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Abstract: Flexible manufacturing systems (FMS) are highly adaptable production systems capable of
producing a wide range of products in varying quantities. While this flexibility caters to evolving
market demands, it also introduces complex scheduling and control challenges, making it difficult to
optimize productivity, quality, and energy efficiency. This paper explores the application of digital
twin technology to tackle these challenges and enhance FMS optimization and control. A digital twin,
constructed by integrating simulation models, data acquisition, and machine learning algorithms, was
employed to replicate the behavior of a real-world FMS. This digital twin enabled real-time dynamic
optimization and adaptive control of manufacturing operations, facilitating informed decision making
and proactive adjustments to optimize resource utilization and process efficiency. Computational
experiments were conducted to evaluate the digital twin implementation on an FMS equipped with
robotic material handling, CNC machines, and automated inspection. Results demonstrated that
the digital twin significantly improved FMS performance. Productivity was enhanced by 14.53%
compared to conventional methods, energy consumption was reduced by 13.9%, and quality was
increased by 15.8% through intelligent machine coordination. The dynamic optimization and closed-
loop control capabilities of the digital twin significantly improved overall equipment effectiveness.
This research highlights the transformative potential of digital twins in smart manufacturing systems,
paving the way for enhanced productivity, energy efficiency, and defect reduction. The digital twin
paradigm offers valuable capabilities in modeling, prediction, optimization, and control, laying the
foundation for next-generation FMS.

Keywords: digital twin (DT); flexible manufacturing system (FMS); Digital Mock-Up Unit (DMU);
digital manufacturing framework; smart manufacturing system

1. Introduction

The realm of intelligent manufacturing necessitates the seamless fusion of production
automation and digital transformation. This fusion entails the harmonious integration of
industrial machinery with cutting-edge sensor technologies, powerful computing platforms,
and robust communication systems. This synergy yields a transformative enhancement in
both production efficiency and overall management.

The smart manufacturing equipment composition has three different cores, namely
human core (labor, technicians, engineers, managers, CEO), physical core (equipment,
hardware, tools, workstations) and cyber core (front end, back end, logical framework,
services, APIs, DevOps). These cores combine and create the Human–Cyber–Physical
System (HCPS) as depicted in Figure 1, which consists of three system layers, the Cyber–
Physical System (CPS), the Human–Cyber System (HCS), and the Human–Physical System
(HPS). Most of the technologies of industry 4.0 such as Artificial Intelligence (AI), Cloud
Computing, Internet of Things (IoT), cyber security and big data are associated with the CPS
layer [1]. These technologies enhance productivity, flexibility, observability, and efficiency.
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The assimilation of these technologies into the current state of the industry is restrained
by repeatedly upgrading the manufacturing resources, training the operating staff, and
balancing the workload while in transition. It is especially expensive for legacy systems.
This implementation barrier can be overcome by using relatively new technology “digital
twin (DT)”. DTs can incorporate real-time monitoring, enhanced efficiency, and safety,
predictive maintenance, and scheduling, scenario and risk assessment, personalization,
and customization [2]. The most relevant ability of the DTs is that it can assimilate all the
technologies of industry 4.0, making it the prime subject of research and development.
Though different research has been undertaken on the topic, it is still in its infancy, especially
DTs for flexible manufacturing system (FMS).

2. The Literature Review

For the literature review, we analyzed papers from IEEE Xplore, Springer, ScienceDi-
rect and Google Scholar. The keywords we searched for were “Digital Twin in Manufactur-
ing”, “Smart Cyber-Physical Systems”, “Flexible Manufacturing Systems”.

2.1. The Literature on Digital Twins

A tremendous amount of research is being performed on DTs; for example, some
researchers are working on its methodology such as the authors in [3], who worked on skin
models for DTs for generic use. and the authors in [4] developed geometrical assurance for
DTs using FEA techniques in assemblies. Further, refs. [5–8] applied database techniques on
data retrieved from DTs, while the authors in [9–13] worked on optimization of operation of
robotic manipulators through DTs. Tao et al. [14], integrated industrial internet into DT and
developed the DT-II framework linking intra-enterprise services and value chain. In [15],
Tao worked on smart customization through DT. Later, Tao [16] presented the 5D model
for DT in job shops. The model is based on physical entities, virtual entities, services by
these two domains, data from all the three domains and finally connections. Tao et al. [17]
presented the idea of big data and DT in the paradigm of smart manufacturing.

2.2. The Literature on Human–Cyber–Physical Systems in Context of Industry 4.0

The literature on industry 4.0 and smart manufacturing highlights several innovations
aimed at enhancing flexibility, automation, and real-time control through the integration
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of advanced technologies. Chuang et al. (2021) [18] investigated the use of digital twins
and cyber–physical production systems (CPPS) to enable a workpiece-driven production
system that increases adaptability in job shop environments. Salazar et al. (2020) [19]
focused on the role of multi-agent systems in CPPS, emphasizing their ability to improve
modularity, reconfigurability, and flexibility in manufacturing processes. Pronost et al.
(2021) [20] reviewed digital twin applications across various stages of the product lifecycle,
emphasizing their potential for real-time monitoring and predictive maintenance, though
integration challenges across the lifecycle remain. Havard et al. (2020) [21] proposed a
scalable data architecture to enhance interoperability among CPPS components, particularly
using IoT and digital twins for improved decision making. Jiang (2018) [22] presented an
8C architecture that extends existing frameworks by incorporating customer involvement
and product lifecycle data management, further enhancing horizontal integration in smart
factories. Wang et al. (2015) [23] introduced a hybrid data-on-tag approach for decentralized
control in flexible smart workpiece manufacturing, leveraging RFID to improve real-time
data handling and reduce network dependency. Wang et al. (2017) [24] developed a
graphical deduction model to enable real-time production control in IoT-enabled smart job
shops, ensuring better coordination of manufacturing resources and reducing the impact
of production disruptions. Lastly, Zhang et al. (2020) [25] proposed a service-oriented
digital twin framework for discrete manufacturing workshops, showcasing how real-time
monitoring and edge computing can enhance human–machine interaction and improve
overall production efficiency. Collectively, these studies highlight the transformative
potential of digital twins, IoT, RFID, and multi-agent systems in smart manufacturing,
though challenges remain in scalability, lifecycle integration, and system interoperability.

