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Abstract—WiFi Channel State Information (CSI) is widely-
used in research for human sensing applications, yet its actual
deployment in commercial real-time applications remains sparse
with few examples. Existing demonstrations in research litera-
ture predominantly rely on specialised deployments of a single
sensing apparatus, which cannot efficiently be used in large-scale
deployments. Additionally packet loss is common which leads to
an over-reliance on interpolation for missing points. Addressing
these gaps, this paper presents a low-cost, and scalable solution
for CSI-based human sensing, tailored for high performance and
consistent operation in residential environments.

Our approach leverages ESP32 hardware which is renowned
for its high availability and low-cost compared to popular
CSI collection solutions. We define a methodology for remotely
collecting CSI data from multiple sensors concurrently over WiFi,
by employing a single beacon for traffic generation while CSI
data is gathered over a separate channel. We further optimize
this process using DEFLATE compression on CSI payloads to
minimize airtime contention during transmission. This proposed
system has been evaluated through a series of experiments
designed to assess its viability, scalability, and environmental
adaptation capability. Notably, we demonstrate the system’s
capability to support 30 sensors sampling CSI data at over
90Hz simultaneously, with additional projected capacity. This
validation has been conducted across two distinct residential
environments, affirming the adaptability and effectiveness of
our approach for high-performance CSI sensing in real-world
scenarios.

Index Terms—wifi sensing, commercialisation, deployability

I. INTRODUCTION

Radio-frequency (RF) sensing technologies continue to
present unique opportunities for passive human sensing, al-
lowing for contactless and non-invasive monitoring of locomo-
tion and behaviour. RF sensors can offer several advantages
over vision-based or wearable sensors which are commonly
employed in these applications. One of the primary benefits
is their ambient approach to sensing, which is preferable
for both users and engineers. This privacy-focussed approach
allows for the deployment of sensors which blend into a
home environment and don’t require physical interaction from
the user. However, the choice of hardware solution used can
affect deployment and scaling capacity. As this approach to
sensing is relatively modern, the hardware landscape has not
yet matured, leading to limited options with pros and cons.
Therefore, careful consideration must be taken when selecting
the appropriate hardware solution for a given application.

For instance, the Intel IWL5300 wireless chipset remains
prevalent in modern CSI sensing research, despite its depre-
cation several years ago. This reliance on outdated hardware
poses significant challenges to the scalability of CSI sensing
solutions intended for deployment in real-world environments.
Running a CSI collection system continuously also presents
its own set of challenges. Ensuring consistent sampling of the
channel is critical for obtaining reliable data, while managing
interference levels in traffic generation is paramount for accu-
rate measurements. Additionally, deploying an optimal number
of sensors to achieve spatial diversity without overwhelming
the system is another issue.

We address these challenges by leveraging a unique ap-
proach to traffic generation and remote sensing using ESP32
hardware, known for its low cost and widespread availability.
First, a single central beacon is used to generate a continuous
stream of packets. Our sensors then collect and feed back
the CSI measurements from the beacon to a hub using a
dedicated access point. This effectively distributes the airtime
usage across two channels, while reducing the impact of
transmission on injection consistency. Additionally, we employ
batching and compression to reduce airtime consumption,
further enhancing our capacity to accommodate numerous
sensors simultaneously.

Our aim was to continuously collect CSI data from each
sensor at a target rate of 100Hz, facilitating high-precision
applications such as localization. This sampling rate aligns
with the requirements of various applications and with a subset
of public CSI sensing datasets. Employing a lower sampling
rate may restrict the range of applications compatible with the
data collected. This approach enables flexible dataset gener-
ation at will, supporting labelling and fusion from external
sources. Furthermore, the redundancy afforded with a 100Hz
target can be traded off in scenarios requiring reduced capacity
or improved power and wireless efficiency.

