and two datasets for COME-PSO (Contraceptive and Verte-
bral). It should be noted that although COME-DE might require more
time compared to the other two methods, it provides better results on
many datasets.

4.3. Comparisons with the benchmark algorithms

Next, we compared COME-DE with the following benchmark algo-
rithms: gcForest, Random Forest, XgBoost, MULES, and MLR. For the
following experiments, COME-DE is now denoted as COME.

Figs. 9 and 10 show the Nemenyi test for the accuracy and F1 score of
COME and the benchmark algorithms. In both cases, COME is better

Fig. 6. Nemenyi test for the accuracy of COME with GA, PSO, and DE
COME-DE > COME-GA.

Fig. 7. Nemenyi test for the F1 score of COME with GA, PSO, and DE
COME-DE > COME-GA.

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

12

Fig. 8. Number of optimal layers found by COME-GA, COME-PSO, and COME-DE on experimental datasets.

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

13

than MULES, XgBoost, gcForest, and Random Forest. Additionally,
concerning accuracy, MLR is better than XgBoost, gcForest, and Random
Forest, while for the F1 score, MLR is better than MULES, gcForest, and
Random Forest. On the other hand, there is no statistical difference
between COME and MLR. For both the accuracy and F1 score, COME
ranks first followed byMLR. For accuracy, MULES has the third rank and
XgBoost has the fourth rank, while for the F1 score, the ranks are
reversed. gcForest and Random Forest are consistently the lowest-
ranking methods in both cases.

Table 6 shows the accuracy of the proposed method and the
benchmark algorithms. It can be seen that COME has the highest scores
on most datasets, while amongst the benchmark algorithms, MLR has
the highest number of first places. COME achieves the highest difference
compared to the benchmark algorithms on the Balance dataset, in which
the accuracy of COME is 0.9681, which is higher than the second-best
method (MLR) by around 10%. Another dataset in which the differ-
ence is significant is Breast-Tissue, where COME has an accuracy of
0.7813 while most of the benchmark algorithms only achieve a score of
0.7188. There are 6 datasets (Colon, GM4, Leukemia, Newthyroid, Tic-
Tac-Toe, Vertebral-3C) where COME’s performance is the same as some
other benchmark algorithms. gcForest shares the highest accuracy on
GM4 (1.0) and Newthyroid (0.9692), with COME. XgBoost achieves the
highest score on just one dataset (Newthyroid) at 0.9692, which is the
same score as that of COME, gcForest, and MLR. Although there are 4
datasets where Random Forest obtains the highest accuracy, the scores
of Random Forest are the same score as those of COME on 3 datasets
(Colon, Leukemia, and Vertebral-3C). Additionally, among the bench-
mark algorithms, MLR performs the best where it achieves the highest
accuracy on 10 datasets, but 5 of the highest scores are shared by COME
as well.

Table 7 shows the F1 score of COME and the benchmark algorithms.
It can be seen that COME achieves first or equal first place on 20 out of

Table 5
Optimisation time of COME with GA, PSO, and DE (in hours).

Dataset COME-GA COME-PSO COME-DE

Balance 1.0975 0.6010 1.5023
Banana 3.0058 3.1760 4.8259
Breast-Tissue 0.7645 0.6840 0.6196
Cleveland 0.8904 0.5556 0.8308
Colon 0.3836 0.6191 2.0441
Conn-Bench-Vowel 1.4069 1.1531 1.4452
Contraceptive 2.5370 3.7200 1.8606
Electricity-Normalised 24.556 23.1680 35.5188
Embryonal 0.9977 1.7581 1.8373
Fertility 0.1703 0.1812 0.2069
GM4 2.4926 3.0685 3.5406
Heart 0.2462 0.2670 0.3061
Isolet 63.3973 36.4517 100.1772
Leukemia 0.6926 1.4652 1.4659
Madelon 5.8683 5.8151 12.7560
Mammographic 1.2879 0.8617 0.8208
Multiple-Features 6.1392 6.8573 8.7926
Musk1 1.0331 0.7663 0.8015
Musk2 25.2961 11.0347 17.4254
Newthyroid 0.2970 0.2786 0.3264
Penbased 18.7128 26.6560 29.8070
Phoneme 5.2769 3.3581 5.3429
Plant-Margin 100.0346 79.9919 119.3066
Ring1 6.6760 5.6050 9.6177
Satimage 7.7718 6.0654 10.1016
Sonar 0.37635 0.3245 0.5215
Tic-Tac-Toe 0.701825 0.5334 0.8900
Titanic 0.5451 0.4233 0.6711
Vertebral-3C 0.3206 0.4777 0.4530
Wine-Red 4.42855 3.2037 3.1914