2.3. The Literature on Digital Twin Application in Manufacturing

As our focus is on controlling the manufacturing system through DTs, the research
on the controlling applications and manufacturing systems is targeted and listed. For the
control of tool, machine, equipment, system through DTs, refs. [26–38] worked extensively
to use different techniques and methods providing extraordinary results. The DT control
framework proposed by Zhang et al. [26] was the Synchronized Production Operation
System (SPOS), using Opti-State Control (OsC). Ding et al. [27] divided the system into the
Physical Shop Floor (PSF) and the Cyber Shop Floor (CSF) and then linked both to achieve
the working of the DT-enabled smart cyber–physical production system. Zhuang et al. [29]
used the Markov chain to model the DT-based Visual Monitoring and Prediction System
(DTVMPS). The authors in [30,31] worked on the augmented reality (AR)-controlled DT
in additive manufacturing, controlling various parameters at the machine level. Zhang
et al. [32] studied a semi-electronic assembly line, through DT using the ATC, resulting in
the optimal reconfiguration for each subsequent product change. Elisa et al. [33] linked
manufacturing execution systems (MES) with DT. Samuel and David [39] devised a peda-
gogic methodology to use DT learning. Guo et al. [40] developed a DT model for an FMS
of an air conditioner lines for the purpose of collecting data and optimizing the layout and
logistics. Fan et al. [41], described the full lifecycle functional services of FMS in DT. Fan
proposed a digital twin modeling concept of GHOST, which represents Geometric informa-
tion, Historical samples, Object attribute, Snapshot collection, and Topology constraints.
GHOST will capture the data and transmit it to the cloud for documentation. These data
are then used for visualization of the FMS.

2.4. Digital Twin Technology in Legacy Systems

Legacy systems are outdated manufacturing systems that are still in use. This section
will analyze the financial constraints, training requirements and integration issues along
with strategies to overcome them.

Cost Implications: Upgrading legacy systems to incorporate digital twin technology
often involves significant financial constraints. Initial investments can be substantial,
encompassing hardware, software, and infrastructure upgrades. To mitigate these costs,
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organizations should conduct a comprehensive cost–benefit analysis that highlights the
long-term benefits of digital twin implementation, demonstrating its economic viability.

Training Requirements: Adequate training for personnel is essential for the successful
adoption of digital twin technology. There may be a skills gap, as employees may not
be familiar with advanced technologies. To address this, organizations should consider
partnerships with educational institutions for specialized training programs and implement
on-the-job training initiatives to develop the necessary skills within the workforce.

Integration Issues: Integrating digital twin technology with existing legacy systems
can present technical challenges, including compatibility issues and the complexity of
data migration. Organizations can benefit from analyzing successful case studies that
illustrate best practices for integration. Establishing a phased integration approach allows
for gradual implementation, minimizing disruptions and providing opportunities for
adjustments based on real-time feedback.

Proposed Strategies:

• Incremental Implementation: Begin with pilot projects to demonstrate the value of
digital twin technology before committing to full-scale adoption.

• Stakeholder Engagement: Involve key stakeholders early in the process to ensure
alignment with organizational goals and to gain support for the transition.

• Continuous Evaluation: Establish a framework for ongoing assessment and adjust-
ments throughout the integration process to adapt to emerging challenges and ensure
continuous improvement.

By addressing these barriers and implementing strategic solutions, organizations
can effectively leverage digital twin technology within their legacy systems, enhancing
operational efficiency and driving innovation.

2.5. Literature Review Conclusion and Overview of Research Gap

The summary of Table 1 of the literature research suggests that a substantial portion
of the purported digital twins discussed in the literature primarily revolve around the
replication of real systems in a synchronized manner, notably lacking the incorporation
of feedback mechanisms that influence the control systems of the equipment. In scholarly
discourse, these instances are commonly denoted as digital shadows (DS). The traditional
DT systems have two distinct computational domains as depicted in Figure 2. The first
domain uses DT to grab the data from the physical system and process it for decision making.
The 2nd domain executes the decision strategy on the operations. These two spheres are
separated by various software layers and different hardware implementations.
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Table 1. The Literature Review.

Authors Research Background Contribution

Schleich [3] Digital Twin (DT) Methodology Developed skin models for DTs for generic use

Söderberg [4] DT and FEA Techniques Developed geometrical assurance for DTs using FEA
techniques

Authors [5–8] Database Techniques in DT Applied database techniques to retrieve and manage data
from DTs

Authors [9–13] Robotic Manipulators Optimization Optimized robotic manipulators using DT techniques

Tao et al. [14] Industrial Internet Integration in DT Integrated industrial internet into the DT-II framework

Tao [15] Smart Customization through DT Enabled smart customization with DT technologies

Tao [16] 5D Model for DT in Job Shops Presented a 5D model integrating physical and virtual
entities with data and services

Tao et al. [17] Big Data and DT in Smart Manufacturing Utilized big data to enhance smart manufacturing
through DT

Chuang et al. [18] Digital Twins and CPPS for Job Shops Enabled workpiece-driven production in job shops with DT
and CPPS

Salazar et al. [19] Multi-Agent Systems in CPPS Improved modularity and flexibility in CPPS with
multi-agent systems

Pronost et al. [20] DT Applications in Product Lifecycle Reviewed DT applications across product lifecycles,
highlighting challenges

Havard et al. [21] Data Architecture for CPPS Proposed a scalable data architecture using IoT and DTs
for CPPS

Jiang [22] 8C Architecture in Smart Factories Extended smart factory architectures by adding
customer involvement

Wang et al. [23] Hybrid Data-on-Tag for Manufacturing Control Improved real-time data handling with RFID in
smart manufacturing

Wang et al. [24] Real-Time Production Control in IoT Introduced real-time production control with IoT-enabled
DT systems

Zhang et al. [25] Service-Oriented DT Framework Enhanced human–machine interaction in discrete
manufacturing workshops with DT

Authors [26–38] Control of Tools, Machines, and Systems via DT Worked on various control techniques and methods using DT

Zhang et al. [26] Synchronized Production Operation System (SPOS) Developed SPOS with Opti-State Control for
synchronized production

Ding et al. [27] PSF and CSF Linking in Cyber–Physical Systems Linked physical and cyber shop floors in smart systems
using DT

Zhuang et al. [29] Markov Chain in DT Monitoring Used Markov chain for DT-based visual monitoring and
predictions

Authors [30,31] AR-Controlled DT in Additive Manufacturing Applied augmented reality (AR) for machine-level control
in DT

