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Abstracts— Lithium-ion batteries, as the core of new energy
vehicles, determine the safety of new energy vehicles.
Remaining useful life of the battery is the most important
parameter, and it is particularly important to estimate the
remaining life accurately. This paper proposes a hybrid
algorithm of GWO algorithm and LightGBM algorithm based
on improved convergence factor and proportional weights,
which is used to predict the remaining life of lithium-ion
batteries. It is verified by using NASA data set, which proves
that the optimization of GWO algorithm can significantly
improve LightGBM algorithm. RMSE, MAE and MAPE
increased by 71.46%, 80.59% and 75.79% respectively.

Keywords—remaining useful life, improved convergence
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[. INTRODUCTION

Since lithium-ion (Li-ion) batteries are the key
component of new energy vehicles, which have gradually
gained popularity due to the depletion of fossil fuels and the
rapid development of new energy, accurately estimating the
remaining usable life (RUL) of Li-ion batteries has become
more difficult. Recent studies have shown that hybrid
models using deep learning have gained popularity as a
method of RUL prediction [1, 2]. This publication [3]
proposes a generalized hybrid particle filter-Short Term
memory network (PF-LSTM) prediction approach that
precisely describes the degraded state of equipment when
paired with subtraction fuzzy cluster analysis. This paper [4]
uses adaptive noise completely integrated empirical mode
decomposition to break down the original capacity signal
into two components: a global degradation trend and a local
fluctuation. The Adaptive Neural Fuzzy Inference System
(ANFIS) is then fed these two components in order to make
predictions. Seizing the chance, it put out a hybrid model
for LightGBM method parameter optimization for RUL
prediction, based on enhanced convergence factor and
proportional weights.

II. METHODOLOGY

A. Improve grey wolf optimizer algorithm
A metaheuristic algorithm called the Grey Wolf

School of Information Engineering
Mian Yang, China
wangshunli1985@qq.com

School of Information Engineering
Mian Yang, China
shenxianfeng0929@qq.com

Carlos Fernandez
Robert Gordon University
School of Pharmacy and Life Sciences
Aberdeen, UK
c.fernandez@rgu.ac.uk

Optimizer (GWO) is based on the social structure and
hunting techniques of grey wolves [5]. The hierarchy of the
pack is rigid: W is the lowest ranking, a (alpha) is in charge,
b is subordinate, and ¢ obeys a and b. Tracking, pursuing,
encircling, and ultimately assaulting the target are all part of
the hunt.

The best solution in the population is designated as a,
the second-best solution as b, the third-best solution as c,
and the remaining individuals are designated as w. This
assumes that the population size of the grey wolves is N.
The location of the i-th grey wolf is shown as. The
following is a description of the mathematical model used to
explain how grey wolves hunt:

D=|C-X,(1)-X(1) (1)
X@t+)=X,0)—-4-D )

Among them, ¢ denotes the current iteration number, 4
and C are coefficient vectors, X represents the position

vector of the prey, and X; is the position vector of an single
grey wolf.

A=2a-r,—a 3)

C=2-r O]

where, 7; and 7, are both random vectors within [0,1],

and « is a convergence factor that linearly decreases from 2

to 0 with the number of iterations. The positions of the other

grey wolves in the population are jointly determined by the
positions of a, b, and c.
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GWO algorithm's proficiency in executing both
localized and global search paradigms is intricately
influenced by the fine-tuned value of A, as meticulously
outlined in publication [6]. The subsequent Fig. 1 offers a
comprehensive visualization of the exact progression
followed by CGWO methodology, underscoring the
intricate interplay between 4 and the algorithm's search
capabilities.
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Fig. 1. Flow chart of convergence factor and proportional weight grey wolf
optimizer algorithm

