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Few-Shot Symbol Detection in Engineering Drawings
Laura Jamieson, Eyad Elyan, and Carlos Francisco Moreno-García

School of Computing, Robert Gordon University, Aberdeen, Scotland, UK

ABSTRACT
Recently, there has been significant interest in digitizing engineer-
ing drawings due to their complexity and practical benefits. 
Symbol digitization, a critical aspect in this field, is challenging as 
utilizing Deep Learning-based methods to recognize symbols of 
interest requires a large number of training instances for each class 
of symbols. Acquiring and annotating sufficient diagrams is diffi-
cult due to concerns about confidentiality and availability. The 
conventional manual annotation process is time-consuming, 
costly, and prone to human error. Additionally, obtaining an ade-
quate number of samples for rare classes proves to be exception-
ally challenging. This paper introduces a few-shot framework to 
address these challenges. Several experiments with fewer than ten, 
and sometimes just one, training instance per class using complex 
engineering drawings from industry sources were carried out. The 
results suggest that our method not only significantly improves 
symbol detection performance compared to other state-of-the-art 
methods but also decreases the necessary number of training 
instances.

Introduction

Engineering drawings are widely used in numerous industries and they contain 
a large amount of critical information. They typically represent engineering 
equipment, its connections and relevant technical details. These documents are 
still commonly stored in an undigitised format, such as paper or PDF. 
Consequently, extracting data from them is very time-consuming, as it must 
normally be carried out manually by subject matter experts (Jakubik et al. 2022; 
Paliwal et al. 2021).

Recently there has been increased interest in using artificial intelligence to 
digitize these drawings (Bhanbhro et al. 2023). This involves creating various 
deep learning methods to extract all of the diagram components, which are the 
symbols, lines and text. One particular type of engineering drawing that has 
attracted the attention of both academia and industry is Piping and 
Instrumentation Diagrams (P&IDs) (Elyan, Jamieson, and Ali-Gombe 2020; 
Gao, Zhao, and Smidts 2020; Jamieson, Moreno-Garcia, and Elyan 2020; Mani 
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et al. 2020). These are used in various domains including nuclear (Gao, Zhao, 
and Smidts 2020) and oil and gas (Elyan, Jamieson, and Ali-Gombe 2020; 
Jamieson, Moreno-Garcia, and Elyan 2020; Moreno-Garcia and Elyan 2019) 
P&IDs are often very complex and contain numerous symbols, connecting 
lines, and text, as is shown in Figure 1.

Symbol recognition is one of the main methods required for engineering 
drawing digitization. Very recently, researchers have created various deep 
learning approaches for this purpose (Elyan, Jamieson, and Ali-Gombe 2020; 
Jakubik et al. 2022; Mani et al. 2020). These were mainly based on object 
detectors, such as You Only Look Once (YOLO) series (Bochkovskiy, Wang, 
and Mark Liao 2020; Jocher et al. 2020; Jocher, Chaurasia, and Qiu 2023; Li 
et al. 2022; Redmon and Farhadi 2017, 2018; Redmon et al. 2016; Wang, 
Bochkovskiy, and Mark Liao 2022) and Faster Regions with Convolutional 
Neural Networks (R-CNN) (Ren et al. 2015).

Object detectors typically require a large labeled training dataset, however 
obtaining sufficient annotated symbols is challenging and can be impossible 
(Antonelli et al. 2022). Firstly, due to confidentiality reasons there is a lack of 
publicly available technical drawing datasets (Schlagenhauf, Netzer, and 
Hillinger 2023). Secondly, the annotation task is very costly and time- 

Figure 1. Small section of a P&ID. These are challenging to digitise as they contain numerous 
symbols of various classes, orientations and sizes.
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consuming, potentially taking weeks for a typical dataset (Jakubik et al. 2022). 
The process involves manually drawing a bounding box closely around each 
target symbol and then assigning the relevant class label. Given the specialist 
nature of the drawings, the task must be completed by subject matter experts. 
Thirdly, it may be infeasible to obtain sufficient instances of the rarer classes. 
This can result in the class imbalance problem (Buda, Maki, and Mazurowski  
2018; Johnson and Khoshgoftaar 2019) which is when a model trained on an 
imbalanced dataset is biased toward the majority classes.

Few-Shot Learning (FSL) is the task of learning from a limited number of 
training samples with supervised information (Liu et al. 2023). The problem of 
Few-Shot Object Detection (FSOD) has received less attention from research-
ers compared to Few-Shot Classification (FSC) (Fan et al. 2021; Wang et al.  
2020). FSOD is considered more challenging than FSC, due to the additional 
requirement for object localization (Antonelli et al. 2022) and because multiple 
instances may be present per image.

