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Abstract—Lithium-ion batteries with their high voltage, 
large capacity, high discharge rate, no memory effect, and green 
environmental protection advantages are widely used in 
communication, power stations, backup power, and other 
energy storage fields. Accurate estimation of the state of charge 
(SOC) of lithium-ion batteries is a key prerequisite to ensure the 
safe, reliable, and efficient operation of battery systems. To 
address this core challenge, this paper innovatively proposes a 
composite model combining the Kepler optimization algorithm, 
temporal convolutional network (TCN), bi-directional long and 
short-term memory network (BiLSTM), and multi-head 
attention mechanism (MHA). Kepler optimization algorithm 
was used to search the optimal hyperparameters in the TCN-
BiLSTM structure so that the model could adjust the structural 
parameters and extract the input features accurately under 
different working conditions and temperatures. The multi-head 
self-attention mechanism is introduced to assign different 
weights to the feature outputs extracted by time convolution 
according to the different importance of information to improve 
the adaptability of the model. Finally, the proposed model is 
tested and compared with other models under different 
temperatures and working conditions. 
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I. INTRODUCTION

As an important link between the user and the battery, the 
battery management system (BMS) controls the whole 
process of battery charging and discharging and timely 
intervenes in possible safety failures, which plays an 
important role in ensuring the safety and reliability of the 
battery during use. Therefore, accurate monitoring of SOC 
real-time changes is of great significance for improving user 
security [1]. Because lithium batteries show strong time-
varying characteristics and nonlinear characteristics. It cannot 
be estimated directly by the instrument and can only be 
estimated indirectly by measuring other relevant parameters 
in the battery. 

In recent years, the industry has developed diverse 
technical strategies for SOC estimation of lithium-ion 
batteries, which mainly include three categories: basic 
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methods, observer methods, and data-driven methods [2]. 
Among them, basic methods provide a straightforward and 
easy-to-understand framework for SOC estimation as a 
starting point. Ampere-hour (AH) is a straightforward and 
widely adopted technique for estimating the SOC of batteries 
due to its intuitive nature and simplicity of implementation. 
Wang et al. [3] used a dynamic matrix control algorithm to 
update battery model parameters and then combined it with an 
extended Kalman filter algorithm to estimate SOC. Lv et al. 
[4] proposed a multi-model SOC estimation algorithm based
on EKF that considered the low temperature and high current
ratio of the battery. This kind of observer method usually
requires the construction of the battery model, and the model
accuracy directly affects the SOC estimation accuracy. Data-
driven methods mainly include the neural network method,
fuzzy inference method, and linear regression method. The
data-driven method does not need to pay attention to the
internal characteristics of the battery, directly input the
external characteristic data of the battery into the model, train
the nonlinear relationship between these data and SOC, and
then output the SOC estimate. However, the data-driven
method also has many shortcomings, such as the model
hyperparameters are difficult to adjust, and the data demand is
large. Due to battery aging and other effects, the mapping
relationship changes, and the model cannot adapt to this
change in time, thus affecting the estimation accuracy. In
response to these problems, some scholars put forward
improving methods. Etse Dablu Bobobee and other
researchers [5] cleverly employed a particle swarm
optimization algorithm to fine-tune the parameters of the
LSTM to construct a novel network model that integrates a
temperature compensation mechanism. This innovation
significantly enhances the estimation accuracy and accelerates 
the convergence process of the algorithm. Paul Takyi-
Aninakwa et al. [6] constructed a correlation LSTM for rough
estimation of lithium battery SOC, and then input the rough
estimate into the square gain EKF for filtering and noise
reduction. This hybrid model has high robustness and stability.
Based on LSTM, Chen et al. [7] introduced a self-attention
mechanism to assign different weights to the output of the
hidden layer to improve the efficiency of the model in
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processing data. Chen et al. [8] proposed an improved long 
short-term memory neural network, which uses a time-varying 
average voltage sliding window at the input port to limit the 
data flow between network layers at the output port, reduce 
the large fluctuations of network output, and improve the 
adaptability of the network to unknown data. Qian et al. [9] 
introduced a unified estimation model that integrates 
convolutional neural networks, self-attention mechanisms, 
and long short-term memory neural networks. They utilized a 
joint loss function to enhance network optimization and 
bolster the model's resilience. 