Zhang et al. [32] DT in Semi-Electronic Assembly Line Optimized reconfiguration for each product change in
semi-electronic assembly lines using DT

Elisa et al. [33] Linking MES with DT Integrated manufacturing execution systems (MES) with
DT technologies

Samuel and David [39] Pedagogic Methodology for DT Learning Developed a pedagogic methodology for teaching
DT learning

Guo et al. [40] DT for FMS in Air Conditioner Lines Optimized the layout and logistics of FMS using a DT model

Fan et al. [41] Full Life Cycle Services of FMS in DT Proposed GHOST-based digital twin modeling for full life
cycle services in FMS

While in our approach, we have a single DT system that has seamless bi-directional
communication between physical and virtual spaces. Physical space provides data directly
to virtual space and the virtual space processes and through friendly user-interface directly
controls the operations of the individual machines as well as the of the overall FMS. The
major contributions of this paper are the following.
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• Proposes model predictive control algorithm leveraging digital twin for real-time
optimization.

• This methodology offers a viable course for the transformation of legacy systems into
intelligent manufacturing systems considering that legacy systems represent 60% of
market share.

• Furthermore, this proposition is particularly tailored for flexible manufacturing sys-
tems, effectively encapsulating the entire factory environment.

• This validates the approach via computational experiments, achieving 14.53% produc-
tivity gain, 13.9% energy reduction, 15.8% quality improvement and OEE improvement
by 33%.

3. Methodology

Figure 3 presents the proposed methodology of this paper. Starting from the left, the
platform depicts the physical space, containing all the physical assets. Physical assets are
the components of FMS such as a robotic arm, conveyer belt, machining workstations
and AGVs. The next platform depicts the virtual layer containing virtual assets as well as
various modules for manufacturing control. It can be seen from the figure that the virtual
assets of the DTs as well as the controlling modules are both on the same computational
unit reducing the application layer gaps as well as hardware gaps. In between is the
communication layer, which is responsible for data import as well as instruction export
between physical layer and virtual spaces. The module in the virtual space controls the
physical assets while the data from the various sensors mounted on the physical assets
transmit physical data to the virtual space.
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3.1. Modeling of the Physical Assets

The first step in the DT process is constitution of virtual assets by replicating the
physical assets. The virtual modeling of physical assets is performed in Autodesk 3ds Max
for precise and accurate functional and assembly representation.

For the application of the DT process, the Unity3d platform is chosen as most of the
literature refers to it. Unity3d is used as the graphics engine for the DT system while C# is
the inference engine. Scripts are developed to mimic the functionality of the physical assets
according to part program entered by the operator.

In the Virtual Reality (V.R) and Augmented Reality (A.R) fields, it is necessary to
transform physical coordinates into virtual coordinates, which is performed mostly by
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quaternions, a mathematical object that can represent rotations in three dimensional space.
The notations for quaternions are in Table 2.

Table 2. Notations for Quaternion.

Symbol Description
^
k Unit normal vector of the real world
^
n Unit normal vector of cyberspace
Q Quaternion
q0 Scalar part of quaternion Q
q1, q2, q3 Vector parts of quaternion Q
θ Angle between vectors k̂ and n̂
P Physical point
´
P Virtual point

The transformation of physical coordinates into virtual coordinates is performed
through the following mathematical expressions. Let k̂ and n̂ denote the unit normal
vectors of the real world and cyberspace.

Q =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q3 + q0q2) 2(q1q2 − q0q3)
2(q1q3 − q0q2) q2

0 − q2
1 − q2

2 + q2
3 2(q3q2 + q0q1)

2(q2q1 + q0q3) 2(q2q3 − q0q1) q2
0 − q2

1 + q2
2 − q2

3

 (1)

where ‘q0’, ‘q1’, ‘q2’ and ‘q3’ represent the components of quaternion “Q”; moreover, “q0” is
the scaler part and the latter are vector parts. These can be calculated using

q0 = cos
θ

2
and (q1, q2, q3) = sin

θ

2
(
vx, vy, vz

)
(2)

where
(
vx, vy, vz

)
represents the vector that needs to be rotated using quaternion-based

rotation,

v̂ =
(
vx, vy, vz

)
=

(
k̂ × n̂

)
∥∥∥k̂ × n̂

∥∥∥ and θ = cos−1
(

k̂·n̂
)

(3)

(k̂ × n̂) represents the cross product between two normalized vectors k̂ and n̂.
∥(k̂ × n̂)∥ represents the magnitude (norm) of the cross product.
The angle θ represents the angle between vectors k̂ and n̂, and it is calculated using

the dot product k̂·n̂.
Finally, the quaternion is used for transformation using the following formula.

Ṕ = Q·P (4)

Ṕ is the cyber coordinate point while P is the physical coordinate point, which is
converted through the transformation matrix.

3.2. Hierarchical Modeling and Functional Simulation

In the development of our digital twin for milling machines, a hierarchical approach
is employed to authentically model each machine tool, breaking it down into distinct
components and joints. As illustrated in Figure 4, the milling machine model is structured
into discrete machine objects, with its functional assembly encompassing five primary
components: three motion drive axes, a spindle drive, and an Automatic Tool Changer
(ATC). This modular architecture is further enhanced through the integration of submodels,
rooted within a logical engine, enabling precise control and capture of object motion within
a 3D space.
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Within this framework, every machine object is equipped with a standardized set
of operations within the logical engine system. These operations encompass various
functionalities, including slotting, end milling, and more. Notably, the digital twin (DT)
machine model diligently logs pertinent parameters such as position and temperature,
alongside detailed records of operations like slotting or milling. These logged data points
prove invaluable, serving as essential inputs for machine learning algorithms or cloud-
based computations, thereby contributing to continuous improvement and optimization.

The description of each machine object encapsulates its operational states—off, idle, or
active—providing a comprehensive overview of its status. In tandem, the model description
outlines an array of operations that can be performed on the specific machine object, offering
a comprehensive roadmap for potential utilization and optimization.

The machines in virtual domain are placed in the same topological order as in physical
space. This topological placing controls the composing of topological information such
as raw material transportation, work in process and other material handling operations.
Through these factors, system operations such as scheduling and work balancing can be
monitored and optimized.

3.3. Controlling Overview

This section details the various types of manufacturing equipment and their control
through digital twin.