Fig. 9. Nemenyi test for the accuracy of COME and the benchmark algorithms
COME > MULES, XgBoost, gcForest, Random Forest
MLR > XgBoost, gcForest, Random Forest.

Fig. 10. Nemenyi test for the F1 score of COME and the benchmark algorithms
COME > XgBoost, MULES, gcForest, Random Forest
MLR > MULES, gcForest, Random Forest.

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

14

Table 6
The comparison of COME and benchmark algorithms for the accuracy.

Dataset COME gcForest Random Forest XgBoost MULES MLR

Balance 0.9681 0.8564 0.8085 0.8457 0.8351 0.8617
Banana 0.9013 0.8654 0.8365 0.8969 0.8899 0.8943
Breast-Tissue 0.7813 0.6875 0.7188 0.7188 0.7188 0.7188
Cleveland 0.6222 0.6222 0.6333 0.5889 0.5889 0.5778
Colon 0.8421 0.7368 0.8421 0.7895 0.7368 0.7895
Conn-Bench-Vowel 0.9811 0.6415 0.6101 0.8239 0.8050 0.9874
Contraceptive 0.5814 0.5566 0.5588 0.5701 0.5724 0.5747
Electricity-Normalised 0.9311 0.7998 0.7745 0.8529 0.9325 0.9255
Embryonal 0.6667 0.5000 0.3889 0.5000 0.6111 0.5000
Fertility 0.9333 0.9000 0.9000 0.9000 0.8667 0.9000
GM4 1.0000 1.0000 0.9767 0.9033 0.9967 1.0000
Heart 0.8765 0.8272 0.8025 0.7531 0.7654 0.8519
Isolet 0.9534 0.8141 0.7534 0.9462 0.9517 0.9543
Leukemia 0.9545 0.9091 0.9545 0.9091 0.9545 0.9545
Madelon 0.7983 0.6350 0.6200 0.7000 0.7717 0.8000
Mammographic 0.8594 0.8394 0.8514 0.8233 0.2811 0.8394
Multiple-Features 0.9850 0.9783 0.9733 0.9800 0.9767 0.9833
Musk1 0.8671 0.8531 0.8042 0.8322 0.8671 0.8671
Musk2 0.9934 0.9510 0.8944 0.9768 0.9727 0.9909
Newthyroid 0.9692 0.9692 0.9538 0.9692 0.9385 0.9692
Penbased 0.9951 0.8957 0.8357 0.9897 0.9912 0.9955
Phoneme 0.9051 0.8181 0.8033 0.8570 0.9014 0.9100
Plant-Margin 0.8271 0.5333 0.4813 0.7167 0.7646 0.8167
Ringnorm 0.9811 0.9635 0.9270 0.9707 0.9658 0.9770
Satimage 0.9358 0.8695 0.8576 0.9120 0.9244 0.9337
Sonar 0.9365 0.8254 0.8413 0.8413 0.8254 0.8730
Tic-Tac-Toe 1.0000 0.8160 0.8056 0.9861 0.9792 1.0000
Titanic 0.7595 0.7474 0.7534 0.7504 0.7716 0.7504
Vertebral-3C 0.8495 0.7957 0.8495 0.8280 0.8280 0.8280
Wine-Red 0.6854 0.5854 0.5938 0.6375 0.6750 0.6688

Table 7
The comparison of COME and the benchmark algorithms for the F1 score.