In this paper, a few-shot approach for symbol digitization in engineering 
drawings is presented. The key contributions of this paper can be described as 
follows:

● A symbol detection approach for complex engineering drawings is pre-
sented, which improves performance for novel classes with limited train-
ing data.

● We introduce one of the first examples of few-shot methods used to detect 
symbols in real-world complex engineering drawings. Extensive experi-
ments were completed to validate the approach, and the results clearly 
show improved performance for classes with few annotations.

● The paper opens a new direction toward the use of few-shot methods for 
symbol detection in engineering drawings. This is extremely beneficial for 
rare symbols and allows for additional classes to be incorporated into 
a symbol detection model without extensive annotation.

The rest of this paper is structured as follows: Section 2 presents a critical 
discussion of the related work. In Section 3, the proposed methods are 
introduced. The experiments and results are presented in Section 4. The 
conclusion and future research direction are then presented in Section 5.

Related Work

Due to the large amount of critical data trapped in undigitised engineering 
drawings, there is considerable demand to automate their digitization (Paliwal, 
Sharma, and Vig 2021). However, the task is considered a challenging pro-
blem, with researchers creating various methods to process these drawings 
over the past four decades Groen, Sanderson, and Schlag (1985); Moreno- 

APPLIED ARTIFICIAL INTELLIGENCE e2406712-3



García, Elyan, and Jayne (2019); Okazaki et al. (1988). Initial methods were 
based on traditional machine learning approaches, which demanded hand- 
crafted features as input (LeCun et al. 1998). Although these methods proved 
to be successful in specific use cases, their reliance on pre-established rules 
meant that they did not generalize well across the variations seen in engineer-
ing drawings, such as morphological changes and noise (Yu et al. 2019; Zhao, 
Deng, and Lai 2020). In recent years, deep learning-based methods have 
significantly improved computer vision methods for tasks such as object 
detection (LeCun, Bengio, and Hinton 2015). These methods outperform 
traditional approaches as they automatically learn features from pixel data 
and have improved generalization ability.

Over the last few years, various deep learning methods for symbol digitiza-
tion have been proposed (Elyan, Jamieson, and Ali-Gombe 2020; Faltin, Gann, 
and König 2023; Faltin, Schönfelder, and König 2022; Gupta, Wei, and 
Czerniawski 2024; Jakubik et al. 2022; Zhao, Deng, and Lai 2020, 2021). 
Most were based on object detection models, which predict the location and 
class of objects within an image. For instance, Elyan, Jamieson, and Ali- 
Gombe (2020) presented a You Only Look Once (YOLO) based (Redmon 
and Farhadi 2018) approach for the detection of symbols in P&IDs. A symbol 
dataset was obtained through time-consuming manual annotation of 172 
high-resolution industry P&IDs. The method performed well overall with an 
accuracy of 95%. However, the results were inconsistent across the symbols, 
with lower performance on the rare classes. Meanwhile, Jakubik et al. (2022) 
presented a Faster R-CNN based method for symbol detection in floor plans. 
To avoid extensive data labeling, they generated training data using a data 
augmentation technique. Another possibility here is to generate synthetic data 
(Faltin, Schönfelder, and König 2022). However, to obtain optimum accuracy, 
it is typically better to source the training data from the same distribution as 
the test data. In another example, Gupta, Wei, and Czerniawski (2024) pre-
sented a symbol detection method in which all symbols were detected as one 
class using a YOLO-based model. A Siamese Network was then used to 
differentiate between classes.

The need for sample-efficient symbol detection methods (Mani et al. 2020) 
could be addressed using FSOD. In FSOD, the object classes are split into two 
non-overlapping sets known as the base classes and the novel classes. Base 
classes have a large number of labeled samples, while the novel classes have 
only a few. FSOD methods aim to transfer generic object knowledge from the 
common heavy-tailed objects to the novel long-tailed object categories (Liu 
et al. 2023).

FSOD is an active research area, with the majority of the methods being 
published in the last four years (Köhler, Eisenbach, and Gross 2023). The 
models are typically based on object detection architectures, the most com-
mon being Faster R-CNN. The methods can be categorized as fine-tuning 
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based, such as the approach introduced by Wang et al. (2020), or meta learning 
based, such as the method created by Kang et al. (2019). In this paper, the 
methods are based on the fine-tuning approach due to the reported improved 
performance (Hou et al. 2023).