II. THEORETICAL ANALYSIS

A. Bidirectional Long Short-Term Memory Network
LSTM is a type of recurrent neural network (RNN) that

addresses several issues found in traditional RNNs. These 
issues include gradient vanishing or exploding, as well as the 
difficulty in capturing long-range dependencies. LSTM 
achieves this by incorporating three gates—input, forget, and 
output, depicted in Fig. 1 below. LSTM architectures are 
widely applied in tasks such as time series prediction and other 
domains requiring modeling of sequential data. 
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Fig. 1. Architecture of unidirectional long short-term memory network 
cells 

The LSTM processes Xt as the current input and Ht-1 from 
the previous time step as its hidden state input. It uses a 
sigmoid activation function to compute its output, which is 
expressed as: 
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Mxi, Mxf, Mxo Mhi, Mhf, and Mho are weight parameters, and 
bi, bf, and bo are bias parameters. 

The candidate memory cells use the tanh function as an 
activation function. 

1tanht t xc t hc cC X M H M b (2) 

Mxc and Mhc are the weight parameters and bc is the bias 
parameter. 

Traditional LSTM can only process data in the positive 
direction, and the BiLSTM network can process data in both 
positive and negative directions at the same time. This kind of 
network can process information more efficiently by adding a 
neural network layer that transmits information in the reverse 
direction. 

The framework structure of BiLSTM is illustrated in Fig. 
2, which cleverly incorporates a bidirectional parallel LSTM 
layer design, one processing the sequence from beginning to 

end, while the other processes the sequence in the opposite 
direction. 

h3

H3

hn

X3

h3

H2

hn

X2

h3

H1

hn

X1

C0

Cn

Cn

C0 ...

...

Fig. 2. Structure of bidirectional long short-term memory network 

B. Temporal Convolutional Network Model
The TCN model utilizes a recurrent neural network

architecture that integrates causal convolution with dilated 
convolution and residual modules. The causal convolution 
structure is depicted in Fig. 3. From the illustration, it is 
evident that the output at any given moment relies solely on 
the current input and the preceding inputs, reflecting a 
stringent temporal dependency model. The greater the use of 
historical data, the corresponding number of hidden layers 
increases, which increases network complexity. The result of 
expansive convolution is shown in Fig. 4. Adding a void into 
the convolutional kernel can effectively solve the problem of 
missing information on the pooling layer in the convolutional 
neural network without increasing the number of network 
parameters. Increasing the receptive field of the convolutional 
layer helps capture long-distance dependencies in the input. 
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Fig. 3. Schematic diagram of causal convolution structure 

Fig. 4. Schematic diagram of expansion convolution structure 

C. Multi Head-Attention Mechanism
The self-attention mechanism smartly evaluates the

correlation weights between the elements of the input 
sequence, which in turn aggregates a weighted data 
representation. However, the self-attention mechanism tends 
to pay too much attention to its information and ignore the 
attention to other information. Therefore, multiple self-
attentional heads are used for parallel computation, and the 
results are finally spliced together so that the model can 
capture different feature information at the same time and 
improve the performance of the model. 
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Fig. 5. The structural principle of multi-head self-attention mechanism 

The structure of the multi-head self-attention mechanism 
(taking two heads as an example) is shown in Fig. 5. Firstly, 
the input sequence is calculated in parallel using multiple 
independent heads, then the output of all heads is spliced, and 
finally the spliced representation is linearly transformed, that 
is, the output of the multi-head attention mechanism. q  stands 
for query, and k  stands for key, q  and k  will match. The 
greater the correlation after matching, the greater the 
corresponding weight v  will be. 

D. Kepler Optimization Algorithm
The Kepler optimization algorithm finds the best solution

in a complex search space by mimicking the mechanism by 
which planets orbit stars. A planet in an elliptical orbit, as a 
solution space, will be in different positions at different times. 
As the optimal solution, the gravitational attraction between 
the sun and the planet will affect the rotation speed of the 
planet, so it also determines how close the candidate solution 
in space is to the optimal solution. 

KOA has the following steps: 
1) Initialize the positions of the Sun and planets, as well as

the orbital eccentricity e and period T
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p  refers to the solution ranked p -th in the solution space, 
while Y  comprehensively summarising the total count of 
solutions in that solution space. d  is the dimensional attribute 
of the problem to be optimized. ,

q
p uX  and ,

q
p lX  define the 

specific ranges of upper and lower bounds, respectively, when 
considered for a J-dimensional problem. 

[0,1] 1, ,,pe rand Yp (6) 

| |, 1, ,pT r p Y (7) 

The rand function can generate a random value, which pT
is the period required for the object p  to make one revolution 
around its orbit, and r  is a randomly selected value based on 
a normal distribution. 