Dataset COME gcForest Random Forest XgBoost MULES MLR

Balance 0.9426 0.6985 0.5664 0.5970 0.5863 0.6056
Banana 0.9003 0.8646 0.8341 0.8956 0.8890 0.8929
Breast-Tissue 0.7650 0.6389 0.7037 0.6989 0.6962 0.7013
Cleveland 0.3013 0.2559 0.2571 0.3016 0.2555 0.2642
Colon 0.8081 0.6360 0.8081 0.7286 0.6360 0.7286
Conn-Bench-Vowel 0.9814 0.6442 0.6134 0.8208 0.8089 0.9891
Contraceptive 0.5514 0.5244 0.5204 0.5461 0.5224 0.5335
Electricity-Normalised 0.9292 0.7961 0.7571 0.8483 0.9306 0.9235
Embryonal 0.6250 0.4109 0.3378 0.4582 0.5786 0.4109
Fertility 0.7321 0.4737 0.4737 0.6727 0.4643 0.4737
GM4 1.0000 1.0000 0.9738 0.8955 0.9963 1.0000
Heart 0.8635 0.8056 0.7817 0.7271 0.7502 0.8363
Isolet 0.9538 0.8102 0.7369 0.9462 0.9518 0.9545
Leukemia 0.9454 0.8854 0.9454 0.8854 0.9454 0.9454
Madelon 0.7983 0.6248 0.6196 0.6996 0.7717 0.7999
Mammographic 0.8594 0.8390 0.8506 0.8231 0.2795 0.8394
Multiple-Features 0.9843 0.9775 0.9731 0.9803 0.9759 0.9825
Musk1 0.8650 0.8513 0.7980 0.8292 0.8669 0.8658
Musk2 0.9874 0.8968 0.7163 0.9538 0.9447 0.9824
Newthyroid 0.9548 0.9453 0.9260 0.9453 0.9052 0.9453
Penbased 0.9952 0.8961 0.8318 0.9897 0.9912 0.9955
Phoneme 0.8851 0.7822 0.7566 0.8280 0.8794 0.8909
Plant-Margin 0.8177 0.4914 0.4499 0.7001 0.7520 0.8065
Ringnorm 0.9811 0.9635 0.9266 0.9707 0.9658 0.9770
Satimage 0.9214 0.8322 0.8092 0.8932 0.9035 0.9197
Sonar 0.9361 0.8209 0.838 0.8393 0.8225 0.8714
Tic-Tac-Toe 1.0000 0.7715 0.7383 0.9841 0.9763 1.0000
Titanic 0.7059 0.6441 0.6966 0.6662 0.7143 0.6662
Vertebral-3C 0.7772 0.6809 0.7660 0.7395 0.7436 0.7527
Wine-Red 0.3252 0.2620 0.2517 0.3535 0.3226 0.3248

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

15

30 datasets. On several datasets, COME obtains substantially better re-
sults than the benchmark algorithms, i.e. on the Balance dataset, COME
obtains an F1 score of 0.9426 while the scores of the benchmark algo-
rithms are between 0.5664–0.6985, Breast-Tissue (0.765 vs
0.6389–0.7037), Colon (0.8081 vs 0.6360–0.7286, except Random
Forest), Fertility (0.7321 vs 0.4643–0.6727). gcForest, Random Forest,
XgBoost, and MULES achieve highest scores on 1, 2, 2, and 4 datasets
respectively, but several of these highest scores are also shared by
COME, or the difference with the second-best method is not large.
Although MLR achieved the highest scores on 8 datasets, 3 highest
scores are shared with COME, while the remaining 5 highest scores are
not substantially larger than the 2nd highest scores achieved by COME.

The training time of COME is significantly higher than those of the
other benchmark algorithms, except MULES. For example, on the Tic-
tac-toe dataset, MULES and gcForest took 0.8761 h and 0.0867 h for
training, respectively, while COME took 0.89 h. Several factors
contribute to this difference. Firstly, both COME and MULES solve S
optimization problems for the ensemble of S layers to find optimal
connections in each layer. These algorithms use evolutionary-based
approaches to search for optimal solutions, involving the evaluation of
numerous candidates in multiple generations, which increases training
time. Furthermore, COME uses 30 machine learning algorithms in each
layer to train classifiers, whereas MULES employs only 5 classifiers per
layer as in the original paper [2]. This further extends COME’s training
time compared to its counterparts. On the other hand, the test time of
COME is lower than that of MLR on datasets where the optimal number
of layers is just one (e.g., Banana, Embryonal, Fertility, GM4, Heart,
Leukemia, Madelon, Multiple Features, Musk1, Plant-Margin, and
Titanic). This is due to the retention of a subset of connections between
training data and classifiers, resulting in fewer classifiers being used in
COME, whereas MLR uses all 30 classifiers in the ensemble. For other
datasets, COME’s testing time exceeds that of MLR because it generates
more layers with 30 classifiers each. Compared to gcForest, COME’s
testing time is substantially higher. For instance, on the Balance and
Madelon datasets, gcForest took 0.1406 and 0.2188 s, respectively,
while COME took 0.3032 and 0.682 s.