Wang et al. (2020) introduced the frustratingly simple few-shot object 
detection method, and showed that good FSOD performance could be 
achieved using a Two-stage Fine-tuning Approach (TFA). In the first stage 
the model was trained using base classes and in the second stage, it was fine- 
tuned using all classes. Here the box classifier and box regressor were fine- 
tuned, and the other model components were frozen. The authors showed that 
their approach outperformed various methods including the meta-learning 
approach Few Shot Object Detection via Feature Reweighting (Kang et al.  
2019).

FSOD methods based on TFA have been proposed. For instance, Kaul, Xie, 
and Zisserman (2022) showed that fine-tuning the Region Proposal Network 
(RPN) using 30 shots of novel classes substantially increased the average recall 
compared to that using the base RPN. To further improve the performance, 
the Regions of Interest (ROI) module was fine-tuned. They incorporated semi- 
supervised learning to obtain additional samples of novel classes and reduce 
the class imbalance, however this relies on additional novel class data being 
available. Meanwhile, Fan et al. (2021) found that the RPN in TFA was not 
class-agnostic and was instead biased toward the base classes. This suggests 
that allowing the RPN and ROI to learn from novel class data in the fine- 
tuning phase may improve the performance.

The most commonly used FSOD benchmarks are the splits introduced by 
Kang et al. (2019) on the PASCAL Visual Object Classes (VOC) (Everingham 
et al. 2010) and Common Objects in Context (COCO) (Lin et al. 2015) 
datasets. Although these datasets were widely used in FSOD, these datasets 
do not represent realistic rare categories and further research on more realistic 
datasets is needed (Köhler, Eisenbach, and Gross 2023).

The literature shows that most engineering symbol digitization methods 
were based on object detection models that typically require a large labeled 
training dataset. However, this can be infeasible to acquire due to data 
unavailability, rare symbols and the costly annotation process. It was also 
seen that few-shot object detection is a relatively new research field in which 
methods are designed to learn from limited data, however they have not yet 
been explored for engineering symbol digitization.

Methods

In this section, firstly the dataset of real-world engineering diagrams is intro-
duced. Next, the methods used to pre-process this data are described. This is 
followed by a detailed description of the few-shot symbol detection method.
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Dataset

A dataset of 172 P&IDs was sourced from an industry partner in the Oil and Gas 
domain. The images are high-resolution PNG files with a size of 7428 x 5251 
pixels. The diagrams represent various engineering equipment and their connec-
tions. For experiment purposes 25 symbol classes, such as valves and flow labels, 
were selected, as shown in Figure 2.

The dataset is very challenging for object detection models. One reason for 
this is that the symbols are only represented by a few lines and therefore 
contain few features for a model to learn from. Additionally, there is usually 
high intra-class variability, high inter-class similarity, and the presence of 
similar shapes. Furthermore, unlike commonly used datasets such as 
PASCAL VOC, in which objects are mostly of the same orientation and are 
mainly located in the center of images (Cheng et al. 2021), engineering 
symbols are frequently in different orientations and can be located anywhere 
in an image.

The diagrams had been manually annotated to obtain a labeled symbol 
dataset. Various annotation software is available for this task, such as Sloth1 

and Computer Vision Annotation Tool (CVAT).2 The task is known to be very 
time-consuming and costly for engineering diagrams (Theisen et al. 2023).

Figure 2. The P&ID symbol classes used in the experiment. These are challenging to detect as they 
are represented by only a few shapes, have high inter-class similarity and high intra-class 
variability.

e2406712-6 L. JAMIESON ET AL.



Data Pre-Processing

A series of image processing algorithms was used to remove the diagram 
border. This section contained various information, such as the drawing title 
and drawing revision details, however it contained no equipment symbols. 
First, the diagram was binarised and a Connected Components (CC) algo-
rithm (Bolelli, Allegretti, and Grana 2022) was used to locate the largest CC of 
white pixels. This CC was considered to be the background of the main 
diagram area. The pixels were considered as connected if they had four-way 
connectivity. Each pixel outwith the bounding box of the largest CC was then 
replaced with a white pixel using an image mask.

The diagrams are significantly larger than the typical input size for neural 
networks, and therefore a patch-based method (Elyan, Jamieson, and Ali- 
Gombe 2020; Ruzicka and Franchetti 2018) was used. Here, the patch size 
was 640 x 640 pixels. It should be noted that the patches overlapped each other 
at the diagram edges. Any annotation that overlapped multiple patches was 
not used in the training data.

