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ABSTRACT
SYNTHESIS OF STOCHASTIC LEARNING AUTOMATA 

by
RICHARD G NEVILLE

Over the past two decades, considerable in terest has developed 
in the field of stochastic  learning automata theory and, consequently, 
the application areas for learning sy stem s. In control engineering, 
they are viewed as a m eans to im plem ent optimal adaptive con tro llers  
for situations where little  or no a priori inform ation on the plant is 
available.

Stochastic automata with a variable structure operate by m eans 
of a global random search , interacting with the environm ent to im prove 
the action strategy towards optimum perform ance. They rep resen t 
therefore a novel and attractive solution to a large c la s s  of problem s 
involving high order uncertain ties.

At the sam e tim e, resea rch  has p rogressed  in digital stochastic  
computing, in which variab les are represented  by random pulse trains, 
enabling analogue functions, e ffectively  transform ed into Boolean  
logic operations, to be perform ed at high speed by conventional digital 
hardware. T hese techniques w ere seen as ideally suited to the 
practical im plem entation of stochastic  learning automata.

This project is  seen  as the convergence of these two lin es of 
activity , developing hardware automaton designs and devising  
applications to sim ulated and rea l system  param eter optim isation  
problem s. To provide continuity with previous theoretical studies  
and a lso  lay the n ecessa ry  foundations of hardware system  design  
experience, basic tw o-state sy stem s w ere designed and constructed  
in itially . A standard modular design evolved which was 
incorporated in a h ierarch ica l structure. This design philosophy 
enabled large state order automata to be im plem ented, providing a 
powerful tool for the optim isation of m ultivariable, m ultim odal 
system s.

A prototype h ierarch ica l structure 128-state  automaton has 
been constructed and tested in both static experim ents and a real 
p rocess control application, based on a sm a ll-sc a le  therm al system . 
The hardware learning automaton approach has been shown here to 
perm it the effective , econom ic rea lisa tion  of h igh-speed rea l-tim e  
system  con tro llers.

(i)



CHAPTER 1

BASIC CONCEPTS OF STOCHASTIC LEARNING AUTOMATA

1 . 1 Introduction

One of the potential application areas for stochastic  
(1 - 4)computing research  is  the im plem entation of learning

sy stem s for optim al control by m eans of stochastic  
(51automata. ' F o r  many control system  problem s, the 

c h a ra cter istics  of the p ro cess  are w ell understood and a 

com plete m athem atical description  of both p ro cess  and

control strategy is p ossib le . Conventional program m ed-
/£>\

com puter control techniques^  ̂ can then be used.

A large c la s s  of problem s e x is ts , how ever, which  

cannot be solved by these techniques, due to incom plete  

knowledge of plant dynam ics, or operation in a random or 

"noisy" environm ent. If the probabilistic nature of the 

uncertain ties can be determ ined, stochastic  control theory 

may provide a solution, but if, a s is  often the c a se , the 

uncertain ties are of a high order, no conventional theoretical 

fram ework e x is ts . It is  in just such a problem  area that a 

"learning" contro ller , which actually  develops the requisite  

control action by way of rea l-tim e  on-line interaction with 

the plant, finds its application.

Stochastic automata have been shown previously^ ' ' to

be suitable for the m odelling of learning sy stem s in general,

and m ore recen tly  they have been introduced into the field  of
control engineering. This project a im s to combine

the resu lts  of e a r lie r  work in hardware stochastic  computing

systems^^'^' and extensive sim ulation studies of learning  
(19 - 21)automata' ' in order to r e a lise  their potential in

practical control applications for the f ir s t  tim e.

B efore proceeding to describe the syn th esis techniques 

which /



which have brought about the im plem entation of hardware 

stochastic  learning automata sy stem s, it is  fir s t  of all 

n e c essa ry  to define what exactly  is  m eant by "automaton” , 

the nature of the "environment" in which it operates, 

and the manner in which it can be said to "learn".

This chapter a lso  contains an exposition of the relevant 

techniques of digital stochastic  computing sy stem s. This 

in turn w ill lay the foundations for the follow ing chapters 

which detail the use of these techniques in the actual 

syn th esis and operation of hardware automata. In 

general, the notation used here w ill follow  c lo se ly  that which 

is  standard practice in the literatu re.

1. 2 The Automaton

The concept of "automaton" in the context of the work 

reported here can be defined as follow s. An automaton is  

essen tia lly  a device which is  capable of receiv in g  input sign als  

or resp on ses at d iscrete  in tervals of tim e and determ ining  

one of a finite number of output actions by m eans of som e  

interm ediate decision -m aking p ro cess  acting on its internal 

structure or state.

The various elem ents of this broad definition can be 

stated m ore p r e c ise ly  as follows;

(i) The input to the automaton, denoted 

x(n), is  an elem ent of the set

X '  K ’ ==2' - - - \ j

where k may be finite or infinite.

(ii) The state of the automaton, denoted 

(^(n), is  an elem ent of the set

i  '  0 2 -  - - - 0 s }  ■ s is  finite

(iii) /



(iii) The output action of the automaton, denoted 
a(n), is  an elem ent of the se t

- - a r is  a lso  finite

(iv)

In addition, two functional relationsh ips ex is t  

which relate  the above variab les and com plete  

the definition of the automaton

The transition function F re la tes  the 

current state and input at stage n to 

the next state at stage n+1. 

i. e. , 0 (n + l) = F l ^ i n ) ,  x(n)j

The output function G re la tes  the current 

state of the automaton to the resu lting  output 

action at stage n. 

i. e , ,  a(n) = G |0 ( n ) j

The automaton is  therefore defined m athem atically  by a

(V)

quintuple 0 ,  A , F , sum m arised  in

F igu re 1 .1 . The functions F and G m a y b e  

d eterm in istic  or stochastic  m appings. If F and G 

are both determ in istic , the automaton is  denoted a 

"determ inistic  automaton", in which ca se  the next state and 

output action are uniquely defined for a given current state and 

input. The work to be described  here, how ever, w ill 

concentrate on the stochastic  automaton, in which F or G, 

or both, are stochastic  functions. In this c a se , there are  

only probab ilities a ssocia ted  with the su ccessio n  of sta tes  

and output actions.

State transition  probabilities are defined as follows:

^ij  ̂ |0 (n + l)   ̂ /  0(^) = 0i* = x j

denotes the probability that the automaton m oves from state  

0 .  to state 0 .  for a given input x.

e lem en ts /

The p.. are the 
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elem en ts of an s x s transition m atrix  

i. e . ,  0 (n + l) = T 0(n)

T,

Since S Py = 1 for a ll i ,  in order to p reserve  

probability m easure, it follow s that T is  a stochastic  

m atrix.

In the ca se  of a fixed structure automaton, the p.. have
ij

constant values. However, it is  frequently found useful to 

update the transition probabilities at each stage so that the 

automaton can im prove its perform ance in som e resp ect.

In this c a se , the p.. are  a function of n. and the 

automaton is  said to have "variable structure".

An alternative representation  of the structure of the 

automaton can be given in term s of the total state probabilities:

7T.(n) = P r  |(^(n) =

or the total action probabilities:

p.(n) = P r  |a (n )  = a . j

Again, to p reserv e  probability m easure, it follow s that

L tt = S p  = 1 .  It is  frequently the ca se  that G denotes 
i i i i
a one-to -on e mapping between sta tes  and action s, in which 

ca se  7r(n) and p(n) are equivalent.

The choice of representation  depends on whether

transition  or total state probability inform ation is  m ore

important for a given problem . However, an important

consideration  to bear in mind is  that the updating p ro cess  for
2the la tter  ca se  involves few er quantities (s, rather than s ), 

which becom es a sign ificant factor in the im plem entation of 

large  structures.

1. 3 /



1. 3 The Environm ent

Within the field of learning automata theory, the 

"environment" can be defined as the general medium in 

which the automaton itse lf  is  required to operate. The 

environm ent thus en com p asses all those external factors  

which influence the structure or behaviour of the automaton.

It accepts the output actions of the automaton as inputs, and 

produces output resp on ses which are in turn fed back to the 

automaton. The environm ent is  therefore characterised  

by three se ts  of variab les form ing the trip le ^A, C, x}w h ere  

A and X are resp ectiv e ly  the action and input se ts  of the 

automaton as defined above, and C is  a se t  of "penalty 

probabilities" , C = ' ^2 ~ ~ ~ ^ r |  ' practice,
it is  convenient to concentrate on the particular automaton- 

environm ent configuration in which the se t X has just two 

elem en ts, i. e . , X = (o , i j  . By convention,

X = 0 denotes a favourable response or "reward" and 

X = 1 denotes an unfavourable response or "penalty".

The work reported here w ill, in fact, concentrate on this 

exam ple of a binary environm ent response, which is  

c la ss ifie d  as the "P-m odel" (see F igu re 1 .2 ).

Each elem ent c. of C is a ssocia ted  with an elem ent 1
a. from the action se t A. and is  defined as follows:1

c. = P r s x(n) /  a(n) = a

In general, the norm alised  environm ent resp onse, as  

a m easure of som e perform ance index, may be quantised  

into d iscrete  le v e ls , giving the "Q -m odel", or represented  

as a continuous elem ent on the interval [^0, l ]  , giving the 

"S-m odel". Although the Q and S -m od els perm it a 

greater  degree of discrim ination  in specifying the 

environm ent response, the P -m od el has the advantage of 

greatest sim p lic ity . A lso , from the point of view of the 

resea rch  /



resea rch  reported here, the inherent binary form is ideally  
suited to practica l im plem entation with digital c ircu itry .

It was assum ed above that the c. have fixed values, thus1
defining a "stationary environm ent” . H owever, a great 

deal of in terest is  centred on environm ents which are  

non-stationary in som e resp ect, in which ca se  the c  ̂ are  

functions of tim e.

1.4 The Concept of Learning

The concept of "learning” is applied here to describe  

the behaviour of a variable structure automaton operating in 

an environm ent as defined above. A learning automaton is  

capable of determ ining the su c c e ss  of each action in e lic itin g  

a reward from the environm ent, and, in the sp ec ific  ca se  of 

a variable structure device, ordering its structure so  as to 

in crease  the probability of se lec tin g  a m ore su ccessfu l action.

C learly , if the c^ w ere already known, the strategy of

the automaton would be sim ply to se le c t  the action am
corresponding to the minimum penalty probability c . Them
elem en ts of C are therefore assum ed to be unknown

at a ll tim es.

1. 5 R einforcem ent Schem es

A variable structure automaton m odifies its policy for 

se lec tin g  output actions by the application of a reinforcem ent 

schem e, denoted f^ - - - p^(n)| , such that

p.(n+l) = p.(n) i = l --------- r

Again, to p reserve  probability m easure, a ll such  

sch em es m ust ensure that

. i .

E xtensive /



E xtensive sim ulation studies of stochastic  automata have

been carried  out, with a view to application in d iverse  fie ld s,

and much attention has been focussed  on the perform ance of
(22 - 30)a variety  of reinforcem ent sch em es. In particular.

Narendra and Viswanathan have undertaken an exhaustive  
(20  21 )survey ’ of learning algorithm s in order to quantify

their perform ance both in term s of transient r e sp o n se ,

i. e. learning tim e, and stead y-sta te  behaviour,

i. e. asym ptotic probability of perform ing the chosen output

action.

As described  above, the reinforcem ent schem e is a 

function of the total state, or a lternatively , the transistion  

probab ilities, and may be lin ear  or non -lin ear. In addition, 

sch em es have been proposed which com bine lin ear  and 

non-linear form s of updating, usually depending on the current 

value of p.(n), in order to obtain the best overall convergence. 

T hese are term ed hybrid sch em es.

A s an exam ple, one of the m ost widely investigated , and 

indeed e a r lie s t  proposed sch em es, the lin ear rew ard-penalty

The

algorithm , stated in total probability form , is  a s follows:

schem e, denoted L , w ill now be described .K“P

(a)

( b )

Reward (action a

Pj=¿(n+1) = O' Pj(n)

P^in+l) = 1 - E 
i = i

Penalty (action a

Pj(n+1) =  ̂ P (̂n)

Pj^^(n+1) = p^(n) + ’ 1 - g
r - 1 P (̂n)

where 0 <  a,  ̂ 1

In



In the ca se  of the tw o-state  SLA, which has been widely  

considered in theoretical and sinaulation stu d ies, the learning  

algorithm  has a particu larly  sim ple form:

(a) Reward (action a^)

p^(n+l) = 1 - O' P2 (n)

P2(n+1) = O' P2(n)

(b) Penalty (action a^) 

p^(n+l) =  ̂ p^(n)

1 - P p^(n)

S im ilar exp ress ion s hold for the ca se  when action a 2  

is  perform ed. R einforcem ent algorithm s w ill be d iscu ssed  

in m ore detail in the chapters which follow  on hardware 

syn th esis.

1. 6 The A utom aton/Environm ent Configuration

The fully annotated autom aton-environm ent interconnected  

^ ste m  is  a s shown in F igure 1 .2 . This depicts an 

arrangem ent, analogous to a c lo sed -loop  feedback sy stem , in 

which automaton actions becom e environm ent inputs and output 

resp on ses from the environm ent in turn becom e inputs to the 

automaton. A lso  represented  as an "input" to the system  

are the random disturbances, about which the designer has 

little  knowledge and over which he has no control.

Starting from  som e in itial state (j!>.(0), the automaton 

perform s the corresponding action a.(0). This e lic its  a 

resp onse  x(0) from the environm ent, which in turn evokes 

a change in the state of the automaton to 0 .(1 ). In the ca se  

of a variable structure automaton, the application of the 

reinforcem ent /



reinforcem ent schem e at each stage a lter s  the total state, 

or transition, probabilities th em selves, so that the 

relationship  between ^(n+1) and 0(n)  w ill be updated 

a lso .

The iterative p ro cess  just described , whereby the

automaton interacts with a random environm ent in such a

way as to im prove its perform ance, as judged by som e

criter ion , ch a ra cter ises  the learning behaviour. In this

way, the automaton, if it is  to be of som e u se, should

se ttle  into a stead y-sta te  condition such that its policy  for

se lec tin g  output actions m in im ises the received  penalty.

This corresponds to se lec tin g  a , ie ., the action withm
low est penalty probability c . It should be noted that therem
is alw ays a n on -zero  probability of penalty even for the 

optimum action, the important point being that the strategy of 

se lec tin g  this action guarantees the low est probability of an 

unfavourable resp onse.

1. 7 C riterion  of P erform ance

A s described above, the automaton perform s a sequence

of actions on the environm ent in the cou rse  of its operation,

and is deem ed to "learn" in the p ro cess  if its perform ance

can be seen  to im prove in som e resp ect. A useful

criter ion  for judging the perform ance of a learning automaton

is  the average received  penalty, denoted by:
r

M(n) = L p.(n) c. 
i= l

In a "pure chance" situation, an automaton se le c ts  each  

action at a ll tim es with constant, equal probability.

Pi(n) = -  , i = 1, 2 - r. The value of M(n) in this ca se

is  sim ply the arithm etic mean of the c^, denoted by: 

M = /



1. 8

MO
1 y— £  c .
 ̂ i= l ^

F or  an automaton to be said to learn, it m ust achieve a 

lev e l of perform ance at lea s t  better than pure chance.

A learning automaton is term ed ’’expedient” if the 

asym ptotic average received  penalty, in the expected sen se .

is  le s s  than M i. e . , o

lim  E 
n —>■ oo

M(n) <  M

A learning automaton is term ed ’’optim al” if the 

asym ptotic value of received  penalty is  absolutely  m inim ised , 

i. e . ,

lim  E
n —>cx)

M(n) = c ; c = mm < c . m m  1

O ptim ality im plies that action a is  chosen with probabilitym
one, rep resen ting  ideal and in fact im practical conditions. 

Indeed, in a non-stationary environm ent it would be highly 

undesirable for the automaton to lock-on  irrevocab ly  to one 

particu lar action. A ccordingly, a third c la ss  of automaton 

with sub-optim al behaviour is  defined. This c la s s  of 

automaton is  term ed -optim al” , and ach ieves a le v e l of 

perform ance described  a s follows:

lim  E 
n —»CD

M(n) = c +c m

where e > 0 is  an arbitrary constant, which may be as  

Sm all a s desired .

It has becom e general practice  to d escrib e  a 

reinforcem ent schem e in term s of the resu ltin g  behaviour of 

the automaton. That is , if for exam ple a certain  

reinforcem ent algorithm  produces c-op tim al perform ance  

from the system , that schem e is  referred  to as an 

’’c-optim al schem e” .

/
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Stochastic computing techniques'^

provide an ideal b a sis  for the practical sim ulation of random

p r o c e sse s . D igital stochastic  c ircu its  use the probability

of sw itching a d igital c ircu it to rep resen t an analogue quantity.

U sing this princip le, it is  p ossib le  to im plem ent a ll the

standard operations of sum m ation, inversion , m ultiplication

and integration found on the analogue com puter. In addition,

a highly flex ib le, program m able interconnection system  can
i l l  32)be constructed  using standard digital m ultiplexing elements.^ * '

Much work has already been done on the developm ent of 

sto ch a stic -to -d ig ita l interface element^^^^ and the

problem s connected with the generation of uncorrelated  

digital n o ise . '

The great advantage of the digital stochastic  m achine l ie s  

in its unique speed-econom y com bination, m atching the 

lo w -co st c ircu itry  of the digital com puter with the h igh-speed
(41 _ 44)

p aralle l p rocessin g  inherent in the analogue m achine. '

The resu lt of applying these techniques to the syn th esis of 

stochastic  learning automata is  that sim ulations of learning  

p r o c e sse s  which norm ally require sev era l seconds or even  

m inutes of com puter tim e can be perform ed in the order of 

m illisecon d s on a dedicated hardware system .

Several m eans of representing variab les for the purposes
(1 _ 4)

of stochastic  computing have been described . '

However, sin ce  the variab les a ssocia ted  with the learning  

automaton are generally  probabilities or constants in the 

range 0 to 1, it is  su fficient to consider the sim ple unipolar 

representation . A s illu strated  in F igu re 1. 3, a variable  

is  represented  here by the probability of a high lo g ic  lev e l in 

a stochastic  or random pulse train. This particu lar example  

shows two sequences having eight I 's  in an interval of twenty 

clock p u lses, representing the value 0 .4 .

1. 8 D ig ita l  S to ch a st ic  C om pu tin g

1 .9  /
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U sing the representation  of variab les just described , it 

is  found that the resu lting  stochastic  computing e lem en ts have 

particu larly  sim ple form s. The m ultiplication function, 

as shown in F igu re 1 .4 (a ), is  perform ed by a single  

A N D -gate. Since the output of the gate is  high only if 

pu lses coincide on the inputs, the probability of a '1' in one 

pulse train is e ffective ly  m ultiplied by the corresponding  

probability represented  by the other pulse train.

The sp ec ia l ca se  of the squaring c ircu it is  shown in 

F igu re 1 .4(b). In this c a se , a delay of one clock interval 

is  introduced into one of the inputs by m eans of a D -type  

flip -flop  triggered  by the sam e clock as the n o ise  generator. 

This p r eserv es  the req u isite  property of sta tistica l  

independence between the noise  ch a ra cter istics  of the actual 

m ultip lier inputs which is e ssen tia l for valid operation.

Inversion, a s illu strated  in F igu re 1 .4 (c), is  sim ply  

achieved by passing the signal through a standard inverter, 

but sum m ation is  a rather m ore com plicated function.

Although the basic operation involved is  logical-O R , it is  c lear  

that if just a single gate is  used, the output cannot be co rrec t  

for the condition where pu lses coincide on the inputs. It is  

n e c essa ry  to m aintain the mapping of variab les into the range 

0 to 1, which in turn dictates that the inputs to the (two-input) 

sum m er are lim ited  to a maximum value of 0. 5. T his is  

achieved by the c ircu it shown in F igu re 1 .4(d). A noise  

line is  used to sw itch at random between the two inputs, 

which e ffective ly  perform s the m ultiplication by 0. 5 and 

prevents pulse coincidence at the O R-gate inputs. It is  

evident that repeated sum m ation operations involve su cc ess iv e  

attenuation of the problem  variab les, placing an inevitable  

lim itation  on the accuracy of the system .

1. 9 S to ch a st ic  C om pu tin g  E le m e n ts

The /
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The function of integration is  perform ed b asica lly  by 
feeding the pulse train to a counter (Figure 1 .5 ). C learly , 

the sum of pu lses accum ulated over a certa in  tim e interval, 

or number of clock p u lses, rep resen ts the tim e integral of 

the variable represented  by the signal.

The interface between a determ in istic  signal, presented  

in digital form , and the stochastic  m achine is shown in 

F igu re 1. 6. The input signal is  com pared with a random  

number sequence in a standard digital com parator. Provided  

that the noise  source has a uniform distribution, the 

probability of a logic '1' output from the com parator is  

d irectly  proportional to the value of the input number as a 

fraction of full sca le .

The output of the stochastic  m achine can be converted to 

eith er an analogue or a d igital value. The analogue output 

in terface in its s im p lest form  c o n sis ts  of a f ir s t-o rd er  R-C  

low pass filter , sin ce a ll that is required is to derive the 

average value or 'd-c' component of the bit stream .

S toch astic -to -d ig ita l conversion  involves a sim ilar

averaging p ro cess , though the c ircu itry  is  of n e c ess ity  rather

m ore com plex. The standard configuration, a s shown in

F igu re 1 .7 , is  ca lled  a n o ise  ADDIE, abbreviated from
fl 33 — 36̂"Adaptive D igital Logic Elem ent".  ̂ ' ' An up-down

counter is connected to a no ise  com parator, and a feedback  

loop arranged as shown. A s a resu lt, the counter w ill 

count up or down until p(F) = p(A), e ffectively  providing a 

continuous estim ate of the input probability value.

In conclusion, it should be s tr e sse d  once again that a ll 

the computing elem ents described  above are im plem ented  

using entirely  standard hardware com ponents.

13
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CHAPTER 2

SYNTHESIS AND OPERATION OF A TWO-STATE SYSTEM

2. 1 Initial D esign  C onsiderations

The starting point for the syn thesis of a hardware system  

was taken to be the Markov Chain sim ulator described  by
/i o oo\

B axter et al, ' ‘ This is  a sp ec ia l purpose sim ulator
thdesigned for high speed calculation of the n power of the 

transition m atrix of a Markov Chain p ro cess . The c ircu itry  

co n sis ts  b asica lly  of a sequential network to p ro cess  sign als  

rep resen ting  the transition probabilities which are derived  

from  stochastic  com parators and steered  via appropriate  

p u lse -s tee r in g  log ic . The difference between this system  

and the design requirem ents for the SLA is  e ssen tia lly  that 

the Markov Chain sy stem  has fixed transition probab ilities, . 

i. e . , the elem en ts of the transition m atrix, w hereas the 

in trinsic  feature of the variable structure SLA is  the 

updating of the transition  (or total state) probab ilities, by 

m eans of the reinforcem ent schem e, at each iteration.

The design of the SLA therefore involved replacing the 

transition probability generating c ircu its  with a hardware 

version  of the learning algorithm  to effect the im plem entation  

of the reinforcem ent schem e (Figure 2. 1). It should be 

noted that in this hardware design, each stage or iteration  is  

perform ed by one clock pulse applied to the sequential network. 

Since clocking frequencies for standard logic c ircu itry  can be 

of the order of tens of m egahertz, it is  im m ediately apparent 

how fast such a system  can potentially operate .

2. 2 Two-State System

It was decided to design in itia lly  a tw o-state system , in 

view  of the sim p lic ity  of the corresponding learning algorithm s. 
This /
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This would enable valid com parisons to be made with the
(20 2 1 )sim ulation work reported previously  ' ' on tw o-state

SL A 's, and allow  opportunity for generalisation  to the 

r -s ta te  ca se  when design experience had been built up.

A s explained e a r lier , the choice of P -m od el automaton is  

log ica l here, because of the natural affinity between a binary  

rew ard/penalty  response and the operation of digital c ircu itry .

The sequential network in the ca se  of a tw o-state  system

c o n sis ts  of a single flip -flop , with the transition diagram  as

shown in F igu re 2. 2. If a J-K  flip -flop  is  used w ith  the

state assignm ent ”p^(n) = Q, P2 (ĵ ) “ Q"» the input sign a ls

to the J and K lin es rep resen t p^(n+l) and P2(n+1)

resp ectiv e ly . T herefore, the operation of the system

c o n sis ts  of clocking the flip -flop  to produce an output '1' or

'O', i. e. , action a or a„, with a certa in  probabilityX
depending on the current input condition. This output is  

then transform ed via the algorithm  c ircu it and reappears at 

the input with a rev ised  probability to be clocked through on 

the next cy c le . A s the learning p ro cess  evo lves, the 

probability of one of the output lin es  being 'high' should tend 

towards unity. It can be seen  that an inherent feature of 

the system  is  a race-around or regenerative condition.

This is  a consequence of the reinforcem ent schem e which by 

its  very  nature rep resen ts a positive  feedback system .

The reinforcem ent schem e used was the lin ear  rew ard-

penalty (L ) which is reproduced below, in total state  K -P
probability form , for the tw o-state case:

(a) Reward (action a^)

p^(n+l) = 1 - Q-P2 (n)

P2(n+1) = o-P2(n)

( b )  /
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(b) Penalty (action a^)

p^(n+l) = P p^(n)

p^fn+l) = 1 - p p^(n)

S im ilar exp ression s hold for action a .¿d

It is  convenient to exp ress the learning algorithm  in the 

form of a "truth table", indicating the term s which m ust be 

generated for each com bination of current action and 

rew ard/penalty  resp on se.

a^(n) a^Cn) P /R  P^(n+1) Pgin+l)

0

0

1

1

1

1

0

0

0

1

0

1

O' p^(n) 1 - O’ p^(n)

1 -  ̂ P2(n) |3 P2(n)1 - O' P2(n)
 ̂ P; (̂n)

« PgCn)
 ̂ P; (̂n)

The various algorithm  term s a p^, e t c . , are  sim ply  

form ed using the stochastic  computing e lem en ts outlined in 

Chapter 1.

