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ABSTRACT 

As an effective tool for monitoring surface irregularities in 

remote sensing, hyperspectral anomaly detection (HAD) has 

garnered increasing attention. However, how to improve the 

detection accuracy remains a formidable challenge, due 

mainly to the noise and variations in the spectral domain, 

especially when there is lack of the labelled data for training. 

To tackle these difficulties, a novel unsupervised HAD 

method is proposed. First, 1-D Singular Spectrum Analysis 

(SSA) is employed to eliminate outliers in the spectral 

domain. Second, the SSA-smoothed hypercube undergoes a 

sparse autoencoder for background reconstruction, where the 

reconstruction error is used to extract anomalous pixels. 

Finally, the RX algorithm is employed to segment anomalous 

pixels from the background. Comprehensive experiments on 

four publicly available datasets have validated the superior 

performance of our method in effectively enhancing the 

separability between anomaly pixels and their respective 

backgrounds, outperforming a few state-of-the-art methods, 

particularly in terms of the detection accuracy. 

Index Terms— Hyperspectral images, anomaly detection, 

singular spectrum analysis, sparse autoencoder, RX.  

1. INTRODUCTION

Hyperspectral remote sensing (HRS) has emerged as a 

transformative technology in Earth observation, thanks to the 

combined spectral and spatial information it contains [1]. As 

one of the most important research topics and application 

areas in HRS, hyperspectral anomaly detection (HAD) has 

grabbed increasing attention. As the anomaly features are 

different from the background, they can be potentially 

identified even through unsupervised algorithms based on 

statistics or feature extraction without the need for prior 

information [2]. As a result, HAD has been widely applied in 

numerous areas, especially in military and civilian fields.  

In recent years, many HAD methods have been proposed. 

One classic algorithm is the Reed-Xiaoli (RX) method [3], 

which operates under the assumption that the background in 

a Hyperspectral Image (HSI) follows a Gaussian multivariate 

distribution, represented using the mean vector and the 

covariance matrix. The Mahalanobis distance is employed to 

calculate the anomaly value between each pixel and the 

background. Inspired by the RX algorithm, several variations 

have also been developed, such as the kernel RX [4] and the 

local RX [5] algorithms, aiming to enhance the performance 

and adaptability of the original RX for anomaly detection in 

HSI. Nevertheless, employing the RX algorithm directly 

comes with certain drawbacks, especially the sensitivity to 

the spectral noise, which exists widely in the spectral data. 

Another classic algorithm is based on the representation 

models, which operate under the assumption that background 

pixels can be precisely represented using correlated samples. 

In contrast, anomalies cannot be effectively represented in the 

same manner. The most representative method here is the 

collaborative representation detection [6]. With a dual-

window strategy, it operates under the assumption that 

background samples can be effectively represented by the 

surrounding pixels, while anomalies cannot.  

Besides, some advanced representation-based methods 

have been proposed to improve the HAD accuracy, such as 

the low-rank and sparse representation (LRASR) [7], low-

rank and sparse matrix decomposition-based Mahalanobis 

distance method (LSMAD) [8], visual attention model and 

background subtraction with adaptive weight (VABS) [9]. 

However, these methods also have drawbacks, especially in 

determining the regularization parameters due to the lack of 

prior knowledge about the anomalies. In addition, image 

priors are frequently suboptimal when applied to real data.  

The autoencoder (AE)-based method capitalizes on the 

assumption that the background constitutes a significant 

proportion, while the anomaly occupies a smaller portion. 

This approach effectively reconstructs the background and 

inadequately reconstructs the anomaly, utilizing the 

reconstruction error to calculate anomaly values. Drawing 

inspiration from this concept, in this study, we propose an 

unsupervised algorithm based on the sparse AE on the SSA 

smoothed his, as detailed below.  

2. PROPSED METHOD

The flowchart of the proposed algorithm is illustrated in 

Fig. 1, containing three main parts. Initially, we employ the 



first component of SSA to derive the smoothed hypercube so 

as to mitigate the noise and outliers in the spectral domain. 

The denoised hypercube is subsequently fed into a sparse AE 

model for background reconstruction. We extract anomalous 

targets based on the reconstruction error. Ultimately, the 

conventional RX algorithm is used to segment the anomalous 

pixels from the background. These are detailed as follows. 

Fig.1. Architecture of the proposed method 

2.1. 1-D Singular spectrum analysis (1D-SSA) 

In the traditional classification task, the main objective of SSA 

is to extract the representative spectral information from the 

HSI data. For this purpose, each spectral profile will be 

decomposed into several independent components including 

trend, oscillations, or noise. Then, several components will 

be used to reconstruct the HSI data. In HAD task, given a 

hypercube 𝑇 ∈ ℜ𝑊∗𝐻∗𝐵 , where 𝑊 and 𝐻 denote the size of

the spatial domain, and 𝐵 represents the number of spectral 

bands. The SSA algorithm will be used to reduce the noise in 

spectral domain corresponding to each pixel, followed by a 

differentiation process, as detailed below.  