Few-Shot Symbol Detection

The main idea of the few-shot approach used is to separate learning of 
different model components. The method is based on TFA (Wang et al.  
2020), which separates feature representation learning and box predictor 
learning. The model architecture was based on Faster R-CNN (Ren et al.  
2015). The feature extractor components consist of a ResNet-101 (He et al.  
2016) with Feature Pyramid Network (FPN) (Lin et al. 2016) backbone, RPN, 
ROI pooling layer and ROI feature extractor. The box predictor consists of 
a box classifier and box regressor, which predict the object categories and 
bounding box regression offsets respectively.

The model was trained in two stages, as shown in Figure 3.
The first is base training, in which the entire object detector was trained on 

the base classes. The second stage is few-shot fine-tuning. In TFA the last 
layers of the model, the box classifier and regressor, were fine-tuned while the 
feature extractor was fixed. Note that the weights of the novel classifier were 
randomly initialized prior to the fine tuning, following the settings recom-
mended for the PASCAL VOC dataset (Wang et al. 2020). In Few-Shot- 
Symbol (FS-Symbol), TFA was altered with the aim to improve the perfor-
mance on the novel classes. To do this, the RPN and ROI were unfrozen in 
the second stage, as can be seen in Figure 3. In the second step, a small 
balanced support dataset consisting of K shots of both the base and novel 
classes was used for training. In both stages, the model was trained using the 
multi-task loss function as in (Wang et al. 2020) and originally introduced in 
(Ren et al. 2015), as shown in (1). 
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Here Lrpn is the RPN loss, which is the object proposal loss that determines 
the foreground from background and refines the anchors. Lcls is the cross- 
entropy loss for the box classifier and Lloc is the smoothed L1 loss for the box 
regressor.

In the box classifier, in place of fully connected classification layers, a cosine 
similarity classifier based on the instance-level distance measurement was 
used. This was reported to help to reduce the intra-class variance and improve 
the detection of novel classes, with less decrease in the detection accuracy of 
base classes (Wang et al. 2020). The classifier outputs scaled similarity scores 
where the similarity score, si;j between the i-th object proposal of the input x, 
and wj, the weight vector of class j, is defined as shown in (2). Here, FðxÞi is 
the input feature of the i-th object, and α is a scaling parameter set to 20 
following the settings implemented by (Wang et al. 2020). 

Figure 3. The Two-stage Fine-tuning Approach (TFA) (Wang et al. 2020) and few-shot-symbol (FS- 
Symbol) methods. In the first stage, the whole object detector is trained on the data-abundant 
base classes. In the second stage of TFA, the feature extractor is fixed and the box predictor is fine- 
tuned on a small balanced dataset containing few shots of base and novel classes. In the second 
stage of FS-Symbol, the backbone is frozen and all other model components are fine-tuned.
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Experiment and Results

Six few-shot methods were used. The experiment setup is discussed in detail 
here. The various evaluation metrics used are also introduced. This section 
also includes the presentation of the results and detailed analysis.

Experiment Setup

The dataset of 172 P&IDs was split into training and test sets, which contained 
155 and 16 diagrams respectively. Note that one diagram was mislabeled and 
therefore not used.

The patch-based approach detailed above was then used to split the 155 
training diagrams into 16; 488 patches. Only those patches labeled with one or 
more symbols, 3; 984 patches, were included in the training dataset. Using the 
same method, the test diagrams were split into 5; 888 patches. Here, a patch 
overlap of 320 pixels was used to ensure that all symbols were fully contained 
within a patch.

Following the FSOD setting, the symbol classes, C, were split into base 
classes Cbase and novel classes Cnovel such that Cbase \ Cnovel ¼ ;. The 7 least 
represented symbols were chosen as the novel classes and the remaining 18 
symbols as the base classes. This results in a base to novel class ratio of 2.6:1, 
which is similar to the 3:1 ratio used in the common FSOD benchmarks (Kang 
et al. 2019; Wang et al. 2020). Note that following the setup in TFA, if a patch 
contained both base and novel classes, then the novel class annotations were 
not utilized in base training.

The model was trained using a batch size of 8 instead of the default 16. The 
linear scaling rule (Goyal et al. 2017), which states that the learning rate should 
be multiplied by k when the minibatch size is multiplied by k, was used to set the 
learning rate to 0:01 in base training and 0:0005 in fine-tuning. The model was 
trained for 17 epochs in base training and 3200 epochs in fine-tuning, following 
the settings in TFA (Wang et al. 2020). There were 200 warmup iterations. The 
novel class weights for the box prediction networks were randomly initialized 
prior to fine-tuning. Multiscale training was used to improve model perfor-
mance on symbols of different sizes. Here the patch size, x, was selected such that 
x 2 f480; 512; 544; 576; 608; 640; 672; 704; 736; 768; 800g. The probability of 
horizontal and vertical flip was set to zero, to ensure that the high amount of 
text-containing symbols remain realistic.