2) Calculate the velocity of the celestial body

The rate of movement of a celestial body along its orbit is 
strongly regulated by the strength of the Sun's gravitational 
pull. As a celestial body approaches the Sun, the Sun's 
gravitational pull increases, prompting the body to move faster 
to maintain a stable orbit and avoid being attracted by the 
Sun's strong gravitational pull. Conversely, as the object 
moves away from the Sun, the gravitational force on it 
weakens, resulting in a corresponding slowing of its rate of 
motion. 
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where pV t  represents the moving speed of the celestial 
body; 3r  and 4r  are randomly generated values [0,1]; 5r , 6r
is two random vectors; AX  and BX  represent schemes 
randomly selected from the population; sM is the mass of sX ; 

Pm  is the mass of PX ; t  represents the universal 
gravitation constant; pR t  measures the spatial distance 
between the optimal solution (the Sun) sX  and the candidate 
solution (a particular object), pX ; and p tA  represents the 
length of the semi-long axis of the elliptical orbit of object p  
at time t. 
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If the semi-major axis of the object i  in the elliptical orbit 
gradually decreases over time, then the candidate solution 



progressively converges towards the region of the global 
optimal solution. i normR t  means to normalize the Euclidean 
distance between sX  and iX , which is normalized as follows: 
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pR t R t
R t

R t
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When 0.5p normR t  the celestial body is very close to 
the sun, it speeds up its movement due to the huge gravity 
generated by the sun, avoiding drifting toward the Sun. 

3) Prevent jumping into local optimality
Most celestial bodies revolve around the Sun

counterclockwise, but a few move in a clockwise direction. In 
KOA,  is used to change the search direction and ensure 
that the search scope covers the whole solution space, to avoid 
falling into local optimal. 

4) Update position
In their journey around the Sun, celestial bodies undergo a

cyclical cycle of moving towards and away from the Sun. 
Their speed in elliptical orbits is strongly regulated by the 
dynamics of the Sun's gravitational field. When a celestial 
body is far away from the Sun, this process provides a 
valuable opportunity for candidate solutions (celestial bodies) 
to deeply explore and effectively utilize the neighborhood of 
the optimal solution (the Sun); on the contrary, when a 
celestial body is close to the Sun, the speed of its motion is 
significantly accelerated, and this acceleration not only helps 
the celestial body to break away from the strong attraction of 
the Sun temporarily but also facilitates the exploration of the 
wider solution space and effectively avoids the trap of the 
local optimal solution that it may be trapped in. 
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( 1)pX t  represents the position of object p  at time 1t ; 

( )pV t  represents the velocity required for object p  to reach 
its new position; sX t  represents the optimal solution 
position so far. ( )

ig tF  represents gravitational effects of the 
Sun on celestial bodies, which is defined as follows: 
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5) Update the distance from the Sun
To more accurately portray the "exploration" and

"development" phases of the optimization process, an 
adaptive factor, H, is introduced as a key parameter to regulate 
the distance between the Sun and the celestial bodies at the 
time t . The h  value is set at a high level to allow for a wider 
exploration of space through the action of the detection 
operator, whereas when the h  value is set low, the celestial 
bodies tend to expand the distance between the Sun and the 
celestial bodies. Specifically, when the value of h  is set high, 
the distance between the object and the Sun is enlarged by the 
detection operator, which promotes a wider exploration space; 
while when the value of H is adjusted low, the object tends to 
be closer to the Sun, which helps the object to develop and 
explore more carefully near the Sun (optimal solution). 
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 is a linear decreasing factor, determined as follows: 
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2a  is the loop control parameter. 
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6) Elite retention strategy
If the fitness value of the updated position is lower, the old

position is replaced. 
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III. ANALYSIS OF EXPERIMENTAL RESULTS

To validate the algorithm's effectiveness, four 
temperatures (-5 , 5 , 15 , 25 ) were employed to test 
and analyze its performance under BBDST working 
conditions. As depicted in Fig. 6, the algorithm's estimated 
values closely align with the actual SOC values of lithium-ion 
batteries across all four temperatures, whether at the top 50% 
SOC or the bottom 50% SOC. 

Fig. 6. SOC estimation results under BBDST conditions ((a) -5  (b) 5  
(c) 15  (d) 25 )

That can be concluded from Fig. 7, that the estimation
error of the KOA-TCN-BiLSTM-MHA model is significantly 
reduced compared with other models at four temperatures 
under BBDST conditions. At the end of the estimation, due to 
the enhanced polarization of lithium batteries, the estimation 
errors of the BiLSTM model tend to be dispersed. However, 
although the estimation errors of the proposed model are 
increased, they always fluctuate within a small error band, 
which further proves the stability of the model. 



Fig. 7. SOC estimation error under BBDST conditions ((a) -5  (b) 5  (c) 
15  (d) 25 ) 

The experimental results were evaluated using three error 
indices: mean absolute error (MAE), mean square error 
(MSE), and root mean square error (RMSE). Specifically, at 
5 , the optimized algorithm demonstrated an estimated 
accuracy that was 41.20% higher compared to its performance 
before optimization. Furthermore, the error margin was 
maintained within ±0.04%, as shown in Table 1. 