Let a 1-D vector 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐵]  represent a pixel

randomly selected from the hypercube, it will be firstly 

embedded to form the trajectory matrix 𝑋 by an embedding 

window 𝐿 𝜖 𝑍 with 𝑍 𝜖 [1, 𝐵]. 

𝑋 = (

𝑥1
𝑥2
⋮
   
𝑥2 … 𝑥𝐾
𝑥3 … 𝑥𝐾+1
⋮ ⋱ ⋮

𝑥𝐿 𝑥𝐿+1  … 𝑥𝐵

) 
(1) 

where 𝐾 = 𝐵 − 𝐿 + 1. Each column of 𝑋 is a lagged vector 

and can be considered as a Hankel matrix that has equal 

values along the antidiagonals. 

Singular value decomposition (SVD) will be employed 

for eigen decomposition on matrix X, where the eigenvalues 

and eigenvectors of 𝑋𝑋𝑇 can be denoted as
( λ1, λ2, … , λ𝐿 ) and (U1, U2, … , U𝐿) , respectively. The

trajectory matrix can be reconstructed as the sum of 

elementary matrices which can be represented as: 

𝑋 = 𝑋1 + 𝑋𝑖 +⋯+ 𝑋𝐿  ( 𝑋𝑖 = √λ𝑖𝑈𝑖𝑉𝑖
𝑇, 𝑉𝑖 =

𝑋𝑇𝑈𝑖

√λ𝑖
) (2) 

where the matrices U and V are denoted by the matrix of 

empirical orthogonal functions and the principal components 

after decomposition. 

Divided the total set of 𝐿 components into 𝑀 disjoint sets 

(𝐼1, 𝐼2, … , 𝐼𝑀) where 𝐼 = [𝑖1, 𝑖2, … , 𝑖𝑝] representing a divided

set, the trajectory matrix is represented by: 

𝑋 = 𝑋𝐼1 + 𝑋𝐼𝑖 +⋯+𝑋𝐼𝑀  (3) 

In order to project each divided set into a 1-D signal, let 

𝑍𝑚 = [𝑍𝑚1, 𝑍𝑚2, … , 𝑍𝑚𝑁] 𝜖 ℜ
𝑁  denote the 1-D signal

projected from 𝑋𝐼𝑚 ; it can be obtained via diagonal

averaging, where 𝛼𝑗,𝑛−𝑗+1 refers to the elements of 𝑋𝐼𝑚, i.e.

𝑧𝑚𝑛 =

{

1

𝑛
 ∑𝛼𝑗,𝑛−𝑗+1,

𝑛

𝑗=1

   1 ≤ 𝑛 ≤ 𝐿

1

𝐿
 ∑𝛼𝑗,𝑛−𝑗+1,

𝐿

𝑗=1

   𝐿 ≤ 𝑛 ≤ 𝐾

1

𝑁 − 𝑛 + 1
∑ 𝛼𝑗,𝑛−𝑗+1,   𝐾 ≤ 𝑛 ≤  𝑁  

𝐿

𝑗=𝑛−𝐾+1

(4) 

Finally, the original 1-D signal x can be represented using 

its eigenvalues in one or more principal groups, highly noisy 

and less significant components can be discarded, the original 

signal processed by SSA can be reconstructed as: 

𝑆𝑆𝐴(𝑥) = 𝑧1 + 𝑧2 +⋯ ,+𝑧𝑀 = ∑ 𝑍𝑚

𝑀

𝑚=1
(5) 

2.2 Sparse Autoencoder 

Sparse Autoencoder is a neural network model aiming to 

learn efficient data representations. It minimizes the 

reconstruction error between input and output, incorporating 

sparsity by penalizing excessive neuron activations using a 

sparsity term. The sparsity is controlled by a sparsity 

proportion, adjusting the average activation. Additionally, L2 

weight regularization is employed to prevent overfitting by 

penalizing large weights. The model is trained by optimizing 

the following objective function: 

𝐽(𝑊,𝑏) = 
1

2𝑚
∑ ||ℎ(𝑊𝑥(𝑖) + 𝑏) − 𝑥(𝑖)||2

𝑚

𝑖=1

+ 𝜆∑ (𝜌𝑙𝑜𝑔
𝜌
�̂�𝑗 + (1 − 𝜌)𝑙𝑜𝑔

1−𝜌
1−�̂�𝑗)

𝑛

𝑗=1

+
𝛽

2
∑ ||𝑊(𝑙)||2

𝐿

𝑙=1
 

(6) 

where W denotes the weights, b stands for biases, ℎ (⋅) 
signifies the activation function, 𝑥(𝑖) represents the input, ρ 

indicates the sparsity proportion, λ is the sparsity weight, and 

β represents the L2 weight regularization strength. Here, the 

key parameters of the hidden size, max epochs, β, ρ and λ are 

set to 128, 200, 0.001, 0.001, and 0.001, respectively.  