In the intricate dynamics of wolf pack hunting behavior,
the parameter A plays a pivotal role in determining the
pack's strategic adaptation. When the value of A transcends
unity, it signifies a shift towards a more expansive hunting
strategy. In this scenario, the wolves broaden their search
perimeter, engaging in a global exploration that enhances
their ability to swiftly converge upon potential prey across
vast territories. This approach ensures a wider net is cast,
maximizing the chances of encountering and successfully
capturing prey. Conversely, when A dips below 1, the pack's
hunting tactics undergo a transformation, narrowing their
focus to a localized search. This concentrated effort enables
the wolves to meticulously scrutinize a smaller area,
intensifying their attacks on identified prey and leading to a
more gradual but targeted convergence. Thus, the regulation
of A serves as a flexible mechanism, allowing the wolf pack
to dynamically adjust its hunting strategy based on the
prevailing conditions and optimize its chances of success.
Although (3) depicts A4 as varying linearly with a
convergence factor that decreases from 2 to 0, the
real-world search pattern exhibits nonlinearity. To more
accurately capture this dynamic behavior, this paper
introduces a cosine-shaped modification to the convergence
factor, as demonstrated in (7).
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In the equation, @,y and ag,, represent the initial
and final values of the convergence factor a respectively. In

this paper, it set @, =2 and ag,, =0. t is the current
iteration number, tuq 1S the maximum number of iterations,
and n is the decremental exponent with 0 <n <1 . The
variation of a is depicted in Fig. 2.
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Fig. 2. Comparison chart of optimization parameters a

Fig. 2 highlights a distinct difference between the
original and modified convergence factors, denoted as a.
While the original a undergoes a steady linear decrease, the
newly introduced cosine-shaped modification initially slows
down the decline, preserving a higher value for an extended
period. This extended phase of a relatively large ' fosters
improved search efficiency by allowing for a broader
exploration. Subsequently, the rate of decline accelerates,
maintaining a smaller a for a longer duration, which refines
the search and enhances precision. This adaptive approach
successfully harmonizes the phases of global search
exploration and local search refinement.Based on the
optimization of the inclusion factor a, a fitness-based
proportional weight is introduced, which is expressed as
follows:
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where W,, W,,and W, represent the weights assigned to
the alpha, beta, and delta wolves, respectively. f,, f;, and f,
denote the fitness values of the alpha, beta, and delta wolves.
The allocation of weights within the wolf pack is
determined by their respective fitness levels, where the
alpha wolf, leading the hunt, receives the highest weight.
This hierarchy descends, with the beta wolf occupying the
second-highest weight, and the omega wolf, theoretically
having less insight into the prey's whereabouts, being
assigned the lowest weight.

B. LightGBM algorithm

Gradient boosting decision tree (GBDT) is a popular
classifier algorithm. Given a training set
{(x,v0), (x2,¥2), s (X, ¥,)}, Where x are the data samples
and y are the class labels. That use F(x) to represent the
estimated function and the optimization goal of GBDT is to
minimize the loss function L (y, F(x)):

X+ =



F=arg min £ [L(y, f(x))] (10)

Then, it can obtain the iterative criterion of the GBDT
using a line search to minimize the loss function.

E,(x)=F,,(x)+7,h,(x) (11

where Ym=arg min 2:1:] L(yia Fm—](xi) + th(xi)) > m is the
iteration number, #,,(x) represents the base decision tree.

Despite its strengths, Gradient Boosting Decision Tree
(GBDT) can encounter challenges in terms of both
efficiency and accuracy when dealing with massive datasets
or high-dimensional features. To mitigate these limitations,
Ke [7] introduced LightGBM, an advanced gradient
boosting algorithm tailored for enhanced performance.
LightGBM incorporates two key techniques: Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB). These innovative strategies help to
streamline the learning process and improve the model's
ability to handle large-scale and complex data, thereby
enhancing both its efficiency and accuracy.

Traditionally, in the framework of Gradient Boosting
Decision Trees (GBDT), the information gain metric serves
as the cornerstone for selecting split points within each tree
node. However, LightGBM introduces a paradigm shift by
leveraging Gradient-based One-Side Sampling (GOSS) as
its means of determining split points. Instead of relying on
information gain, LightGBM calculates the variance gain, a
metric tailored to the GOSS methodology, to identify
optimal split points. This approach allows LightGBM to
prioritize data instances in a more targeted manner, leading
to improved performance and efficiency. Then the subset B
whose size is b x |4°| is randomly selected from the retained
samples A¢. Finally, the instances are split through the
estimated variance 'I7j(d) on AUB.
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where  A4;={x;€4:x;=d} , A, ={x;€4:x;>d}
B/={x;€B:x;<d}, B,={x;€B:x;>d}, g; represents the
negative gradient of the loss function, (1-a)/b is employed
to normalize the sum of gradients.

High-dimensional datasets frequently display sparsity,
featuring numerous mutually exclusive sparse features. This
inherent property enables the utilization of EFB to
accelerate the training process of GBDT, thereby enhancing
efficiency. The computation complexity of LightGBM is
reduced to O (data * bundle) from O (data * feature), where
bundle < feature.