It was found subsequently during in itia l c ircu it te s ts  that 

a design embodying a J - K flip -flop  would not work correctly . 

The problem  stem m ed from  the com plem entary nature of the 

sign a ls on the J and K lin es . A s in the Markov Sim ulator, 

p u lse -steer in g  logic was used to ensure that p»(n) = 1 - p. (n)¿i J.
at a ll t im es. The resu lting  w aveform s are shown in 

F igu re 2. 3, indicating that a stead y-sta te  condition is  

established  whereby the output is  a lternately  se t and r e se t  at 

each clock pu lse. A fresh  design procedure was therefore  

adopted to exploit the feature of com plem entary sign a ls while 

avoiding this drawback.

2. 3 /
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2, 3 R evised  D esign

The approach used in the rev ised  design was to employ  

a D -type flip -flop , and generate p^(n+l) alone as the input. 

Q and Q rep resen t p., (n) and p„(n) a s before, but 

P2 (n+1 ) e x is ts  only as the im plic it com plem ent of p^(n+l).

It was rea lised  that using the current state sign als to se le c t  

algorithm  term s as w ell a s actually form them would lead to 

anom alies; for exam ple, 1 - a p  ̂ would becom e sim ply 1 

if action a^ is perform ed because is  then zero  for the 

duration of the cy c le .

The rev ised  system  was therefore designed with two 

dependent but separately  clocked loops; one with a fast clock  

for the algorithm  computation cy c le , the other with a slow er  

clock representing the main system  cy c le . The full c ircu it  

diagram , incorporating algorithm , sequential network and 

sim ulated plant, is  shown in F igure 2 .4 .

Algorithm  term s form ed by the stochastic  computing

elem en ts are se lec ted  according to the current action and the

resu ltin g  rew ard/penalty  signal (P /R ). A standard TTL

fou r-to-one line data se lec to r  provided a convenient and

com pact method for se lec tin g  the appropriate term  to

rep resen t p^(n+l), with the fast feedback loop, a ssocia ted

with F F l ,  feeding the algorithm  with current action

probability values (p and p ) and the slow  loop, a ssocia ted
X ^

with F F 2 , estab lish ing the add ress for the data se lec to r  (a^). 

T herefore F F2 can be identified as the principal "system  

flip-flop". A 10:1 ratio of clock frequencies was found in 

practice  to give sa tisfactory  resu lts . The rew ard/penalty  

signal was derived from a sim ulated "environment" 

con sistin g  sim ply of two penalty probability s ig n a ls , c . , 

se lec ted  by the appropriate action a .. The generation of 
these sign a ls is  described below.

2 . 4
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2 . 4

The various n o ise -re la ted  constants required for the

above system  w ere derived from a common central digital

n oise  sou rce, con sistin g  of a standard sh ift-r e g is te r  PRBS 
(37 45)generator. ’ ’ A 31-b it sh ift r eg is te r , with

exclu sive  -OR feedback connected to bits 3 and 31 as  

shown in F igu re 2. 5, w ill cyc le  at random through every  

state bar " a ll-z e r o e s” before repeating. This is  referred

N o i s e  S o u r c e s

to as a m axim al or m -length  sequence. (46) The total number
of sta tes is  2 - 1, which in the c a se  of n = 31 exceed s

9
2 X 10 , Each c e ll  of the r eg is ter  is  thus in effect a digital 

n oise  sou rce, producing a stochastic  bit stream  with a "value" 

of 0 .5 .  By virtue of the clock pulse delay between each  

c e ll, the n o ise  lin es  are s ta tistica lly  independent, which 

guarantees the valid ity  of com putations perform ed between  

them, and a lso  between any sign a ls derived from them.

A lso  incorporated in the n o ise  generator is  a "one-shot"  

c ircu it which ensu res that the " a ll-zeroes"  condition cannot 

occur at sw itch-on  and prevent the sequence from starting.

A wide range of factors based on fractions of j  or their  

com plem ents can be generated by com bining n oise  lin es via 

arrays of AND-gate m ultip liers, together with in vertera  

The arrangem ent adopted here is  shown in F igu re 2. 6.

A s reported by Narendra et al, the degree of expediency

of the p , a n d  other reinforcem ent sch em es, depends on

the rela tive  values of the s te p -s iz e  factors a  and

The rew ard-penalty ratio ( l - a ) / (1-^), denoted by y , is

thus an important elem ent in the c la ssifica tio n , and

perform ance, of individual sch em es. The n oise  sou rces

described  above enabled a variety  of c  ̂ and y  factors to be

se lected , so  that a useful range of experim ents with the

L schem e could be carried  out.
r i  -  Jr

2. 5
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Some form  of output interface c ircu it was required as a

m eans of observing the behaviour of the SLA. It was

decided that the m ost suitable way of studying the learning

ch a ra cter istic s  was to use a storage o sc illo sco p e  to display

individual "learning curves" . The learning curve is  a

plot of action probability against tim e from  the com m encem ent

of the learning period. Typical resu lts  obtained in this

way w ere then photographed and reproduced in a form at
(20 2 1 )s im ila r  to that of previously  published re su lts .  ̂ ’ '

The system  output, which is a stochastic  pulse train containing  

frequency com ponents of the order of the clock frequency of 

the m ain system  flip -flop , was passed  through a filter  to 

produce an analogue m easure of the action probability value.

The filter  c ircu it used for this particu lar sto ch a stic -to -
ndanalogue conversion  p ro cess  was the w ell-p roven  2 order  

Butterworth type, together with a le v e l-sh ifte r  and calibration  

stage to convert the TTL signal to a convenient 0 - 1 0  volts  

output sw ing. The c ircu it is  shown in F igu re 2 .7 .  The 

choice of tim e constant or cu t-off frequency for the output 

in terface c lea r ly  influences the observed resp onse tim e, and 

a com prom ise e x is ts  between learning tim e and variance in 

the stead y-sta te  for a given clock frequency. The values 

shown gave reasonably low variance at a clock rate of 1 MHz, 

as dem onstrated by the resu lts  detailed below, while 

perm itting a response tim e of approxim ately 5 m s.

The com plete tw o-state system , including n oise  sou rces  

and sim ulated environm ent, was assem b led  on two sm all 

circu it cards and fitted in a cabinet with a front-panel "patching" 

facility  for the se lection  of c . , o- and A photograph

of this unit is  reproduced as F igu re 2. 8.

2. 5 Output In ter face

2 . 6
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F o r  the f ir s t  experim ents, the sim ulated environm ent

2. 6 E x p e r i m e n t a l  R e s u l t s

resp onse was se t up with c. 0. 75 and = 0, 25,

while y was varied from 1 to 64 using com binations of 

the availab le n o ise  sou rces . The system  m aster  clock  

was se t at 1 MHz, resu ltin g  in a clock frequency of 100 kHz 

for the main system  flip -flop .

The fam ily of learning cu rves illu strated  in F igu re 2. 9 

c lea r ly  shows how the degree of expediency in crea ses  a s y  

in crea ses . In each ca se , the system  flip -flop  was p reset  

in itia lly  to a ^ , i. e . ,  the "wrong" action, and the output 

subsequently converged to a stead y-sta te  condition with a high 

probability of choosing the action with the low er penalty

probability. When y = 1, the system  converged to a 

lev e l corresponding approxim ately to the reward probability  

for the better action. T his is  to be expected in a situation  

where reward and penalty factors are of equal magnitude.

The overa ll ch a ra cter istic s  of the system  are w ell 

sum m arised  by the resu lts  presented in F igu re 2. 10,

T hese curves show how the SLA can lock-on  to w hichever  

action c a r r ie s  the low er penalty probability, from either  

in itia l state, using in this ca se  a schem e with y = 8.

The influence of environm ent ch a ra cter istics  on learning  

behaviour is  illu strated  in F igu re 2. 11. This shows the 

resu lts  from  two separate tr ia ls , again using the " y = 8" 

schem e, in which the effect of changing the penalty  

probab ilities was investigated . W hile c^ was fixed at 

0. 75, c was increased  from 0 ,25  to 0, 5. The degree¿i
of expediency, a s represented  by the steady state value of 

P2  , is  c lea r ly  reduced for the la tter  case .

A sign ificant feature of a ll these resu lts  is  that learning  

tim es /
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tim es of the order of m illisecon d s w ere consistently- 
recorded. M oreover, an investigation of the actual 

flip -flop  output showed a very  rapid transition to the 

stead y-sta te  pulsing situation, so the learning tim es  

indicated here are in fact dominated by the output filter  

tim e constant. A learning period of 5 m s with a main 

system  clock frequency of 100 kHz im p lies that 

approxim ately 500 c y c le s  are used to reach stead y-sta te  

conditions. T his order of magnitude of "stage number"

is in accordance with softw are sim ulation resu lts  reported
. , (20, 21)previously . '

2. 7 P aram eter  O ptim isation

An application area of particular im portance for the

SLA is the m ultim odal param eter optim isation problem . 

The general problem  is that of identifying the extrem um  of 

a noisy  m ultim odal perform ance su rface, which can be 

described  by a function g (a , z). H ere, a denotes the 

vector of system  p aram eters, and z rep resen ts the 

superim posed n o ise  am plitude, i. e . , g (a, z) = f (a) + z 

(see  F igu re 2.12) .

Such problem s are frequently insoluble by ex istin g  

techniques, because of either a lack of su fficient a priori 

inform ation concerning plant structure and dynam ics, or 

m athem atical d ifficu lties involving computation tim e and 

problem  com plexity. In addition, plant and contro ller  

variab les are of cou rse  subject to random disturbances, 

the intrusion of no ise  making reliab le  prediction or 

m easurem ent im p ossib le. Even in such c a se s  where  

a solution by conventional techniques^^^’ can be 

envisaged, this w ill tend to resu lt in convergence to som e  

"local" optimum un less prior knowledge can som ehow be 

acquired to enable the se lection  of a suitable starting value 
for /

(47-51)
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for the search .

The use of the SLA avoids a ll these problem s, because  

of the inherently random nature of its search  in the param eter  

space. Automaton actions are assign ed , in som e arbitrary  

fashion, to rep resen t resp ective  values of system  param eter, 

so  that each point on the P I surface has a non-zero  

probability of being se lec ted  during the in itia l learning  

period, reg a rd less  of contour irreg u la r itie s  or even  

discontinu ities. In addition, it is  not n ecessa ry  to have 

any knowledge of the distribution of n o ise  on the surface.

T hese features give the automaton the ability  to locate the 

global optimum at a ll tim es, which w ill of cou rse  yield  the 

low est probability of received  penalty. The SLA is , in 

effect, "altitude” rather than "gradient" sen sitiv e .

This particular optim isation problem  has received  much
. , . . . .  (47 - 50, 54, 55)attention m previous sim ulation studies,

and c lea r ly  rep resen ts an important area of investigation with 

the hardware system .

2. 8 Learning C ontroller

The general configuration of a learning contro ller  is

shown in F igu re 2. 13, A key feature of this system  is

the "evaluation section", which rep resen ts the interface

between the environm ent and the SLA, The perform ance

index (P I) m easure has to be translated to a rew ard/penalty

resp on se, which m ust have a binary form if the P -m od el is
(49 )to be used, Narendra ' described how this translation  

problem  could be sid e-stepp ed  by em ploying an S-m odel 

automaton to handle a suitably norm alised  m easure of the 

P I a s a d irect input. A lso , an adaptive method was 

proposed to ca ter  for the situation of unknown P I bounds, 

which would often be the ca se  in practice.

Since /
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Since the hardware design effort has been concentrated  

on the P -m od el automaton, for reason s already d iscu ssed , 

the problem  of im plem enting a P I evaluator suitable for 

this m odel was investigated . F or the sake of sim p lic ity , 

a non-adaptive system  was in itia lly  considered , and the resu lt  

was the configuration shown in F igu re 2. 14. This co n sists  

essen tia lly  of a standard d ig ita l-to -sto ch a stic  interface  

(see  Section 1. 9) which com pares the d ig itised  input with a 

random noise  sou rce. The output of the com parator is  thus 

a stochastic  bit stream  whose value i. e . , the tim e averaged  

ratio of I 's  to O's, rep resen ts the value of the digital input 

as a fraction of full sca le .

The P I is  therefore presented as a digital value,

assum ed to be norm alised , feeding d irectly  to the com parator.

The resu lting  output pulse train rep resen ts an instantaneous

m easure of g (a.) and hence a lso  of c .. T his w ill reach an

absolute m inimum value, c , when the search  loca tesm
g (a ) corresponding to action a , which is the global m m
m inim um . If a flip -flop  is  placed on the com parator output 

as shown and clocked at som e instant, the situation is  

analogous to tossin g  a weighted coin, in that the probability of 

a '1' at the output depends on the average ratio of I 's  to 

O's in the input pulse train. U sing this deceptively  sim ple  

configuration, it is  therefore p ossib le  to perform  a truly  

global search  of the P I surface, and obtain a rew ard/penalty  

resp onse in binary form as required for the P -m od el.

The basic system  as described  assu m es that the bounds 

of the P I are known, to avoid exceeding the capacity of 

the com parator. H owever, with the P I presented in 

digital form , it should be possib le  to design an adaptive 

in terface em ploying som e form of ’’autoranging” technique, 

as used in standard m ultirange DVM's for exam ple, to map 

any /
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any incom ing signal into the range of the com parator.

This approach would be e ssen tia lly  sim ilar  to N arendra's 

method of handling unknown P I boundary values, referred  

to above.

2. 9 P lant Sim ulator

The ability  of the prototype flip -flop  SLA to perform  

with a sim ulated ’’noisy" plant was then investigated . In 

the ca se  of a tw o-state system , the perform ance "surface"  

c o n sis ts  of m erely  two d iscrete  points, with superim posed  

n oise  causing random fluctuations in their values.

T ranslating this into hardware te n n s , the two "P l" 

points w ere rep resented  by two num bers stored in binary  

counters. The counter contents w ere then converted to 

c . s ign a ls using the above com parator method. The effect 

of superim posed noise  was then sim ulated by allow ing the 

counters to undergo a "random walk" between se t  lim its .

This was achieved by feeding the up/down lin es  of the counters 

with noise  sign a ls from  the PRBS generator, resu ltin g  in an 

equal probability of counting up or down. The chosen end­

points for the counters w ere detected by com binational logic  

feeding back to inhibit the count as n ecessa ry . A latch  

was placed between each counter and its com parator to allow  

the counter to cover its full perm itted range between sam p les. 

At each sam pling instant, the resu lting  c. value could be 

anywhere within these se t lim its . Two clock frequencies  

w ere therefore required: a fast clock for the counter, and 

a slow er clock for the latch. The system  was designed  

with 4 -b it counters, giving the P I representation  shown 

in F igu re 2 ,15.

The c ircu it configuration of the plant sim ulator is  shown 

in F igu re 2, 16, and the "end-points" logic in F igu re 2. 17,

In /
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In practice, it was found convenient to use the two clock

lin es from the SLA to run the plant. A sim ple change 

in the end-point detection c ircu it produced the alteration in 

the n o ise  boundary shown by the dotted line in F igu re 2. 15. 

This enabled the ability  of the SLA to deal with the ca se  of 

overlapping n o ise  with asym m etrica l distribution on the P I 

surface to be investigated . The SLA should be capable 

of locking on to the co rrect action provided that, on a v e r a g e , 

one of the c  ̂ sign a ls is  found to be low er, desp ite the 

fluctuations caused by superim posed noise.

2 . 10 Sim ulator R esu lts

The assem b led  plant sim ulator c ircu it was incorporated

within the ex istin g  flip -flop  SLA box (Figure 2. 8), and

tests  w ere made using an L — reinforcem ent schem e withR “P
= 8 . Learning curves w ere obtained a s before with

2 . 11

both p ossib le  assign m en ts of c  ̂ to a ,̂ favouring f ir s t  one 

action, then the other. The resu lt is  shown in 

F igu re 2. 18. The ”low -noise"  cu rves illu strate  the 

ability  of the SLA to identify the co rrec t action desp ite the

noise  on the c ..1

The noise  boundary was then a ltered , as shown in 

F igu re 2. 15, to in crease  the variation on one of the c^. 

There is  s t ill, on average, a difference between them, 

but a greater deal of overlap e x is ts , making discrim ination  

much m ore difficult. The experim ent was then repeated, 

and the resu ltin g  "high noise" curves are again shown in 

F igu re 2, 18, superim posed for the purposes of com parison  

with the f ir s t  resu lt. It is  sign ificant that, although the 

quality of convergence obtained is  le s s  expedient, as would 

be expected from previous resu lts  with s im ila r , fixed values  

of c ., the SLA is  n ev erth e less  able to identify the co rrect  

action.

/
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2. 11 C onclusions

The above resu lts  c lea r ly  dem onstrate the potential of 

the SLA as a m eans of achieving optim isation even under 

extrem e conditions of in trinsic  n o ise , while the fast learning  

tim es obtained indicate that p ractica l, on -line  operation is  

feasib le  with the hardware system .

Although this sim ple prototype did provide sa tisfactory

sim ulation of the expedient L schem e, its u sefu ln essK. - ir*
was lim ited  in particu lar by its inability to im plem ent 

€ -optim al sch em es such as the lin ear rew ard-inaction, or 

L schem e. Inspection of the c ircu it shows that setting  

 ̂ = 1 (i. e . , infinite y ) would sim ply cause the system  

flip -flop  to rem ain in w hichever state was in itia lly  se lected . 

This was ea s ily  dem onstrated in practice.

T hese consid eration s, together with the need to develop  

la rg er  sy stem s, led to the design of a m ore sophisticated  

SLA c ircu it, capable of operating with a com prehensive  

range of reinforcem ent sch em es. This developm ent is  

described  in the follow ing chapter.
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Figure 2-15 SimuLafed fwo-state 'noisy' environment
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3 . 1 D esign R equirem ents

A s was stated at the end of Chapter 2, the sim ple  

flip -flop  SLA was very restr icted  in its range of application, 

in particu lar by its inability to operate with superior

reinforcem ent sch em es such as the 6 - optim al L schem e.R-I
Attention was therefore focussed  on im proving the hardware 

design, with a view  a lso  to the intended developm ent of large  

state order sy stem s.

On considering the reinforcem ent a lgorithm s in their  

general, r -s ta te  form , it is  c lear  that there m ust be a 

m em ory capability built into the automaton structure, so that 

som e priority  of state or action probabilities is  established  

during the learning period. U n less this w ere so , the past 

experience of the SLA would be wiped out a fter each system  

cycle  (or clock pulse). This consideration led to the idea 

of rep resen ting  the total state probabilities of an automaton, 

not by the probability of a flip -flop  being in a certa in  state at 

the occurrence of a clock pulse, but by a number stored in 

a counter. C onversion from  this representation  to a 

sin g le -lin e  bit stream  can be e a s ily  achieved by the n oise  

com parator method described  ea r lier .

3. 2 B asic  Configuration

The basic configuration of an r -s ta te  SLA using the 

counter im plem entation is shown in F igure 3 .1.

A ssocia ted  with each counter is a flip -flop , and it should be 

noted that again p u lse -steer in g  log ic  is  required to ensure  

that, at each sam pling instant (system  cycle) only one of 

the D -typ es can be triggered  to indicate the state of the 

automaton at that particu lar stage. It is  im m ediately  

apparent /
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apparent that a large state order sy stem , say r >10,  

c a lls  for a considerable amount of hardware and 

interconnection, a point which w ill be ra ised  again later.

The im plem entation of the algorithm  involves operating  

on the contents of the counters a s determ ined by the 

rein forcem ent schem e. Although p aralle l com putations 

offer the attraction of the h ighest operating speed, they suffer  

the disadvantage of considerable com plications in term s of 

c ircu it design and overall system  tim ing. It was therefore  

decided to apply the reinforcem ent schem e in se r ia l form , 

operating on the count-up and count-down lin es  of the counter. 

The resu lting  configuration began to bear a strong  

resem blan ce to the n o ise  ADDIE (adaptive digital logic  

elem ent) of F igu re 1 .7 ,  which is  the standard stoch astic -  

to -d ig ita l interface elem ent in digital stochastic  computing 

as described  ea r lier .

In view  of this, consideration was given to integrating  

the c ircu itry  for the automaton and the reinforcem ent schem e  

in the form  of an ADDIE structure. The resu lt was the
(56)evolution of a new design for a hardware learning automaton, 

which is  referred  to accordingly a s the ADDIE SLA, in order  

to distinguish  it from  the e a r lie r  flip -flop  SLA. It 

should be noted that the use of ADDIE structures has a lso  

been proposed for im plem enting the related  "two-arm ed  

bandit" contro ller .

3. 3 D esign  of the ADDIE SLA

A s before, a tw o-state  system  was considered in itially , 

for the sake of sim p lic ity . It follow s that resu lts  obtained 

can be extended to the general r -s ta te  ca se . C alling on 

the design philosophy of the flip -flop  SLA, a further 

sim plification  can be made here in that only one counter is  

actually  /

53



actually  required, representing one state probability  

explicitly; the other probability is  sim ply  the com plem ent 

The counter-com parator arrangem ent of F igu re 3. 1 is  

configured as a true ADDIE, m easuring the updated state  

probability from  the algorithm  c ircu it. The algorithm  

therefore retains a sin gle  input, sin g le  output form at, and 

can be designed using exactly  the sam e princip les as outlined  

previously  in Chapter 2.

The current state probability value m ust be stored for  

the duration of each cycle  to maintain a constant input signal 

p.(n) for the algorithm  c ircu it while the ADDIE converges

to an updated value p .(n+l). This task is  perform ed by 

a latch which is  loaded with the counter contents at the start 

of each cy c le , and is  itse lf  connected to a n oise  com parator  

to generate p.(n) a s a bit stream . The full c ircu it  

configuration is shown in F igu re 3 .2 .

The output of the ADDIE is  sam pled by a D -type  

flip -flop  which rep resen ts the current state at each stage  

and thus corresponds to F F 2 of the flip -flop  SLA 

(F igure 2 ,4 ) . The environm ent is  sim ulated, a s before, 

by the se lec tion  of one of two loca lly -gen erated  c. s ign a ls. 

This plant sim ulator a lso  incorporates a flip -flop  which 

sam p les the se lec ted  c. signal to generate a single binary 

rew ard/penalty  resp onse. A s before, this has the 

function, along with the system  flip -flop  output, of providing  

the ad d ress for the algorithm  c ircu it data se lec to r , which is  

then fixed for the duration of one system  cy c le . The clock  

waveform  illu strated  on the diagram  allow s a brief setting-up  

period for this ad d ress, followed by a much longer  

adjustm ent or learning period.

3.4 /
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The tw o-state  ADDIE SLA was im plem ented in 8-b it

form , although the ADDIE's, integrators etc. reported  
(41 42)e lsew h ere' ' ' for applications in digital stochastic

computing have been, in general, 12-bit d ev ices. It 

was fe lt that an 8-b it system  would have sufficient 

resolution  for the purpose, and would a lso  have the advantage 

of extra speed, sin ce  the duration of each iteration , apart 

from  any considerations of environm ent response tim e, is  

dictated prim arily  by the tim e taken for the ADDIE counter 

to adjust to its "new" state. The output filter  

(stoch astic-to -an a logu e convertor) and noise sou rces used  

w ere s im ila r  to those developed for the flip -flop  SLA.

The 8-bit no ise  inputs required for the ADDIE and latch  

com parators w ere tapped off an additional PRBS generator.

It was found during in itia l testing  that the system  exhibited  

a marked asym m etry in its  c h a ra cter istic s . C onsiderably  

higher variance was noted when the ADDIE approached the 

state corresponding to "a ll-on es" . This behaviour was 

traced subsequently to the basic ch a ra cter istics  of the 

com parator. If the input from  the counter is " a ll-zero es" , 

then this cannot of course exceed  the value of the noise  input, 

and hence the "A > B" output w ill alw ays be low. However, 

if the input is  a ll-o n es , the com parator output w ill not 

alw ays be high, a s  it should be, because whenever the noise  

input is  a ll-o n e s , the A > B condition no longer holds, and 

the com parator g ives an erroneous low  output.

The solution adopted in itia lly  was to detect the a ll-o n es  

condition in the n o ise  lin es and se t the m ost sign ificant bit 

to zero  under these c ircu m stan ces using the c ircu itry  shown 

in F igu re 3. 3. This was felt to be a reasonable  

com p rom ise, sin ce the resu lting  slight d istortion  produced 

in the probability distribution of the n o ise  would occur at 

0. 5, /
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3. 5

0. 5, which should not destroy the sym m etry and hence 

affect ad versely  the perform ance at either extrem e.

H owever, a m ore seriou s problem  presented itse lf  when 

the dynamic behaviour of the SLA was studied in detail.

It was found that the counter in the ADDIE was liab le  to 

jump sta tes in an unpredictable manner, causing severe  

distortion  of the learning curve and steady state tra jector ies. 

In order to avoid spurious pu lse-beating e ffects , it was 

n ecessa ry  to synchronise the PRBS and ADDIE c lock s to a 

central m aster  clock. It was found that m erely  placing an 

inverter in the clock feed to the latch PRBS generator  

considerably reduced the sev er ity  of the state-jum ping effect. 