The number of shots, K, of novel classes was set to K ¼ 1; 2; 3; 5; 9. Note 
that this is similar to the setting in the PASCAL VOC benchmark, however 
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here the maximum K value was set at nine as there were insufficient instances 
of each class in the diagram dataset to use ten shots. To ensure fair comparison 
between all the model architectures, the K shots were randomly selected and 
fixed across the experiments.

Six methods were evaluated, as shown in Table 1. The first, TFA (R-101), 
was the baseline few-shot method TFA with a ResNet-101 backbone. In 
the second method, TFA (R-50), a smaller network, ResNet-50, was used as 
the backbone. Both networks were pre-trained using ImageNet (Deng et al.  
2009), which is a large-scale dataset designed for image classification.

In the third method, Balanced, an undersampled training set comprising of 
a few shots for all 25 classes was used. By this definition, all classes are 
considered novel and there are no base classes. Here the balanced dataset of 
K shots was used to train the whole model, similar to the base training step 
shown in Figure 3. No fine-tuning phase was used. The balanced models were 
trained for longer in the first step, specifically for 100 epochs, by which point 
the models had converged.

Three other methods were evaluated to determine the impact of unfreezing 
specific model components in the fine-tuning stage, as shown in Table 1. In 
the first of these methods, Few-Shot (FT all), the entire model was unfrozen 
and fine-tuned. This allows the model’s feature extraction and classification 
parameters to be updated based on information from both the base and novel 
classes. Next, in Few-Shot (FT ROI + box), the backbone and RPN were frozen 
whilst the ROI and box predictor components were fine-tuned. Here, the 
model backbone is frozen in order to retain a wider range of features, that 
were learned during training on the more diverse dataset of base classes. The 
RPN is also frozen to determine if the additional information learned from the 
dataset of novel classes can be used to generate a more beneficial set of region 
proposals within the drawing. Lastly, in the proposed method, FS-Symbol, the 
model backbone was frozen and all other components were fine-tuned. The 
reasoning behind this is to preserve the model backbone that learned from the 
more diverse set of base classes, whilst the RPN, ROI and box predictor are 
then fine-tuned with the aim to provide more accurate predictions on both the 
base and novel classes.

Table 1. Method training settings in the fine-tuning phase.

Method

Fine-tuned components

Backbone RPN ROI Box Predictor

TFA (R-101) ✓
TFA (R-50) ✓
Balanced - - - -
Few-Shot (FT all) ✓ ✓ ✓ ✓
Few-Shot (FT ROI + box) ✓ ✓
FS-Symbol ✓ ✓ ✓
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The inference was carried out on individual test patches, and the results 
were combined. Non-Maximum Suppression was used to handle the over-
lapping predictions that occurred as a result of the patches strategy.

The methods were based on the official TFA implementation.3 All experi-
ments were carried out using a NVIDIA Quadro RTX5000 16GB GPU with 
256GB RAM.

Evaluation Metrics

Object detection models are commonly evaluated using the mean Average 
Precision (mAP). This is the mean of the Average Precision (AP) across all 
classes (3). Here APi is the AP of the i-th class and C is the total number of 
classes. The AP values were calculated according to the all-point interpolation 
method (Everingham et al. 2010). In FSOD, separate metrics are used for the 
base classes AP (bAP) and novel classes AP (nAP). In this paper, mAP, bAP 
and nAP were all used. An open-source toolkit for object detection metrics 
created by Padilla et al. (2021) was used to perform the calculation. 

The methods were also evaluated on a per-class basis using the Recall. The 
Recall is the fraction of test instances that are True Positives (TP) (4). In all the 
experiments, the Intersection Over Union (IOU) threshold for a true positive 
was set at 0:5. IOU is the ratio of the intersection to the union of the bounding 
boxes of the prediction and the ground truth, as defined in (5). 

Results and Discussion

The various few-shot methods were evaluated at each K value using the 
nAP, bAP and mAP, as presented in Table 2. The results show that the 
performance typically improves with the K value, however in certain cases 
increasing K results in a slight performance decrease. For instance, this is 
seen when comparing the nAP obtained by the TFA (R-101) method at 
K ¼ 1, which was 10:0, and that at K ¼ 2, which was 8:4. Also using the 
baseline method, an nAP of 27:6 at K ¼ 3 is obtained however the nAP 
reduces to 24:4 using K ¼ 5. This finding is potentially related to how 
closely the few randomly selected training instances represent the test data. 
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Note that there is a low amount of variation in the training data for novel 
symbols, whereas there is a large amount of intra-class variance seen in the 
test symbols. Comparing the results of the first two methods shows that 
using ResNet-50 (R-50) instead of ResNet-101 (R-101) for the model back-
bone negatively impacted performance across all metrics in most cases. 
This suggests that the additional complexity of the R-101 network improves 
the model’s ability to capture the symbol features. An R-101 backbone was 
therefore used in all further experiments.