5. Conclusions

In this paper, we introduced COME, a novel multi-layer ensemble of
classifiers. In COME, each classifier at a specific layer is connected to
some classifiers from the previous layer. The connection between two
classifiers in two layers indicates that the output of the classifier in the
previous layer serves as the input for the classifier in the current layer.
The Sum Rule combines predictions from the last layer to produce final
predictions. We search for the optimal set of connections in the multi-
layer ensemble to maximise the classification accuracy. We first enco-
ded the connections between layers by using a binary encoding scheme.
We then used Differential Evolution, one of the most popular evolu-
tionary computation-based methods, to find the optimal encoding which
exactly is the optimal set of connections for multi-layer ensemble sys-
tems. For each candidate, the accuracy on a validation set is used as the
fitness criteria. In our work, the optimisation algorithm only plays a role
to solve the optimisation problem in Eq. (7). Thus, it is note that not only
DE but also any optimisation algorithms can be used in our method. We
focused on developing a novel multi-layer ensemble algorithm based on
the idea of connections between classifiers in two consecutive layers
instead of developing a new optimisation algorithm.

To evaluate the performance of COME over benchmark algorithms,

we conducted experiments on 30 datasets from the UCI Machine
Learning Repository and OpenML.We first evaluated the performance of
COME with three different optimisation algorithms, DE, GA, and PSO.
The experimental results indicated the outperformance of DE when
working in COME compared to the others. More specifically, COME-DE
obtains the best accuracy and F1 scores on more than 20 datasets.
Notably, on some datasets, COME-DE has higher results compared to
COME-Gaand COME-PSO by more than 6%. Additionally, we compared
the results of our proposed ensemble with several state-of-the-art
ensemble learning algorithms, namely gcForest, Random Forest,
XgBoost, MULES and MLR. The experimental results demonstrate the
effectiveness of our proposed ensemble.

There are a number of potential future directions for our proposed
ensemble. Firstly, by parallelising the candidate evaluation during the
DE optimisation procedure on GPUs [44] our proposed ensemble can
achieve considerable reductions in computational time. Secondly, our
current multi-layer ensemble follows a sequential structure where out-
puts from one layer feed into the next. Enhancements could be made by
exploring new types of connections in the multi-layer ensemble, such as
skip-connection, or by finding new ways to enhance the input data for
each layer, such as training the classifiers on different subsets of features
or data. Thirdly, adapting our ensemble for various scenarios such as
incremental learning or data stream-based learning is another avenue.
This involves developing methods for the ensemble to adjust its
configuration with new data arrivals, balancing accuracy, and time
considerations during updates.

Ethical approval

This article does not contain any studies with human participants
performed by any of the authors.

CRediT authorship contribution statement

Truong Dang:Writing – original draft, Methodology, Data curation.
Tien Thanh Nguyen: Writing – original draft, Supervision, Conceptu-
alization. Alan Wee-Chung Liew: Writing – review & editing, Valida-
tion, Methodology. Eyad Elyan:Writing – review & editing, Validation,
Methodology. John McCall: Writing – review & editing, Validation,
Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The rawdata required to reproduce the abovefindings are available to
download from https://archive.ics.uci.edu/datasets and https://www.
openml.org/search?type=data&status=active. The processed data
required to reproduce the above findings are available to download from
https://1drv.ms/u/s!Aor3F4KdvJjrkwG4JAl3a2qObFDc?e=L9h5P9.

Funding Declaration

There is no funding declaration.