This in turn suggested that the root cause of the problem  was 

pulse coincidence e ffects in a system  containing an 

unavoidable m ixture of leading and trailing ed ge-triggered  

d ev ices.

The overa ll solution to this problem was applied in two 

parts. The s 3 mchronous counters in the ADDIE w ere  

replaced with asynchronous types so  that no input condition  

constraints would be violated in operation. The ADDIE 

was then m odified to include end-point detection c ircu its  

which stopped the counter just short of a ll-o n e s  or a ll-z e r o e s  

using the a s 3 mchronous paralle l load facility  to tem porarily  

" freeze” the ADDIE at the boundary value. Satisfactory  

operation then ensued.

A useful feature of the ADDIE SLA is  that it perm its a 

r ea lis tic  in itia l condition to be established  for the learning  

p ro cess , i. e . , p^(0) = 0 .5 , corresponding to random state

se lection  at tim e t^. This was achieved in practice by 

loading " o n e-a ll-zero es"  via a data se lec to r  on the paralle l 

inputs. The c ircu it of this fu lly-developed ADDI E is 

shown in F igu re 3 .4 .

/
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value of Pj(0) = 0. 5, as above.

3. 5 O perating Sequence

The full operating sequence for the ADDIE SLA is now 

described . The in itia l load operation se ts  up the requisite

The output of the ADDIE 

com parator is therefore a bit stream  with an equal probability  

of I 's  and O's. At the fir s t  system  clock pu lse, this 

signal is  sam pled by the system  flip -flop , and sim ultaneously  

the counter contents are copied into the latch. The action  

a  ̂ rep resented  by the system  flip -flop  output se le c ts  a 

rew ard/penalty  or c. signal from  the environm ent. On 

the falling edge of the clock pu lse, this signal is  sam pled, 

settin g  up the algorithm  ad d ress , while the ADDIE clock is  

enabled, allow ing the learning period to com m ence. During  

this tim e, the ADDLE adjusts to the updated value of p^(l), 

which in turn form s the b a sis  for the next cyc le  of operation.

The fundamental advantage of this design is that no

hardware race-around or locking-on problem s can occur.

The design is  such that sev era l of the reinforcem ent sch em es
(19)reported previously , ’ in particu lar the m ore suitable  

f-o p tim a l sch em es, can be su ccessfu lly  em ployed, u tilising  

the established  method of algorithm  c ircu it design described  

in Chapter 2.

3. 6 Algorithm  C ircu its

The design for the p  schem e has already been

described , and the obvious developm ent from  here is the

im plem entation of the € -optim al lin ear rew ard-inaction

(L ) and lin ear  rew ard-rew ard sch em es.

The L schem e is  particu larly  sim ple to accom m odate,K -1
sin ce the only m odification required is to se t 3 = 1.

The L schem e, in which the penalty response is  K-K
replaced /
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replaced by a le s s e r  reward, is  given below in tw o-state  

form:

(a) Reward

Pj(n+1)

P2(n+1)

(b) Penalty

Pj(n+1)

P2(n+1)

(action a^)

= 1 - a p^{n)

= O' P2 N

(action a^)

= 1 -  ̂ P2(n)

=  ̂ P2(n)

where 0 <  ̂ < a < 1

A s before, a truth-table can be constructed to enable 

this algorithm  to be translated into a hardware design:

;̂ (n) P /R P;^(n+1)

0 1 0 Û- p^(n)

0 1 1  ̂ Pj(n)
1 0 0 1 - a P2(n)

1 0 1 . 1 - P Pp(n)

Note that p (n+1) need not be stated exp lic itly .¿i

Com paring this with the truth table for the p  schem e,

evident that the L c ircu it can be converted to anxi-ir
c ircu it sim ply by rev ersin g  the  ̂ P-(n) and 1 -  ̂ Po(^)1'“ ' ‘ '' ^2 

The c ircu it arrangem ents

for these lin ear  sch em es are sum m arised  in F igu re 3. 5.

R-R
connections to the data se lec to r

3. 7 N on-L inear Schem e

Although the "best" of the lin ear sch em es, the L
(20, 21, 59) R -I

as m ostschem e, has been w idely reported

Lcations, COI

of non-linear reinforcem ent algorithm s.

suitable for many applications, considerable study has a lso  
(8, 19, 27)been made 

T hese /
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T hese tend to show higher rates of convergence, and 

indeed the ch ief m otivation behind the investigation of 

these sch em es has been the d esire  to obtain the best 

p ossib le  convergence tim es. T his is  e sp ec ia lly  the case  

if they are incorporated with a lin ear algorithm  to form a 

hybrid scheme^^^^.

The s im p lest of the non -lin ear sch em es is  that
( 1 )  1. .denoted by Narendra et al a s K: ' , which has square-

(8 19)law” non-linearity . It has been shown ’ that this

schem e is  conditionally optim al, providing optim al

convergence if c . < f  <; c ., and expedient otherw ise.
 ̂ J

This schem e, again considering the tw o-state c a se , is  

given below:

(a) Reward (action

p^(n+l) = P^in) + a P l(n ). [ l  - p^(n)]

= P jW - a P^(n) b- - Pi (a)]

(b) Penalty (action

Pj(n+1) = P^(n) - ^ P^(n) Q - Pi(n)]

P2(n+1) = Pjin) + ^ Pj_{n) [l - p^(n)]

where 0 < n,  ̂ < 1

The truth-table for this schem e is as follows:

^2 P / R p^(n+l )

0 1 0 Pj  - a p j d - P 2 )
0 1 1 P i  + g P j d ■P2^
1 0 0 Pi  + O' PjCl - P i )

1 0 1 Pi  -  ^ P i ( l - P i )

The hardware im plem entation of this schem e as 

exp ressed  here is  com plicated by two factors. The first  

is  /
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is  the p resen ce  of term s of the form p^(n) . [ l  - P-(nf] , 

i. e . , p.(n) . p„(n). This product cannot be formed

sim ply  by an AN D-gate as before, because of the d irect 

com plem entary relationship between the sign a ls . The 

solution here is  to interpose a delay of one clock interval 

on one of the m ultip lier inputs, along the lin es of the 

stochastic  squarer c ircu it shown in F igu re 1.4(b).

The other, m ore ser iou s problem  is  that sum m ation of 

stochastic  variab les involves an AND-OR configuration  

with random sw itching between the two sign a ls by m eans of 

a separate n o ise  line (Figure 1 .4(d)). A s explained

e a r lie r , this introduces an attenuation factor of 0. 5.

It was therefore felt preferable to re-arran ge the term s  

of the algorithm  so that they involved only m ultiplication and 

inversion  operations. Again, only Pj^(n+1) is  required  

to be generated. The algorithm  term s are then

tran sform ed  a s  follows;

(i) p^+Q- P^( l -P^) = 1 -  |p 2 -«  P i ( l - P i )

(ii) P^-3 P;^(l-P]^) = ( l - ^  P 2 ) p^

etc.

This r e su lt s  in the follow ing truth-table;

a2 P /R Pj(n+1)

0 1 0 (1 - a P2 ) p^

0 1 1 1 - (1 - p p^) P2

1 0 0 1 - (1 - O' p^) P2

1 0 1 (1 - P Pn) Pi

= 1 - (1-Q' P^)P2

Com paring this rev ised  version  with the table for the

standard L schem e, an e ssen tia l s im ilar ity  is
( 1 )evident. In the N' schem e, the sim ple constantsit - Jr

O', P are replaced with term s of the form (1 - o- p.) and

(1 -  ̂ Pj) /
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The hardware im plem entation for this schem e is  shown in 

F igu re 3. 6, showing how two le v e ls  of m ultiplication are  

involved. The extra D -type flip -flop  introduces a one bit 

delay on the a  p. and  ̂ p̂  sign a ls to p reserve  the property  

of s ta tistica l independence between m ultip lier inputs.

3. 8 Construction

A s in the ca se  of the flip -flop  SLA, the assem b led  system  

was fitted in a cabinet with a front panel patching arrangem ent 

to provide a choice of constants for a ,  ̂ and c .. Due to 

the s im ila r ity  between the fam ily  of algorithm  c ircu its , it 

was p ossib le  a lso  to accom m odate a sim ple sw itching  

arrangem ent to se le c t  the desired  reinforcem ent schem e.

The ADD IE SLA is  illu strated  in F igu re 3 .7 ,  and the resu lts  

obtained from this system  are detailed in the follow ing chapter.
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CHAPTER 4
RESULTS FROM THE APPIÈ SLA

4. 1 Introduction

A se r ie s  of experim ents was carried  out with the ADDIE

SLA in order to a s s e s s  its learning ch a ra cter istics  with a

variety  of reinforcem ent sch em es in operation. A s before,

it was decided to present the resu lts  via storage o sc illo sco p e

display, using a filter  on the output of the system  flip -flop

to provide the req u isite  stoch astic-to -an a logu e interface.

The m aster  clock was se t to run at 10 MHz, while the main

sam pling clock con sisted  of 100 ns pu lses at a frequency

f of 100 kHz, giving a system  cycle  tim e of 10 /us. s

4. 2 L „ „  Schem e
—  x t  - — — —

Learning curves obtained with the L̂  ̂ p  schem e are  

reproduced in F ig u res 4. 1 - 4 . 4 .  The f ir s t  two resu lts  

confirm  that, a s before, the effect of in creasing  

rew ard-penalty ratio  y  is  to in crease  the degree of 

expediency. Com paring these curves with those from  the 

flip -flop  SLA (Figure 2. 9) which used the sam e system  

clock rate, it can be seen  that learning tim es and steady- 

state action probability values are virtually  identical.

Two other experim ents perform ed ea r lier  on the

flip -flop  SLA w ere a lso  repeated here. F igu re 4. 3

shows the ch a ra cter istics  for both possib le  a llocation s of

penalty probab ilities, using a y = 8 schem e. In each

c a se , the automaton can be seen  to se le c t  the action which

incurs the low er penalty probability. The influence of

rela tive  c. values on the outcome is  illustrated  in 
1

F igu re 4. 4. A s before, it turns out that reducing the 

discrim ination  between the c . resu lts  in le s s  expedient 

behaviour, using in this ca se  a y = 2 schem e.

4. 3 /
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4, 3  ̂ Schem e— K -1 —— —

The resu lts  obtained with the e -o p tim a l L schem eR “ I
are  illu strated  in F ig u res 4 .5  - 4 . 7 .  They show that with 

this schem e the autom aton's perform ance is  indeed a lm ost 

optim al, with p^(n) (or P2 (n) ) c lo se  to unity in the steady- 

state. There is a sm all probability of not perform ing the 

co rrec t action, as indicated by the various ’’b lips” on the 

trace, particu larly  evident in F igu re 4. 6, which are  

ch iefly  the resu lt of ADDIE variance. A com parison of 

F igu re 4. 6 and 4. 7, which in fact record the resu lts  of 

two separate tr ia ls  with the sam e system  param eters, g ives  

som e indication of the typical variations to be found in the 

transient and stead y-sta te  behaviour. F igure 4 .7  is  

particu larly  in teresting, showing a state trajectory with 

two c lea r  r ev e rsa ls  in learning behaviour during the in itial 

learn ing period.

The choice of algorithm  reward factor a lso  influences

the learning ch a ra cter istics  of the L automaton.R “I
R esu lts obtained with a = 0 . 75  exhibit a slightly  higher

stead y-sta te  value, i. e . , higher expediency, than was

obtained for the ca se  with a  = 0. 25 (Figure 4 .5) .

This accords with the conclusions of previous sim ulation
(2 0 . 2 1 )stud ies, showing that for best resu lts  with this

schem e, the ’’step -s ize"  factor, which is  1 - o- here, 

should be sm all.

4 .4  L Schem eXV “ XV

The L schem e is  com parable in expediency to theR-R
L schem e when y  is  su fficiently  high, though its rate of

( 20 )convergence has been found to be slow er. ' The resu lts

obtained here with this schem e are reproduced in F igure 4. 8. 

L-
expediency /

A s with the L schem e, the curves indicate a degree ofR -P
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expediency which in crea ses  with y .

The general conclusion to be gained from  a ll the lin ear  

schem e resu lts  is  that there is no sign ificant d ifference in 

expediency, a s far as this hardware im plem entation is  

concerned, between L sch em es, and L or ^ 

sch em es with high y -fa c to r . In addition, there appears

to be little  d iscern ib le  difference between the learning tim es  

of the various sch em es investigated so  far. However, the 

ch ief determ inant of transient resp onse in the hardware is the 

output filter . A s explained in section  2. 5, this elem ent 

has a bandwidth which is  purposely restr ic ted  in order to 

achieve an acceptable com prom ise between the speed of 

convergence, and variance in the stead y-sta te .

4. 5 Schem e

The schem e is the m ost e lem entary of the

non-linear sch em es to  have been reported, and is , as  

described  in Section 3. 7, quite straightforw ard to im plem ent 

in hardware. It was p ossib le  to verify  in practice the 

property of conditional optim ality which is a prom inent 

feature of this schem e.

U sing penalty probabilities of 0. 25 and 0. 75, the 

system  converged as shown in F igu re 4. 9, with generally  

low er variance than was evident with the best of the linear  

sch em es.

0. 75 and 0. 875 (i. e . , both greater than 0. 5), the system  

displayed a rather low lev e l of expediency with considerable  

variance. F igure 4 .10  shows a typical resu lt, with an 

"optimal" curve superim posed for com parison. The time 

sca le  here is 5 m s per division, which enables the fast 

learning tim e for the la tter  curve in particu lar to be 

appreciated. F igu re 4. 11 illu stra tes the resu lts  of

experim ents /

However, when the c. values w ere altered  to1
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experim ents with m ore w idely separated c^, which se rv e s  

to em phasise the very high degree of expediency which can 

be achieved with this schem e, given the right conditions.

The schem e was further investigated by feeding the 

penalty probab ilities via a sw itching c ircu it, thus enabling 

a d irect com parison to be made of stead y-sta te  behaviour 

under "optimal" and "expedient" conditions. The 

resu lt is  shown in F igu re 4. 12. One of the penalty 

probab ilities was se t at 0. 125, while the other was switched  

period ica lly  about the cr itic a l value of 0. 5, as indicated by 

the control waveform . It can be seen  that with 

c . = j o .  125, 0. 56 > , the state tra jector ies yield  optim al

convergence, w hereas with c. 0 .125,  0.44> , the

system  degrades, a s predicted, to expedient behaviour.

4. 6 Plant Sim ulator

It was decided to test the ADDIE SLA a lso  with the 

plant sim ulator c ircu it developed orig inally  for the flip -flop  

SLA. This sy stem , described  in detail in Chapter 2, 

is  e ffective ly  a generator of "noisy" c ., and rep resen ts  

the m ore practical situation in which the rew ard/penalty  

sign a ls are th em selves subject to random variations.

The two sy stem s w ere linked up and tested  with two 

reinforcem ent sch em es of high expediency: the LK-I
schem e (« = 0.75) and the L„ ^ schem e (y = 64).

The resu lt for the L automaton is  shown in F igu re 4. 13.
iv - I

The high noise boundary c lea r ly  has a degrading effect on 

the learning ab ility  of the system , though the choice of 

action 1 does predom inate.

The plant sim ulator was then tested on the LR “R
automaton, and a typical resu lt is  shown in F igu re 4. 14, 

this tim e favouring action 2. In this particu lar exam ple,

 ̂ /
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a m arked r ev ersa l of learning behaviour in the in itia l stages

is  evident, s im ila r  to the effect noted in F igu re 4. 7.

Again, the resu lt is  ch aracterised  by low er expediency and

higher variance, in com parison with those experim ents

which used invariant c. values,1

Both resu lts  indicate, how ever, that as in the ca se  of 

the flip -flop  SLA, the ADDLE automaton has the ability  to 

discrim inate in its choice of action even if the rew ard/penalty  

inform ation is  heavily no ise-corru p ted . The rather high 

stead y-sta te  variance observed in these plant sim ulator  

resu lts  is  probably due in part to the fact that the sam pling  

frequency for the noisy  c ., i. e . , the latch clock of 

F igu re 2. 16, is  just one-tenth that of the main system  

clock. This m eans that in practice the rate of fluctuation  

of c^ values from one iteration to the next cannot be very  

high, thereby causing considerable excu rsion s from the 

main learning trend.

4. 7 P erform ance C urves

A s an adjunct to the learning curve resu lts  described  

above, it is  instructive to consid er a lso  an alternative  

presentation  of automaton behaviour in the form  of a 

perform ance curve which shows the variation in average  

received  penalty as the learning p ro cess  evo lves. A s 

defined in Chapter 1, average received  penalty is  

denoted by:

M(n) L p jn ) c,(n)

Since p , p , c , c are a ll present in the hardware1 ^ ± iU
sim ulation, it is  a sim ple m atter to generate a continuous 

signal rep resen ting  the quantity M, and present the resu lt  

on the o sc illo sco p e  via a filter  a s before.

F igu res /
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F igu res 4. 15 through 4. 18 illu strate  typical 

perform ance curves for the following reinforcem ent 

schem es; Lj^_p(y = 7), = 0.125) ,  = 7)
N l“' resp ectively . R -P In each ca se , c . = ^0, 25, 0. 75) ,

so that the asym ptote of optimum perform ance is

= 0 .25 .  As  expected, the m ore expedient sch em es  

are m ost su ccessfu l in achieving perform ance verging on the

optimum, w hereas the p  schem e fa lls  som ewhat short, 

and a lso  shows ch a ra cter istica lly  higher variance.

4. 8 Non-Stationary Environm ents

The resu lts  presented so  far have concentrated on 

learning behaviour in a stationary environm ent. Since 

m ost physical sy stem s are not tim e-invariant, however, it 

is  important from  a practical veiwpoint to evaluate the

adaptive or tracking properties of the learning automaton. 

In a non-stationary environm ent, the c  ̂ are  som e function 

of stage number n; this relationship may be lin ear or 

non -lin ear, periodic or random in nature. Rather than 

consider e x c e ss iv e ly  com plex sy stem s, it was decided to 

concentrate on a tw o-action system , undergoing som e  

step -w ise  interchange in the relative  order of the c . (Figure 

4. 19).

An im portant criter ion  of perform ance for an SLA 

operating in a non-stationary environm ent is  the mean  

adjustm ent time.^ ' T his param eter can be defined as  

the average number of iterations n^ such that:

P; (̂n) > P2 (n), for a ll n €  [o , n^] ,

and P2 (%) >  P i^ V  >

where it is  assum ed that the penalty probabilities w ere  

switched at n = 0.

(60-64)

Since /
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Since the linear reinforcem ent sch em es ^  and

L are of prim ary in terest, they form the b asis for the

follow ing experim ents. It is p ossib le  to calcu late the

m ean adjustm ent tim e of an automaton as a function of the

learning schem e param eters and the penalty probab ilities,

so that each experim ental resu lt can be com pared with the

corresponding theoretical value. In Appendix A,

exp ress ion s are derived for the expected value of state

probability for tw o-state  L and L automata.K“P R-I
It is  shown that for L,

E p^(n+l)

R-P*

(C2 -C 1 ) (a-^) (p^(n) )‘

and for LR -r

PjCn+l)

+ [l+fl-Q-) (c2-c^) - 2(1-^ )c 2"] p^(n)+(l-^)c2

[l+Cl-iy) (Cg-c^) (l-p^(n) ) ]  Pj(n)

As  expected, the L form ula, though derived separately ,K-1
turns out to be the particu lar ca se  of the L form ula withR -P
|3 = 1. Mean adjustm ent tim e is  then deduced from the

above by solving iteratively  for n such that p, (n ) ^  0. 5,o 1 o
where p^(0) is  the stead y-sta te  starting value prior to 

sw itching, e. g . , 0. 90.

4. 9 R esu lts

The dynamic ch a ra cter istics  of the SLA operating in

a non-stationary environm ent can be read ily  observed by

feeding the c  ̂ via a changeover c ircu it with either periodic

or random switching. F igu re 4. 20 shows typical

behaviour observed in each c a se , using an ~L schem eR -I
with a = 0 .125.  It can be seen that provided the minimum  

sw itching period of the environm ent exceed s the SLA 

adjustm ent tim e, su ccessfu l tracking is achieved.

In /
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In order to observe the actual state transition  

ch a ra cter istic s  with greater accuracy, it was decided  

to d ispense with the filter  output in terface and use instead  

a D /A  converter connected d irectly  to the ADDIE counter. 

F igu re 4. 21 shows a typical transition curve obtained in this 

way, com plete from one state to the other, with the system  

clock waveform  for the period up to p^(n) = 0 .5  

superim posed. In this particu lar ca se , 27 iterations  

occurred in the adjustm ent period.

P a st resu lts  have confirm ed that there is considerable  

variation in the transient behaviour of the automaton from one 

learning cyc le  to another. It was therefore fe lt n ecessa ry  

to take large sam ple average m easurem ents of adjustm ent 

tim e to obtain su fficien tly  reliab le  experim ental values.

This consideration  led to the design of an autom atic logging  

facility ,, outlined in F igu re 4. 22, which record s a large , 

p reset number of readings from  a system  with continuous.

periodic sw itching of the environm ent. F ach tim e the c.

are sw itched, SLA sam pling clock pu lses are passed  to the 

to ta lisin g  counter via gates 1 and 2 while the ADDIF state  

undergoes transition from  0. 90 to 0, 5. The occurrence  

of each burst of pu lses is  recorded by a separate logging  

counter controlling gate 2. A fter 5 000 c y c le s , the 

tota lising  counter thus p resen ts a d irect reading of (mean 

adjustm ent time) x 5 000.

A se r ie s  of experim ents was carried  out with the L„ ^x i-i
schem e, in which both the reward factor a  and the sam pling

clock frequency f w ere varied. The resu lts  are plotteds
in F igu re 4. 23, with the theoretical values included for

com parison. It can be seen  that the mean adjustm ent time

d ecrea ses  a s the algorithm  step s iz e  (1 - a) in crea ses , a s

would be expected. The variation in f does appear to haves
som e /
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4. 10

som e influence a lso , with the median value of 12. 5 kHz 

returning the m ost con sisten t r esu lts . It appears that 

there is  in practice an optimum duration for the updating 

phase, which m ust be of su fficient length to accom m odate  

fully each ADDIE transition dictated by the reinforcem ent 

algorithm , while not perm itting undue ’’drifting” erro rs  

caused by stead y-sta te  variance to build up.

R esu lts for the L schem e are shown in F igu re 4. 24.K, -P
The variation in rew ard-penalty ratio y , which is of course  

proportional to 1 - a, produces a s im ila r  trend in mean 

adjustm ent tim e against step s iz e  to that observed above.

It is a lso  in teresting  to note that, com paring L andR -I
L sch em es with the sam e reward param eter, e . g . ,xi “P
a = 0. 75, y  = 32, the L g ives fa ster  adjustment.K “P
The p resen ce  of just a sm all penalty factor c lea r ly  enhances 

the ability  of the automaton to recogn ise  and adapt to changes 

in the environm ent.

C onclusions

The foregoing resu lts  have verified  that the ADDIE SLA 

has very suitable learning ch a ra cter istics , and are entirely  

con sisten t with previous theoretical predictions. Although 

a certain  amount of se r ia l p rocessin g  is involved in its  

operation, the combination of 8-b it configuration and high 

clocking rate have enabled it to return s im ila r  learning tim es  

to the basic  flip -flop  SLA. Indeed, the resu lts  from that 

prototype system , using the L schem e, have been 

virtually  duplicated here, with the additional advantage that 

a m ore com prehensive range of reinforcem ent algorithm s 

can be im plem ented.

It has been shown a lso  that the ADDIE SLA is  w ell able 

to adapt to changes in the environm ent, again yield ing resu lts  

which /
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which are in good agreem ent with the theoretical values.

T his has important im plications for the use of the automaton 

with non-stationary sy stem s, where m ost practical 

applications are lik ely  to be found.

The ability  to obtain convergence in the space of a 

few m illisecon d s rep resen ts a very sign ificant advance, 

particu larly  in view of the subsequent extension to learning  

sy stem s ca lling  for much higher state order, but 

incorporating the sam e basic ADDIE SLA design. This 

developm ent is detailed in the follow ing chapter.
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CHAPTER 5

DEVELOPMENT OF A HIERARCHICAL STRUCTURE SLA

5, 1 System  Expansion

The resu lts  described  in the foregoing chapters enabled

usefu l experien ce of the perform ance of sim ple tw o-state

automata to be built up. The next step was then to undertake

the developm ent of a much la rg er  sy stem , sin ce  it was felt

that practica l applications lay  in that d irection . Rather

than sim ply consid er extending the design to, say, a

10-sta te  automaton, which has been investigated in previous
(48 49)sim ulation stu d ies, ' i t  was decided to proceed with

the im plem entation of a much la rg er  system  with state order  

r > 100. With this order of system  s iz e , there was a 

c le a r  problem  of m in im ising the amount of circuitry required, 

while at the sam e tim e p reserv in g  as much as p ossib le  the 

high operating sp eeds which are a feature of the tw o-state  

hardware sy stem s.

It was decided that the m ost feasib le  solution to this

problem  would be to subdivide the state space and perform

the random search  between automaton sta tes via a se t of

le v e ls  in a h ierarch ica l structure. It has been suggested  
(5)previously ' ' that a m u lti- lev e l design would be a suitable way 

of overcom ing this very problem  of high dim ensionality , 

and the application of sim ple tw o-leve l sy stem s has been 

considered .