We conducted two sets of experiments to evaluate both our
system’s viability and scalability. The paper is structured as
follows: First related work is reviewed, focusing on CSI data
capture and compression in similar setups. Then, we detail our
methodology, system design, and scalability approach. Finally,
our experiments and results are discussed, demonstrating the
impact of our contributions, before drawing conclusions.
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II. RELATED WORK

The majority of CSI research with off-the-shelf commercial
hardware is performed using the Intel IWL5300. The chipset
itself was released in 2008 and it is no longer in production.
Despite this, research using it is still regularly published.
This is largely due to the availability of open source sensing
research and the accurate CSI collection solution released
by Daniel Halperin in 2011 [6]. State-of-the-art functional
applications have been achieved using this hardware, ranging
from movement detection and activity recognition, to environ-
ment mapping and water pressure monitoring [1]. Its primary
limitation is that it cannot be deployed in any meaningful scale,
due to its deprecation and inflexible hardware deployment
requirements. More recently, Broadcom’s modern 802.11ac
chipsets used in the Raspberry Pi 3B+/4 and ASUS RT-AC86U
have been used [4]. These chipsets are still in production and
can be deployed at lower-cost than the IWL5300. An open
source CSI sensing toolkit has also recently been released for
use with Intel’s 802.11ax chipsets [8], however relatively few
research outputs have been developed using them. They also
still require a host computer to operate them. In contrast, the
ESP32-C6 is a SoC developed by Espressif which contains
both a 2.4GHz 802.11ax radio, and a dual-core microprocessor
onboard. This is an increasingly popular solution for CSI
collection [7], which is well-suited to large-scale hardware
deployments. It is both low-cost and has a smaller power
profile compared to all other hardware options. The most
significant tradeoff made in using the ESP32 is its lack of
MIMO antenna support, which prevents its use in sensing
applications which employ more than one antenna. Regardless
of the hardware options, CSI data must be of a similar quality
to that seen in other datasets in order to be useful in the
development of new sensing applications. A key constituent
of CSI data quality is the frequency of the measurements, or
transmission rate.

Demonstrating state-of-the-art deep learning approaches to
CSI sensing, SenseFi [11] serves as a public benchmark for
four CSI datasets. These datasets employ CSI transmission
rates of 1kHz (Widar 3.0, UT-HAR) and 500Hz (EfficientFi,
Caution). Evaluations of the sensing applications developed
with these datasets commonly involve downsampling the data
to assess its impact on system performance. Widar 3.0 found
a 4% decrease in accuracy when downsampling from 1kHz to
250Hz. Similarly, [10] observed minimal performance reduc-
tions going from 1kHz to 50Hz for a respiration monitoring
application. [3] also demonstrated comparable human activity
recognition performance could be achieved at both 100Hz
and 10Hz. Capturing data at 100Hz allows for an efficient
compromise between high and low sampling rates.

Capturing CSI data continuously, even at 100Hz, has over-
heads. The consistency of the target transmission interval is
reliant on the wireless environment being clear, as contention
between devices on similar channels can interrupt or block
outgoing transmissions. One potential approach to reducing the
impact of contention is to employ compression. Compression

has been used in CSI sensing research before, including works
by Yang [12] and Barahimi [2]. Both Yang and Barahimi
applied approaches to compression which could be performed
onsite, with both the decompression and sensing applications
being employed in the cloud in real-time. Yang’s EfficientFi
employs a deep neural network to compress data at edge,
achieving a significant reduction in the data rate required to
transmit the same CSI data. However, their work is demon-
strated using a single CSI collection setup covering a single
room. They did not investigate how the reduced overhead
from their compression approach could be used to incorporate
additional sensors simultaneously, thus potentially enhancing
environmental coverage or spatial diversity. This gap forms
the basis for our work.

III. METHOD

The purpose of our system is to collect CSI data within
residential environments for dataset generation and the devel-
opment of real-time sensing applications. While the implemen-
tation of a CSI collection system for real-time sensing itself
is not a novel concept, a commercially-viable solution must
overcome the limitations of typical collection systems through
novel means. The novel components of our approach include
the use of a central beacon for traffic generation with many
sensors measuring CSI for the same frames, a separate access
point for feeding back CSI measurements, and a batching
process with compression. When these components function
effectively, the system’s performance will scale efficiently with
the addition of more sensors and will be adaptable to diverse
environments.

The experiments performed in this work were designed to
demonstrate the system’s response to changes in the number
of sensors and compression settings employed, and the envi-
ronment in which it was deployed. We measured performance
in response to these configuration changes in order to evaluate
the system’s viability and scalability.

First, we explain the decisions behind our system design.
Then we define the metrics we measure to observe variations
in performance. Finally we detail the methodology for our
experiments exploring viability and scalability of the system.

A. System Design

Typical CSI collection setups make use of the CSI collected
from the traffic between two WiFi devices communicating as
part of a managed network. The device collecting the CSI is
also typically directly connected to the ingest system. These
limitations affect the scalability of this approach which directly
affect its suitability for use in commercial environments. We
designed this collection system to overcome these limitations
and scale as needed to focus on supporting commercial usage.