The results also show that FS-Symbol outperforms all other methods for 
nAP at most K values (K ¼ 1; 3; 5; 9). At K ¼ 2, FS-Symbol performance is 
the second highest, whilst freezing the RPN in the second training phase, Few- 
Shot (FT ROI + box), resulted in the highest nAP by 1:3. Across all shots, there 
was an increase of between 35:1 and 50:4 in nAP using FS-Symbol compared 
to the baseline TFA (R-101) method. A statistical test, the independent t-test 
implemented in SciPy,4 was carried out to determine if the difference in novel 
class performance using FS-Symbol compared to the baseline TFA (R-101) 
method was significant. A p-value of 0:0045 was obtained, which is less than 
the alpha value of 0:05 and therefore shows a statistically significant improve-
ment. Although FS-Symbol outperformed Few-Shot (FT ROI + Box) at most 
K values, the difference here was not found to be significant, as the p-value was 
0:363. These results suggest that allowing the RPN and ROI to learn from 
novel symbol data improves the region proposals, resulting in higher 
performance.

The highest base class performance was obtained using the baseline TFA 
(R-101) method for K ¼ 1; 2; 5; 9. Fine-tuning the ROI in addition to the box 
predictor, Few-Shot (FT ROI + box), gave the highest performance at K ¼ 3 
and resulted in a small decrease of up to 1:6 bAP at other K values. These 
results highlight that fine-tuning the model backbone, RPN and ROI can lead 
to a loss of information learned in the first training stage.

The highest mAP at all shots was recorded using the Few-Shot (FT ROI +  
box) method. There was a statistically significant improvement using this 
method compared to the baseline TFA (R-101) method, as the p-value 

Table 2. Few-shot detection performance on the test diagrams for novel symbols (nAP), base 
symbols (bAP) and all symbols (mAP). Highest performance at each shot is in bold.

Method/Shot

nAP bAP mAP

1 2 3 5 9 1 2 3 5 9 1 2 3 5 9

TFA (R-101) 10.0 8.4 27.6 24.4 43.0 97.3 97.8 97.6 98.3 98.2 72.9 72.8 78.0 77.6 82.8
TFA (R-50) 1.5 15.4 22.0 24.7 29.7 97.2 97.3 97.5 97.6 97.6 70.4 74.4 76.4 77.2 78.6
Balanced 38.8 39.3 67.7 68.9 82.8 29.6 37.3 43.6 47.0 56.6 32.2 37.9 50.3 53.2 64.0
Few-Shot (FT 

all)
38.6 33.5 62.9 69.3 71.3 48.1 57.0 58.7 59.6 64.4 45.4 50.4 59.9 62.3 66.3

Few-Shot (FT 
ROI + box)

45.0 44.1 54.2 61.7 65.2 96.1 96.2 98.0 96.9 98.1 81.8 81.6 85.7 87.0 88.9

FS-Symbol 45.1 42.8 68.2 74.8 83.4 78.8 85.9 87.1 87.9 89.9 69.4 73.8 81.8 84.2 88.0
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obtained using the t-test was 0:008. It was also observed that using the 
Balanced method harmed the bAP and thus the mAP, compared to using all 
available base class instances. Although there was no class imbalance, the 
performance was inconsistent across the various classes. This highlights that 
additional challenges exist for symbol detection, which includes high intra- 
class variation, high inter-class similarity and varying symbol orientation.

Another important metric to consider for engineering symbol detection is 
the recall. The per-class recall, or accuracy, obtained using various few-shot 
methods and a YOLO-based method (Elyan, Jamieson, and Ali-Gombe 2020) 
trained on the fully annotated dataset was compared, as shown in Table 3. 
Note that more base class training samples were used for the YOLO method 
(Elyan, Jamieson, and Ali-Gombe 2020) as the larger image patch size, 1250 ×  
1300 pixels compared to 640 × 640pixels, meant that more symbols appeared 
completely within a patch.

The results in Table 3 clearly show that the highest recall for each novel class 
was recorded using the FS-Symbol method. For five of the seven novel classes, 
a recall of 1:00 was obtained using only nine training samples per class. 