5. 2 H ierarch ical System

It was argued during the developm ent of the ADDIE SLA 

(Chapter 3) that a large system  m ust have a bu ilt-in  m em ory  

capability. T his concept is  embodied in the h ierarch ica l 

structure described here, in which a sim ple low -ord er  SLA 

module /
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module or "cell" is  tim e-sh ared  between each location  in 

the "decision tree" and interfaced with a random a c c e ss  

m em ory (RAM), a s illu strated  in F igu re 5. 1. Any 

one state or action probability is  therefore represented  by 

the product of decision  probabilities at each node along the 

appropriate path through the tree.

The saving in hardware is  im m ediately evident from  the 

consideration  that an m -le v e l system  based on a single  

r -s ta te  c e ll  resu lts  in an automaton with r ”  ̂ sta tes.

Each learning cy c le , how ever, c o n sis ts  of m d ec is ion s  

between r sta tes , i. e . , a total of r x m d ec is ion s, 

rather than a single lev e l decision  between r ^  sta tes.

This configuration does of n e c e ss ity  involve m ore se r ia l  

p rocess in g  operations, but the savings in hardware are felt 

to far outweigh the speed penalty. A further advantage is  

that a modular construction greatly s im p lifie s  the design  

requirem ents for even la rg er  sy stem s than those considered  

at present.

5. 3 D esign  Evolution

It is  recom m ended that the basic "cell" of the 

h ierarch ica l system  should have a binary m ultiple of state  

order, for suitable com patability with the organisation of 

standard random a c c e ss  m em o ries . C learly , the larger  

the c e ll, the few er the le v e ls  which are required. F or  

exam ple, an 8 -sta te  c e ll  in a th ree -lev e l structure can 

cover 512 sta te s , w hereas a tw o-state c e ll  needs nine 

le v e ls  to achieve the sam e coverage.

Several conflicting requirem ents a r ise  when considering  

the s iz e  of the c e ll  to be used. Sm all c e lls ,  such as  

tw o-state , give fast d ec is ion s at each lev e l, but m ore  

le v e ls  are required for a given system  s iz e . On the other 

hand, /
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hand, the control c ircu itry  involved in tim ing, RAM 

add ressin g  e tc . ,  has the lea s t  com plexity.

In view of this, it is felt that the use of a tw o-state  

c e ll  confers sev era l advantages. In particu lar, the 

algorithm  c ircu itry  retains the standard 4 -term  form at 

used previously  with basic tw o-state  sy stem s, with its  

application tim e-sh ared  now at each d ecision  lev e l. At 

a la ter  stage, it m ay be found advantageous to m odify the 

reinforcem ent schem e at d ifferent le v e ls , or sta g es, 

during the learning p ro cess , to secu re  the best overa ll 

perform ance. A lso , if each decision  has just two 

outcom es, sim ple binary coding can be used to rep resen t  

the d ecision  paths through the h ierarch ica l structure.

This in turn renders the le a s t  com plex design for the control 

or "housekeeping" c ircu itry .

The rea lisa tion  of an automaton with a non-binary  

m ultiple of sta tes is  m ore com plicated . One p ossib le  

solution, yet to be tried, would be to in sert a decoder  

between the SLA and the plant. The SLA would be 

organised with the next-h igh est binary number of sta tes , with 

the decoder arranging for redundant sta tes to be paired off 

with "active" sta tes . This would cause som e in itia l bias 

in learning behaviour, but the effect m ay not be too sign ificant 

when averaged out over the whole learning period.

5. 4 128-State System  D esign

The basic c e ll  of the h ierarch ica l system  is  the 

tw o-state  ADDIE SLA described  ea r lier . This single  

computing elem ent e ffective ly  controls each d ecision  at every  

node a c ro ss  and down the decision  tree, with the ADDIE 

counter interfaced to a RAM to store  interm ediate decision  

probability values.

The /
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The m em ory requirem ents are d ictated  by the number 

of le v e ls  used in the system . F or  each decision , the 

value stored  in the counter at the relevant sam pling instant 

rep resen ts, together with its im plicit com plem ent, the 

d ecision  probabilities for each outcom e. The f ir s t  decision  

lev e l thus req uires one word of storage, the second lev e l  

req u ires two words, the third, four w ords, and so on. 

T herefore, an r -s ta te  sy stem  req uires a total RAM 

allocation  of (r-1) x w b its, where w is the word 

length.

In order to p reserve  the highest p ossib le  operating speed, 

the tran sfer  of inform ation between the SLA c e ll and its  

m em ory should be a p aralle l p ro cess . T his im p lies that 

the internal structure of the m em ory should be byte-oriented , 

with a comm on data bus interface. In the ca se  of MOS 

d ev ices, a good a c c e ss  tim e and TTL com patibility are a lso  

d esirab le . The device chosen in itia lly  to fulfil these  

requirem ents was the M otorola MCM 6810 AL, part of the 

"6800" m icro p ro cesso r  fam ily. This is a I K  static  

RAM with a 128 x 8 bit organisation, and is  therefore  

d irectly  suited for application in a 128-sta te  system .

Indeed, this device has availab le s ix  "chip select"  lin es , 

giving am ple scope for m em ory expansion if required. 
Subsequently, a TTL m em ory card was constructed with 

p in -for-p in  com patibility, using an array of 74S200 type 

RAMS which are organised as 256 x 1 bit. As expected, 

these dev ices perm itted a higher rate of data transfer.

The full configuration of the 128-state  h ierarch ica l 

system  is  shown sch em atica lly  in F igure 5. 2, with the 

corresponding se v e n -le v e l decision  tree in F igu re 5. 3.

The tw o-state ADDIE SLA which form s the c e ll  of the 

structure is  e ssen tia lly  s im ila r  to that depicted in F igure  

3.4.  The main difference is  that m em ory interface  

c ircu its  /
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c ircu its  are now required, sin ce  the ADDIE no longer acts  

in a virtually  continuous, se lf-conta in ed  cy c le , but operates 

instead in a tim e-sh ared  mode. A block diagram  of this 

slightly  m odified system  is  shown in F igu re 5.4.

The input and output buffers connected to the ADD EE 

are tr i-s ta te  d ev ices, designed for application with a com m on, 

b i-d irection a l data bus. T his considerably s im p lifie s  the 

design of the system , and of cou rse  reduces the "pin-out” 

requirem ents on the a ssocia ted  c ircu it card s.

5. 5 D ecision  Path Control

A s m entioned ea r lier , the use of a tw o-state  c e ll  

enables sim ple binary coding to be used to track the decision  

path taken by the system  in se lec tin g  an output action on each  

cy c le . The m eans of achieving this are now described .

At each main sam pling clock pulse to the c e ll , the

resu ltin g  output from  the flip -flop  w ill be either 1 or 0,

and this "decision  bit" is stored in a 7-b it latch, each

of whose locations corresponds to a particu lar decision  lev e l.

A s a resu lt, at the end of a search  through the d ecision  tree,

the contents of this "state latch" w ill define uniquely one of 
7the 2 sta tes , and a lso  rep resen t the output to be fed to the 

plant. When a second scan is made along the sam e path 

to apply the reinforcem ent schem e in accordance with the 

plant resp on se  and update each of the d ecision  probab ilities, 

the state latch effective ly  provides a "map" of the route to 

be taken through the d ecision  tree. That is , one machine 

cy cle  m ust involve two tra v ersa ls  of the d ecision  tree , the 

f ir s t  in the nature of a "random walk", the second in turn 

guided by the outcom e of the fir s t. The form ation of the 

state latch contents is  sim ply accom plished by using a ring  

counter as a com m utator to ste er  each decision  bit to its  
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co rrec t location, as shown in F igu re 5. 5.

5. 6 M em ory A ddress

A central feature of the h ierarch ica l system  is the 

m em ory add ress procedure. The counter in the ADDIE 

SLA m ust be interfaced correctly  to the m em ory location  

corresponding to its current position in the decision  tree  

at every stage.

C onsider an m -le v e l system , with the m em ory  

partitioned as follows:

D ecision  lev e l : 1, 2, 3,

Rows of m em ory : 1, 2, 4,

m
„m -1

When the c e ll  is  at lev e l d , say, it w ill have made d - 1 

d ecision s. The state latch  therefore w ill contain d - 1 

bits, which are sufficient to form  a ll add ress codes  

required for the number of rows of m em ory at that lev e l.

The add ress code is  derived accordingly from the state latch, 

itse lf  in effect a sm all "scratch-pad” m em ory tracking the 

d ecision  path.

The deta ils of the addressing method are illu strated  in 

F igu re 5.6,  using a 4 -bit exam ple for c lar ity  (i. e . , a 

16-sta te  system ). In the table shown, the position of the 

circu lating  bit from  the ring counter is  marked with an 

a ste r isk , while state latch contents at each lev e l are  

enclosed  in dotted lin es . At the upper le v e ls , there are  

insufficient inform ation bits from the state latch to a ssem b le  

the req u isite  m -b it add ress word. The address

words are therefore com pleted with the ring counter bit plus 

a string of zero es as appropriate. The resu ltin g  p rogression  

of add ress codes can be seen  to assum e a w ell-ord ered  

BCD type of layout, illu strating  how ea sily  the design  

philosophy can be extended to any desired  number of lev e ls . 
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5. 7

A ddress words are form ed, therefore, by suitably  

com bining the ring counter output and state latch contents, 

with blocking inverters arranged to generate the n ecessa ry  

zero es. The c ircu it configuration for this is shown in 

F igu re 5. 7. It can be seen  that this arrangem ent a lso  

allow s for the address lin es to be cycled  from an external 

counter to facilita te  the loading of 0.- 5 into each m em ory  

location as an in itia l condition. The operation of this 

ad d ress c ircu it can be verified  by considering the exam ple 

illu strated  in F igu re 5. 8. This shows the build-up of 

add ress codes at su c c e ss iv e  le v e ls  during one cycle .

The procedure is identical for both "search" and 

"reinforcem ent" phases of operation. The ring counter  

is  c lea r ly  an important component in the control c ircu itry , 

sin ce  it su p erv ises both the loading of the state latch and 

the form ation of the m em ory add ress.

System  C locks

O verall control of the sequence of operations which 

co m p rises one com plete iteration of the h ierarch ica l 

automaton is  achieved by m eans of a m ulti-phase clock  

generator. Since each cycle  co n sis ts  of an ordered, 

rep etitive  sequence of events, it was decided to base the 

design on a ring counter, each of whose c e lls  would act as  

a source of clock pu lses for one particular operations.

A logic array on the ring counter outputs enables certain  

portions of each waveform  to be blanked off as appropriate. 

By coincidence, it turned out that a seven  stage counter 

was called  for, m atching the seven -b it com m utator 

described  e a r lier . One of the functions of the prim ary  

ring counter is of cou rse  to clock  the comm utator; at the 

sam e tim e, the fir s t  and la st com m utator bits are used for 

certa in  m asking and r e se t  operations on the prim ary clock  
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generator. The two ring counters can therefore be 

considered as a nested pair (Figure 5. 9).

The full tim ing diagram for the 128-state  h ierarch ica l 

system  is illustrated  in F igu re 5. 10. F or  convenience, 

each waveform  has been assign ed  a m nem onic. In the 

detailed description  of system  operation which follow s, 

these w ill be explained as n ecessa ry , together with referen ces  

to appropriate elem en ts of the c ircu itry .

5 .8  Operating Sequence

The m aster  clock, denoted MC, is  the cen tra l source  

for a ll the clock w aveform s, and a ll events are therefore  

synchronised to it. While synchronisation is prim arily  

required for the sequential p rocess in g  operations, it is  a lso  

n ecessa ry , a s explained ea r lier , to apply it to a ll a ssocia ted  

n o ise  so u rces . The sam e m aster  clock is  therefore used to 

supply the four PRBS generators used in the design.

SLA operation is initiated by a rese t pulse (RST) which 

m ay be autom atically , m anually, or "power-on" activated. 

This c le a rs  a ll r e g is te r s , la tch es and counters. The next 

phase, which occurs just once in the learning p ro cess , is  the 

establishm ent of the in itia l conditions. F o r  this operation, 

the m em ory read /w rite  line (R/W) is  se t to "write" mode, 

and the data bus se le c t  line (DBS (2) ) arranged to feed the 

"one a ll-z er o es"  in itial condition onto the data bus.

F igu re 5. 11 shows the principal elem ents of the data bus 

in terface. The in itia l condition counter then starts to 

count up, cycling  through a ll the add ress codes as explained  

ea r lie r . When the final carry  or overflow  bit (ICCOB) 

goes high, the counter stops, the prim ary ring counter is  

enabled, and the main m ulti-phase clock sequence com m ences. 

The output of a flip -flop , denoted "sequence flag" (SF) 
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then goes low, indicating that the automaton has entered  

the "search" phase.

During this phase, the m em ory is  held in "read" 

m ode, and the secondary ring counter is  clocked (COMCK). 

This se ts  up the fir s t  lev e l add ress and prepares for steer in g  

the decision  bit to the f ir s t  c e ll  of the state latch. The 

current or "old" value of p̂ (̂n) held in m em ory is  clocked  

into a latch (OPLCK), and a d ecision  bit is  obtained by 

sam pling with the associa ted  system  flip -flop  (SFFCK).

This sequence is  perform ed seven  tim es in the ca se  of a 

128-sta te  system . The state latch contents are then loaded 

into a sy stem  state output latch (SSOLCK), which acts as the 

digital output in terface, and a lso  a p ara lle l-in  ser ia l-o u t  

(PISO) r eg is ter  from which the decision  bits w ill be recovered  

in co rrec t sequence for the operation of the algorithm  c ircu it  

(see below). F igu re 5.12 illu stra tes  the components 

involved in this data transfer.

This sin g le  clock pulse (SSOLCK) a lso  se ts  a flip -flop  

whose output (CKSTP) effectively  " freezes"  the prim ary  

ring counter (F igure 5. 11) by m aintaining a high logic  

lev e l on one of its feedback lin es . This facility  a llow s the 

automaton to wait for the plant resp on se, which m ust be 

assum ed to be totally outwith the control of the automaton 

clock. The plant resp onse is  assum ed to include a signal 

pulse (PLTRDY) which r e se ts  this flip -flop  and allow s the 

cy cle  to continue. If a sim ulated plant with essen tia lly  

"instant" response is used, how ever, this facility  is not 

required and the CKSTP signal can be held low  a ll the tim e.

The system  is  now ready to enter the reinforcem ent 

phase. The f ir s t  com m utator clock pulse changes the 

state of the sequence flag, thereby enabling the appropriate 

clock sign als for this phase. The plant response is sam pled  
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by the rew ard/penalty flip -flop  (PRFFCK), and the m em ory  

contents at the f ir s t  lev e l add ress are read into the ADDEE 

(DBS (1) ) and the latch (OPLCK). Another holding 

operation on the prim ary ring counter is then initiated, 

using a counter denoted "learning period tim er". A s 

before, a high logic lev e l is fed back until the m ost 

sign ificant bit (LPTQ^^) changes state. In the interval, 

the ADDIE adjusts to the updated value of p^(n+l) supplied  

by the algorithm  c ircu it. The add ress for the algorithm  

data se lec to r  co n sis ts  of the output from  the reward/penalty  

flip -flop , and su c c e ss iv e  decision  bits clocked out from the 

PISO r eg iste r , m entioned e a r lie r , using th e  DBS (1) 

clock  signal. The m em ory is then sw itched to "write" 

m ode, and the ADDIE output buffer control line (DBC (2) ) 

sw itched accordongly, to allow  the updated ADDIE contents 

to be dumped in the m em ory. A fter seven  such operations, 

one system  iteration is  com pleted. The automaton is  then 

ready to re -en ter  the search  phase and repeat the p ro cess .

If at any tim e the system  is  r ese t, the m em ory w ill be 

"scram bled" by the in itia l condition phase and the whole 

learning p ro cess  w ill start over again.

The learning experience of the automaton is  represented  

by the reinforcem ent of the path leading to the optimum state  

as the decision  probabilities at each node on the path approach  

unity. The ch ief determ inant in the cycle  tim e, again 

setting  asid e consideration  of the plant tim e constant, is  

the ADDIE adjustm ent period during the reinforcem ent 

phase. Since seven  updating step s occur in each iteration , 

it can be provisionally  estim ated that the learning tim e for 

the 128-state  system  w ill be at le a s t  seven  tim es that of 

the tw o-state ADDIE SLA with its single updating step.

5. 9 /
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5. 9 V ariable Size F a c ility

Since the la st bit of the com m utator controls the length 

of the prim ary clock  sequence, it is  p ossib le  to a lter  the 

effective  s iz e  of the SLA sim ply by m oving the tap-offs on 

the secondary ring counter and m asking appropriate feedback 

lin es , a s shown in F igu re 5. 13, In this way, the 

h ierarch ica l system  can be se t up with 7, 6, 5 or 4 le v e ls , 

i. e. , 128, 64, 32 or 16 sta te s . A se t of data se lec to rs

is  used to facilitate sw itching between the various com binations 

of control sign a ls , so that just two external add ress lin es  

require patching-up by the operator.

5. 10 Construction

The com plete system  was assem b led  on a total of ten 

c ircu it card s, each representing a d istinct function: clock  

generator, state latch and ad d ress, m em ory (MOS or TTL), 

ADDIE (8 or 12 bit), data latch, n o ise  (1), n o ise  (2), 

algorithm , output in terface, d isplay functions. A cabinet 

was constructed providing a ll the requisite  input/output and 

control fa c ilit ie s  for system  operation on the front panel. 

Photographs of the unit are reproduced in F igu res 5. 14 and 

5.15.
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CHAPTER 6
RESULTS FROM THE HIERARCHICAL SLA

6. 1 P re lim in ary  R esu lts

During the initial a ssem b ly  of the h ierarch ica l automaton

in prototype form , it was found convenient to test the various

su b -section s separately , as far as was p ossib le , and then

to operate the full system  in itia lly  at a low number of le v e ls

as an aid to fault-finding. F igu re 6. 1 shows the learning

ch aracter istic  subsequently obtained from a 3 -le v e l, 8 -sta te

arrangem ent converging to state 4, The d iscrete , nested

learning cu rves give a good illu stration  of the operating

princip le of the system . The learn ing tim e here is  typically

three tim es that of a com parable 2 -sta te  system , as would

be expected from the tim e-sh ared  nature of the learning

p ro cess . The h ierarch ica l SLA, it is fe lt, should be
(66, 67)considered akin to a system  of co-op erative  gam es 

between 2 -sta te  automata, one at each lev e l. Each  

automaton decid es, in turn, which of the two locations  

below its own current position in the decision  tree should be 

se lec ted , having been steered  to that position by the 

cum ulative efforts of the automata above (c .f . F igu re 5. 1).

Initial optim isation experim ents with the 128-state  

system  w ere perform ed with the m ost elem entary of sim ulated  

plant c ircu its , a s shown in F igure 6 .2 . This is  m erely  

an extension of the 2 -sta te  system  plant, in that one 

se lec ted  action, in this ca se  number 41, resu lts  in a low  

penalty probability, c^ = 0. 25, and a ll others a high one,

Cĵ  = 0. 875. F igu re 6. 3 shows the typical learning  

behaviour, presented here in the form of an 'output map' 

of the state latch  contents at su cc ess iv e  sam pling instants, 

obtained by D /A  conversion  and presentation on a storage  

osc illo sco p e .

The identity of the optimum action can e a s ily  be varied
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by a lter in g  the front-end log ic  in the plant. To verify  the 

absence of any bias in the system , the experim ent was 

repeated for actions near each end of the range; number 5 

and number 120. The resu lts  are shown in F ig u res 6 .4  

and 6, 5 resp ectively . In each ca se , convergence is  

achieved in the range of 50 to 100 m s. The approxim ate  

length of one iteration , using the 8-b it ADDIE and a 

2. 5 MHz m aster  clock, is  100 ^ s, so the indicated learning  

tim es correspond to between 500 and 1 000 iterations.

There is  alw ays a sm all probability of in correct d ecision s  

beyond the in itial learning period, at any lev e l, due to 

variance inherent in the operation of the ADDIE. This 

resu lts  in the sporadic occurrence of in correct output actions 

which show up on the output map a s sca tter  points off the main 

trace.

A s before, it is  a sim ple m atter to sim ulate a non- 

stationary environm ent by sw itching the identity of the optimum  

action. F igu re 6. 6 shows how the SLA can adapt to an 

environm ent in which the optimum action is  sw itched between  

58 and 106. It is  sign ificant that not only does the SLA 

adapt su ccessfu lly , but a lso  that the adjustm ent period is  

virtually  the sam e as the in itial learning response tim e.

6. 2 Application to M ultimodal System s

Having esta b lish ed  sa tisfactory  operation of the 

h ierarch ica l SLA with a very  basic "plant”, the next step  

was to consid er its application to the m ore practical situation  

of m ultivariable sy stem s with m ultim odal perform ance  

c r iter ia . In order to sim ulate such an environm ent, a 

rather m ore sophisticated  plant c ircu it was required.

It was decided to use a s an exam ple a w idely-reported  P I 
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function^^^’ which has a c lea r ly  defined global optimum, 

a loca l optimum and a saddle point.

The objective function describ ing this particular  

perform ance index is  given by
2 7 3  1 4 2 - Vf (x, y) = (l+8x - 7x + - X  - - X  ) y e ^

w here x and y are the two control variab les. In order  

to match the P I to the SLA, a program , denoted "SLIG", 

was written which computed f(x, y) over the req u isite  range 

and provided a choice of output form ats. F igu re 6. 7 

shows the surface plotted on a fine grid to illu strate  its  

general features. F igu re 6. 8 presen ts an a lternative  

view , using this time a 1 6 x 8  grid to illu stra te  the 

partitioning of the surface into 128 d iscrete  elem en ts.

SLIG a lso  generates a table of penalty probability values  

( c . ) corresponding to each surface elem ent, and w rites

these to a dump file . A third output option is  to produce a

punched tape of binary c. values to feed a PROM 

program m er designed sp ec ifica lly  for 2708-type PROMS 

(1 K X 8-b its).

A useful feature of the program  is  the provision  for a 

choice of "com pression  factor" to be applied to the range of 

c.̂  values derived from norm alisation  of the P I objective  

function. This enables the final values of the penalty  

probabilities to be constrained between chosen lim its  within 

the fu ll-sc a le  range [j3, 1^ , a s  a test of the d iscrim inatory

pow ers of the SLA. F o r  the experim ents reported below, 

the com p ression  factor was se t at 0. 95, giving a minimum c  ̂

of 0. 025 and a maximum of 0. 85 for the full 128-state  

system .

The principal e lem en ts of the plant sim ulator c ircu it are  

shown in F igu re 6. 9. The PROM is  at the centre, 

storing the c^ values as 8-b it num bers, each addressed
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6. 3

by the appropriate action output from the SLA. In

order to evaluate the perform ance of the SLA under 

non-stationary conditions a lso , it was arranged that a 

"reflected" version  of the P I be stored in the next 

128 bytes of the PROM (i. e . ,  x and y - axes reversed ).

In this way, sim ply sw itching the m ost sign ificant address  

line abruptly changes the environm ent as seen  by the SLA.

It was decided to d ispense with the e a r lie r  method of 

sim ulating surface noise or observational erro r  described  in 

C hapter 2, which ca lled  for a two-phase clock and a rather  

slow  sam pling rate. Instead, the p resen ce of noise is  

effected by introducing a full adder fed with random num bers 

in the form of n o ise  lin es tapped off the central PRBS source. 

The resu lting  n o ise-corru p ted  ĉ  ̂ value is then applied to a 

standard noise com parator arrangem ent which produces a 

stochastic  pulse train representing the penalty probability.

This is  subsequently sam pled by the penalty/rew ard flip -flop  

to provide the appropriate environm ent resp onse  

(0: reward, 1; penalty) for use by the SLA in the 

reinforcem ent phase. The use of com puter fa c ilit ie s  in 

the preparations for these experim ents is  sum m arised  in 

F igu re 6. 10.

Data Logging

In order to obtain maximum flex ib ility  in the presentation  

of data from  SLA learning runs, it was decided to use a 

com puterised  data logging system . A program , "SLOG", 

was w ritten which recorded the output action after each iteration  

and stored the inform ation in a data file , together with the 

relevant param eters for the particular experim ent. A 

companion program , "SLAG", was then written to enable 

p rocessin g  of the data, together with the c^ file  provided by 

SLIG, to form  an output map, a penalty curve (i. e . , a plot 
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of received  penalty against iteration  num ber), and a se t of 

cum ulative distribution cu rves illu strating  the evolution of 

automaton action at various stages during the learning  

p ro cess . Of this fam ily of program s, SLAG and SLIG 

w ere w ritten p rim arily  for m ain-fram e system  operation  

(DEC-20), while SLOG was run on an LSI 11/03 .

A ll three program s are in FORTRAN, though som e MACRO 

routines are called  as appropriate. The application of 

SLOG and SLAG to the logging and presentation of 

experim ental data is sum m arised  in F igu re 6. 11.

The logging p ro cess  req u ires the SLA to interrupt 

the 11/03 w henever an output action is availab le. The 

c ircu it used to accom m odate this is  shown in F igu re 6. 12. 

The clock pulse which tr iggers the system  state output latch  

is  differentiated to produce a narrow spike, su fficien tly  

sh orter than the com puter's interrupt response tim e.

T his sends an interrupt request via the flip -flop , which is  

subsequently r e se t  by the reply signal from  the com puter. 

The se lec ted  action, held in the seven  bit output latch, is  

then read via the I/O  ports to a disk file .