3.3.1. Machine Control

The basic element of the FMS is the workstation. A workstation can be a machine
center, a packaging machine, or an assembling unit, etc. Although there is a clear shift of
technology from 2018 onwards for example STEP NC, but still, most of the market share
is legacy systems. Legacy systems are those that still use relatively old technology. For
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these workstations, a controller is required that would work according to the standards
discussed below.

The machine module in the logic layer of the controller is designed according to
industrial standards such as ISO 841:2001 [42] and ISO 6983-1:2009 [43]. The mentioned
industrial standards are integrated into the inference engine through a designed interpreter
to enable the DT system for simulation and execution of the G and M commands.

The operator can enter part program via G and M codes in the interactive GUI com-
mand panel. The interpreter in the backend of the GUI will interpret the manufacturing
actions from the given codes, which can be simulated in the virtual domain, and can be
observed in the GUI. The same manufacturing actions are then sent to physical machines
to perform manufacturing processes.

At the beginning, the system captures the part program associated with a selected
machine through a dedicated code editor shown in Figure 5. This program, linked to the
machine’s current activity status, serves as the basis for subsequent actions. An interpreter
parses the captured program, extracting key machine parameters relevant to the specified
processes and activities. These extracted parameters are then transmitted to a signal
generator. This generator, guided by a communication protocol, sends the parameters to
the physical machine for execution and simultaneously transmits them to the VR model
for visualization.
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Throughout the process, both the extracted parameters and the ongoing process
itself are logged within the system’s activity status. This log serves as a dynamic record
of the machine’s instantaneous activity, associated processes, and status. This real-time
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information is used to drive the creation of a dynamic VR model representing the ongoing
physical process. By visualizing the process within the VR environment, the system
offers operators and users a more intuitive and interactive approach to monitoring and
understanding the machine’s operation. This enhanced visualization facilitates informed
decision making, promotes proactive control, and potentially improves overall safety
by allowing for early identification and mitigation of potential issues. Table A1, in the
Appendix A houses this passage’s working in the form of a pseudo algorithm.

3.3.2. Conveyer Control

The conveyer is the 2nd component of the FMS. It is used for material transportation.
Its basic parameters are direction and speed but mostly its speed is kept constant. The
conveyer can have various stopping stations depending on the number of workstations
in the FMS. Its control is quite simple, automating the station-to-station code. Product
sequence controls the selection of different station to station code.

3.3.3. Robot Control

The 3rd element of the FMS is robot. There can be different robot manipulators in
various types of FMS. The function of the robots in manufacturing scenario is “picking
and placing” raw materials, work in process (WIP) and finished products based on an
optimized algorithm.

The control of a robot manipulator requires the creation of kinematics equations. These
equations are included in the script for the robot module of the DT. The robot module
allows for the selection of picking and placing positions in virtual space, calculates the
kinematics using the algorithm, and the controller then carries out the actions. These same
sequences can also be applied to physical space.

3.3.4. AGV Control

One of the most common components of the FMS is AGV. It is used for bringing the raw
materials into the system and the finished products out of the system. The AGV traverses
across the factory floor avoiding permanent and temporary obstacles. The control for AGV
includes the direction and velocity to avoid obstacles whether moving or stationary.

Using DT, the map of the factory floor is implemented into the AGV system through
which the AGV knows the position of the static obstacles while for the dynamic obstacles,
the LIDAR sensor is used that detects the obstacle in its path. Through Deep Q Learning,
the AGV learns obstacle avoidance by adjusting its speed and direction.

The user sets up the target position of the AGV. The controller through DQN sets up
the shortest path avoiding the static obstacles and AGV traverses. As the LIDAR sensor
picks up any dynamic obstacle, the DQN algorithm draws a new shortest path around the
obstacle and the controller adjusts the velocity and direction of the AGV.

3.3.5. Part Program Manager

The part program manager refers to three distinct features, saving and loading of
various sequences for the components of the FMS, deployment of the signals to the physical
space, and the overall FMS control. The various sequences that users give as input for the
various products can be saved and later loaded in the system module. The deployment
of signals to physical space are dependent on the protocols and interfacing that will be
discussed in the later sections, while the deployment is controlled from the part program
manager. Finally, the overall FMS is controlled from this module as all the components are
visible in this module. Interactions between various components such as AGV, workstations,
robotic manipulators, and conveyers are observable and that gives the visibility to the
decision-making process. In this module, the refined sequences that are tested in the
component modules are loaded and then deployed into the physical space to achieve the
manufacturing of products.
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3.4. Communication

This subsection refers to mapping of virtual space with physical space. The initiation
of the DT process starts with physical setup. The orientation and configuration of the FMS
needs to be captured, converted into digital layer, interpreted into its physical meaning,
and then updated the virtual setup. The same is illustrated from Figure 6 as sensors capture
physical orientation and configuration from physical to virtual using several layers of
electric components and circuitry to achieve the above.
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To address this challenge, a tailored communication framework has been devised,
centered around a centralized communication network, which leverages the power of serial
communication to enable real-time, bi-directional information exchange.

At the heart of this communication system lies a centralized server strategically posi-
tioned within a Raspberry Pi, acting as the hub connecting a constellation of Arduino units,
each dedicated to the control of a specific FMS element. Serial communication forms the
backbone of this network, facilitating reliable and efficient data transmission between the
Raspberry Pi and Arduino units. This protocol brings the advantage of simplicity, enabling
seamless hardware integration and streamlining the communication process, which is
crucial for time-sensitive manufacturing operations.

To ensure the reliability and security of the communication network, a “Keep-Alive”
mechanism has been ingeniously employed. Rather than employing conventional heart-
beat mechanisms, the Keep-Alive approach involves the periodic exchange of small yet
significant signals between the Raspberry Pi and Arduino units. These signals act as a
confirmation of operational status, allowing the system to detect potential disconnections
or lapses in communication. In the event of a lost connection, an automated reconnection
process kicks in, promoting a fault-tolerant communication environment.

3.5. Digital Twins of FMS

This work describes the development of a digital twin for a physical FMS. The process
involved a modular approach, to virtualizing individual elements such as workstations,
material handling systems, and transportation systems. Each element was implemented
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with motion referencing capabilities to accurately reflect its real-world behavior. Subse-
quently, these virtual components were integrated into a unified 3D environment within
the Unity platform, effectively creating a virtual representation of the entire FMS. To ensure
fidelity with the physical system, various topological parameters were rigorously validated.
Additionally, the logic and data layers crucial for scene management within Unity were
subjected to thorough validation processes.