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

16

Appendix Notation table

Notation Explanation

xn =
(
xn1,xn2,…,xnD

)
The D − feature vector of the nth training instance

ŷn The true label of the nth training instance
D¼

{(
xn , ŷn

)}
The training set

X =

⎡

⎢
⎢
⎣

x11, x12,…, x1D
x21, x22,…, x2D

…
xN1 , xN2,…, xND

⎤

⎥
⎥
⎦

The set of all training instances

Y =

⎡

⎢
⎢
⎣

ŷ1
ŷ2
…
ŷN

⎤

⎥
⎥
⎦

The ground truth of all training instances

h A hypothesis (i.e. classifier)
{hk} The set of K hypotheses
K = {K k} K learning algorithms
C The combining algorithm
h̃ = C{{hk},k = 1,…,K} The final decision (after the combining procedure)
{
h(i)k , k= 1,…,K

}
for i = 1,…,S The K classifiers in the ith layer in a multi-layer ensemble with S layers

p(1)k,m(xn) The prediction of the kth classifier in the first layer that observation belongs to the class label ym

P(1)(xn) =
[
p(1)1,1(xn), p

(1)
1,2(xn),…,p(1)K,M(xn)

]
The prediction vector by the classifiers in the first layer for observation xn

P 1 =
[
P(1)(x1) P(1)(x2) … P(1)(xN)

]T The prediction vectors by the classifiers in the first layer for all observations in the training set

Concatenation operator

P i The prediction vectors by the classifiers in the ith layer for all observations
P train

i The prediction vectors by the classifiers in the ith layer for all observations in the training set
P val

i The prediction vectors by the classifiers in the ith layer for all observations in the validation set

The input data L i for the (i+ 1)th layer

p(S)k,m(x) The probability assigned by the kth classifier in layer S of the ensemble for the mth class.

T The number of cross-validation folds

E1 =
[
e(1)0,k,k = 1…K

]
The binary encoding for the 1st layer

Ei =
[
e(i)j,k ,k = 1…K, j = 0…K1

]
(i = 2, ...,S) The binary encoding for the ith layer

e(i)j,k Denotes whether there is a connection between jth classifier at (i − 1)th layer and kth classifier at the ith layer. (j ∕= 0)
If j is zero: Denotes whether there is connection from training data to the kth classifier at the ith layer.

V i The validation set at the ith layer
| ⋅ | The cardinality of a set
⟦.⟧ The indicator function, which is equal to 1 if the condition is true, else returns 0.
popSize The population size
maxGen The maximum number of generations
obj(.) The objective function
ui,d The dth dimension of the ith candidate in the DE algorithm
ur(t) The rth candidate at time t in the DE algorithm
uoff (t) The offspring created at time t in the DE algorithm
utr,d(t) The dth dimension of the trial vector at time t
F The scaling factor
CR The crossover rate
rand() The random function (within the [0, 1] range)
H i The ensemble of classifiers of ith layer
Tstop Number of maximum layers
TearlyStopping Number of early stopping epochs
Kprev Number of classifiers used in the previous layer
ei,r1j,k

The (j,k) entry of the r1th candidate of the binary encoding at the ith layer.

eoffj,k
The (j,k) entry of the offspring of the binary encoding.

etrj,k The (j,k) entry of the trial vector of the binary encoding.

References

[1] X. Dong, Z. Yu, W. Cao, et al., A survey on ensemble learning, Front. Comput. Sci.
14 (2020) 241–258.

[2] T.T. Nguyen, N.V. Pham, T. Dang, A.V. Luong, J. McCall, A.W.-C. Liew, Multi-layer
heterogeneous ensemble with classifier and feature selection, in: Proceedings of the
2020 Genetic and Evolutionary Computation Conference (GECCO), 2020,
pp. 725–733.

[3] T.T. Nguyen, M.P. Nguyen, X.C. Pham, A.W.C. Liew, Heterogeneous classifier
ensemble with fuzzy rule-based meta learner, Inf. Sci. (Ny) 422 (2018) 144–160.

[4] Z.-H. Zhou, J. Feng, Deep forest: towards An alternative to deep neural networks,
in: Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence (IJCAI), 2017, pp. 3553–3559.