6 .4 R esu lts and Com m ents

A total of seven experim ents perform ed with the

h ierarch ica l SLA is  reported here, using the perform ance

index described  above with a superim posed noise component

of + z distributed uniform ly over the surface. F our bits

of noise w ere in fact added, so that z represented

approxim ately 3% of the fu ll-sc a le  range (0-255) of the

8-b it c . values. The resu lts  are detailed below with 
1

appropriate com m ents.

Experim ent 1: /
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E xperim ent 1:

O' = 0 .4 3 7 ,  ̂ = 0 . 992

128-sta te , p  schem e

The output map, penalty curve and distribution curves  

for this experim ent are shown in F ig u res 6. 13, 6. 14, 6. 15

resp ective ly . The form of the output map bears a c lo se  

resem blan ce to that of F igu res 6. 3 - 6. 5, which w ere  

reproduced d irectly  from  an o sc illo sco p e  trace, and as  

before convergence is achieved in around 1 000 iterations. 

This particular learn ing run shows convergence to the 

optimum action (100), while the effect of spurious state  

transitions producing suboptim al action s, com m ented on 

ea r lie r , shows up c lea r ly  on the penalty curve as transient 

sp ikes to a higher lev e l of received  penalty. Although the 

values of received  penalty are  only calculated  at d iscrete  

points, it was decided to present the resu lt a s a continuous 

curve to illu stra te  m ore c lea r ly  the underlying trend.

E xperim ent 2:

O' = 0.25,  |3 = 0 . 875

128-sta te , L p p  schem e

(F igures 6. 16 - 6. 18)

T his experim ent was chosen to dem onstrate the effect of 

a low ratio of reward to penalty, in this ca se  y  - 6.

The output map p resen ts a rather chaotic p icture, a s does 

the penalty curve to som e extent. However, the 

distribution curves prove that the SLA does, in fact, favour 

actions at or near the optimum, sin ce  a se t of peaks is  

c lea r ly  evident, spaced at in tervals of 8 in accordance with 

the partitioning of the surface into 1 6 x 8  elem ents for 128 

p ossib le  actions.

This resu lt, therefore, bears out the expected  

perform ance of an L automaton with a sm a ll m easure of
r l  -  Jr

expediency, i. e . , re liab le  convergence to a condition in which 

favourable actions are se lec ted , though with probability  

som ewhat /
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som ewhat short of unity.

E xperim ent 3; 

a  = 0 . 25  (F igures 6.19 - 6.21)

128-sta te , L schem e  R -I

This resu lt is a c la s s ic  exam ple of an L automatonR -I
locking-on to the wrong action. The learning

ch a ra cter istic s  are very  s im ila r  to those of E xperim ent 1,

but this tim e the system  hom es in on action 91. This

illu stra tes  the basic flaw in the L schem e, in that itsR -I
very high degree of expediency (e-optim ality) can lead to 

an inability to escap e from a situation w here the chosen action  

turns out to be sub-optim al, which may w ell a r is e  in the ca se  

of a non-stationary environm ent.

E xperim ent 4:

O' = 0. 5,  ̂ = 0. 992

128-sta te , L_, ^  schem e  
R  -  Jr

(F igures 6 .22 - 6.24)

W hile the previous experim ents w ere logged over  

2 000 iterations using a static  environm ent, this experim ent 

was run for 5 000 iteration s, with the plant sw itched after  

2 048 iteration s, a s described  ea r lier , under the control 

of a binary counter fed with state output latch clock p u lses.

In this particu lar c a se , the set-up  was reversed  so  that 

the "reflected" plant was chosen first.

The resu lt show s, fir s t  of a ll, convergence  

predom inantly to actions 19 and 20, which are low penalty  

but suboptim al actions. A fter  the plant is  sw itched, there 

follow s an interim  adjustm ent period, culm inating in 

convergence to the "new" optimum of action 100.

Although the f ir s t  half of this tria l did not y ield  optim al 

behaviour, sin ce  action 28 would have been preferred , 

the overa ll resu lt does nonetheless dem onstrate the ability  of 

the SLA to track a non-stationary environm ent without 

e x c e ss iv e  /
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e x c e ss iv e  delay, provided a "suitable” p)

reinforcem ent schem e is em ployed.

The follow ing three experim ents w ere chosen to 

illu stra te  the flex ib ility  provided by the h ierarch ica l structure  

of this hardware SLA design. U sing the front panel 

patching facility  to a lter  the program m able system  clock  

described  previously , it is  a sim ple m atter to change 

the s iz e  of the structure im m ediately (in binary m ultip les).

E xperim ent 5; 
O' = 0. 125

64 -sta te , L schem e  rt-I
(F igures 6. 25 - 6. 27)

In the ca se  of the 64 -sta te  system , the

automaton ad d resses  only every second point on the P I

surface (odd num bers). The optimum action here is  101,

which becom es 51 in the nom enclature of the 64-sta te

system . The resu lt of this particu lar experim ent

dem onstrates once again how an L schem e can lock-onK-I
to the wrong action, in this ca se  number 50.

Experim ent 6: 

O’ = 0. 125

32-sta te , L schem e  K“I
(F igures 6.28 - 6.30)

This resu lt for a 32-sta te  system  is  e ssen tia lly  sim ilar  

to E xperim ent 5, showing convergence to action 24, 

w hereas 26 is optimum.

E xperim ent 7: 

or = 0. 125 (F igures 6. 31 - 6. 34)
16 -sta te , L schem e  K -1

T his la s t  experim ent is  sign ificant, in that by 

ad d ressin g  itse lf  only to every  eighth elem ent of the P I 

su rface, the 16-sta te  automaton in effect se e s  only the 

rather shallow  front edge (see  F igu re 6. 8), reducing the 

problem  to a sim ple tw o-dim ensional system . H owever, 
the /
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6. 5

the corresponding penalty probability range here is only 
from 0. 71 to 0. 85, which c lea r ly  p resen ts a sev ere  test

of d iscrim ination . The resu lt indicates convergence  

to action 15, w hereas 13 is  the optimum. H owever, 

the penalty curve v e r if ie s  that a useful reduction in 

received  penalty is  achieved as a resu lt of automaton action.

A s the number of sta tes is reduced, the learning tim es  

are c lea r ly  reduced a lso . T herefore, two se ts  of 

distribution cu rves w ere obtained from this experim ent.

The f ir s t  se t, covering 2 000 iterations a s  before, shows 

that a ll sign ificant acitv ity  is  over within the f ir s t  1 000 

iteration s. A second se t (Figure 6. 34) was accordingly  

obtained to cover  this in itia l period and to illu stra te  in 

greater  detail the evolution of the se lec ted  action.

In a ll of these experim ents, a 12-bit ADDIE was 

used in the in terests  of greater  p recision  and low er variance, 

though at the expense of operating speed. A ctual learning  

tim es for the above resu lts  can be estim ated  in the context of 

an approxim ate iteration tim e of 1 m s.

C onclusions

A s before, a ll the resu lts  are derived from  "one-off"  

tr ia ls . It was fe lt that the nature and com plexity  of the 

128-sta te  system  precluded the presentation  of resu lts  

averaged in som e way over many experim ents. Sufficient 

inform ation can, in any c a se , be derived from  rep resen tative  

sam p les such as those detailed above.

The resu lts  of these experim ents c lea r ly  dem onstrate  

the power of the h ierarch ica l SLA as a m eans of achieving  

rapid optim isation of a m ultim odal system , irresp ectiv e  of 

contour and despite the p resen ce  of m easurem ent noise.

Even j
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Even in c a se s  where sub-optim al convergence occurred , 

stem m ing from  a rein forcem ent schem e of which such  

behaviour is  a known hazard (L ), the automaton 

succeeded in choosing actions which w ere adjacent to the 

optimum. It can therefore be said to have perform ed its  

allotted task of reducing the average received  penalty.

This in turn im p lies an im provem ent in system  perform ance  

which at lea s t  approaches the ideal.

It m ust be s tr e sse d  that at no tim e did convergence to 

the lo ca l optimum occur, dem onstrating con clu sively  that 

the SLA has purely altitude sen sitiv ity  over the P I surface, 

as opposed to the gradient sen sitiv ity  ch aracter istic  of the 

conventional h ü l-c lim b in g  m ethods of optim isation. The 

su ccessfu l resu lts  obtained with sw itched environm ents 

are particu larly  sign ificant, sin ce  it is  lik ely  that m ost SLA 

applications w ill involve non-stationary plant.

The p resen ce  of m easurem ent noise on the P I surface  

does not seem  to im pair sign ificantly  the perform ance of the 

SLA. Indeed, it can be argued that its perturba ting effect  

on the value of received  penalty on a sh ort-term  b asis might 

help to dislodge a highly expedient learning schem e from an 

in correct action to which it m ight otherw ise lock -on . This 

would perm it a slightly  higher degree of expediency, which 

does have desirab le  featu res, to be catered  for in the 

reinforcem ent p ro cess .

The developm ent of a viable hardware automaton enables 

a fully operational learning con tro ller  to be im plem ented, 

and the follow ing chapter is devoted to the study of a practical 

system  and the resu lts  achieved.
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CHAPTER 7

PROCESS CONTROL WITH A LEARNING AUTOMATON

7. 1 Introduction

The resu lts  of the experim ents presented in the 

previous chapters have confirm ed that the hardware stochastic  

learning automaton has useful potential for applications in 

adaptive control sy stem s. However, these w ere confined  

to sim ulated and of n e c ess ity  a r tific ia l plant dynam ics. It 

was felt, therefore, that a m ore convincing dem onstration  

of automaton perform ance in this area would accrue from  

experim ents which involved a rea l physical p ro cess .

W hile much theoretical study has been made of adaptive 

control s tra teg ies , conventional p ro cess  con tro llers of the 

two term  (proportional plus integral) or three term  

(proportional plus integral plus derivative) variety  are s t ill  

w idely used in m anufacturing industries. With these sy stem s, 

there is usually a need for frequent, unpredictable 

adjustm ents to be carried  out on -lin e . This "tuning” 

function, involving the sim ultaneous adjustm ent of sev era l 

interdependent control param eters, could be perform ed by an 

automaton, and rep resen ts a fruitful area of application for 

a practica l hardware system .

Adaptive control sy stem s can be broadly c la ss if ie d  as 

either plant m easuring or perform ance m easuring. Plant 

m easuring im plies the identification or observation of the 

param eters of the environm ent in order to develop a control 

strategy. Since the learning automaton is  ideally suited to 

the situation where inform ation about the environm ent is 

difficult or im possib le to obtain, i. e . ,  the c la s s ic  "black 

box" problem , the control philosophy to be followed here  

w ill be perform ance m easuring, where the only inform ation  

availab le from  the environm ent is in the form  of som e criter ion  

of /
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of perform ance, presented at the output port, in response  

to an input test signal such as a step or im pulse.

It was eventually decided to base these applications 

studies on a sm all therm al p ro cess  with a two term  

(proportional plus integral) contro ller . This was felt 

to be a su itable representation , on a laboratory sc a le , of 

the type of system  com m only encountered in r e a l- life  

situations.

7, 2 Therm al P r o c e s s

The therm al p ro cess  used in these experim ents was 

the laboratory tutor m odel PT 326 (manufactured by 

Feedback Ltd ). This co m p rises  of a centrifugal fan with 

an adjustable inlet or ifice  which blows a ir  through a grid 

heater elem ent, down a pipe, and out to the atm osphere.

A m iniature bead therm istor is used to m onitor the exhaust 

a ir  tem perature, providing a m easured value of p rocess  

variable which is  com pared with the d esired  set-p o in t in a 

detector bridge. This generates the resultant error  signal 

or deviation which is fed to the con tro ller . Control signal 

am p lifier  and heater drive c ircu its  are incorporated within 

the unit, a s is  provision  for external modulation of the 

set-poin t.

The ch a ra cter istic s  of this p rocess are approxim ated  

by a d istan ce-veloc ity  lag  followed by two exponential lags, 

giving the follow ing forward loop tran sfer function:

-sT
G(s)

where T.

1

(1 + sTj)
(a +  - )

0 .2  sec  , T = 0. 26 sec

A convenient m easure of perform ance for this system

I S /
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is  the Integral of Squared E rror  (ISE) cr iter ion  resu lting  

from the application of a step input. T his criter ion  is 

particu larly  relevant here, sin ce  the error  signal re la tes  

directly  to the voltage applied to the heater. The ISE 

is  therefore a m easure of the energy consum ption of the 

system  in its resp onse to a disturbance.

It was decided that a tw o-term  contro ller  would be

used, to enable a useful range of param eter adjustm ent

to be made with the h ierarch ica l automaton. It is  therefore

instructive to consider the relationship  between the ISE

and the control param eters. A se t of ISE contours for

different settin gs of proportional band and integral tim e in
(52)the con tro ller  has been obtained^ , and is  reproduced as 

F igu re 7. 1. The principal feature of this perform ance  

ch a ra cter istic  is  a w ell-defined  shallow  ridge, which im plies  

com parative in sen sitiv ity  to proportional band setting  in the 

region of the optimum: 69% proportional band, 0. 85 sec  

integral tim e.

The com plete system  block diagram  is presented in 

F igu re 7. 2. This shows the e ssen tia l features of the 

p ro cess , together with its nested control system : an inner 

loop, con sistin g  of a standard tw o-term  con tro ller , and an 

outer loop, containing the automaton, which evaluates the 

error  separately  and acts on the contro ller  accordingly.

In effect, the automaton se e s  the p ro cess  and the contro ller  

combined as the 'environm ent'.

7. 3 Control System

The tw o-term  con tro ller  section  is  e ssen tia lly  

straightforw ard, a s  shown by the c ircu it diagram  in 

F igu re 7. 3. It co n sis ts  of a front end buffer, followed  

by an integrator which connects via an inverter stage to the 

final /
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7 .4

final sum m ing am plifier. Standard IC operational 

am p lifiers are used throughout, with no sp ecia l arrangem ents 

made for precision  balancing or tem perature com pensation.

In keeping with the sp irit of the automaton approach, factors  

such as am bient tem perature variations are placed in the 

category of random disturbances over which the designer can 

assum e no control.

Integral tim e adjustm ent is  achieved by varying the 

proportion of error  signal which is integrated, while the 

proportional band setting  is changed by a lter in g  the gain of the 

final sum m ing am plifier. Both functions are controlled

from  the automaton by m eans of program m able attenuators 

(PA l and PA2 resp ectively ) as detailed in F igu re 7.4.

T his shows a se t of potential d ividers activated

by CMOS sw itches on the "earthy" side of each of the 

low er r e s is to r s . Selection  is  perform ed by m eans of 

two 3 to 8 -lin e  dem ultip lexers, addressed  by the SLA 

output bus. Thus eight settin gs of proportional band 

(33% - 175%) and eight settin gs of integral time 

(0. 5 sec  - 8 sec) are availab le, controlled  by the automaton 

in a 64-action  (6 -level) configuration.

P erform ance Evaluation

The perform ance evaluation section  is of cen tral 

im portance to the autom aton-plant in terface. The function 

of this section , as d iscu ssed  ea r lie r  in Chapter 2, is  to 

quantify whatever m easure of perform ance can be derived  

from  the plant, and in turn form ulate the req u isite  binary 

rew ard/penalty  resp onse  for the automaton.

F or these experim ents, the perform ance evaluator  

is  divided into three su b -sec tio n s, which are described  with 

referen ce to F igu re 7.5.  The first section  provides for 

the /
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the calculation  of ISE, and is im plem ented on a Solartron  

HS7 hybrid com puter for accuracy and repeatability . The 

patch-up c o n s is ts  of a 4 -quadrant m ultip lier  unit in squaring  

m ode, an integrator with fa c ilit ie s  for external control of 

the r e se t  and compute m odes (via a com parator), and suitably  

scaled  buffer am p lifiers . The ISE output is  then passed  

to an A /D  converter via a potentiom eter labelled  "set range", 

which is  adjusted in itia lly  to estab lish  a convenient dynamic 

range for the converter. This would be supplem ented  

in the ca se  of a com prehensively  adaptive system  by an 

autoranging facility  (see  Section 2.8) .

The overa ll operation of the system  is supervised  by 

the sequence control section , which c o n sis ts  b asica lly  of two 

m onostables interacting with the SLA clock  sequence to 

effect control of the integrator reset/com p u te  m odes in the 

HS7, operate the A /D  converter, and generate a signal 

which is the source of the plant disturbance. The 

automaton itse lf  can run at its norm al fast clock frequency  

of the order of m egahertz, while making use of the CKSTP/ 

PLTRDY facility , described  in Chapter 5, to a r r e st  the 

system  between each iteration.

The set-p o in t input signal is  a square wave with a 

period of 6 seconds, sin ce it was found that a 3 second  

interval was sufficient for the plant to r eg is ter  its reaction  

to the disturbance, followed by 3 seconds in which to 

recover . A TTL signal from  the sequence control section  

is  applied to the MSB input of a D /A  converter whose output 

voltage in turn provides the p ro cess  set-p o in t input. The 

addition of noise to the system  is ea sily  brought about by 

connecting lin es from a PRBS generator to le s s  significant 

bit inputs of the D /A  converter. The effect of a 

step -w ise  disturbance on the p ro cess  is  shown in F igu re 7. 6. 

In /
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In (a), no n oise  is  present, and the plant resp on se, 

m irrored  in the received  error  signal, shows the typical 

featu res of lag and overshoot. In (b), n o ise  has been

superim posed on the set-p o in t, and the additional 

disturbances, random in am plitude and duration, are  

c le a r ly  evident. The peak value of the noise  envelope 

here is approxim ately 12% of the nominal step input 

am plitude.

7. 5 E xperim ental R esu lts

The overa ll perform ance of this learn ing control 

system  was a s s e s se d  by feeding the ISE output voltage from  

the HS7 to an X-Y chart record er. A sim ple R-C  

lo w -p a ss filter  was used to sm ooth out variations in the trace  

resu ltin g  from  the long interval between each up-dated reading  

(6 se c s ) , while the X -a x is  was driven by the output of a 

’’system  iterations" counter via a D /A  con verter  to provide 

a suitable tim e sca le .

A s e r ie s  of experim ents was perform ed to illu stra te  

various asp ects of the learning con tro llers c h a ra cter istic s .

The resu lts  are presented and d iscu ssed  below. A s before, 

these are "one-off" tr ia ls , chosen as rep resen tative  

exam ples of sy stem  behaviour.

E xperim ent 1 : ^ schem e (Figure 7.7)

T hese erro r  cu rves are the resu lt of sin g le  learning

runs obtained with the L rein forcem ent schem e. In
K ." Jr

(a), with no n o ise  presen t, the sy stem  converged rapidly  

to a low lev e l of steady state ISE after approxim ately 200 

iteration s, with little  additional variance-induced erro r  in 

the la ter  sta g es. In (b), n o ise  was superim posed on the 

set-p o in t, causing the learning phase to be som ewhat 

prolonged, /

178



prolonged, and a higher lev e l of fluctuation in stead y-sta te  

error.

E xperim ent 2: L schem e (Figure 7.8)  - I

In s im ila r  fashion, these curves show the learning  

c h a r a cter is tic s  using the L schem e. Compared to 

the above, the in itia l learning phase was m ore erra tic , but 

the system  converged just as rapidly, with a v irtually  constant 

lev e l of steady state erro r , which would be expected from  this 

highly expedient rein forcem ent algorithm . In the ca se  of 

superim posed noise (b), it is sign ificant that the system  

has converged to a sub-optim al action, resu ltin g  in a higher  

final lev e l of sy stem  error.

C learly , the general featu res of these learning

sch em es which w ere observed in the ea r lier , static  experim ents

are com ing to the fore a lso  in this p ractica l sy stem . The

la st resu lt is  particu larly  in teresting , illu strating  once again

that the L automaton does lock on occasion a lly  to a le s s  R - 1
than optim al action.

F urther experim ents w ere then carr ied  out in which 

plant or con tro ller  d isturbances w ere introduced, in order  

to sim ulate the situation of a non-stationary environm ent to 

which the automaton is particu larly  suited, and indeed which  

is  m ost lik ely  to be encountered in practice.

E xperim ent 3: ^ R _p blower sw itch (F igure 7. 9)

In this experim ent, the blower inlet aperture was 

opened abruptly from 20° to 60°. The disturbance was 

se t m anually, when the in itial learning phase was deem ed to 

have advanced su ffic ien tly  to steady state  conditions. In 

the n o-n o ise  ca se  (a), the in itial learn ing period was notably 

rapid. Im m ediately follow ing the sw itch, there was a 

considerab le /
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consid erab le  in crease  in received  error , which subsequently  

receded  as the automaton re-adjusted  the con tro ller . A 

sim ila r  resu lt was obtained in (b) with n o ise  added to the 

system . The main feature here is  a generally  higher  

average lev e l of system  erro r , though adjustm ent tim es in 

each c a se  are v irtually  identical.

E xperim ent 4: 

(F igure 7. 10)

L.J, T schem e, blow er sw itch  R -I

The above experim ent was then repeated with the

L schem e. In the n o -n o ise  ca se  (a), the reaction  toR -I
the disturbance was rapidly controlled , and the final error  

value very  low. With added n o ise  (b), the system  

exhibited longer adjustm ent tim es and a higher overa ll lev e l 

of ISE. Again, the a lm ost constant lev e l of steady state  

error  with this schem e is  apparent.

E xperim ent 5: 

(F igure 7. 11)

L schem e, contro ller  sw itch  R - 1

A s a  further test of the adaptability of the automaton, 

a m ore drastic  disturbance was introduced into the system  

by sw itching the con tro ller  ch a r a c ter is t ic s . This was 

achieved by changing over two ad d ress lin es at the inputs to 

the program m able attenuators, one for the proportional band 

se lec to r  and one for thé integral tim e se lec to r , thereby 

com p letely  restructurin g  the relationship  between automaton 

actions and con tro ller  settin gs.

In curve (a), the reaction  to the con tro ller  

disturbance was sw iftly  com pensated. F urtherm ore, it 

appears that in this ca se  the reconfigured con tro ller  was able 

to lock on to a better control setting, a s indicated by the 

low er error  le v e l of the la tter  portion of the trace.

With /
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7. 6

With noise added (b), the reaction to the disturbance  

was noticeably m ore erra tic . H owever, the tim e taken to 

re-ad ju st did not appear to be sign ificantly  longer than in the 

previous exam ple.

E xperim ent 6: L and L sch em es,-----------------------  rx-i Lx-ir
con tro ller  sw itch (Figure 7-. 12)

This final experim ent g ives an exce llen t illu stration

of the p itfa lls involved in using the schem e, rather
K -1

than L_ , in a non-stationary environm ent. R -P In (a)

con tro ller  sw itching was perform ed on an system .

It is  c lea r  that the automaton sim ply  did not respond to the 

change in conditions. Since the current choice of action, 

and therefore the control setting, was no longer su itable, 

the ISE rose  to a higher lev e l,a t which it rem ained locked  

within the confines of this experim ental log (512 iteration s). 

The jitter  on the trace is m ainly a resu lt of the R-C filter  

on the chart record er  input. '

In (b), a d irect com parison can be made with the 

perform ance of an p  sy stem  under identical conditions. 

The in itial adjustm ent phase was longer than the above, 

while the in itia l reaction  to the disturbance was very  s im ila r . 

H owever, the a ll-im portant d ifference is  that the L p  p  

automaton was able to re-ad ju st in the light of the changed 

conditions, thereby restor in g  the system  operating erro r  to 

its  orig inal lev e l.

C onclusions

With these experim ents, a practica l p ro cess  

con tro ller  with stochastic  learning automaton su pervision  has 

been shown to operate su ccessfu lly . No a p r iori 

inform ation was assum ed in the application of the automaton 

to /

181



to the sy stem , save for estab lish in g  the dynamic range at 

the input of the sim p lified , non-adaptive perform ance  

evaluator (Section 7.4) .

The system  gave a highly sa tisfa cto ry  dem onstration  

of adaptive control, achieving m inim isation  of error  under 

stationary and non-stationary plant conditions. In this 

con tex t, the d isturbances applied w ere quite se v er e . In 

m ost physical plant the sy stem  param eters vary slow ly and 

continuously, ca llin g  for a tracking ability  from  the 

automaton rather than the com prehensive re-adju stm ent of 

which it has been shown n ev erth e less  to be fully capable.

A s before, the intrusion of externally  derived n oise  

produced only a m arginal degradation in perform ance. 

C onvergence tim es, though long com pared with the p ro cess  

tim e constants, w ere notably sh orter here than was the ca se  

for the experim ents with static  plant (ROM) reported in 

Chapter 6. This is  probably a consequence of the 

particu lar contours of the p ro cess  perform ance ch aracter istic  

(Section 7. 2), which would be expected to encourage rapid 

convergence to the general v icin ity  of the optimum. By 

com parison , the automaton computation cycle  tim e (i. e . , 

the search  and rein forcem ent phases) is  quite insignificant. 

This confirm s the view  that a la r g e -sc a le  m ultivariable  

con tro ller  could be constructed  along the lin es  of the system  

described  here, with no speed penalty from  the automaton 

in operation.

The p ro cess  under consideration  was a com paratively  

sim ple one, but it did exhibit the general p roperties ,of a 

rea l la r g e -sc a le  system . F urtherm ore, by em ploying an 

automaton to tune a standard tw o-term  p ro cess  con tro ller , 

an application has been devised  which can be readily  

a ssim ila ted  by the ex istin g  and estab lish ed  technology of 

p ro cess  control.
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Figure 7-9 System error curves (3 )
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Figure 7-12 System error curves I 6 )
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CHAPTER 8

CONCLUSIONS - REVIEW AND OUTLOOK

8. 1 R eview  of the P roject

This project was initiated against a background of
(5 7 ,8 )considerab le developm ents in learning automata theory ’ ’ .