Figure 1 describes the wireless CSI system developed and
tested in this work:

Traffic Generation: We use an ESP32 operating in monitor
mode to transmit bespoke WiFi frames through injection,
which can be observed by other monitor mode devices. This



Fig. 1. System diagram for WiFi-based CSI collection at scale.

allows the sensors to gather CSI from a single central beacon,
reducing overall system costs, power usage, and complexity.
This stream of generated traffic is transmitted over a low-
volume WiFi channel determined through a density sweep on
boot. The injector may optionally be connected over Ethernet
to feed back telemetry. Only one injector is used in each of
our test environments.

Sensors: Each sensor is comprised of 2 ESP32 modules
working in tandem; a Collector, and a Forwarder. The
Collector operates as a WiFi monitor mode device to collect
CSI for the frames generated by the Injector. These frames
and their metadata are then serialised using Google’s protobuf
format, which are transmitted to the Forwarder over SPI.
The Forwarder maintains a WiFi connection with the Access
Point, which is used to transmit the protobufs to a UDP server
running on the Hub. The Forwarder may also batch many
frames from the Collector into one buffer, which reduces the
frequency of transmissions. The size of these buffers can then
be reduced by applying compression, further reducing airtime
usage and increasing system capacity. The only physical
connection required is for power. In our test Environment 1,
at least one sensor is deployed in each room.

Transmission: An Access Point (AP) is used to operate a
managed mode network to feed back data from each of the
Forwarders. This AP operates on a separate 802.11 channel
to that of the Injector, which reduces contention between the
Sensors and Injector.

Ingest and Aggregation: A host system is used to run a
UDP server to receive data from the Forwarders. This ingest
server handles incoming CSI protobufs which can then be

stored, visualised, and used for sensing applications.

This approach can be used to employ sensors across the
entire home as a collective sensor network, akin to an inverse
antenna array. While room-specific sensing precision may
be reduced, on paper scalability in both sensor count and
throughput is improved by necessitating only one traffic stream
for CSI generation. In operation this system generates a stream
of traffic and collects the associated CSI data from multiple
sensors simultaneously to a server.

B. Performance Evaluation

The key metric in evaluating a system for collecting
continuously-sampled CSI is how much CSI it gathers in
a given second or the Ingest Rate, measured in Hz. In a
theoretically perfect implementation of the system this would
be equal to the number of Sensors multiplied by the Injector’s
target transmission rate. This is 100Hz for all experiments in
this work. In figures, the unit for this axis is labelled as % for
readability.

In real-world scenarios the maximum possible ingest rate is
almost never met, as packet loss is commonplace with WiFi.
We practiced provenance to audit the data collection process,
and highlighted likely points of failure in the system:

• Injector: The WiFi driver may fail to inject frames,
referred to as Dropped Frames. These manifest as a
reduction in ingest rate on all sensors simultaneously. We
run the Injector over Ethernet to track dropped frames at
injection through telemetry.

• Sensor: Injected frames may fail to reach the Collector,
or may not be transmitted at the Forwarder stage. These
are both separate potential points of failure.

• Ingest: UDP packets may be dropped if the Ingest server
cannot process them faster than they are received.

We primarily used Ingest Rate in monitoring the perfor-
mance of the system, while also considering the impact of
Dropped Frames where present.

Next, we discuss the methodology used in each of our
experiments.

C. Viability

The viability of the system refers to its ability to function
as defined in Section III-A. Thus we planned to implement
each component and test it in a residential environment to
demonstrate wireless CSI collection with multiple sensors
operating simultaneously. The end-to-end performance of the
system was monitored both to establish viability, and observe
consistency over longer capture periods.

D. Scalability

Scalability in this context refers to both the ability to deploy
many sensors simultaneously, and the ability to apply this
approach to sensing in unique residential environments.

The primary issue affecting the system’s ability to scale
increasing numbers of sensors is the available WiFi airtime.
There is finite time available for each sensor to transmit



Fig. 2. Mean compression ratio against the number of CSI frames in a
payload.

their payloads to the AP. The available airtime can fluctuate
dynamically due to shared channels and varying levels of
traffic from other WiFi devices. The system’s capacity and
performance are inherently tied to the wireless environment.