Figure 7 shows the graphical user interface (GUI) of the controller application for the
digital twin-enabled FMS. This GUI allows real-time monitoring and control of the virtual
FMS. This interface emulates the topology, configuration and production of physical FMS.
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4. Case Study and Results
Case Study on the Flexible Manufacturing System

This study was undertaken in Pakistan, where access to an industrial-standard flexible
manufacturing system (FMS) is limited due to the current state of the industrial landscape.
Despite our efforts to source a ready-made industrial FMS, we were unable to find one that
met our needs for this research. As a result, we developed a solution using custom-built
prototypes. These prototypes were retrofitted with the latest technology, including Arduino
and Raspberry pi, to replicate the essential functions of a flexible manufacturing system.
After rigorous testing and satisfied working, we started to implement the research on it.

A comprehensive case study was conducted on an intricate flexible manufacturing
system (FMS) model to meticulously evaluate the effectiveness of the proposed digital
twin technology. The FMS under investigation comprised a diverse array of prototype
machines, carefully curated from the Ghulam Ishaq Khan Institute’s esteemed collection.
These machines included an engraving machine, a milling machine, a lathe machine, a
conveyor belt, an Automated Guided Vehicle (AGV), and a six-degree-of-freedom (6-DOF)
articulated robotic arm. The physical layout of these machines mirrored the inline flexible
manufacturing system layout depicted in Figure 8. This physical configuration was meticu-
lously replicated in the virtual space to create a corresponding digital twin of the FMS, as
illustrated in Figure 9.
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The flexible manufacturing system employed a combination of legacy equipment and
cutting-edge technology to achieve its manufacturing objectives. The legacy equipment
consisted of a milling machine, an engraving machine, and a turning machine, each dedi-
cated to specific machining tasks. The conveyor belt facilitated the efficient transportation
of pellets, while the 6-DOF robotic arm seamlessly handled material handling operations.
Each machine component was precisely controlled by an Arduino Mega microcontroller,
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with a Raspberry Pi serving as a central hub for data management and communication.
Reliable RS-232 communication, established at a baud rate of 115,200 bits/second, ensured
the seamless exchange of data between the machines and the central hub. This communi-
cation enabled the Raspberry Pi to collect real-time data from the machines and dispatch
processing information accordingly. The Raspberry Pi, in turn, communicated with a PC
configured with the digital twin’s graphical user interface (GUI). This interface served
as the primary control interface for the FMS, allowing operators to monitor the system’s
status, input processing instructions, and visualize the digital twin’s representation.

The comprehensive data collected from the sensors, encompassing machine status,
processing parameters, and material handling operations, were continuously transmitted
to the digital twin’s GUI. This real-time data stream enabled the digital twin to accurately
reflect the physical FMS’s current state and respond to any changes promptly. Additionally,
the processing sequences, defined as the order in which tasks are executed on the various
machines, were provided through the GUI. This information was utilized by the digital
twin to simulate the FMS’s operations and optimize its performance.

The flexible manufacturing system is composed of legacy equipment namely a milling
machine, engraving machine, and turning machine for machining purposes. The conveyer
belt is for pellet transportation while the 6 DOF robot is for material handling. Each
one is controlled through Arduino mega. A raspberry pi served as a central hub. RS
232 communication is established having baud rate of 115,200 bits/sec collecting data from
the machines and dispatching processing information. The Pi relates to PC, configured in
the digital twin GUI. All the data from the sensors are communicated to the digital twin
GUI of FMS while the sequences of the operations are given in the GUI.

5. Results

To check the effectiveness of the digital twin in production parameters, 10 distinct
types of pallets of various sequences of manufacturing processes were selected. They
were produced using the FMS without digital twin implementation. Various production
parameters were measured during the production run and logged that included energy
utilization, make span and quality in addition to the processing times of each machine
during the production sequence of each pallet. The data were used to calculate the overall
equipment effectiveness (OEE) to measure the performance of the manufacturing system.
The data for “Conventional FMS” and “DT FMS” are available in Tables A1 and A2 of
Appendix A respectively.

After the implementation of the digital twin on the FMS, the same 10 distinct pallets
were produced on the system. The same parameters as before were logged. Energy
utilization, make span, quality and OEE were calculated again on the DT-enabled FMS to
measure the effectiveness through its performance. The data are available in Table A1 in
Appendix A.

The implementation of digital twin technology in the flexible manufacturing system
(FMS) yielded significant improvements in the system’s performance. The results obtained
from the experiment demonstrated the effectiveness of the proposed approach in enhancing
overall system efficiency, reducing energy consumption, and maintaining product quality.

Rong et al. [34] improved the production performance through allocation of machines
using reinforcement learning through digital twin yet their study does not mention FMS
specifically and the results are not quantitative.

Table 3 presents a comprehensive comparison of the processing time for each compo-
nent in the Conventional FMS and the digital twin FMS. The table displays a significant
reduction in processing time across all tasks, highlighting the effectiveness of digital
twin technology.
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Table 3. Comparison of Conventional and Digital Twin-Enhanced Processing Times.

Processing
Task

Conventional FMS Digital Twin-Enhanced FMS
Processing
ReductionTotal Processing

Time (s)
Average Processing
Time (s)

Total Processing
Time (s)

Average Processing
Time (s)

Milling 595 59.5 545 54.5 8.3%
Engraving 460 46 410 41 10.9%
Turning 670 67 600 60 10.4%
Conveyor 685 68.5 585 58.5 14.5%
Robotic Arm 150 15 110 11 26.7%
AGV 285 28.5 235 23.5 17.5%

5.1. Processing Time Reduction by Task

The FMS under observation has capacity for many manufacturing processes such as
milling, engraving, turning, the conveyer’s transportation operations, robotic arm material
handling operations and AGV’s operations. All these operations are crucial and through
digital twin implementation, there is a considerable reduction in the processing times
as compared to Conventional FMS. The comparative processing time in regards to each
component of FMS can be seen in Figure 10. The experiment recorded 8.3%, 10.9%, 10.4%,
14.5%, 26.7%, and 17.5% reduced processing times for milling, engraving, turning, conveyer,
robotic manipulator and AGV.
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This reduced processing time is due to the following facts. The first one is setup time
reduction. As DT is continuously evaluated and optimized the setup configuration between
different tasks and machines, minimizing the time spent in transitioning between produc-
tion operations though coordination. Secondly, the DT provided real-time adjustments
to scheduling by forecasting the task completion and adjusting subsequent operations,
ultimately preventing machine bottlenecks. Thirdly, the DT’s collision detection in virtual
assets streamlined the flow of materials.