Their behaviour was w ell understood, and application areas

w ere bemg active ly  pursued . In view  of

th is, investigations began into the fea sib ility  of developing

hardware automata for practica l engineering applications, with
(1-4)digital stochastic  computing providing the ideal m edium .

The vast m ajority of theoretical studies had concentrated on 

tw o-state  automata; therefore they form ed the b a sis  for the 

in itia l experim ents in hardware syn th esis.

The f ir s t  tw o-state  design (flip -flop  SLA - Chapter 2)

was rather lim ited  in scope, but rea lised  quite a prom ising

perform ance. The general learning c h a ra cter istic s  were
(20  2 1 )broadly s im ila r  to those reported previously ' ' , both in

transient and stea d y -sta te  behaviour, i. e. , learning tim e 

(in term s of system  iteration s), degree of expediency and 

variance. The resu lts  achieved here could not, by the 

nature of the hardware involved, approach the p recision  of 

these previous sim ulation stu d ies, but the sam e general 

conclusions could be drawn. A sim ple plant sim ulator was 

developed a lso , and the degree of in sen sitiv ity  of the system  to 

superim posed noise  was dem onstrated.

The c ircu it design for the reinforcem ent algorithm  turned 

out to be as flex ib le  a s it was sim ple, and was subsequently  

incorporated in a m ore advanced form of SLA design (ADDEE 

SLA - Chapter 3). Again, the sa lien t featu res of each  

learning schem e could be verified  with the ADDIE SLA, and 

a com prehensive understanding of the perform ance of this 

system  /
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8 . 2

system  was built up. The experim ents (Chapter 4), 

which dealt with a wide variety  of reinforcem ent sch em es, 

lin ear and n on -lin ear, p rogressed  a stage further with the 

consideration  of non-stationary environm ents. In addition, 

the effect of superim posed noise in the environm ent was 

further investigated .

The ADDEE SLA had been devised  using the concept of 

m em ory in the learning p ro cess , and acted as a prelude to 

the developm ent of a large state order sy stem  in which a 

h ierarch ica l structure based on a tim e-sh ared  tw o-state  

automaton " ce ll” was em ployed (Chapter 5).

C onservation of hardware and ease  of operation w ere paramount 

in the design, but operating speed was not to be unduly 

com prom ised . The h ierarch ica l SLA was in itia lly  tested  

with a sim ulated m ultim odal perform ance ch aracter istic  

stored in a PROM (Chapter 6). The resu lts  obtained in 

these experim ents, which could be considered  much c lo se r  

to r e a l- life  sy stem s, indicated that the transition from  sim ple  

tw o-state  applications to the m ultivariable, m ultim odal 

problem  had been su cc essfu lly  accom plished .

The applications studies culm inated in the operation of a 

rea l sm a ll-sc a le  therm al p ro cess  contro ller  under automaton 

supervision  (Chapter 7). S u ccessfu l control, reflected  

in the m in im isation  of error  in the step resp on se, was 

achieved in conditions which involved quite sev ere  external 

disturbances to the sy stem , dem onstrating con clu sively  the 

viability  of the automaton approach.

The Future

Although the hardware system  described  here has proved  

its worth, there is  undoubtedly a ca se  to be made for further  

developm ent. A h ierarch ica l array of tw o-state  c e lls ,  

constructed /
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suitable solution to the high speed control of la r g e -sc a le

s y s t e m s .  H o w e v er ,  the s t r i c t  b in ary  n a tu re  of the s ta te

order does rep resen t a handicap. Some method of internally

ordering the d ecision  paths in a large h ierarch ica l structure

system  would be useful in acce lera tin g  the convergence p ro cess

by elim inating m ore rapidly the obviously le s s  suitable

d irection s for the "search" phase (see  Section 5 .8 ).

Such an approach, w herein the structure of the automaton

itse lf  has adaptive properties, is  in sympathy with the type of
(5)m ultilevel automaton arrangem ent envisaged by Narendra .

A p ossib le  solution for non-binary r -s ta te  sy stem s was

touched upon in section  5. 3, in which it was suggested  that a

binary h ierarch ica l automaton would have its output decoded

down to the requisite  number of actions for a particu lar

application. H owever, it is  lik ely  that the best approach

to the design of general r -s ta te  automata l ie s  in the use of

m icro p ro cesso rs . P re lim in ary  work in this area has in
(71)fact been reported recen tly  . Such sy stem s are  ideally

(591suited to the telephone traffic routing problem  , particu larly  

in view  of the developm ent of stored program  exchange control 

techniques, In this context, the dedicated hardware system  

would s t il l  have a part to play, providing a m eans for the 

high speed sim ulation of learning sch em es prior to the 

im plem entation of automata in com m unication networks via the 

controlling softw are.

F or  medium speed applications, the m icro p ro cesso r  is  

not at a sev ere  disadvantage, sin ce the algorithm  calcu lations  

can be perform ed rapidly enough, using an external 

arithm etic p ro cesso r  if n ecessa ry . D elays a r ise , though, 

in using softw are random number generating routines. F or  

fa ste st /

c o n s tr u c te d  w ith  d ed ica ted  h a rd w a re  u s in g  d ig i ta l  s to c h a s t ic

co m p u tin g  tech n iq u e s ,  h a s  b een  show n to»be an e m in e n t ly
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advantage that calcu lations are e ffective ly  perform ed at each

single clock pulse. If the hardware stochastic  computing

approach is to rem ain viable in the long term , how ever, it

would be preferab le to have the req u isite  functions integrated
(32)in the form  of a un iversal stochastic  module . This 

elem ent would provide a ll the standard stochastic  functions 

(Chapter 1) on a single program m able L S I  chip, with a ll 

the attendant advantages of space and c o s t-e ffe c t iv e n e ss .

In the p ro cess control application area, speed is  not 

usually a priority , given the long tim e constants which are  

often encountered. It may w ell becom e an im portant factor, 

how ever, when large m ultivariable sy stem s are involved. 

C onsiderable developm ent effort w ill be required in the detail 

design of perform ance evaluation sy stem s for the plant-autom aton  

in terface, sin ce  com m unication at this point is  vital to the 

overall e ffectiv en ess  of the contro ller .

In conclusion, the union of digital stochastic  computing  

techniques with learning automata theory has produced a form  

of learning m achine which has rea l potential for on-line  

adaptive control sy stem s.

f a s t e s t  o p era t io n , d ig i ta l  s to c h a s t ic  h a r d w a r e  h a s  the in h eren t
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APPENDIX A

THE EXPECTED VALUE OE ACTION PROBABILITY

(i) L inear R ew ard-P enalty

The L rein forcem ent algorithm  can be re-sta ted
^ ~ ̂  / c p\

lin gu istica lly  as follow s ’:

(ii)

Pj(n+1) Q'P^(n)+(l-o'), if action a^ was 

perform ed and rewarded, with

or

or

probability

Q-p^fn), if a^ was perform ed and 

rewarded, with probability 1-c  ,

0p^(n), if a^ was perform ed and 

penalised , with probability c^,

or P p^(n)+(l-^), if was perform ed  

and penalised, with probability c .

Erom  this, the expected value of p^(n+l) is  obtained as;

PjCn+l)

Hence 

E Pj(n+1)

[ ’q'P^+(1-Q')^ (1 -c^)P^+q'P^(1-C2)(1-P^) 

+PP i ^Ci+ [j3p^+(l-0)] c^fl-p^)

+Q 'Pj C2+Q 'P^+1-o'-Q'P^c  ̂- ( 1 - q')C j+0C2

+q'-Q'C2^+(1-^) 

2
Pi [c^-(l-|3)c^-C2+(l-0)c2-Q d-C2-(l-Q ')c2  

+Q'-c^+(l-o)c^'^ +p^ Q - q'-(1-^ )c2-(1-Q')c^+C2 

-(1-3)C2+Q^(1-Q')c2]+(1-0)C 2

(Co-c^)(g-g) p  ̂ (n)

+ Q + ( l-g ) (c , - c ^ ) - 2 ( l - g ) c J p ^ (n )

+ q -^ )c^

A1



(ii) L in e a r  R ew a r d -In a ct io n

The L algorithm  can be stated in s im ila r  fashion; R -I

P;^(n+l)

or

O ' (n )+ (l - O ’) ,  if a  ̂ was perform ed  

and rewarded, with probability

Q-p (n), if a was perform ed and 1
rewarded, with probability 1-c

Then 

E P^(n+1)

or P^(n), if a penalty resp onse  was received .

[q'P^+(1-Q')] {1-c^)p ^+Q'P^(1-C2)(1-Pj )

+ P l^ c i+ p i( l-p i)c 2

PjC^+(l-p^)C2+0'(l-Pj)(l-C2)

+ [_Q'P^+(l-0')] (1-c^)

Pi [p iCi+(l -P i ) - ( l -Q ') ( l -P i ) ( l -C2)+Q 'Pi+ (l -Q ')  

-Q'C^p^-(l-Q')C^^

+ (l-Q ')(l-P l)(l-c^ )+ P l

Hence

E 'l(n+l)J Q+(l-Q’)(c 2 -c ^ )( l-p ^ (n) )H p^(n)

Note that if  ̂ = 1 in the L schem e, then
r l  “  R

E Pl(n+1) = (c 2 -c^)(o'-l) p  ̂ (n)

+ [i+ ( 1 - q')(c 2 -Ci ) - 0 ]  p^(n)

+0

= [l+(l-Q ')(c 2 -c^ )-(l-Q ')(c 2 -c^)p^(n)] p^(n)

= [i+(l-Q ’)(c 2 -c ^ )( l-p ^ (n))]p^(n)

i. e. , the formula is reduced to the exp ression  for the L 

schem e, as derived above.
R -I
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T he first so lu tion  has the  advantage o f  a low  surface 
d op ing , hence p rovid ing  h igher gate*drain avalanche 
b reakdow n  voltage. T he second  so lu tio n , how ever, sh o u ld  have 
u b e tte r  (lo w er) source  and d ra in  c o n ta c t resistance , and  is 
p robab ly  som ew hat easier to  ap p ro x im a te  in p rac tice . B oth  
p rofiles m ay be ap p ro x im a te d  by  ep itax ia l g row th  and  ion 
im p lan ta tio n  tech n iq u es , o r a c o m b in a tio n  o f  b o th .

A lthough  the  de ta ils  o f  th e  pro files m ight requ ire  a lte ra tio n  
to  acco u n t for the  e ffec ts  o f  c o n ta c t resistances and  th e  
varia tion  o f  the  d ra in  voltage along  th e  load  line ex cu rsio n . 
It IS believed th a t th e  basic  fea tu res  o f  th e  p ro files w ill n o t be 
a ltered

ROBERT A. PUCEL J3th January 1978
Research Division
Raytheon Company
Waltham. Massachusetts 02154 USA
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SYNTHESIS OF STOCHASTIC LEARNING 
AUTOMATA

Indexing terms. Stochastic automata. Logic design. Special 
purpose computers

The application o f digital stochastic computing techniques 
to the hardware synthesis o f stochastic learning automata is 
considered. Experimental results are presented for a two-state 
automaton realised using a linear reward/punishment 
a^on thm . The fast learning times obtained are believed to be 
of significance to the vtability o f direct on-line ccmtrtd o f 
stochastic systems.

Introduction, in  m an y  process c o n tro l p ro b lem s, th e  charac­
te ris tic s  o f  th e  process are  fu lly  k n o w n , a n d  a  co m p le te  
m athem atica l desc rip tio n  o f  th e  p rocess a n d  o f  th e  co rres­
p o nd ing  c o n tro l s tra teg y  is possib le . H ow ever, a  large n u m b er 
o f  s itu a tio n s  arise  w here  u n c erta in tie s  a re  p re sen t, e ith e r  due  
to  an in co m p le te  m a th em atica l m ode l o f  th e  p rocess , o r  due  
to  o p e ra tio n  in  a  random  e n v iro n m en t. W here th e  p robab ilis tic  
n a tu re  o f  these  u n certa in tie s  is k n o w n , s to ch as tic  c o n tro l 
th e o ry  can be ap p lied , b u t in th e  case o f  h igher o rder 
u n certa in tie s  w here  th e  p robab ilis tic  ch arac te ris tic s  can n o t be 
easily asce rta in ed , it is on ly  possible  to  gain su ffic ien t 
know ledge o f  th e  process b y  ‘on-line ' ob servation . Herein 
lies th e  app lica tion  area fo r s to ch astic  learn ing  a u to in a ta  
( s .l a . )

A s tochastic  a u to m a to n  w ith  variable  s tru c tu re  ( s j . v a . )  
changes the p robab ilities  o f  its  ac tions  in response  to  the 
random  in p u ts  from  the  en v iro n m en t w ith in  w hich  it  is 
opera ting . T hese changes a re  b ro u g h t a b o u t b y  a  're in fo rc e ­
m en t schem e’ b u ilt in to  th e  a u to m a to n  s tru c tu re  such  th a t it 
ten d s  to  converge to  a  su itab le  s ta te  to  sa tisfy  th e  im m edia te  
co n tro l requ irem en ts  o f  th e  en v iro n m en t (F ig . I A ). F o r an 
r-sia te  a u to m a to n  a t lim e  n,

pin +  1) =  Tpin)

w here p{n) is th e  v ecto r o f  to ta l  s ta te  p ro b ab ilities  a n d  T is 
a s tochastic  m a trix  w hose / ,  / t h  e le m en t, pq, d en o te s  the  
p ro b ab ility  o f  tran s itio n  from  s ta te  i  to  s ta te  / .  T o ta l s ta te  
p robab ilities  a n d  tra n s itio n  p robab ilities  ate th u s  b o th  valid 
rep re sen ta tio n s  o f  th e  s ji .v a .

d is tu rb a n c e

1 random !
•iennronment r

autom oton 
(s.Q.v. s.)

inbul 
Xj fX

clossificotion

(i) p.m ode(:X«{o,tl X ■ 0 A r̂Mird 
x«1 esppenoity

(w)

(H iis.m odri **{0,l}

^retfo rcM T w nl schem e
B (n .l) > C) (n ). l"[Pj (n).-4>^ n)

o

Fig. 1A Aulomation.*nvironmeni feedback configuration

T he tech n iq u es  of d igital s to ch as tic  c o m p u tin g ‘ p rovide 
an  ideal m e th o d  fo r th e  p rac tica l syn thesis  o f  learn ing  
a u to m a ta , a n d  th is  le t te r  describes th e  design o f  system s w hich  
w ill fo r th e  first tim e  enab le  th e  h a rdw are  sim u la tio n  o f  
s to ch as tic  lea rn ing  a u to in a ta  co n tro lle rs .

Classification: T he  a u to m a to n /e n v iro n m e n t in te ra c tio n  can  be 
classified as o n e  o f  th re e  ty p e s , d ep end ing  o n  th e  n a tu re  o f  the  
e n v iro n m en t response , as show n  in  F ig . lA .  An a u to m a to n  
fu n c tio n in g  in  a  s ta r io n a ry  e n v iro n m en t is said to  be:

(a )  expedient i f  th e  a sy m p to tic  average p en a lty  M  is less th an  
th e  a rith m e tic  m ean  o f  th e  p en a lty  p ro b ab ilities

(b ) optim al i f  th e  a sy m p to tic  average p e n a lty  equals th e  
m in im u m  o f  th e  p e n a l ty  p ro b a b ility  se t,  d e n o te d  by

{ C , : i =  1 , 2 ........ r)

(c )  e-optimal i f M <  Cumtn) +  *

T he convergen t beh av io u r o f  th e  a u to m a to n  is de te rm in ed  
b y  th e  a lgo rithm  em p lo y ed  in  th e  re in fo rce m e n t schem e.

Algorithm s: A  large n u m b e r o f  a lgo rithm s have been  
described^’^ fo r  u p d a tin g  schem es, and  th e ir  p ro p e rties  
co m p ared . U pda ting  can  b e  app lied  t o  to ta l  s ta te  p robab ilities  
o r  tra n s itio n  p robab ilities . T h e  fo rm er nuiy  b e  p re fe rred  
because u p d a tin g  is p e rfo rm ed  on  a  sm aller n u m b e r o f  
q u a n titie s , b u t  in  o th e r  cases th e  ac tu a l tra n s itio n  in fo rm a tio n  
m ay  be  desired .

In th e  w o rk  described  h e re , th e  a lgo rithm  em p lo y ed  was 
th e  sim ple  lin ea r rew ard -pena lty  schem e, d e n o te d  Lg-p. The 
Lp-p schem e s p i l e d  to  a  F -m odel s tru c tu re  w as considered  
to  be a su itab le  sy stem  to  im p lem en t in  h ardw are  fo rm , since 
th e  b in a ry  system  response  and  th e  s to ch as tic  m u ltip lica tio n  
involved a re  w ell-suited t o  dig ital c ircu itry .

T he a lgo rithm  is s ta ted  as follow s:

(i)  N on p en a lty : (o n  ac tio n  a ,)

p> » /(n  +  l )  =  op,<rt), 0 < o < l

PK" + 1)= 1 -  Z P/lti + 1)1*1
(ii) P ena lty : (o n  ac tio n  a.)

p , i n + l )  = e p ^ n ) ,  0 < d < l

II -f
P /p iin +  l )  =  p / n ) - f  j ^ 7 3 ^ j p / { n )

An a u to m a to n  using th e  above schem e is fo u n d  to  be 
e x p ed ien t, in  th e  case o f  a  tw o -s ta te  sJ a . th e  a lgo rithm  has a
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p a itic u ia iiy  a m p le  fo rm

(a )  N o n -p en a lty : (o n  a c tio n  O t)

p , ( n  -I- 1 ) «  1 - o p i ( n )

p , ( n  +  l ) - o p , ( n )

(b) P en a lty : (o n  a c tio n  0 | )

p , ( n +  l ) - f t > , ( n )

p , ( «  +  1 ) »  1 - A > i ( n )

Hardware implementation: A 2 -s ta te  a u to m a to n  w as designed 
in o rd e r  to  investigate  its  beh av io u r a n d  co m p are  resu lts  w ith  
p revious so ftw are  sim u la tio n  w o rk *  T he a lgo rithm  circu it 
sh o w n  in  F ig . IB  w u  designed  w ith  th e  aid o f  a  ‘tru th - ta b le ' 
derived  fro m  th e  a lgo rithm  as fo llow s:

Fig. IB 2-erere a fa . Lj^peltontkm  

P i(n )  P j(« ) P/R P i ( "  +  •) P i(n  -t-1)
0 1 0 a p i ( n ) 1 - o p , ( n )

0 1 1 1 - |S p i ( n ) flP s(n)

1 0 0 1 - o p j ( n ) a p t(n )

1 1 1 f iP iM 1 - f t > i ( " )

T he fam ily  o f  learn ing  curves show n in Fig. 2A  clearly  
show s the increasing  ex ped iency  resu lting  from  increasing  x  
in  each  case , th e  sy stem  flip -flop  w as p rese t in itia lly  to  P i ,  
ije. th e  'w ro n g ' s ta te , a n d  th e  o u tp u t  su b seq u en tly  converged 
to w ard s  p j ,  th e  s ta te  carry ing  th e  low er p en a lty  probabU ity .

Fig. 2B ia a m s ig  btiw iaur for both n e ta  
W th  y «  I , th e  sy stem  converged to  a  level co rrespond ing  
a p p ro x in u te ly  to  th e  rew ard  p ro b a b ility  fo r  th e  s u r e .  T h is is 
to  be  ex p ec te d  in  a  s itu a tlo n  w here  rew ard  a n d  p e n a lty  fac to rs  
are  o f  eq u al m ag n itu d e . T he overall charac te ris tic s  o f  the  
sy stem  are w ell sum m arised  in  F ig . 2B . This show s th e  ab ility  
o f  th e  s J .a .  to  lock  o n  w hichever s ta te  carries th e  low er 
p e n a l ty  p ro b a b ility , fro m  e ith e r s ta rtin g  s ta te , using in  th is 
c a te  a  *7 »  8 ' schem e.

Q e a r ly ,  on ly  p i ( n  -F 1 )  need  be  fo rm ed , s irux  p j ( n  -f  1)  is 
a lw ays th e  co m p lem en t. S im ple A N D  gates a te  used  to  fo rm  
th e  p ro d u c ts  a p i ( n )  e tc .,  th e  ap p ro p ria te  te rm  be ing  selected  
b y  th e  4 /1  d a ta  s e le c to t,  w hose ‘a d d re ss ' consists  o f  the  
p re sen t s u t e  signal Pi(n) a n d  th e  p u n ish m e n t/re w ard  signal 
{PjR). T h e  add ress  m u s t n o t  change as ra p id ly  as th e  a lgo rithm  
in p u ts , o r  th e  co rre c t f a c to n  w ill n o t  b e  fo rm ed . T h e re fo re  a 
slow er c lock ing  ra te  th a n  th a t  o f  th e  a lg o rith m  cycle  is used 
f o r  th e  s ta te  o u tp u t  flip-Q op ( F F  2 ) ,  fro m  w h ich  th e  address 
derives.

T hus p i ( n )  is rep resen ted  b y  th e  p ro b a b ility  o f  th is  flip -flop  
in p u t being  logic 1 a t  th e  o ccu rren ce  o f  a  c lo ck  p u lse , and  th is  
p ro b ab ility  wBl e ith e r increase o r  decrease  as th e  sy stem  is 
c lo ck ed  dep en d in g  w h e th e r  th a t  s ta te  is rew arded  o r  penalised .

T he requ is ite  noise lines fo r  th e  various c o n stan ts  w ere 
o b ta in e d  from  a  3 1 -b it m 4 e n g th  sequence  g e n era to r, consisting  
o f  a  3 1 -b it s h if t reg ister w ith  ekciusive-O R  co n n ec te d  feedback  
fro m  b its  3  a n d  3 1 .’ F ac to rs  o th e r  th a n  0-S w ere sim ply  
o b ta in ed  b y  A N D -gate m u ltip lica tio n , enab ling  a varie ty  o f  
L/i-p  schem es, d e n o te d  by  T  “  (1  — o ) / ( l  — i ) ,  to  be  
im piism ented .

Som e fo rm  o f  o u tp u t  in te rface  c ircu it w as re q u ite d  in  o rd e r 
to  enab le  th e  c h a ra c u tis tic s  o f  th e  s  J -a . to  be  observed . I t  w as 
d ecid ed  th a t th e  m o s t su itab le  w ay  o f  s tu d y in g  th e  learn ing  
behav iou r o f  th e  a u to m a to n  w as to  d isp lay  ind iv idua l Team ing 
cu rves’ o n  a  sto rage  o sc illoscope. T h e  sy stem  o u tp u t  w h ich  is  a 
s to ch as tic  pu lse  tra in  w as co n v erted  to  an  a tudogue m easu re  o f  
p ro b ab ility  b y  m eans o f  d ie  s tan d a rd  adap tive  digital 
logic e lem en ts  desc ribed  p re v io u s ly .* ^

Experimental reailts: In  th e  in itia l ex p erim en ts , th e  s im u la ted  
en v iro n m en t response w as set u p  w ith  C | w  0-75 and 
C> •  0 -2 5 , w hile  7  w as varied  from  1 to  6 4  using th e  avaiiable 
no ise  sou rces. T h e  p j h a .  g e n era to r a n d  s l a .  d o c k s  w ere set 
a t  10  M Hz a n d  1 M Hz, respec tive ly ; th e  m ain  sy stem  flip-flop  
d o c k  w as th e re fo re  100  kH z.
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I t  w as realised th a t  a rew ard -inac tion  {L /t-t)  schem e 
c a n n o t be  im p lem en ted  w ith  th is  sy s tem , since  in sp ec tio n  o f  
th e  d r c u i t  show s th a t  s e tt in g  ? •  1 ( ix -  in fm iie  7 )  w ill cause 
th e  flip -flop  to  rem ain  in  w h ichever s ta te  is in itia lly  se lec ted .

. A  sign ifican t fea tu re  o f  th e  resu lts  is th a t  learn ing  tim es o f  
th e  o rd e r  o f  S m s can  be o b ta in e d . I t  is believed th a t learn ing  
tim es o f  th is  m ag n itu d e  enab le  fo r  th e  frrst tim e  d irec t on-line 
c o n tro l o f  several s to ch as tic  syste rm  in d u d in g  m u ltim o d ai 
s to ch as tic  sy s tem  o p tim isa tio n  a n d  th e  adap tive  ro u tin g  o f  
te le p h o n e  tra ff ic  system s.* ’ *® F u r th e r  d evelopm en t o f  the  
sy stem  d e a r iy  requ ires  an  ex te n sio n  in  th e  n u m b e r o f  s u te s ,  
w ith o u t in c u n in g  th e  p e n a l ty  o f  excessive h a rdw are  re q u ire ­
m e n ts . W ork is now  in progress o n  a  128-sta te  h ierarch ical 
sy stem  using a tw o -s u te  a i-a . o n  a  tim e-shared  basis. These 
resu lts  w ill b e  re p o rte d  su b seq u en tly .

Acknowiedgmatt: T h e  a u th o n  w ish  to  g ra te fu lly  acknow ledge 
th e  s u p p o rt o f  a  U K  S cience R esearch C ouncil G ran t.