We use a relatively high transmission rate of 100Hz, al-
lowing us the capacity to adjust resource usage as needed
in response to fluctuating airtime availability. Each sensor
attempts to feed back up to 100 available CSI measurements
in a given second. The simplest approach to remote data
collection is to transmit a CSI payload over WiFi to the AP
for each CSI measurement. However n ∗ 100 is unsustainable
for more than a few sensors at once. Data ingest systems
typically employ some form of batching to overcome this
issue. However this alone does not solve the airtime issue,
as larger frames take longer to transmit.

Our solution is to apply compression to CSI packet payloads
to reduce the number and size of transmissions from sensors
to the AP. As each sensor collects CSI measurements the For-
warder buffers them to be compressed into a single payload.
We chose the DEFLATE compression algorithm, due to Zlib’s
efficient performance on embedded hardware. Figure 2 shows
the average compression ratio achieved on a Forwarder. As the
number of frames added to the buffer increases, the overall
reduction in payload size falls, plateauing between 14 and 16
frames. Initial tests were concluded at 18 frames, as the size of
each frame exceeded the threshold for IP fragmentation which
causes larger packets to be split at the protocol level. Batching
and compression reduces payload size, airtime consumption,
and the number of transmissions. This improvement is ex-
pected to enhance system performance in all environments.
We tested the system in 2 unique environments in this work.

Figure 3 shows annotated floorplans for the 2 environments
used in our experiments. Environment 1 is a flat in a densely
populated apartment building, while Environment 2 is in a
detached house in a rural location. Sensor locations are marked
successively for experiments where 4/16/30 sensors are used.
Given the vastly different wireless environments of these
settings, we expected performance discrepancies between the
two. We aimed to establish the optimal compression config-

Fig. 3. Floorplan for environments 1 and 2 with labelled sensor locations.

uration by performing data collection in both environments
while adjusting the number of frames per payload.

IV. EXPERIMENT

This section describes the system implementation and
experiments performed to assess the real-world viability
and scalability of our CSI collection system in residential
environments. In each experiment the system was assembled
and operated to collect CSI for a set period of time. The
variables we adjusted were the number of sensors and number
of frames per payload. The Ingest Rate and Dropped Frames
were measured during this period. The implementation of
the system is detailed as described in the system diagram in
Figure 1.

Injector: An Olimex ESP32-POE-ISO was configured to
inject truncated 802.11n beacon frames with a target interval
of 10ms. MCS4 was used with short guard interval at 20dBm.
In Environment 1, channel 4 was used for injection, with
Environment 2 using channel 12.

Sensors: 2 Espressif ESP32-C6-DevKitC boards running
ESP-IDF v5.1.1 were connected over the HSPI/SPI2 bus.
Forwarder using 802.11ax for transmission.

Compression: miniz [5] with DEFLATE level 10 was used.

Transmission: Ubiquiti U6-Enterprise running a 2.4GHz
802.11ax access point on channel 1 (both environments).

Hub: A Raspberry Pi 4 with 2GB RAM on Debian 11,
running a Rust-based UDP server to process incoming
protobuf data from sensors.

A. Viability

Setup: The system was assembled and operated in Environ-
ment 1 for 1 hour at a time. This process was repeated with
4/16/30 sensors, with compression first set to 15 frames per



Fig. 4. Mean ingest rate and standard deviation per sensor count in
Environment (15 frames per payload).

Fig. 5. Injector and mean collection performance metrics across 16 sensors
in Environment 1 (toggling compression).

payload and then disabled. 15 frames was chosen for the
viability tests, as this was shown to be the point where the
compression ratio plateaued in Figure 2.
Results: Figure 4 shows the mean ingest rate across all
sensors, plotted for the default configuration with 15 frames.
The ingest rate remains largely consistent over a 1 hour period.
With 30 sensors in operation, the rate drops by around 4Hz
when compared with the captures with 4 and 16 sensors.
While the rate observed with 16 sensors appears to drop in
the second half of the capture, the drop is just over 1Hz and
does not appear to indicate a significant reduction in system
performance. The standard deviation is the same for 4 and 30
sensors, whereas a higher standard deviation (0.4) is observed
for 16 sensors.