Table 3. Comparison of few-shot and object detection method recall on test diagrams. Few-shot 1 
is few-shot (FT all) and few-shot 2 is few-shot (FT ROI + box). Few-shot results reported using 
K ¼ 9. Highest performance for each class is noted with asterisks and is in bold.

Class

Test 
No. YOLO Few-Shot Recall

Train 
No.

Base Train 
No. YOLO

TFA 
(R-101)

TFA 
(R-50) Balanced

Few- 
Shot 1

Few- 
Shot 2

FS- 
Symbol

Sensor 302 2810 1739 0.98 0.97 *0.99* 0.10 0.15 0.98 0.43
Ball Valve 213 1629 1346 *0.99* 0.46 0.40 0.18 0.21 0.44 0.39
Label From 103 1347 982 *1.00* 0.92 0.94 0.35 0.39 0.92 0.58
Label To 113 1178 828 *1.00* *1.00* 0.99 0.35 0.50 0.99 0.80
Flange 158 1110 739 0.77 *0.99* 0.98 0.33 0.25 0.98 0.58
Reducer 91 821 505 0.99 *1.00* *1.00* 0.68 0.70 *1.00* 0.77
DB&BBV 67 542 469 *0.98* 0.96 0.96 0.36 0.31 0.96 0.58
Gate Valve 110 535 429 0.94 *1.00* *1.00* 0.51 0.61 *1.00* 0.91
Check Valve 42 396 335 *1.00* *1.00* *1.00* 0.40 0.38 *1.00* 0.74
TOB/Butterfly 

Valve
59 178 168 0.98 *1.00* *1.00* 0.38 0.62 *1.00* *1.00*

Plug Valve 8 173 154 *1.00* *1.00* *1.00* 0.80 0.81 *1.00* *1.00*
Globe Valve 7 161 150 *1.00* *1.00* *1.00* *1.00* 0.90 *1.00* *1.00*
Needle Valve 10 160 133 *1.00* *1.00* *1.00* 0.71 0.86 *1.00* *1.00*
RS 26 143 114 *0.92* 0.88 *0.92* 0.65 0.77 0.88 0.85
PSV 25 118 94 *0.88* 0.74 0.78 0.17 0.39 0.83 0.39
Eccentric 

Reducer
23 98 92 0.96 *1.00* 0.88 0.76 0.84 *1.00* 0.88

POB Valve 16 84 65 *1.00* 0.94 0.94 0.69 0.62 0.94 0.94
DBBPV 15 83 65 *1.00* 0.93 *1.00* 0.87 0.93 0.93 *1.00*
PRV 8 32 0 1.00 0.83 *1.00* *1.00* *1.00* *1.00* *1.00*
Control Valve 

Globe
6 30 0 *1.00* 0.88 0.88 *1.00* *1.00* 0.62 *1.00*

Control Valve 5 22 0 *1.00* *1.00* 0.00 *1.00* *1.00* *1.00* *1.00*
Vent to atm 8 19 0 0.25 0.00 0.00 0.62 0.50 *0.88* *0.88*
Injection/ 

Sample Point
2 13 0 0.50 0.00 0.00 *1.00* *1.00* 0.50 *1.00*

Angle Valve 2 11 0 0.00 *0.50* *0.50* *0.50* 0.00 *0.50* *0.50*
BPRV 5 11 0 0.00 0.20 0.00 *1.00* *1.00* *1.00* *1.00*
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Furthermore, the recall for the four least represented classes increased con-
siderably compared to that obtained with the YOLO-based method. For 
instance, for the Vent to atm symbol, a recall of 0:88 was recorded using FS- 
Symbol compared to 0:25 using the YOLO-based method. Note that nine 
samples of this symbol were used to train the few-shot methods whereas 
nineteen were used to train YOLO. Also evident is the need to preserve 
features learned from the data-abundant base classes, which is shown by 
analyzing the performance of the Few-Shot (FT all) method. For instance, 
a recall of 0:00 was obtained for the novel class Angle Valve, compared to 0:50 
with TFA (R-101). This suggests that fine-tuning the whole model results in 
a loss of information learned in the first training stage.

Further evidence for the validity of the FS-Symbol training approach can be 
seen by comparing the results obtained with those using TFA (R-101). For 
example, the latter method did not detect the classes Vent to atm and 
Injection/Sample Point, however recall values of 0:88 and 1:00 were recorded 
using FS-Symbol. These are the only two novel classes that are not valves and 
as such they are more visually distinct from the base classes compared to the 
other novel classes, refer to Figure 2. This indicates that fine-tuning only the 
box predictor on novel class data may not be sufficient when there is a large 
difference in symbol appearance between the novel and base classes.