R .C . NEVILLE 
C  R. NICOL 
P. MARS
School o f  Eleetromc and Eleerhcal Engineering 
Robert Cordon 'j Inttirute o f  Technology 
Aberdeen AB9 IFR. Scotland

2nd February 1978

207



R eferences
I GAINES. B. R. ^Stochastic com putini', AFIPS SJCC, 1967, 30* 

pp 149>I56
I NARCNDRA, K. S., and THATHACHAR, M. A. L.: ‘Leamin* 

au tom ata-a survey’, IEEE Trans.. 1974. SMC-^* pp. 323-334
3 VISWANATHAN, R-. and NARENDRA, K. S.: ’Expedient and 

optimal variable structure stochastic automata'. Becton Centre, 
Yale University, 1970. Technical Report CT-31

4 VISWANATHAN. R.. and NARENDRA, K. S.: ‘Compariaon of 
expedient and optimal reinforcement schemes for learning systems’, 
J. Cybtm.. 1972,2, pp. 21-37

5 MILLER, A. J ., and MARS, P.: Theory and design of a digital 
stochastic computer random number generator', Trans. IMACS. 
1977.19, p p .198-216

6 MILLER, A. J.. BROWN, A. W., and MARS. P.: 'Adaptive logic 
circuits for digital stochastic computers’. Electron. L ^u .  1973, 
9. pp. 500-502

7 ,MILLER. A. J.. BROWN, A. W., and MARS. P.: *Study o f an output 
interface for digital stochastic computers’, ¡nt. J. Electron. 1974, 
37, p p .637-655

8 MILLER, A. J ., and MARS. P.: 'Optimal estimation of digital 
stochastic sequences', ¡nt. J. Syst. Set, 1977,8 , pp. 683-696

9 SHAPIRO. 1. J.. and NARENDRA. K. S.; 'Use of stochastic 
automata for parameter self-optimisation with multi-modal 
performance criteria’. /£ £ £  Trans.. 1969, SSC-5, pp. 352-360

10 NARENDRA. K. S.. WRIGHT, £. A., and MASON, L. G.: *Applica- 
tion o f learning automata to telephone traflic routing and control’, 
IEEE Trans.. 1977.SMC-7, pp. 785-792

ERRATA
V E R R A Z Z A N I, L.: ‘B andw id th  and d e m o d u la tio n  gain in 
q ,s.s.b . £7e£rfron. Z eff ., 1 9 7 8 ,1 4 ,  p p . 1 8 -1 9

The a u th o r  w ould  like to  m ake th e  fo llow ing co rrec tio n s  to  his 
p a p e r '

The th ird  expression  a fte r  eq n . 1 shou ld  read

M r )  =  i  Re (e x p  O w ot)  (exp  + / { i  +  t)]

-/0(/(O-/Tf + T)lí»
In  th e  first expression  on  p . 19  th e  first eq u a lity  fo r  PJP, 
shou ld  read

T he cap tio n  to  Fig. 1 shou ld  read

Fig. 1 Mam-square bandwidth o f  q.s.s.b. f.m. versus fraction 
o f power in sidebands for lowpass rectangular input spectrum 
with unity cutoff frequency

ADDENDA

SH A M A SH , Y .: ‘C o m p u tin g  th e  invarian t zeros o f  m ulti- 
variable sy stem s’, £ 2 ic iro n . Lett., 1 9 7 7 ,1 3 ,  p p . 7 2 2 -7 2 3

T h e  a u th o r  w ou ld  like  to  m ake th e  fo llow ing ad d itio n  to  ills 
le tte r :

In  th is  le tte r ,  a  m e th o d  was suggested fo r  c o m p u tin g  th e  
invarian t zeros o f  m u ltiva riab le  system s. T he a u th o r  has since 
b een  m ade aw are, th ro u g h  p riva te  co m m u n icatio n s  w ith  
P ro fessor B. P o rte r , o f  th e  fac t th a t  th e  essen tia l idea  o f  the  
m e th o d  had  been  in d e p e n d en tly  p ie p u b liih e d  b y  K w ahem aak  
and  S iv an .' T he  a u th o r  w ishes to  th a n k  P ro fessor P o rter fo r 
bring ing  th is  t o  h is  a tte n tio n .
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systems’ (WUey. 1972)
R.; ’Linear optimal contro)

C R A N E , R. K ., and  D E B R U N N E R , W. E .; ‘W orst m o n th  
statistics', Slectron. Lett., 1 9 7 8 ,1 4 .  p p . 3 8 -4 0

T he au th o rs  w ould  like t o  m ake th e  fo llow ing ad d itio n  to  the  
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w as su p p o rted  b y  th e  N ational A eronau tics  a n d  Space 
A dm in is tra tio n  un d e r C o n trac t N A S S-24209 .
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recovered  signal is p ro p o rtio n a l to  th e  freq u en cy  dev ia tion  and  
is a d iffe ren tia te d  version o f  the  orig inal m o d u la tin g  signal. 
T h u s, fo r a sm all g roup  delay  r ,  th e  m u ltim o d e  fibre  a c ts  as a 
frequency  d isc r im iiu to r . In  low  d ispersion  g raded -index  fibres 
r  % 1 n s /k m , and  hence the  delay  d e m o d u la tio n  e ffe c t is 
negligible e x ce p t a t very  h igh  acoustic  frequenc ies  an d  large 
phase deviations.

(c )  Triple-transit echo: pjn. to  a j n .  conversion  m ay  a lso  occu r 
i f  th e  op tica l fibre end  re flec tio n s  (w h ich  have m ade m u ltip le  
tran sits  o f  th e  fib re ) in te rfere  (o r  h o m o d y n e )  w ith  th e  d irec t 
signal. I f  we rep resen t th e  d irec t signal b y  ex p r. 1, th e n , con ­
sidering any  one  m o de , we m ay  w rite  fo r  th e  m o s t signiflcant 
o p tica l re flec tio n , i.e. th e  trip le -tran sit e ch o ,

î v ' ï ' ’! r j  1 0 " '“'} £^  sin [01,1  +  3Afl s in  tomi +  (1 3 )

w here T) =  r j  =  op tica l in te n s ity  re fle c tio n  co effic ien ts  ( « S - S ^  
fo r a silica-air in te rfac e ), a •  o p tica l a tte n u a tio n  c o n s ta n t a n d  
/ leng th  o f  fib re. N o tice  th a t  th e  m o d u la tio n  in d e x  fo r  th e  
first echo  is 3ÙÛ since i t  has passed  th ro u g h  th e  m o d u la ted  
region o f  the  fibre th ree  tim es. We shall assum e th a t th e  
p ro p ag a tio n  tim e fo r th e  echo  ( «  S psikm) is insign ifican t 
w ith  respec t to  th e  p e rio d  o f  th e  m o d u la tin g  signal. G oing 
th ro u g h  th e  sam e p ro ced u re  as b e fo re  a n d  ex p an d in g  in  te rm s  
o f  Bessel fu n c tio n s , we m ay  w rite  fo r  th e  p h o to d io d e  c u rre n t

Kt) “  i v ï ' - i  '7 10" * ^  [ 1 +  /o (2 i if l)c o s  0

■i- 2Ji (2ûB)àn 0  sin

+ 2J2(2AB)cos(t>cos2u„t + ...] (1 4 )

A gain, fo r sm all A8 a n d  q u a d ra tu re  op tica l b ias ( 0 ~ ± i r / 2 ) ,  
w e m ay w rite

i( r )  =  ±V {'’i ' 7 1 0 "*“'} A 8  sin  Umt (1 5 )

E qn . IS  reveals an im p o r ta n t fea tu re  o f  o p tica l h o m o d y n e  o r 
h e te ro d y n e  sy stem s, in  th a t  th e  e ch o  re tu rn  loss V i^ i 1 0 " ” 0  
has a m in im um  value o f  2 9 d B  (assum ing 3-5% fibre  end  
re flec tio n s , p e rfe c t te m p o ra l coherence  a n d  zero  fib re  a tte n u a ­
t io n ) , w h ilst in  d irec t ( in c o h e re n t)  d e te c tio n  sy stem s i t  h as  a 
m in im u m  value o f  S8  dB , T h is  d ifferen ce  arises fro m  th e  fac t 
th a t  a square-law  d e te c to r  fu n c tio n s  as a  l i n e u  d em o d u la to r 
in  co h eren t system s. T h u s e ch o  signals in  co h e ren t o p tica l 
fib re  sy stem s are a  p o te n tia l source  o f  in te rfe ren ce  to  those  
signals p ro d u c e d  b y  th e  d ifferen tia l phase  d iscrim in a to r

e ffe c t (a ) . T he relative sensitiv ity  o f  d iscrim ina to rs  (a ) a n d  (c ) 
d epends n o t  on ly  on  co h eren ce , e ch o  re tu rn  loss, n u m b e r o f  
p ropaga ting  m odes  a n d  m ode-m ix ing  e ffec ts , b u t  also o n  the  
a co u s to -o p tic  in te ra c tio n  len g th  a n d  as to  h o w  th e  fibre  is 
su b jec ted  to  stress.

Conclusions: T h e  fib redyne  sy stem  described  a n d  analysed  
above is a very  sim ple device fo r  ex p lo itin g  th e  m io o p h o n ic  
aspects  o f  m u ltim o d e  fib res , w here  th e  fid e lity  o f  re p ro d u c ­
t io n  is n o t  im p o r ta n t, e.g . in  in tru d e r  alarm s. T he analysis  also 
in d ica tes  th a t p rob lem s m ay  arise in  co n v en tio n al d irec t 
d e te c tio n  fibre system s i f  th e  laser is to  c o h e ren t. E x p e ri­
m en ta l ev idence o f  these  p m .  t o  a m .  p h e n o m e n a  w ill fo rm  
th e  sub jec t o f  th e  second  pap er in  th is  series.
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DESIGN OF STOCHASTIC LEARNING 
AUTOMATA USING ADAPTIVE 
DIGITAL LOGIC ELEMENTS

Indexing terms: Stochastic automata. Logic design. Special 
purpose computers. Learning systems

The hardware design of stochastic learning automata using 
adaptive digital logic elements is considered. Such techniques, 
based on digital stochastic computing, are shown to  provide 
economical and fast teaming-time com putafiona Experimental 
results are presented for a variety of l in m  teaming algorithms.

Introduction: O ne o f  th e  p o te n tia l areas fo r app ly ing  th e  
resu lts  o f  s to ch astic  com p u tin g  re sea rc h '* ’  is in  th e  im p le ­
m e n ta tio n  o f  learn ing  system s fo r  o p tim a l c o n tro l using 
s to ch as tic  a u to m a ta  s tru c tu re s . A  s to ch a s tic  a u to m a to n  w ith  a 
variable s tru c tu re  ( s a .v a .)  changes th e  p ro b ab ilities  o f  its  
a c tio n s  in response to  in p u ts  fro m  a  ra n d o m  env ironm en t.*  
A  ‘re in fo rcem en t schem e’ b u ilt in to  th e  a u to m a to n  causes 
u p d a tin g  o f  th e  a c tio n  p robab ilities  so  as to  im prove p e r­
fo rm an ce  a n d  p ro d u ce  convergence to  a  su itab le  fina l 
s tru c tu re .’  R ecen tly  a sim ple flip -flop  s to d ia s tic  learn ing  
a u to m a to n  based  o n  a  lin ea r rew ard /p en a lty  (L^.p) a lgo rithm  
has  b een  described .’  In  o rd e r to  in c o rp o ra te  su p erio r learn ing  
a lgo rithm s a n d  to  im prove th e  v iab ility  o f  la rge-state  o rd e r 
system s a tte n tio n  has b een  focused  o n  im prov ing  th e  original

324

h a rd w are  design . A  c o n sid e ra tio n  o f  th e  various re in fo rce m e n t 
a lgo rithm s riiow s th a t  i t  i t  essen tia l to  inc lu d e  a  m e m o ry  
cap ab ility  w ith in  th e  a u to m a to n  s tru c tu re  in  su ch  a  m arm er as 
to  e stab lish  p r io r ity  o f  s ta te  p ro b a b ilitie s  du rin g  th e  learn ing  
p e rio d . I f  th is  is n o t  so  th e  p ast ex perience  o f  th e  s to ch as tic  
learn ing  a u to m a to n  is  e rased  a f te r  e ach  sy stem  cycle (o r  c lock  
p u lse). S u ch  c o n sid e ta tio n s  le d  to  th e  id ea  p f  rep re sen tin g  th e  
p ro b a b ility  o f  s ta te  o c cu p a tio n  n o t  sim ply  b y  th e  p ro b ab ility  
o f  a  flip -flop  be ing  in  a  ce rta in  s ta te  a t  th e  o ccu rrence  o f  a  
c lo ck  p u lse , b u t  b y  a  n u m b e r s to red  in  a  c o u n te r , wdrich m ay  
b e  su b seq u en tly  co n v erted  to  a  s to ch as tic  seq uence . T h e  resu lt

Fig. 1A Two-state Addle s ia .
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is  th e  evo lu tio n  o f  a  new  «ieaign fo r  a  h a rd w are  learn ing  
a u to m a to n  b a te d  cm th e  adap tive  d ig ita l logic e ie m en ti 
(A dd ies) desc ribed  p r e v i o u s . ’’ I t  sh o u ld  b e  n o te d  th a t  th e  use 
o f  A dd ie  s tru c tu re s  has a lso  b een  p ro p o sed  fo r  th e  re la ted  
‘tw o -a rm ed ’ b a n d it  p ro b le m . '

Design o f  the Addie stochastic ¡earning automaton: A  2 -s ta te  
s to ch a s tic  lea rn ing  a u to m a ta  c an  b e  im p lem en ted  usiog  a  single 
A d d ie , a s sh o w n  in  F ig . lA ;  T h e  c o o le n ts  o f  th e  A dd ie  co u n te r 
re p re sen t  s ta te  p ro b a b ility  P i  (n ) ,  w hile  Pi(n) i t  s im p ty  ta k e n  to  
b e  th e  com p lem en t.

(Lr -k)  a n d  rew ard -inac tion  (Lr .¿) scbem es. T h e  Ln.r  schertre 
i t  p a rtic u la riy  shn jde  t o  acc o m m o d a te , since th e  o tily  m od ifi­
c a t io n  req u ired  is t o  se t th e  fa c to r  d »  1. T h e  Lr . r  schem e, in  
w h ich  th e  p e n a l ty  Is te^daced b y  a  lesaer rew ard , is given below  
in  tw o -s ta te  fo rm :

( 0  N o o p e n a lty : (o n  a c tio n  aO 
p , ( n - i - 1 ) «  1 - o f t ( n )
P i ( n +  l ) - « P i ( n )

(ID P e n a lty : (o n  acU on  < 0
P i ( n - M ) «  1 -fiP iin )  
p j ( n  +  l ) - d p j ( / i )

w b e r e O < f l < a < l .

A t 'b e fo re  a  tru th -ta b le  is o o o s tru c te d  to  enab le  th e  
a lg o rith m  to  be  tra n tia te d  in to  a  d r c u i l  design:

P i ( n ) P j (« ) PfR P r ( ' i +  1)

0 1 0 e rp d n )
0 1 1 d P i(n )
1 0 0 l - t t f t ( n )
1 0 1 1 - b H " )

FÎS.IB AJtariUandrcuiaforllmariehtmet
A n  egaential fea tu re  o f  th e  o p e ra tio n  o f  th e  a u to m a tc o  i t  

th e  iq rdating  o f  s ta te  p ro b ab ilitie s  in  acco rd an ce  w ith  th e  
en v iro sunen t o r  p la n t resp tm se. T h is  i t  ach ieved  in  th e  A ddie  
a l a .  b y  load ing  P i ( n )  fro m  th e  A tid ie  t o  a  la tc h ,  a tu i p e rfo rm ­
ing  d i^ ta l /s to c h a f t ic  co n v ersian . T h e  resultirtg  sttxd iastic  pu lse  
t ra in  is th e n  tra n s fo rm e d  via th e  a lg m ith m  d r c u i t iy  to  an  
u p d a te d  s ta te  p robabO ity  p , ( n  +  1). T h e  A dd ie  th e n  teaches  
a n  e s tim ate  o f  P i ( n - i - 1) ,  a n d , a f te r  a  su itab le  se tt lin g  tin ie ,  th e  
n e x t  cycle  can  co trunence. A  flip -flop  o n  th e  c o m p a ra to r  o u t-  
p r tt  re p resen t s  th e  p rese n t  s ta te  o c cu p ied , a n d  s u t e  t r a je c to rm  
can  be  observed  b y  filte ring  th e  o u tp u t ,  o r  b y  d ire c t d ig ita l/ 
analogue conversion  o f  th e  A dd ie  con ten ta .

T h e  o p e ra tin g  sequence  o f  th e  A dd ie  aX a. is  a s fo llow s: T h e  
in itia l lo ad  o p e ra tio n  se ts  u p  th e  req u is ite  va lue  o f  0-S (Le. 
‘one-a ll zero s’) in  th e  c o u n te r , so  th a t  th e  o u tp u t  o f  th e  con>- 
p a ra to r  is a  s ttrd ta s tic  sequence  w ith  an  e q u a l p ro b a b ility  o f  
I s  a n d  Os, re p re sen tin g  ra n d o m  s ta te  se lec tio n  a t  in itia l tim e 
tft. A t th e  firs t d o c k  p u lse , th is  seq u en ce  is  sam p led  a n d  a t  th e  
ta m e  tim e , th e  c o u n te r  c o n te n ts  are  c o p ie d  in to  th e  la tc h . 
T h e n , w h en  th e  d o c k  pu lse  goes lo w , th e  p u n ith m e n t/re w a rd  
signal resu lting  fio m  th e  t u t e  o f  th e  D -ty p e  (hpA iop  is 
la tc h e d , and  th e  A ddie  c lo d s  en ab led , a llow ing th e  le a rn in g  
p e r io d ’ t o  com m en ce . D uring  th is  tim e , th e  A dd ie  con verges 
to  th e  n e w  value o f  P i ( l ) ,  w h ich  is  th e n  ru e d  as th e  basis  fo r  
th e  n e x t  c y d e .

T he advan tage  o f  th is  design is th a t ,  since n o  lock ing-on  
p ro b le rru  can  o ccu r , it i i  possib le  to  im p ie m e n t th e  m ore  
su itab le  e-op tim al schem es, ru in g  th e  e s tab lish ed  m e th o d  o f  
a lg o rith m  circu it design based  on  s to ch as tic  ccnnputing  
te c h n iq u es  d e sc n b e d  p tev io u d y .*

Algorithm circutt design: As m e n tio n e d  earlie r, th e  A ddie  
s to ch as tic  learn ing  a u to m a to n  enab les  several o f  th e  re in fo rce ­
m e n t schem es d escn b ed  p re v io tts ly ' to  b e  im p lem en ted .

T he linear re w a rd /p e n a lty  schem e Lr ^  m a y  b e  described  
fo r  th e  tw o  s ta te  case a t:

(a )  R ew ard : (a c tio n  O))
p,(n + 1) «  op,(n)
P i ( n +  1 ) «  1 - a p j ( n )

(b) P en a lty : (a c tio n  aO
P i ( n  +  l ) - t Î A ( n )
P j ( « - t - 1 ) =  1 - f l P i ( n )

w h e r e 0 < a < l  a n d  O < 0 < 1 .
Sirrtilar e x p re ss io tu  h o ld  fo r  a c tio n  O}. T h e  hardw are  

im p le r tren u tio n  fo r  th e  Lr . r  schem e h as  b een  desc rib ed  a n d  is 
show n  in  F ig . IB  (R e fe ren ce  6 ) .  T h e  obv ious ex te n sio n  o f  th is  
schertre is to  im p iem en t th e  e -o p tim a i lin ea r rew ard-rew ard
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a Lr p̂ icheme b ¿/r./icbeme 
c Lr.r  scheme
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By com parison  w ith  th e  tru th -tab le  fo r th e  Lr . p schem e,* 
it is ev iden t th a t th e  Lp.p  c ircu it can  b e  co n v erted  to  an  Lr . r 
c ircu it s im ply  b y  reversing th e  0p,(n) a n d  1 -  0 f t  (n )  con ­
nections. T h e  c ircu it a rrangem en ts  fo r  these  lin ea r schem es are 
sum m arised  in  Fig. IB .

Experimental results: The A d die  s to d ia s tic  learn ing  a u to ­
m a to n  w as te s ted  using a  storage o sdU oscope to  observe th e  
s ta te  tra jec to rie s  d ire c tly . L earning  curves o b ta in ed  w ith  th e  
Lp.p  schem e are show n in Fig. 2a . T h e  curves show  h o w  th e  
degree o f  exped iency  increases w ith  rew a rd /p e n a lty  ra tio  ^  
( 7  “  ( 1 - a ) / ( l - / 3 ) ) .  It shou ld  be  n o te d  th a t th e  c o u n te r 
im p lem en ta tio n  allow s a p ro p e r  in itia l c o n d itio n  to  be  se t u p , 
co rrespond ing  to  random  state  se lec tion  a t  tim e to, i.e. 
P i (0 )  =  0-S. F o r  these  ex p erim en ts , th e  A ddie  c lock  w as set a t 
10 MHz and th e  no ise  g en era to r c lock  a t  IM H z , w hile  th e  
m ain sy stem  c lock  consisted  o f  100  n s  pulses w ith  100  kH z 
rep e titio n  ra te .

T h e  results  o b ta in ed  w ith  th e  e-op tim al L n .i  schem e are 
illu s tra ted  in  Fig. 2 b . W ith th is  schem e, th e  a u to m a to n  ex h ib its  
v irtua lly  fu ll convergence to  p i  1 o r p j  =  1 . I t  is k n o w n  th a t 
th e  Lp.K  schem e is com parab le  in  e x p ed ien c y  to  th e  Lp./ 
schem e w hen 7  is h igh  b u t th e  Lp.p  schem e is e x p ec te d  to  
ex h ib it a s low er ra te  o f  convergence. T h e  resu lts  o b ta in ed  
w ith  a  Lp.p  schem e are show n  in  Fig. 2c . As e x p ec te d  th e  
degree  o f  exp ed ien cy  increases w ith  7 .

T he  general conclu sion  to  b e  gained  fro m  th e  above  resu lts  
on  linear schem es is th a t th e re  is l ittle  d iH erence  in  ex ped iency  
b e tw een  th e  schem es w ith  h igh  7 -fac to r. T h e  c rite rio n  o f  
relative convergence ra te s , w h ich  i t  stressed  in  th e  rep o rted  
so ftw are  sim u la tio n  studies,*  is less im p o r ta n t in th e  w ork  
re p o rte d  h e re . In d eed , th e re  appears  to  b e  n o  d iscern ib le  
d ifference  in  learn ing  tim e  b e tw ee n  th e  schem es investigated . 
T h e  ch ie f de te rm in in g  fac to r in  th e  tra n s ie n t response  o f  th e  
hardw are  sy stem s is th e  o u tp u t  A ddie . T h is e lem en t has  a 
re s tr ic ted  b a n d w id th  in  o rd e r to  o b ta in  an  accep tab le  com ­
p rom ise  b e tw een  convergence  speed  an d  s tead y -s ta te  variance.

Conclusions: T h e  above resu lts  have verified  th a t  th e  A d d k  
s to ch as tic  learn ing  a u to m a to n  h as  very  sa tis fac to ry  learn ing  
ch arac te ris tic s. A lth o u g h  its  o p e ra tio n  involves a  certa in  
a m o u n t o f  serial processing , sim ilar lea rn ing  tim e t  to  th e  flip- 
f lo p  a u to m a to n  have been  o b ta in e d . Indeed  th e  results  
o b ta in e d  previously*  fo r  th e  Lp.p  schem e have b een  v irtually  
d u p lica ted  b y  th e  new  c irc u it, w h ich  h as  o f  course  th e  added  
advan tage  o f  being  able to  im p lem en t a  m o re  com prehensive  
range o f  re in fo rcem en t schem es. T h e  ab ility  t o  op tim ise  in  less 
th a n  1 0  m s rep re sen ts  a  sign ifican t dev elo p m en t, p a rticu la rly  
in  view  o f  th e  p ro p o se d  e x te n sio n  to  sy stem s o f  m u d i  larger 
s ta te  o rd e r, em b o d y in g  th e  tam e  basic  A ddie  s to ch as tic  a u to ­
m a to n  «rithin a  h ie ra rch ica l s tru c tu re .
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MATERIAL DISPERSION IN 
LIGHTGUIDE GLASSES

Indexing terms: Optical fibres. Glass

Material dispersioii measurements axe reported on six charac­
teristic lightguide glass compontions. The measurements were 
made on bulk specimens and cover the wavelength range from 
0-8 to 1-5 iim. It is observed that in these silicate glasses the 
wavelength at which mate rial disperwon is aero is in all cases 
greater than l-Tutn.

Introduction: In  o rd e r to  increase th e  b a n d w id th  o f  light- 
guides it is desirable  to  m inim iae m ate ria l d ispersion—th e  
w avelengith d ependence  o f  th e  lig h t g roup  ve loc ity  in  th e  
tran sm ission  m ed ium . M easurem ents o f  m ate ria l d ispersion  
have b een  re p o rte d  o n  ce rta in  b u lk  sam ples o f  lightguide 
glasses*’^ a n d  also o n  o p tica l fibre  specim ens.* '*  B o th  ty p es  
o f  analyses are  be ing  p u rsu ed  a t  th is  la b o ra to ry . A l t h o u ^  b u lk  
s p e d m e n t m ay  n o t  du p lica te  th e  m a te ria ls  com prising  th o se  in 
ligh tgu ides , d ispersion  m easu rem en ts  « 1  b u lk  specim ens 
prov ide  th e  fo llow ing  advan tages: (a )  a ccu ra te  sam ple  chem ical 
c o m p o sitio n  d e te rm in a tio n s  can  be rru d e  o n  b u lk  m a te ria l; 
(b) m easu rem en ts  a re  free o f  w aveguide e ffe c ts  w h ich  m ay  
co m p h e a te  d i ^ t s i o n  analyses o n  fib res ; (c )  m easu rem en ts  can  
b e  p e rfo rm ed  o n  rru teria ls  c o n te m p la te d  fo r  o p tica l w aveguide 
cladd ings su ch  as B jO s-S iO , c ra n p o sitio n s; (d) d ispersion  can  
be  an a ly se d  in  n u te t ia ls  p r io r  t o  th e  ach ievem en t o f  low 4oss  
ligh tgu ides  m ade fro m  th e m .