Figure 5 shows a full breakdown of each of our performance
evaluation metrics, for the experimental runs using 16 sensors
in Environment 1 with compression first disabled, and then
set to 15 frames per payload. With compression disabled, the
ingest rate does not exceed 65Hz, with a mean of 55Hz. The
rate of dropped frames in this capture is relatively high, with
a mean drop rate of 25Hz. The capture with compression
enabled shows a much higher ingest rate with a mean of
95Hz. No frames were dropped at injection during this capture.

Discussion: The system demonstrates strong performance,
aligning with our goal of achieving high transmission rates
comparable to that of a 100Hz dataset. The observed perfor-
mance degradation at 30 sensors of around 6Hz is deemed
reasonable given the high throughput of CSI data.

Compression significantly impacts performance with larger
numbers of sensors, with a substantial increase in dropped
frames when compression is disabled. This phenomenon was
consistent across all captures involving 16 or more sensors
without compression. Further speculation is warranted regard-
ing the root cause of this observation, although the excessive
transmission rate of each sensor is likely to blame.

Instances where the ingest rate drops to 0Hz are relatively
rare. However, the ingest rate from all sensors falls, it indicates
a potential issue either with the injection of the frame or
with the wireless environment. Further investigation into these
occurrences is necessary to ensure system reliability and
robustness.

B. Scalability

Setup: The system was deployed in both test environments
with 4, 16, and 30 sensors used. Initially, compression
was disabled, after which it was incrementally increased
by 5 frames, ranging from 5 to 30 frames. We expected
performance degradation beyond 18 frames due to IP
fragmentation. Due to the increased number of captures and
limited access to Environment 2, the capture period was
reduced to 1 minute.

Results: Figure 6 shows the mean ingest rate across all
sensors for multiple configurations captured in both test
environments. The number of frames per compression
payload is plotted along the x-axis. Both plots show greater
than 90Hz ingest rate can be achieved in both environments
with all sensor counts through the use of compression. A
curve is observed across both plots, with performance quickly
increasing as compression is enabled, before dropping as the
setting exceeds 20 frames. In Environment 1, the performance
for each sensor count does not converge until 25 frames.
In Environment 2, performance quickly converges once
compression is enabled, dropping as the threshold for IP
fragmentation (18) is exceeded.

Discussion: The results indicate that good performance can
be achieved in both environments with up to 30 sensors.
Performance with 4 sensors and no compression is largely
comparable to performance with compression. However, per-
formance is notably lower with 16 and 30 sensors when
compression is disabled. Compression significantly improves
performance in both environments, thereby enhancing the
scalability of the approach to accommodate more sensors in
diverse environments.

The optimal compression setting across the two environ-
ments is 15 frames. Environment 1 favors higher compression
sizes, while Environment 2 peaks with all sensor counts
converging at 5 frames. Nevertheless, strong performance is



Fig. 6. Impact of deployment density and compression on ingest rate.

observed at 15 frames, suggesting this value may serve as
a suitable baseline in unknown environments. Additionally,
IP fragmentation is likely the cause of reduced performance
beyond 25 frames; however, this phenomenon may not be
consistent across different environments and could depend on
other networking factors such as MTU. Environment 2 con-
sistently outperforms Environment 1 in most captures, likely
due to its quieter wireless environment with fewer neighboring
WiFi devices. A calibration process may be necessary to select
the optimal compression setting in unknown environments.

Given the robust performance observed with 30 sensors in
either environment, speculation about the system’s ability to
scale further is warranted. This also underscores the built-in
redundancy in the system, with potential for further efficiency
improvements.

V. CONCLUSIONS

This paper proposes an approach to high-volume CSI col-
lection with a focus on scalability and deployability. We have
shown the system can scale to large numbers of sensors in 2
unique environments with diverse wireless backgrounds. With
the same configuration, an average ingest rate exceeding 90Hz
across both environments has been achieved while using 30
sensors. Implementing batching and compression on the sen-
sors as they feed data back to the hub over WiFi is necessary to
achieve consistent performance beyond smaller sensor counts.
While an optimal compression setting can be derived for
each environment, strong performance was achievable in both
environments with a common setting of 15 frames per payload.
This work shows high-volume CSI collection at scale can be
achieved with low-cost, highly-available hardware. Thus the
system can be employed to generate datasets at scale.

In future work we aim to perform a long-term study using
our FitHomes research testbed, which incorporates motion and

environmental sensor data from real-world residential environ-
ments [9]. This will allow us to establish the requirements
of a possible calibration solution, and explore the impact
of changing wireless conditions as we deploy CSI sensing
systems at scale.
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