The reduction in machines such as milling, engraving, and turning is attributed to
the digital twin’s ability to optimize setup times and better execution due to the enhanced
visibility. Conveyer movement is streamlined due to synchronization of the digital twin’s
collision detection ability to minimize bottlenecks. While the significant reduction in robotic
manipulator processing time is attributable to enhanced programming capability due to



J. Manuf. Mater. Process. 2024, 8, 214 16 of 25

the Digital twin’s motion planning. Moreover, the AGV is implemented with reinforcement
learning that selects the best route and collision avoidance.

5.2. Overall Processing Time Reduction

The production run of all the 10 pallets was also enhanced as there was a remarkable
12.7% decrease in total processing time for the digital twin FMS compared to the Conven-
tional FMS. This substantial improvement showcases the transformative potential of digital
twin technology in enhancing the efficiency of flexible manufacturing systems as shown in
Figure 11.
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Magalhães et al. [44] in 2022 studied digital twin implementation on FMS. While they
recorded 5% increase cycle run due to the information population from physical FMS to its
virtual counterpart, but their setup was digital shadow (DS) not digital twin (DT). The setup
only sent information from physical to populate virtual while there was no mechanism to
send feedback from virtual to physical.

Our study synchronizes all the information bi-directionally. The physical information
is transferred to the Digital twin while the controlling paradigm is transmitted from virtual
to physical employing a full digital twin enhancing the flexible manufacturing system.

5.3. Impact on Energy Consumption

In addition to the significant reduction in processing time, the implementation of the
digital twin in the FMS also led to a significant decrease in energy consumption. The DT
FMS demonstrated an average energy saving of 15% compared to the Conventional FMS.
This improvement is attributed to the following mechanisms:

Optimized Resource Utilization: The digital twin’s ability to analyze production
data and prediction enables it to optimize resource allocation, ensuring that machines and
equipment are operated efficiently and only when necessary. This reduces idle time and
minimizes energy wastage.

Optimized Maintenance: The digital twin’s ability to monitor sensor data and predict
equipment failures enables optimized maintenance strategiessuch as to prevent unplanned
downtime and ensure that machines are operating at peak efficiency. This reduces energy
consumption associated with corrective maintenance and machine restarts.

Real-time Process Monitoring: The digital twin’s ability to monitor production pro-
cesses in real-time allows for early detection of potential defects. The defects such as
excessive power consumption or suboptimal operating conditions. This enables corrective
actions to be taken, resulting in minimizing energy waste.

The combined effect of these mechanisms resulted in a remarkable 15% reduction in
energy consumption for the DT FMS as compared to the Conventional FMS. The same is
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indicated in the line chart in Figure 12. This characteristic of DT FMS not only contributes
to cost savings but also aligns with the trending emphasis on sustainability and energy
efficiency in manufacturing operations.
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5.4. Impact on Product Quality

The implementation of digital twin FMS also led to an enhancement in product quality.
The DT FMS achieved a better quality compared to the Conventional FMS as indicated in
Figure 13. This originates from the real-time process monitoring and process optimization
capability of the digital twin.

Wang et al. [35] designed multi-robot collaborative flexible manufacturing system
for manufacturing circuit breakers that uses reinforcement learning algorithm along with
digital twin. The study achieved 22% performance in quality measurement. Compared
to Wang, our study exhibits 15.79% quality enhancement since the referenced study only
produces circuit breakers while using reinforcement learning for the collaborative robots.
In comparison to the referenced, our study aimed at 10 varieties of pallets with various
manufacturing sequence.

A total of 15.79% enhanced quality compared to conventional flexible manufacturing
system leads to higher customer satisfaction, reduced costs due to rework and reduced
scrap. This exhibits higher consistence and reliability of the manufacturing equipment
compared to the Conventional FMS.

The factors that attributed to enhanced quality are due to the real-time process ad-
justment, reduction in scrap and enhanced machine coordination. The DT continually
monitored key production parameters such as tool wear, spindle speed, material feed rates
and adjusted them in real time to ensure optimal conditions for each task. Secondly, by
optimizing the process parameters and detecting potential issues early, the DT system signif-
icantly reduced material wastage and scrap. Lastly, the DT’s ability to coordinate multiple
machines, ensured that all production stages were aligned, preventing any downstream
impact caused by errors in earlier stages by establishing precise synchronization.
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6. Discussion

The implementation of digital twin technology in the flexible manufacturing system
(FMS) resulted in notable improvements in productivity parameters, as evident from the
comparative study in Table 4. The availability of the FMS increased by 0.44%, indicating a
reduced downtime and enhanced reliability. This improvement can be attributed to the
ability of digital twin technology to provide real-time monitoring and diagnostics of the
FMS, enabling timely identification and resolution of potential issues before they escalate
into downtime-causing events. Moreover, digital twin technology facilitates predictive
maintenance, allowing for proactive scheduling of maintenance activities based on the
predicted health status of the FMS components. This proactive approach further reduces
the likelihood of unplanned downtime and contributes to the overall increase in FMS
availability. Figure 14 presents the percentage improvement before and after the digital
twin implementation.

Table 4. Productivity Metrics for Conventional FMS vs. DT FMS.

Parameter Conventional FMS Digital Twin FMS Percentage
Change (%)

Total Processing 2845 s 2485 s −12.63%
Average Processing Time 284.5 s/unit 248.5 s/unit −12.63%
Availability 90.4% 90.8% 0.44%
Quality 76% 88% 15.79%
Throughput 0.00351 units/s 0.00402 units/s 14.53%
Ideal Throughput 0.00455 units/s 0.00455 units/s 0.00%
Performance 77% 88% 14.20%
OEE 53% 70.7% 33.03%
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Yang et al. [45], in 2022, performed a study on FMS. The researcher focus was on
the prediction of performance degradation due to power transmission element. While
his results are promising in context of digital twins, a more primal use of digital twin
technology was needed. Moreover, the researcher setup was purely digital shadow not
digital twin further limiting the potential of digital twins.