[5] A.V. Luong, T.T. Nguyen, A.W.-C. Liew, S. Wang, Heterogeneous ensemble
selection for evolving data streams, Pattern Recognit. 112 (2021) 107743.

[6] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 770–778.

[7] M. Baldeon Calisto, S.K. Lai-Yuen, AdaEn-Net: an ensemble of adaptive 2D-3D
Fully Convolutional Networks for medical image segmentation, Neural Netw. 126
(2020) 76–94.

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

17

[8] C. Liu, F. Huang, A. Qiu, Monte Carlo ensemble neural network for the diagnosis of
Alzheimer’s disease, Neural Netw. 159 (2023) 14–24.

[9] Y. Xie, W. Sun, M. Ren, S. Chen, Z. Huang, X. Pan, Stacking ensemble learning
models for daily runoff prediction using 1D and 2D CNNs, Expert Syst. Appl. 217
(2023) 119469.

[10] N. Dvornik, J. Mairal, C. Schmid, Diversity with cooperation: ensemble methods
for few-shot classification, in: IEEE/CVF International Conference on Computer
Vision (ICCV), 2019, pp. 3722–3730.

[11] L.V. Utkin, M.S. Kovalev, A.A. Meldo, A deep forest classifier with weights of class
probability distribution subsets, Knowl. Based Syst. 173 (2019) 15–27.

[12] T. Dang, T.T. Nguyen, J. McCall, E. Elyan, C.F. Moreno-García, Two layer ensemble
of deep learning models for medical image segmentation, Cognit. Comput. (2024).

[13] A.V. Luong, T.T. Nguyen, A.W.-C. Liew, Streaming multi-layer ensemble selection
using dynamic genetic algorithm, in: 2021 Digital Image Computing: Techniques
and Applications (DICTA), 2021, pp. 1–8.

[14] G. Martínez-Muñoz and A. Suárez, ‘Aggregation ordering in bagging’, 2004.
[15] J. Cao, W. Li, C. Ma, Z. Tao, Optimizing multi-sensor deployment via ensemble

pruning for wearable activity recognition, Inf. Fusion 41 (C) (2018) 68–79.
[16] H. Guo, H. Liu, R. Li, C. Wu, Y. Guo, M. Xu, Margin & diversity based ordering

ensemble pruning, Neurocomputing 275 (2018) 237–246.
[17] T. Dang, T.T. Nguyen, C.F. Moreno-García, E. Elyan, J. McCall, Weighted ensemble

of deep learning models based on comprehensive learning particle swarm
optimization for medical image segmentation, in: 2021 IEEE Congress on
Evolutionary Computation (CEC), 2021, pp. 744–751.

[18] T.T. Nguyen, A.V. Luong, T.M. Van Nguyen, T.S. Ha, A.W.-C. Liew, J. McCall,
Simultaneous meta-data and meta-classifier selection in multiple classifier system,
in: GECCO ’19: Genetic and Evolutionary Computation Conference, 2019,
pp. 39–46.

[19] Z. Yu, et al., Multiobjective semisupervised classifier ensemble, in: IEEE
Transactions on Cybernetics 49, 2019, pp. 2280–2293.

[20] Y. Xu, Z. Yu, C.L.P. Chen, Classifier ensemble based on multiview optimization for
high-dimensional imbalanced data classification, IEEE Trans. Neural Netw. Learn.
Syst. 35 (1) (2024) 870–883.

[21] D.T. Do, T.T. Nguyen, T.T. Nguyen, A.V. Luong, A.W.-C. Liew, J. McCall,
Confidence in prediction: an approach for dynamic weighted ensemble, in: N.
T. Nguyen, K. Jearanaitanakij, A. Selamat, B. Trawiński, S. Chittayasothorn (Eds.),
Intelligent Information and Database Systems, Springer International Publishing,
Cham, 2020, pp. 358–370.

[22] J.-Y. Zou, M.-X. Sun, K.-H. Liu, Q.-Q. Wu, The design of dynamic ensemble
selection strategy for the error-correcting output codes family, Inf. Sci. (Ny) 571
(2021) 1–23.