Essentially, LightGBM presents an optimized iteration
of GBDT, integrating GOSS and EFB strategies to elevate
computational efficiency without sacrificing prediction
accuracy. GOSS introduces a variance gain-based
mechanism to identify optimal split points, enhancing the
precision of node partitioning. Simultaneously, EFB
streamlines the training process by intelligently bundling
exclusive features into a compressed set of dense
representations. The LightGBM model, denoted as F, (x),
is formulated through a sophisticated weighted combination
method, as detailed in Equation (13), further refining the

predictive capabilities of the underlying GBDT framework.

£y (x)= Z Yl (X) (13)

where M is the maximum number of iteration and #4,,(x) is
the base decision tree.

Optimizing LightGBM's intricate parameters can pose
significant challenges, necessitating a tailored approach. To
unleash the full potential of LightGBM's performance, we
harness the power of the CGWO algorithm. This algorithm
is specifically designed to refine LightGBM's parameters,
ensuring that each is meticulously tuned to deliver optimal
results. By leveraging CGWO, we aim to maximize the
effectiveness of LightGBM, as outlined in [8], thereby
enhancing its predictive capabilities and overall
performance.

III. EXPERIMENTS AND ANALYSIS

In this study, the NASA battery open data set was
selected to evaluate the proposed model. NASA used
batteries with a rated capacity of 2.2Ah to conduct cyclic
charge-discharge experiments. Based on the total number of
battery experiment cycles, 40% was used as the training set,
and the last 60% was used as the test set.

A. Feature extraction

Three health characteristics of constant current charging
time (CCCT), constant voltage charging time (CVCT) and
constant voltage drop time (CVDT) are obtained by feature
extraction of current and voltage data. As shown in Fig. 3.
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Fig. 3. Feature extraction result



B. Result analysis

In essence, the hybrid model incorporated CCCT, CVCT,

and CVDT as input variables, iteratively refining its
predictions to derive the estimated residual capacity. Figure
3 showcases the comparative experimental outcomes for
four distinct battery types, illustrating the model's
performance in assessing their capacities.
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Fig. 4. Experimental results of four batteries

As prominently illustrated in Fig. 4, a notable
improvement in predictive accuracy is observed for the
LightGBM algorithm, which has been optimized utilizing
the hybrid CGWO algorithm. This optimization leads to a
substantially more precise estimation of residual capacity
when compared against the standard baseline algorithm.
Experimental results of four batteries have proved the
accuracy and robustness of CGWO-LightGBM algorithm.
The specific evaluation indicators are shown in Table 1
below.

TABLE 1. THREE EVALUATION INDICATORS

Evaluation index
Cell Algorithm

RMSE MAE MAPE
LightGBM 1.728 1.596 2.196%

B0005
CGWO-LightGBM 0.612 0.391 0.531%
LightGBM 0.284 0.623 0.390%

B0006
CGWO-LightGBM 0.101 0.093 0.133%
LightGBM 0.879 0.814 1.064%

B0007
CGWO-LightGBM 0.178 0.143 0.184%
LightGBM 0.825 0.726 0.978%

B0018
CGWO-LightGBM 0.189 0.150 0.208%

As shown in Table 1 above, it can be seen that after
mixing the CGWO algorithm, various indicators of the
prediction results of the four batteries have been
significantly improved, with an average reduction of RMSE
by 71.46%, MAE by 80.59% and MAPE by 75.79%. It is
proved that CGWO algorithm improves the accuracy of
LightGBM algorithm, and also proves that the hybrid model
has high accuracy and robustness.

IV. CONCLUSION

In this paper, it proposed a hybrid model using CGWO
algorithm to optimize LightGBM algorithm parameters.
Firstly, convergence factors and proportional weights are
introduced to optimize the basic gwo algorithm, and then
the optimized CGWO is used to optimize LightGBM
important parameters. Finally, NASA battery open data set
is used. After feature extraction of current and voltage, three
parameters CCCT, CVCT and CVDT are obtained, which
are substituted into CGWC-LightGBM hybrid model for
remaining capacity prediction as health features. The final
results show that CGWO improves the accuracy and
robustness of LightGBM algorithm significantly, which
proves the effectiveness of CGWO-LightGBM algorithm.
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