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Abstract: A multibladed drag-based Vertical Axis Wind Turbine (VAWT) was developed and its
startup dynamics evaluated using wind tunnel tests. The experimental data obtained for the time-
based angular position of the rotor shaft at Aberdeen’s average wind speed of 6 m/s show an
initial rapid acceleration of the VAWT due to the drag force being exerted on the rotor blades. This
acceleration becomes more gradual until the VAWT reaches its peak rotational speed of 85 rpm in
30 s, which corresponds to an operating tip speed ratio (TSR) of 0.42. The operating TSR of the VAWT
was found to be 27% higher than previously reported in numerical studies.

Keywords: vertical axis wind turbine; startup dynamics; multibladed rotor; tip speed ratio; wind
tunnel test

1. Introduction

Vertical Axis Wind Turbines (VAWTs) are a popular choice to harness wind energy in
urban environments where the wind speed and direction are affected by flow re-strictions
(buildings, etc.). Due to sudden changes in wind speed and direction, drag-based VAWTs
are often preferred as their self-starting capability has been reported to be superior to lift-
based VAWTs [1,2]. As drag-based VAWTs come in various different shapes and designs,
their startup dynamics are not well reported in the published literature. The few reported
investigations are almost exclusively on the conventional S-rotor VAWT [3,4]. However,
more modern drag-based VAWT designs have been developed and extensively reported [5].
One such design is the multibladed VAWT [6,7]. Studies carried out on its steady-state
performance have reported a higher operating tip speed ratio (λ) and power generation
from the multibladed VAWT compared to the S-rotor design [8]. In order to ascertain the
commercial viability of the multibladed VAWT, it is of utmost importance to understand
and establish its startup dynamics.

In this study, a 12-bladed drag-based VAWT was developed and its startup dynamics
evaluated. The VAWT was constructed from sheet metal. Experimental testing was carried
out using a subsonic wind tunnel. The results obtained in this study can be used as a ready
reckoner before choosing the site for installing multibladed VAWTs. Thus, the outcomes
of this study have a direct impact on the commercial viability of small-scale drag-based
VAWTs to be used for power generation in urban environments. Moreover, detailed analysis
of the startup dynamics are very useful while calculating the Levelized Cost of Electricity
(LCoE) from multibladed VAWTs as the capacity factor can be accurately measured rather
than predicted.

2. Materials and Methods

A bespoke test facility was developed in order to achieve the objectives of this study.
The test facility consisted of a 1:2.5-scale model of a 12-bladed VAWT and its support
structure. The full-scale VAWT was numerically investigated for its steady and transient
performance in a number of published studies [6,7]. For experimentation purposes, as we
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were restricted by the cross-section of the wind tunnel (450 mm × 450 mm), the height of
the VAWT was 400 mm, while its inner and outer diameters were 400 mm and 560 mm,
respectively. The VAWT was fabricated in-house using 1.6 mm thick cold-rolled aluminum
sheets and is shown in Figure 1a. The blades were aerodynamically designed based on
velocity triangles as shown in Figure 1b. The portable support structure of the VAWT was
made of hollow square aluminum sections of 20 mm × 20 mm and is shown in Figure 1c.
A rotary encoder (far right of Figure 1d) was utilized to measure the angular position
of the VAWT, exhibiting a frequency of 10 Hz. The encoder was connected to a PC with
software installed to record the angular position data with respect to time. The accuracy in
measuring the time and angular position of the shaft was 100 ms and 0.05◦, respectively.
A wind speed of 6 m/s, which is Aberdeen’s average wind speed, was set in the wind
tunnel. As for the experimental procedure, the VAWT was held in-place until the desired
wind speed was attained from the wind tunnel and verified using a digital manometer.
Following this, the VAWT was set free to gain angular momentum until a steady rotational
velocity was attained.
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Figure 1. Experimental setup: (a) multibladed VAWT; (b) blade design; (c) VAWT mounted on its
support structure; (d) VAWT wind tunnel setup.

3. Results

The data obtained through the use of the test facility is shown in Figure 2. Figure 2a
depicts the angular position of the VAWT with respect to time. It can be seen that starting
from rest, the VAWT completes its first rotation in 5.6 s. The counter is then adjusted to zero
to display the second revolution of the VAWT. The second revolution takes 1.9 s, clearly
demonstrating angular acceleration of the VAWT. Similarly, the 3rd revolution is completed
in 1.4 s, the 5th in 1.2 s, and so on. It takes almost 30 revolutions of the VAWT until it
reaches its stable operational speed and it takes about 30 s to reach there. The missing
data between 0◦ and 360◦ in this figure are due to the measuring frequency of 10 Hz of
the rotary encoder. Figure 2b depicts the rotational speed of the VAWT. It can be seen
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that as the VAWT starts to rotate, its rotational speed increases with time. The gradient of
the curve continues decreasing, indicating a reduction in the angular acceleration of the
VAWT. Regardless, the VAWT continues accelerating until about 30 s, when it reaches its
peak rotational speed of 9 rad/s. Following this, the VAWT rotates at a constant rotational
velocity. Thus, the steady operational speed of this VAWT at 6 m/s wind speed is 9 rad/s.
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Figure 2. Experimentally recorded data: (a) angular position; (b) rotational speed of the multi-
bladed VAWT.

Further analyzing the experimentally recorded data, the angular velocity (ω) in rpm
and the tip speed ratio (λ) were calculated. In order to smooth out the data shown in
Figure 2b, a moving average window of 20 counts was used, and the results obtained
are shown in Figure 3. It can be seen that the multibladed VAWT reaches a peak angular
velocity of 85 rpm in about 30 s. During the startup of the VAWT, the tip speed ratio
continues increasing until a peak tip speed ratio of 0.42 is achieved. This clearly indicates
that the startup of drag-based VAWTs comprises two stages, i.e., an initial acceleration
followed by a plateau region (steady operation). Published studies using numerical meth-
ods [6,7] have predicted operational tip speed ratios of 0.33 for the same multibladed VAWT
design; however, the experimental investigations of this study clearly show that the actual
operational tip speed ratio is 0.42. As the numerical studies are based on a number of
assumptions and simplifications like perfectly smooth blades and turbulence modeling,
the results presented in this study should be used for calculating the power output and
LCOE from multibladed VAWTs.
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Figure 3. Startup characteristics of the multibladed VAWT. 

4. Conclusions 
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Figure 3. Startup characteristics of the multibladed VAWT.

4. Conclusions

A multibladed VAWT’s startup dynamics are investigated experimentally using wind
tunnel testing at Aberdeen’s average wind speed. The results obtained clearly show that
when the VAWT starts from rest, air-induced rotation forces it to accelerate, increasing
its angular speed and tip speed ratio. This acceleration continues decreasing during the
startup of the VAWT. After 30 s of acceleration, the VAWT reaches its peak operational
speed of 85 rpm and peak tip speed ratio of 0.42. Thus, the VAWT demonstrates a two-stage
startup process. Its measured tip speed ratio is 27% higher than previously reported in
studies utilizing numerical methods. With a higher tip speed ratio, the capacity factor of the
VAWT is expected to be higher, leading towards more power generation and a reduction in
its LCoE.
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