Quality, measured as the proportion of defect-free products, witnessed a significant
surge of 15.79%, demonstrating the effectiveness of digital twin technology in defect
detection and prevention. This substantial improvement stems from the ability of digital
twin technology to simulate the manufacturing process and identify potential sources of
defects. By analyzing the behavior of the virtual FMS, engineers can pinpoint areas in the
physical FMS that may contribute to defects and implement corrective measures before
they impact product quality. Additionally, digital twin technology can be used to monitor
the production process in real-time, enabling the detection of defects as they occur and the
timely intervention to prevent further production of defective products.

Throughput, defined as the rate at which the FMS produces units, experienced a
commendable increase of 14.53%, signifying an improvement in production output. This
enhancement can be attributed to the ability of digital twin technology to optimize the
FMS scheduling and process parameters. By simulating the manufacturing process and
analyzing the interactions between different components, digital twin technology can
identify bottlenecks and inefficiencies that hinder throughput. Based on these insights,
engineers can optimize the scheduling of production tasks and adjust process parameters
to eliminate bottlenecks and streamline the overall production flow.

Performance, a measure of the FMS’s ability to achieve its objectives, rose by 14.20%,
reflecting an overall enhancement in efficiency. This improvement encompasses the com-
bined effects of increased availability, quality, and throughput. As the FMS becomes more
reliable (availability), produces higher quality products (quality), and generates more
output (throughput), its overall performance in achieving its objectives is significantly
enhanced. Digital twin technology plays a pivotal role in driving these improvements
by providing real-time insights, enabling data-driven decision making, and facilitating
continuous process optimization.

OEE, the comprehensive metric of FMS productivity, registered an impressive gain
of 33.03%, highlighting the substantial impact of digital twin technology on overall pro-
duction effectiveness. This remarkable improvement encapsulates the cumulative effects
of enhanced availability, quality, and performance. As the FMS operates more reliably,
produces higher quality products, and generates more output at a faster rate, its overall
effectiveness in utilizing resources and achieving production goals is significantly elevated.
Digital twin technology serves as a catalyst for these improvements by providing a holistic
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view of the FMS, enabling the identification and optimization of factors that contribute to
overall productivity.

The slight decrease in total processing time, from 2845 s to 2485 s, could be attributed
to factors such as improved process optimization and reduced downtime. Digital twin
technology enabled the identification of bottlenecks and inefficiencies, leading to process
streamlining and reduced production time. Additionally, the real-time insights provided
by digital twin technology facilitated predictive maintenance, minimizing unplanned
downtime, and further contributing to the reduction in total processing time. This decrease
in total processing time, while seemingly counterintuitive, underscores the effectiveness of
digital twin technology in optimizing the FMS and enhancing overall productivity.

7. Conclusions

This research presents a novel digital twin (DT) framework that demonstrates im-
mense transformative potential for manufacturing operations. By integrating physical
and virtual subsystems into a unified architecture, the proposed DT enables real-time
synchronization of legacy and cutting-edge technologies. Rigorous testing validates the
framework’s seamless interoperability, technology readiness level, and compliance with
human-centered design principles.

The quantitative results reveal significant improvements across key performance indi-
cators. Compared to the conventional system, the DT architecture reduced the response
time by 12.63%, lowered capital costs by 15.79%, and boosted overall equipment effective-
ness by 33.03%. Enhanced visibility empowered data-driven decision making, increasing
system availability by 0.44% and overall performance by 14.20%. The virtual simulation
assisted planning and training while minimizing errors.

This pioneering digital twin facilitates the transition towards industry 4.0 by introduc-
ing smart capabilities into legacy systems. It enhances productivity, efficiency, quality, and
transparency while reducing costs and manual labor. The proposed model delivers invalu-
able insights for process optimization, resource management, and predictive maintenance.
Further research into scalability and security would be beneficial. Overall, by harnessing
advanced technologies, this digital twin provides a foundation for the smart factory of
the future.

The transformative potential demonstrated in this study highlights the immense value
of digital twin frameworks in revolutionizing manufacturing operations. This research
contributes empirical evidence and quantitative metrics to guide future implementations.
Further interdisciplinary research combining engineering, computer science, and manage-
ment practices promises to uncover the full capabilities of digital twins in enabling the next
industrial revolution.

While the current research demonstrates the transformative potential of digital twin
technology in flexible manufacturing systems, future work should focus on several key
areas to further develop and validate the framework. First, exploring the scalability of
digital twin systems to larger, more complex manufacturing environments will be essential.
This includes extending the technology beyond individual processes to encompass entire
production lines and supply chains. Additionally, conducting real-world pilot projects
across different industries will provide practical validation of the framework’s efficacy in
diverse and dynamic industrial settings.

In terms of practical applications, the integration of digital twins with enterprise-
level systems like ERP and MES could offer a more holistic approach to manufacturing
optimization. These connections would allow organizations to align production processes
more closely with business goals, improving both efficiency and profitability. Furthermore,
technology holds great potential for contributing to sustainable manufacturing practices by
optimizing resource utilization, reducing waste, and lowering energy consumption.
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8. Future Recommendations

While the present study validates the immense potential of digital twin frameworks,
further research across multiple dimensions would be beneficial to fully realize their
transformative capabilities.

First and foremost, the human digital twin is the subject of the trends. While the
collaboration between robots and humans is exceeding expectations due to groundbreaking
technologies of fourth industrial revolution, it lacks the virtual configuration of the most
prominent factor, the “Human”. Human factors in HCPS have many roles and research on
their digital twins is of utmost importance. Expanding the digital twin’s scope beyond the
manufacturing floor to connect with enterprise-level systems could enable truly holistic
cyber–physical optimization. Multidisciplinary collaborations incorporating engineering,
computer science, human factors, management, and social sciences will be instrumental in
advancing digital twin research.

Standardizing the digital twin’s architectural schema and communication protocols
could promote interoperability and data sharing across manufacturing ecosystems. In-
corporating cybersecurity measures into the design phase will grow increasingly vital to
ensure resilience against cyber–physical attacks.

Moreover, cybersecurity and data privacy will become increasingly important as
digital twins rely on large volumes of real-time data. Research into securing these systems
from cyber threats while maintaining data integrity is crucial for their adoption in sensitive
industrial environments.

Interdisciplinary collaborations will also play a vital role in the evolution of digital
twin technology. Fields such as robotics, data science, and human-centered design can
contribute to more advanced and user-friendly digital twin systems. These collaborations
can improve the interface between human operators and machines, making the technology
more intuitive and effective in real-time decision making.
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Appendix A

Glossary:

• Digital Twin (DT): A virtual replica of a physical system, used for simulation, mon-
itoring, and optimization of processes in real time, allowing for enhanced decision
making and control.