TABLE I. SOC ESTIMATION ERROR EVALUATION INDEX UNDER 
BBDST WORKING CONDITION 

BBDST 
MAE(%) MSE(%) RMSE(%) MAE(%) MSE(%) RMSE(%)

-5 5  
BiLSTM 0.0424 0.0029 0.0535 0.0412 0.0026 0.0514 

TB 0.0373 0.0025 0.0497 0.0399 0.0025 0.0496 
TBSA 0.0299 0.0014 0.0372 0.0322 0.0019 0.0438 

TBMHA 0.0193 0.0006 0.0254 0.0233 0.0007 0.0265 
KTBMHA 0.0148 0.0004 0.0204 0.0137 0.0003 0.0176 

15  25  
BiLSTM 0.0241 0.0010 0.0323 0.0272 0.0012 0.0353 

TB 0.0240 0.0007 0.0265 0.0201 0.0005 0.0230 
TBSA 0.0192 0.0005 0.0219 0.0175 0.0004 0.0208 

TBMHA 0.0127 0.0003 0.0170 0.0140 0.0003 0.0174 
KTBMHA 0.0103 0.0002 0.0128 0.0083 0.0001 0.0115 

a. K-KOA, T-TCN, B-BiLSTM, MHA-Multi head attention
To demonstrate the robustness of the algorithm, the model 

is well-trained and replaced with DST working data, and the 
estimated results of the proposed algorithm are analyzed. As 
shown in Fig. 8, the KOA-TCN-BiLSTM-MHA algorithm 
model can well capture the real-time change of SOC value of 
lithium-ion batteries at four different temperatures. 

Fig. 8. SOC estimation results under DST conditions ((a) -5  (b) 5  (c) 
15  (d) 25 ) 

It can be seen from Fig. 9, that compared with the other 
four algorithms, the proposed algorithm has the smallest 
fluctuation of estimation error, which further verifies the 
stability of the algorithm. 

Fig. 9. SOC estimation error under DST conditions ((a) -5  (b) 5  (c) 15  
(d) 25 )

As shown in Table 2, the estimation accuracy of the KOA-
TCN-BiLSTM-MHA algorithm is the highest at four different 
temperatures. Taking 25  as an example, the estimation 
accuracy of this algorithm increases by 70.64%, 56.56%, 
42.08%, and 33.75%, respectively, compared with the other 
four algorithms. 

TABLE II. SOC ESTIMATION ERROR EVALUATION INDEX UNDER DST 
WORKING CONDITION 

BBDST 
MAE(%) MSE(%) RMSE(%) MAE(%) MSE(%) RMSE(%)

-5 5  
BiLSTM 0.0342 0.0020 0.0450 0.0361 0.0021 0.0457 

TB 0.0267 0.0010 0.0311 0.0247 0.0012 0.0350 
TBSA 0.0243 0.0007 0.0272 0.0213 0.0006 0.0240 

TBMHA 0.0195 0.0005 0.0231 0.0156 0.0004 0.0188 
KTBMHA 0.0103 0.0002 0.0141 0.0070 0.0001 0.0103 

15  25  
BiLSTM 0.0248 0.0011 0.0338 0.0361 0.0021 0.0453 

TB 0.0259 0.0008 0.0287 0.0244 0.0007 0.0256 
TBSA 0.0169 0.0005 0.0217 0.0183 0.0004 0.0211 

TBMHA 0.0134 0.0002 0.0158 0.0160 0.0004 0.0190 
KTBMHA 0.0116 0.0002 0.0141 0.0106 0.0002 0.0129 

IV. CONCLUSIONS

In this study, an improved multi-head bidirectional long 
short-term memory time convolution model is proposed for 
the estimation of lithium-ion battery SOC. The number of 
neurons in the network, the initial learning rate, and L2 
regularization parameters were optimized by using KOA to 
find the optimal parameter values and improve the fitness of 
the network. The multi-head attention mechanism is 
introduced to give different inputs different weights so that the 
network can concentrate on processing important information 
and make rational use of computing power space. Finally, 
comprehensive experimental tests were implemented under 
diverse temperature and operating conditions, followed by 
meticulous analysis and comparison of the estimation results 
of four state-of-the-art network models, BiLSTM, TCN-
BiLSTM, TCN-BiLSTM-SA, and TCN-BiLSTM-MHA. 

 The results show that under different working conditions 
and different temperatures, the MAE of the proposed 
algorithm is stable at about 0.01%, and the R2 determination 
coefficient exceeds 99%. Therefore, the KOA-TCN-
BiLSTM-MHA model performs well in terms of estimation 
accuracy and stability. 
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