[23] S. García, Z.-L. Zhang, A. Altalhi, S. Alshomrani, F. Herrera, Dynamic ensemble
selection for multi-class imbalanced datasets, Inf. Sci. (Ny) 445-446 (2018) 22–37.

[24] A.H. Madkour, H.M. Abdelkader, A.M. Mohammed, Dynamic classification
ensembles for handling imbalanced multiclass drifted data streams, Inf. Sci. (Ny)
670 (2024) 120555.

[25] X. Zhu, J. Li, J. Ren, J. Wang, G. Wang, Dynamic ensemble learning for multi-label
classification, Inf. Sci. (Ny) 623 (2023) 94–111.

[26] T. Elsken, J.H. Metzen, F. Hutter, Neural architecture search: a survey, J. Mach.
Learn. Res. 20 (55) (2019) 1–21.

[27] B. Zoph, V. Vasudevan, J. Shlens, Q.V. Le, Learning transferable architectures for
scalable image recognition, in: IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 8697–8710.

[28] X. He, K. Zhao, X. Chu, AutoML: a survey of the state-of-the-art, Knowl. Based Syst.
212 (2021) 106622.

[29] X. Chen, L. Xie, J. Wu, Q. Tian, Progressive differentiable architecture search:
bridging the depth gap between search and evaluation, in: IEEE/CVF International
Conference on Computer Vision (ICCV), 2019, pp. 1294–1303.

[30] L. Xie, A. Yuille, Genetic CNN, in: ICCV, 2017, pp. 1379–1388.
[31] R. Miikkulainen et al., ‘Evolving deep neural networks’, arXiv:1703.00548, 2017.
[32] K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting

topologies, Evol. Comput. 10 (2) (2002) 99–127.
[33] E. Real, A. Aggarwal, Y. Huang, Q.V. Le, Regularized evolution for image classifier

architecture search, in: Proceedings of the AAAI Conference on Artificial
Intelligence 33, 2019, pp. 4780–4789.

[34] Z. Yang, et al., CARS: continuous evolution for efficient neural architecture search,
in: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2020, pp. 1826–1835.

[35] Y. Sun, H. Wang, B. Xue, Y. Jin, G.G. Yen, M. Zhang, Surrogate-assisted
evolutionary deep learning using an end-to-end random forest-based performance
predictor, IEEE Trans. Evol. Computat. 24 (2) (2020) 350–364.

[36] T. Domhan, J.T. Springenberg, F. Hutter, Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves, in:
Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI),
2015, pp. 3460–3468.

[37] T. Dang, A.V. Luong, A.W.C. Liew, J. McCall, T.T. Nguyen, Ensemble of deep
learning models with surrogate-based optimization for medical image
segmentation, in: IEEE Congress on Evolutionary Computation (CEC), 2022,
pp. 1–8.

[38] R. Storn, K. Price, Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces, J. Global Optim. 11 (1997) 341–359, https://
doi.org/10.1023/A:1008202821328.

[39] F. Neri, V. Tirronen, V. ‘Tirronen, Recent advances in differential evolution: a
survey and experimental analysis, Artif. Intell. Rev. 33 (1–2) (2010) 61–106,
https://doi.org/10.1007/s10462-009-9137-2.

[40] T.T. Nguyen, T. Dang, V.A. Baghel, A.V. Luong, J. McCall, A.W.-C. Liew, Evolving
interval-based representation for multiple classifier fusion, Knowl. Based Syst.
(2020) 106034.

[41] X. Zeng, J. Song, S. Zheng, G. Xu, S. Zeng, Y. Wang, A. Esamdin, Y. Huang, S. Xia,
J. Huang, A fast inversion method of parameters for contact binaries based on
differential evolution, Astron. Comput. 47 (2024).

[42] K.M. Ting, I.H. Witten, Issues in stacked generalization, J. Artif. Intell. Res. 10
(1999) 271–289.

[43] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. 7 (2006) 1–30.

[44] D.M. Janssen, W. Pullan, A.W.C. Liew, "GPU based differential evolution: new
insights and comparative study”, arXiv:2405.16551v1, 2024.

T. Dang et al. Knowledge-Based Systems 304 (2024) 112522

18

	coversheet_template
	DANG 2024 Which classifiers are connected (VOR)