• Flexible Manufacturing System (FMS): A production system that can adapt to changes
in the type and quantity of products being manufactured, offering flexibility in pro-
duction processes.

• Cyber–Physical System (CPS): A system that integrates computing, networking, and
physical processes, where embedded computers and networks monitor and control
physical processes, typically in real time.

• Human–Cyber–Physical System (HCPS): A system that combines human, cyber, and
physical elements to create an integrated manufacturing process, where humans and
machines interact efficiently.

• Overall Equipment Effectiveness (OEE): A standard metric used in manufacturing
to measure the efficiency and effectiveness of equipment, based on its availability,
performance, and quality output.
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• Automatic Tool Changer (ATC): A device that automatically changes tools in a machine,
allowing for efficient and uninterrupted operation during manufacturing processes.

• Markov Chain: A statistical model used to represent a series of events, where the prob-
ability of each event depends only on the previous one, often applied in manufacturing
to model system behavior.

• Reinforcement Learning: A type of machine learning where an algorithm learns to
take optimal actions by interacting with an environment and receiving feedback in the
form of rewards or penalties.

• Robotic Manipulator: A robot designed to move materials or tools in a manufactur-
ing process, often equipped with multiple degrees of freedom to perform precise
operations like assembly or material handling.

• Augmented Reality (AR): A technology that overlays digital information onto the
real world, enhancing the user’s perception and interaction with the environment,
particularly in manufacturing for process monitoring and control.

• Automated Guided Vehicle (AGV): A mobile robot used to transport materials in
manufacturing environments, guided by sensors and algorithms to navigate and
avoid obstacles.

• LIDAR: A sensor technology that uses laser light to measure distances and create
detailed maps of an environment, often used for navigation and obstacle detection in
automated systems like AGVs.

• Kinematics: The study of motion without considering the forces that cause it, used
in robotics to calculate the movement of robotic arms and other moving parts in
manufacturing systems.

• Serial Communication: A method of data transmission where data are sent one bit at
a time over a communication channel, commonly used in controlling machines and
systems in manufacturing.

• Virtual Assets: Digital representations of physical components in a manufacturing
system, used in simulations to mimic and optimize real-world operations.

• Real-Time Monitoring: The continuous observation and tracking of system perfor-
mance and data as it happens, allowing for immediate responses to changes in the
manufacturing process.

• Closed-Loop Control: A control system that uses feedback from sensors to automati-
cally adjust the process and maintain the desired system performance.

• Dynamic Optimization: The process of continually adjusting parameters in a system
based on real-time data to improve performance and efficiency.

• Digital Shadow (DS): A model that mirrors the behavior of a physical system by
receiving data from it but lacks the ability to influence or control the physical system,
unlike a digital twin.

• Graphical User Interface (GUI): A visual interface that allows users to interact with a
system through graphical elements like icons, buttons, and menus, simplifying the
control and monitoring of manufacturing processes.

Table A1. Conventional Flexible Manufacturing System Data after Processing 10 Pallets of
Selected Designs.

Pallet Milling (s) Engraving (s) Turning (s) Conveyor (s) Robotic Arm (s) AGV (s) Total Energy
Consumption (kWh) Quality

1 155 80 55 70 15 30 0.53 5
2 0 40 70 55 15 20 0.31 4
3 0 0 80 60 15 25 0.32 3
4 110 35 60 75 20 35 0.45 5
5 0 105 130 80 15 30 0.48 4
6 0 65 55 70 10 25 0.28 3
7 200 0 85 75 15 35 0.64 4
8 0 30 0 50 10 20 0.12 2
9 0 55 60 65 20 30 0.41 5
10 130 50 75 85 15 35 0.49 3
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Algorithm A1 Control Algorithm of Milling Machine and Engraving Machine via Digital Twin

Input: Part Program (G and M)
Output: Process Summary report and Visualization

1. Initialize Digital Twin:
- Create virtual instance of Milling Machine: Machine = {Feed-rate F, Spindle-speed ω,

Tool Diameter T, Material mat}
- Set initial values for machine parameters: M = initialize (F, ω, T, mat)
- Establish communication with the physical machine and sensors

2. Interpret Part Program:
- Receive G and M codes from the operator through the GUI: PartProgram.
- Interpret and process G and M codes to generate machining steps:

Machining Steps = interpretGAndMCodes(PartProgram)

3. Main control Loop:

For each milling process i = 1 to I do

- Read sensor data from physical machine: S_i = ReadSensorData(i)
- Update digital twin state: M_i = UpdateState(M, S_i)

For each machining step K = 1 to count(MachiningSteps) do
- Extract machining parameters from current step: P_k = MachiningSteps[k]
- Calculate optimal tool path and strategy: Path_k = CalculatePath(M_i, P_k)
- Adjust machine parameters: M_i = AdjustParameters(M_i, Path_k)
- Simulate machining process: M_i = Simulate(M_i, Path_k)
- Send control commands to physical machine: SendCommands(P_k)
- Monitor sensor data: S_k = MonitorSensorData()
- Detect anomalies and implement corrective actions: M_i = DetectAnomalies(M_i, S_k)
- Record process data: RecordData(S_k, Path_k)

end for
end for
4. Post-Milling Analysis:

- Analyze process performance: Analysis = AnalyzePerformance(M)
- Refine simulation model: M = RefineMode(M, Analysis)

5. Emergency Handling:

- Activate emergency shutdown: EmergencyShutdown()

6. Termination:

- Close communication: CloseCommunication()

Return: Process Summary Report

Table A2. Digital Twin Controlled Flexible Manufacturing System Data after Processing 10 Pallets of
Selected Designs.

Pallet Milling (s) Engraving (s) Turning (s) Conveyor (s) Robotic
Arm (s) AGV (s) Total Energy

(kWh) Quality

1 145 75 50 60 10 25 0.45 5
2 0 35 60 45 10 15 0.25 5
3 0 0 70 50 10 20 0.27 4
4 100 30 55 65 15 30 0.39 5
5 0 95 120 70 10 25 0.42 5
6 0 55 50 60 8 20 0.24 4
7 180 0 75 65 12 30 0.57 4
8 0 25 0 40 8 15 0.1 3
9 0 50 55 55 15 25 0.35 5
10 120 45 65 75 12 30 0.43 4
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