2.3 RX based anomaly map extraction 

Taking the image obtained from sparse autoencoder above as 

the input, the RX (Reed-Xiaoli) algorithm is applied to 

extract the anomaly map. Specifically, RX was employed to 

calculate the global mean vector and covariance matrix of all 

the pixels within the image. For each pixel, its anomaly score 

can be determined by the Mahalanobis distance of its 

reconstruction error from the global mean and the covariance. 

These scores can be used to build an anomaly map, as a 



grayscale image, where small and large values indicate the 

low and high anomaly levels of the corresponding pixels, 

respectively. Spatial filtering can be applied for robustness.  

3. EXPERIMENT RESULTS

In order to evaluate the superiority and effectiveness of our 

proposed method, the airport dataset comprises four images 

captured by the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) HSI sensor in distinct scenes were 

employed to test the detection accuracy. Specifically, the 

Airport-1, Airport-2, and Airport-3 images were acquired in 

Los Angeles at a spatial resolution of 7.1m, while the Airport-

4 image was obtained in Gulfport with a spatial resolution of 

3.4m. The pseudo-color images and corresponding ground-

truth maps of the four datasets are shown in Fig. 2(a-b). 

The proposed method is compared with six state-of-the-

art unsupervised benchmarks including RX [3], LRASR [7], 

LSMAD [8], VABS [9], robust principal component analysis 

with RX(RPCA-RX) [10] and LRSNCR [11]. The detection 

intensity maps of all methods on the four datasets are shown 

in Fig. 2(c-i). Corresponding Area Under the Curve (AUC) 

values for each method on individual images, as well as the 

average values across all methods for the four datasets, are 

presented in Table 1. 

First, upon visualizing the results, our proposed algorithm 

precisely detects anomalous aircraft targets, consistently 

exhibiting the highest brightness compared to other 

algorithms. Compared with the visual result of the original 

RX, due to its lack of feature extraction steps and susceptible 

to noise, resulted in inaccurate target identification. This 

confirms the significance of 1-D SSA and sparse AE in our 

proposed algorithm. Furthermore, from the quantitative 

analysis of the AUC values, our proposed method 

outperforms other benchmarks significantly for individual 

datasets. On average across all datasets, it outpaces the 

second-ranking LRSNCR by 2%. When compared to the 

traditional RX algorithm, it demonstrates a substantial 

improvement of 6.62%.  

In addition, we employ separability plots to highlight the 

ability to distinguish anomalies from the background of each 

method. A box is utilized to represent data within the 20%–

80% range, with a horizontal line denoting the data median. 

Data falling within the 0%–20% and 80%–100% ranges are 

depicted above and below the box, respectively, as indicated 

by dashed lines and beneath the box. Anomalies and 

background are represented by red and blue colors, 

respectively. Here, the method's proficiency in anomaly 

identification improves with the growing separation between 

the background and anomaly boxes.  

The anomaly and background box distributions of our 

method and all compared ones are illustrated for each image 

in the airport dataset in Fig. 3 (a), where the distance between 

the background and anomaly boxes corresponding to our 

algorithm is farther than others, validating its high efficacy. 

Similarly, Fig. 3(b) illustrates the receiver operating 

characteristic curves (ROC) of different methods on the four 

datasets, where the position of the green curve representing 

our method is closest to the upper left, indicating its superior 

performance than other benchmarks. 

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed an unsupervised HAD method, 

which combines the 1-D SSA for feature extraction in the 

spectral domain, along with the sparse autoencoder for 

Table 1: AUC values of the different methods on the four datasets 

RX LRASR LSMAD RPCA-RX LRSNCR VABS Proposed 

Airport-1 0.8221 0.7775 0.8317 0.8088 0.8677 0.8224 0.9072 

Airport-2 0.8403 0.8664 0.9187 0.8426 0.9507 0.9191 0.9725 

Airport-3 0.9288 0.8891 0.9383 0.9274 0.9526 0.9216 0.9594 

Airport-4 0.9526 0.9846 0.9868 0.9628 0.9501 0.9331 0.9937 

Average 0.8968 0.8729 0.9289 0.8942 0.9407 0.9176 0.9630 

Fig. 2. Pseudo-color images (a) and corresponding ground-truth maps of four datasets and detection maps of the benchmarks, which are 

RX (c), LRASR (d), LSMAD (e), RPCA-RX(f), LRSNCR(g), VABS(h), proposed (i). 



background reconstruction in the spatial domain, followed by 

the RX algorithm for identifying the anomalous pixels from 

the background. The experiments have validated the 

robustness of our method with a high detection accuracy that 

outperforms a few state-of-the-art HAD methods.  

For future work, we plan to combine the results of noise-

robust spectral reconstruction [12], semantic segmentation as 

well as zero-shot learning for further refined anomaly 

detection in an unsupervised manner, even in more generic 

remote sensing images rather than only HSI.  
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