Base class performance was typically higher using the YOLO-based method 
compared to the FS-Symbol method. There were only five classes for which 
equal or higher recall was recorded using the latter method. Another finding is 
that for certain base classes, competitive recall was recorded using several of 
the few-shot methods compared to the YOLO-based method. For example, for 
the sensor symbol, a recall of 0:98 was recorded using the YOLO-based 
method, compared to 0:97, 0:99 and 0:98 using TFA (R-101), TFA (R-50) 
and Few Shot (FT ROI + box), respectively.

The performance of FS-Symbol compared to TFA (R-101) can also be observed 
in Figure 4. In these processed test patches, the ground truth bounding boxes are 
shown in red, correct predictions in orange and incorrect predictions in green. 
These patches show the improved performance of FS-Symbol on the novel classes. 
For example, the vent to atm symbols shown were correctly predicted by FS- 
Symbol but not the TFA (R-101) method. Another example shows a BPRV 
symbol that was successfully detected using FS-Symbol, but predicted as a PRV 
by TFA (R-101). As these two classes contain the same shapes but with different 
orientations, see Figure 2, this suggests that training the RPN and ROI on novel 
data has improved the method’s discriminative ability between similar symbols. 
The test patches also indicate that base class performance was higher using TFA 
(R-101) compared to FS-Symbol. For example, they contain instances of reducer, 
ball valve and flange symbols detected by the first method but not the latter. 
Overall, these results suggest that the training approach implemented in FS- 
Symbol improves the model’s ability to detect novel classes.
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Conclusion and Future Direction

In this paper, one of the first approaches to the problem of few-shot symbol 
detection in engineering diagrams is presented. The method can be used to 
detect rare classes using fewer than ten training samples. Furthermore, this 
approach allows new symbols to be incorporated into an existing object 
detector without extensive annotation. Thorough experiments on complex 
engineering diagrams sourced from industry were completed to demonstrate 
the validity of the proposed method.

Various few-shot methods were evaluated and the results show that the 
highest performance on the novel classes was obtained using the proposed 
approach. Statistically significant improvement compared to the baseline few- 
shot method was also shown. The method was also compared against an object 
detection-based method trained on a dataset of fully annotated diagrams, and 
improved novel class performance was reported.

The research also showed limitations of few-shot methods for symbol digitiza-
tion. The main drawback seen with the proposed method is a reduction in 
performance for the majority of the base classes. To obtain competitive perfor-
mance on all classes, separate models could be used to predict base and novel 
classes. An alternative suggestion is to alter the model so it contains separate 
branches to predict the base and novel categories. The model backbone would be 
shared between the two branches and there would be separate RPN, ROI and box 
predictor modules. In this approach, the fine-tuning step would alter the novel 

Figure 4. Small sections of test diagrams. In each image pair, the left image was processed using 
TFA (R-101), and the right image was processed using FS-Symbol. Both methods used K ¼ 9. 
Ground truth bounding boxes are shown in red, correct predictions in orange and incorrect 
predictions in green. The confidence and IOU are also shown.
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class branch, whilst the base class branch would remain fixed and thus perfor-
mance for the base classes will not be reduced due to the fine-tuning.

The method required a relatively large number of labeled base class 
instances. To reduce the annotation effort, semi-supervised learning techni-
ques could be used. This involves manually labeling a small subset of available 
base symbols to train a detector that can then be used to create pseudo labels 
and increase the training dataset size.

Another limitation of the method is that it relies on very few samples of the 
novel classes and thus the performance of the model is likely to be linked to how 
well the chosen training samples represent the test data. This may be particularly 
important for symbol classes with high intra-class variation. To increase the 
variance of the novel symbols, data augmentation techniques could be used, 
such as resizing, orientation, mosaic data augmentation and random cropping. 
This would also allow the results to be reported over multiple random runs.

An additional future work suggestion is to experiment with a wider variety 
of backbones, increasing the number of layers with the aim of improving the 
generalizability from the base classes to the novel classes. Another aim to is 
demonstrate the robustness of the approach on more diverse datasets. This 
includes applying the method to a range of engineering drawing types, includ-
ing construction drawings, process flow diagrams and architectural drawings. 
It should be noted that this may be challenging due to the difficulty in 
acquiring and annotating engineering drawings.

Overall this paper opens up a new direction toward using few shot 
approaches for engineering symbol digitization, which is highly beneficial 
for rare symbols and also reduces the required annotation effort.

Notes

1. https://sloth.readthedocs.io/en/latest/.
2. https://github.com/opencv/cvat.
3. https://github.com/ucbdrive/few-shot-object-detection.
4. https://scipy.org/.
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