T h e  resu lts  o f  su ch  m easu rem en ts  o b ta in e d  o n  ch arac te ris tic  
c o m p o s itio tu  o f  tru te r ia ls  c u rre n tly  used  in w aveguides a te  
re p o rte d  hereitL

Experimental: T he  glass c o m p o sitio n s  o n  w h ich  m ate ria l 
d i^ re rsk m  is  re p o rte d  a re  lis ted  in  T ab le  1. G lass A -D  w ere  
p rep a red  a t  th is  la b o ra to ry  b y  tS. p lasm a fu sion  o f  v a p o u r o r  
p re s in te red  p o w d er, glass E w as p rep a red  b y  H ereaus  Q uarz- 
sd im e lze  and  ^ a s s  F  w as p rep a red  a t  th is  la b o ra to ry  b y  a  
co n v en tio n a l h ig h -p u rity  c rucib le  m elting  te c h n iq u e . TTm  
c o m p o sitio n s  re p o rte d  a te  th o se  in d ic a ted  b y  chem ical analysis  
o f  th e  p rep a red  ÿ a s s  a n d  are accu ra te  to  ±0 -1  m o le  %.

R efractive  ind ices w ere  m easu red  a t  th e  w aveleng ths given 
in  T ab le  2 . T h e  m easu rem en t m e th o d  u tiliaed  w as th e

T ab le  1 COMPOSmONS A N D  ZERO M A T E R IA L  D IS ­
PERSION FOR GLASSES S T U D IE D

Sam ple C om position
Z ero  m ate ria l 

dispersiem

MoIm M»
A Q uen ch ed  S iO j 1-284
B 13-SG eO ] : 86 -5S IO , 1-383
C 9 - lP jO j  : 9 0 -9 S O , 1-274
D 1 3 - 3 B ^ j  : 8 6 -7 S O , 1-231
E 1-OF : 99-O SiO , 1-284
F 16-9N ajO  : 3 2 -5 B ,O j : 50 -6S iO j 1-283

ELECTRO N ICS LET T En s 2Sth May 1978 Vot. 14 No. 11



R eferences
1 JOSEPHY. R. D. : 'MOS-Traiutstoren zur Leistungsverstlrkung im 

HF-Bereich', PhUipt Tech. Rdtch., 1970/71. 31, pp. 262-269
2 MORPTA, Y.. TAKAHASHI. H.. MATAYOSHL aod

rUKUTA. M. *Si UHF MOS high-power F E T . !EEE Trmt^ 1974, 
ED-21, pp. 733-734

3 OAKES. J. G.. WICKSTROM. R. A.. TREMERE, D. A^ u id  
HENC. T. M. S.: 'A power silicon microwave MOS transistor*, 
ibid., 1976. MTT-24, pp. 305-311

4 REINDL. K.: *Spun on arsenosilica Aims as sources for shallow 
arsenic diffusions with high surface concentration', SoUdStûte 
Electron., 1973.16, pp. 181-189

5 DECU-RCX, C. J.. HATTORI, T.. MAY. G A.. BEAUDOUIN. J.. 
and MEINDL J- D. 'Some e ffea s  of tricloroethylene oxidation on 
the characteristics of MOS devices’. J. Eiectroefiem. Soc., 1975, 
122, pp. 436-439

00I3-5I94f78lîîî2^394 SIJO/O

T h e  tru th -ta b le  fo r  th is  s d iem e  is as foQows:

DESIGN OF NONLINEAR STOCHASTIC 
LEARNING AUTOMATA

Indexing terms: Stoehntic mtomete. Logic design. Special 
purpose eomputen. Learning sy^stems

The hardware design of nonlinear stochastic learning automata 
using adpative digital logic elements is considered. Such tech­
niques, based on digital stochastic computing, are shown to 
provide faster convergence rates than automata based on Imear 
learning algorithms. Experimental resuhs are preamted and 
validation obtained for theoretical predictions concerning 
optimal convergence.

¡ntroductijn: A  signiflcant app lica tion  area fo r digital 
s to ch as tic  com p u tin g  te c h n iq u es ’'^  is in  the  hardw are  syn­
thesis  o f  s tochastic  learn ing  a u to m a ta . S tochastic  a u to m a ta  
m od ify  th e ir a c tion  probabU ities in response  to  in p u ts  from  a 
random  en v iro n m en t. Previous w o rk  h as  d em o n stra ted  sy n ­
thesis  te ch n iq u es  fo r s tochastic  a u to m a ta  using a  varie ty  o f  
linear re in fo rcem en t schem es inc lud ing  rew ard /p en a lty , 
re w ard /in ac tio n  an d  re w a rd /re w a rd .^  ’

A lthough  th e  b est o f  th e  linear schem es, th e  Luj (rew ard / 
in a c tio n )  schem e has b een  w idely repo rted*  as m ost su itab le  
fo r m any  apph ca tio n s , investigations have a lso  b een  m ade o f  
no n lin ear u p da ting  schem es.^’* These ten d  to  show  fas ter 
in itia l convergence ra tes, and  indeed  one  reason  fo r th e  
em phasis  p laced  o n  these  schem es is to  o b ta in  o p tim u m  c o n ­
vergence tim es, especially  w hen th ey  are in co rp o ra te d  in 
hyb rid  schem es. T h e  p re sen t w ork  p resen ts  a  syn thesis  te ch ­
n iq u e  fo r no n lin ear s to ch as tic  learn ing  a u to m a ta  an d  prov ides 
e x p erim en ta l results fo r learn ing  charac te ris tic s  inc lud ing  
co n d itio n s  fo r o p tim a l convergence.

Nonlinear ¡earning algorithm: P revious w ork* has  dem o n ­
s tra ted  th e  design o f  a  2 -state  s to ch as tic  lea rn ing  a u to n u to n  
using adap tive  digital logic e lem en ts  (A dd ies). T h e  basic 
schem atic  o f  th e  system  w hich  h as  been  described  previously  
is show n in  Fig. la .

T h e  sim plest o f  th e  no n lin ear schem es is th a t  d e n o te d  as 
N^i/>, w h ich  has ‘square4aw ’ n o n lin ea rity . I t  h as  b een  show n* 
th a t th is  schem e is c o n d itio n a lly  o p tim a l, p rov id ing  o p tim al 
convergence i f  c , <  j < c j  a n d  e x p ed ien t o th e rw ise , (q  re p re ­
sen ts p en a lty  p ro b ^ r ilitie s ) . T h is schem e fo r  th e  tw o-s ta te  
case, is given below ;

(ay Non-penalty (o n  a c tio n  oO
P i ( n  +  1) “  P i ( n )  +  o P i ( n ) [ l  - P i (« )]

P j ( " +  l ) ’= P j ( " ) - < « P i ( n ) [ l  - P i ( " ) l  
( i )  Penalty

P i( n  +  l ) - P i ( n ) - f t > i ( n ) l l  - P i ( n ) l  

Pi(n+  l )  =  p ,  +  A J i ( n J [ ( l - p i ( n ) )

0 < a , ^ < l
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A ( " ) P a (n ) P/R P i ( " +  1) P j ( n +  1)

0 1 0 P i - o P i ( l  - P i ) P j - t - o p j ( I - p i )
0 1 1. P i +  d P j ( l  - P j ) P j - f t > j ( I  - P j )
1 0 0 P i +  o p , ( l  - p j P s - o p i ( l  - P i )
1 0 1 P i - A P i (1 - P i) P j +  f t> i( l  - P i )

The hardw are  im p ie m e n u tio n  o f  th e  schem e is  c o m p lica ted  b y  
tw o  fac to rs . T he first is th e  p resence  o f  te rm s  o f  th e  fo rm  
P l(n ) [ l  -Pi(n)}. T his p ro d u c t can n o t s im ply  be fo rm ed  b y  an  
A N D  gate because  o f  th e  d irec t co m p le m en ta ry  re la tionsh ip  
be tw een  th e  tw o  signals. T he so lu tio n  here  is to  in te rp o se  a 
de lay  o n  one  o f  th e  in p u ts , a long th e  lines o f  th e  co nven tional 
s to ch as tic  squares c irc u it . ' T h e  o th e r  d iff ic u h y  is th a t sum ­
m a tio n  in  s to ch as tic  fo rm  req u ire s  an  A N D -O R  con fig u ra tio n  
w ith  ran d o m  selec tio n  o f  th e  tw o  signals b y  a  separa te  p jJb -s . 
noise line . T h is  e n ta ils  an  overall d ivision b y  tw o .

F» 1
•  Tw&etau Addie i J a .
b Algorithmic dicu it for scheme

It is th e re fo re  p re fe rab le  to  rearrange th e  a lgo rithm  te rm s 
so  th a t th e y  co n ta in  on ly  m u ltip lica tio n  a n d  inversion  o p era ­
tio n s . T he a lgo rithm  c ircu itry  is designed to  generate  p , ( n  -i- 1) 
a lone  a n d  th e  a lgo rithm  te rm s  are th e n  u a n s fo m ie d  as fo llow s:

Pi -Fop,(1 - p , ) =  1 -  [p j-o p ,( l  - P i ) l  
-  1 -  [(1 - opOPj]

P i -  ilPi (1 -  P i)  “  ( I  -  iP t )P i .  a n d  «« on .

T h is  leads to  a  revised tru th -tab le :

P i ( " ) P j ( " ) PIR ■ P i («  +  1)

0 1 0 (1  -apiyp,
0 I 1 1 -  [ ( I  - f l p l ) p j
1 0 0 l - [ 0 - O P l ) P 2 l
1 0 1 (1 -A Pa)P i

T h e  hardw are  im p le m e n ta tio n  fo r  th is  schem e, w ith  a = P=  1, 
is  sh o w n  in  F ig. l b .  C om paring  th is  c ircu it w ith  th a t fo r  th e  
Ln-F schem e described  p rev iou riy , an  essen tia l sim ilarity  is 
ev ident.*  In  th e  N^].f s ^ e m e ,  th e  sim ple c o n s ta n ts  0 ^ 0  are 
rep laced  w ith  te rm s  o f  th e  fo rm  (1  -  op j) a n d  (1
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Experimenml nmJts: T he  u h e m e  considered  is th e  
sim plest o f  th e  non linear schem es to  be  re p o rte d , and  is 
fa irly  easy  to  im p le m e n t, as desc ribed  above. I t  w as possfitle to  
verify  in prac tice  the  p ro p e rty  o f  co n d itio n a l o p tim a lity  
m en tio n ed  earlie r b y  su hab le  choice  o f  p e n a lty  p ro b ab ilitie s  
q. W ith Q values o f  0 -25  and 0 -8 7 5 , th e  sy stem  y ie lded  th e  
o p tim a l convergence curves sh o w n  in  H g . 2c , w ith  generally  
lo w e r variance than  w as ev id en t in th e  case o f  th e  best linear 
sd iem es .

The c o n d itio n a l o p tim a lity  ch arac te ris tic  o f  th is  schem e 
w as investigated  b y  feed ing  the  p en a lty  p ro b a b ilitie t via a 
tw itch in g  d ic u i t ,  to  th a t th e  degree o f  convergence a t  th e  
system  w as sw h ch ed  fro m  ‘o p tim a l' to  ‘e x p ed ien t’ co n d itio n s  
cou ld  b e  observed . F ig. 2b show s th e  resu lting  s ta te  o u tp u ts , 
w ith  the  tw itch ing  w aveform  superim posed  (ce n tra l trace ).

O tte p e n a lty  p robabO tty  w as fixed  at 0 -1 2 5 . and  the  o th e r  
w as tw itch ed  period ica lly  a b o u t th e  c ritica l p o in t o f  0-5 from  
0 -5 6  (sw itch ing  w aveform  lo w ) to  0 -44  (tw itch in g  w aveform  
h igh ). T h e  re su lts  show  th a t  w tth  c> -  {0 -125, 0 -56} , th e  s tate  
t rq e c to t ie s  ex h ib it o p tim a l convergence , w h e rea t w ith  
ej = { 0 -1 2 5 , 0 -44} , th e  system  degrades to  exped ien t 
iM haviour. T hese results  are  e n tire ly  co n sis ten t w ith  p re v n u s  
th e o re tic a l p re d ic tio n s .'

Concbtsions A  design tech n iq u e  has been  d e tc n b e d  fo r the 
syn thesis  o f  n o n lin ea r s tochastic  a u to m a ta  based  o n  dig ital 
sm ch as tic  c o m p u tin g  m e th o d s . E x p e rim en ta l resu lts  have 
d e m o n s tra ted  th e  fast lea rn ing  tim es o b ta in e d  fro m  non linear 
a lg o rith m s and  p roved th e  valid ity  o f  p rev ious theo re tica l 
p re d ic tio n s  concern ing  co n d itio n s  fo r o p tim a i convergence.
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CYCLOTRON AND UPPER HYBRID 
RESONANCE FREQUENCY IN REFLECTED 
PULSE BY MAGNETOPLASMA HALF SPACE

Indexing termr Cyclotron renrrtmtce, Rlesme wares

RefiMted w ivefonn. o f  in p o iev . pUne w avn inesdent on .  
homopeneous io n len  nu g n e to p iu n a  half u>aoe (with d.c. 
m afneuc field perpeodJcuiai to the propaptMO VKtor) are 
detennioed in the doaed fonn by Beawl functiom  o f f ird  kind 
and fractional order. The cydotroo piaima fiequency is related 
to  the first notmalbed mexiimun excursion in the lefiected 
waveforau. Cydotron and npper hybrid reaonance plasma 
fiequende. aie related to  the deiey o f the maximum 
exeuiiion in the refieciad wurefoimi.

Introduction: T h e  re flec tio n  o f  t n  im puixtve p lin e  w iv e  b y  i  
lo t s le s  m agne top lasm a h a lf  ip a c e  bar b een  a tud ied  p reviously  
fo r  sm all to  m o d e ra te  p lasm a a n iso tro p y  (o g  =  u g lu p  <  0 -3 ) 
b y  th e  p e rtu rb a tio n  m e th o d  (S tin ic  et oL' )  and  num erica lly  
fo r s tro n g  an iso tro p y  (J in n o  e r  a f* ) . In  
im pulsive  p lane «rave (w ith  th e  w ave v e c to r p e rp en d icu la r to  
th e  e x te rn a l d x .  m agne tic  fie ld ) «ras in c id e n t n o n n a liy  to  a 
m agne top lasm a h a lf  space «rith  sharp  b o u n d a ry . S c h m itt’ 
m ade  ex p erim en ts  «rith  nano seco n d  pulses and  used  tran s ien t 
signals as a d iagnostic  to o l. H ere, th e  tim e  dom ain  so lu tio n  is 
o b ta in ed  in  closed fo rm  b y  th e  s tan d a rd  Laplace tran sfo rm
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te c h n iq u e  fo r an  a rb itra ry  value o f  a n iso tro p y  p a ra m e te r
Og =  Ugjuip.

Theory: A n e lec tro m ag n e tic  pulse is in c id en t to  th e  free space 
( r  <  0>- p lasm a (z  >  0 )  in te rface  (z =  0 ). T h e  w ave v ecto r is 
p e rp en d icu la r to  th e  ex te rn a l d x .  m agne tic  fle id . T he 
re flec tio n  co effic ie n t in th e  frequency- d o m a in  is

«(«) V * o - l
'V*o+l ( 1)

w h e ts

k ,  =  u /e  is  th e  free  space «rave n u m b e r

*P-*o- is th e  m ag n e to p la s ttu  w ave n u m b erw’(w’-tu{*)
" I w *  Up + u i “  UpO +  a j )  is th e  u p p e r  h y b rid  fretp iency

“I J •• (i)“J(2 + tt| ± Ofl(4ai + 1)'̂
Ugnr u g /u p  is th e  B tiisouopy  p a ra m e te r 

U £  is th e  e le c tro n  cy c lo tro n  freq u en cy  

U p  is th e  e le c tro n  p la s tru  freq u en cy
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HARDWARE DESIGN FOR A 
HIERARCHICAL STRUCTURE 

STOCHASTIC LEARNING 
AUTOMATON

Richard G. Navllla and Philip Mars

S c h o o l o f  E le c tro n ic  a n d  E le c tro n ic  E n g in e e rin g  
R o b e rt G o rd o n 's  Institute  o f  T e c h n o lo g y  

S ch o olh ill
A B E R D E E N  A B 9  1FR . S c o V a n d

T h e  h a rd w a re  d e s ig n  o f s to c h a s tic  te a m in g  a u to m a ta  
using a d a o tiv e  d ig ita l lo g ic  e le m e n ts  ( A O D I E S )  is c o n s id ­
e re d . S u c h  te c h n lQ u e s . b a s e d  o n  e a rlie r re s e a r c h  in to  d ig ita l 
s to c h a s tic  c b m p u tir«g . a r e  c a p a b le  o f p ro v id in g  u s e fu lly  la s t 
learning tim e  c o m p u ta tio n s , a n d  e x p e rim e n ta l re su lts a re  
p re s e n te d  h e re  to r a v a r ie ty  o f lin e a r artd n o n lin e a r le a rn in g  
a lg o rith m s .

A  h a rd w a re  d e s ig n  to r a  1 2 8 < t a t e  s to c h a s tic  le a rn in g  
a u to m a to n  u s in g  a  h ie ra rc h ic a l s tru c tu re  is th e n  d e s c r ib e d , 
and e x p e rim e n ta l re s u lts  o f s ta tic  a n d  d y n a m ic  o p tim is a tio n  
a re  p r e s e n te d . T h is  s y s te m  is s h o w n  to  b e  c a p a b le  o f fa s t , 
e c o n o m ic a l le a rn in g  b e h a v io u r  s u ita b le  fo r  th e  p ra c tic a l im ­
p le m e n ta tio n  o f orv-fine le a rn in g  c o n tro lle rs .

1. INTRODUCTION

O n e  o f th e  p o te n tia l a r e a s  fo r  a p p ly in g  th e  re s u lts  o f 
s to c h a s tic  c o m p u tin g  r e s e a rc h (1  ) (2 ) (3) ts in th e  im p le m e n ­
tation o f le a rn in g  s y s te m s  fo r  o p tim a l c o n tro l u s in g  s to ­
c h a stic  a u to m a ta  s tr u c tu r e s . A  s to c h a s tic  a u to m a to n  w ith  a 
va ria ble  s tru c tu re  ( S A V S )  c h a rtg e s  th e  p ro b a b ilitie s  o f Its 
a c tio n s  in re s p o n s e  t o  in p u ts  fr o m  a  ra rx Jo m  e n v iro rrm e n ti^ ). 
A  " r e in fo r c e m e n t s c h e m e "  built In to  th e  a u to m a to n  c a u s e s  
updating o f th e  a c tio n  p ro b a b ilitie s  s o  a s  to  im p r o v e  p e r ­
fo rm a n c e  a n d  p r o d u c e  c o n v e r g e n c e  to  a s u ita b le  final 
S tru c tu re ls ). R e c e n tly  a s im p le  flip -flo p  s to c h a s tic  le a rn in g  
a u to m a to n  b a s e d  o n  a lin e a r re w a rd fp e n a lty  ( L r ^ )  a lg o ­
rithm  w a s  de scrtb e d< 6 ). in o rd e r to  in c o rp o ra te  s u p e rio r 
learning a lg o rith n ts  a rx f to  im p r o v e  th e  via b ility  o f la rg e  s ta te  
o rd e r s y s te m s  a tte n tio n  h a s  b e e n  fo c u s s e d  o n  im p ro virig  the  
original h a r d w a r e  d e s ig n . A  c o rrs id e ra tio n  o f th e  v a r io u s  re ­
in fo rc e m e n t a lg o rith m s  s h o w s  th a t it is e s s e n tia l to  in c lu d e  a 
m e m o ry  c a p a b ility  w ith in  th e  a u to m a to n  s tru c tu re  in s u c h  a 
m a n n e r a s  to  e s ta b lis h  p rio rity  o f s ta te  p ro b a b ilitie s  durirrg 
the te a m in g  p e r io d . If th is Is n o t s o  th e  p a s t e x p e rie rtc e  
o f th e  a u to m a to n  is e r a s e d  a ft e r  e a c h  s y s te m  c y c le  (o r c lo c k  
pulse ). S u c h  c o n s id e ra tio n s  le d  to  th e  id e a  o f re p re s e n tin g  
the p ro b a b ility  o f s ta te  o c c u p a tio n  n o t s im p ly  b y  th e  p r o b a - 
bllity o f a  fiip-tlo p b e in g  in a  c e rta in  s ta te  a t th e  o c c u r ­
rence o f a  c lo c k  p u ls e , b u t b y  a n u m b e r  s to re d  In a c o u n te r , 
w h ic h  m a y  b e  s u b s e q u e n tly  c o n v e r te d  to  a  s to c h a s tic  s e -

g u e n c e . T h e  re s u lt is th e  e v o lu tio n  o f a n e w  d e s ig n  to r a 
h a r d w a r e  le a rn in g  a u to m a to n  b a s e d  o n  th e  a d a p tiv e  digital 
lo g ic  e le m e n ts  ( A D D I E S )  d e s c r ib e d  p re v io u s ty (7 ) . It s h o u ld  
b e  n o te d  th a t th e  u s e  o f A O D I E  s tru c tu re s  h a s  a ls o  b e e n  
p r o p o s e d  fo r  th e  re la te d  " t w o - a r m e d "  b a n d it p ro b le m (8 ).

2. DESIGN OFTHE ADDIE STOCHASTIC 
LEARNING AUTOMATON

A  2 -s ta te  s to c h a s tic  le a rn in g  a u to m a to n  ( S L A )  c a n  b e  im ­
p le m e n te d  u s in g  a  sin g le  A O D I E  a s  s h o w n  in F ig u r e  1 .

R g u r a  1 T w o - S t a t e  A D D I E  S L A

T h e  c o n te n ts  o f th e  A O D I E  c o u n te r re p re s e n t s ta te  p r o b a ­
b ility p ,( n ) . w h ile  p ,( n )  is s im p ly  th e  com plerT>ent.

A n  e s s e n tia l fe a tu r e  o f th e  o p e ra tio n  o f th e  a u to m a to n  
is th e  u p d a tin g  o f s ta le  p ro b a b ilitie s  in a c c o r d a n c e  w ith  th e  
e n v ir o n m e n t o r  p la n t r e s p o n s e . T h is  is a c h ie v e d  in th e  
A O D I E  S L A  b y  lo a d in g  p ,( n )  fr o m  th e  A O D I E  to  a la tc h , a rxf 
p e rfo rm in g  d ig ita l-to -s to c h a s tic  c o n v e r s io n . T h e  re su ltin g  
s to c h a s tic  p u ls e  tra in  is th e n  tr a n s fo r m e d  via  th e  a lg o rith m  
c irc u itry  to  a n  u p d a te d  s ta te  p ro b a b ility  p ,( n  + 1 ) . T h e  A O D I E  
th e n  re a c h e s  a n  e s tim a te  o f Pi(n-i-1 ) . a n d . a fte r a s u ita b le  
se ttlin g  t im e , th e  n e x t c y c le  c a n  c o m m e n c e . A  flip -flo p  o n  
th e  c o m p a r a to r  o u tp u t r e p re s e n ts  th e  p re s e n t s ta te  o c c u -
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pied, a n d  s ta te  tra je c to rie s  c a n  b e  o b s e rv e d  b y  filtering th e  
output, or b y  d ire c t d ig ita l/a n a lo g u e  c o n v e rs io n  o f th e  
A D D I E  c o n te n ts .

The  o p e ra tin g  s e q u e n c e  fo r th e  A D D I E  S L A  is a s  fo llo w s . 
The initial lo ad  o p e ra tio n  s e ts  u p  th e  re q u isite  v a lu e  o f 0 .5  
(i.e. " o n e  - all z e r o s " )  in th e  c o u n te r , s o  th a t th e  o u tp u t 
of the c o m p a ra to r is a  s to c h a s tic  s e q u e n c e  w ith  a n  e q u a l 
probability of 1 's  a n d  O 's . re p re s e n tin g  ra n d o m  s ta te  s e le c ­
tion at initial tim e  tg . A t  th e  first s y s te m  c lo c k  p u ls e , this 
sequence Is s a m p le d  a n d  a t th e  s a m e  tim e , th e  c o u n te r  c o n ­
tents a re  c o p ie d  in to  th e  la tc h . T h e n , w h e n  th e  c lo c k  p u ls e  
goes lo w . th e  p u n is h m e n t/ re w a rd  sig n a l re su ltin g  fr o m  th e  
state of the D -ty p e  flip -flop  is la tc h e d , a n d  th e  A D D I E  c lo c k  
enabled, a llo w in g  th e  " le a r n in g  p e rio d ”  to  c o m m e n c e . D u r ­
ing this tim e , th e  A D D I E  c o n v e r g e s  to  th e  n e w  v a lu e  o f p ,( 1 ) ,  
which is then u s e d  a s  th e  b a s is  tor th e  n e x t c y c le .

The  a d v a n ta g e  o f th is d e s ig n  is th a t, s in c e  n o  lo c k in g -o n  
problem s c a n  o c c u r , it is p o s s ib le  to  im p le m e n t th e  m o re  
suitable c-optim al s c h e m e s  u sin g  th e  e s ta b lis h e d  m e th o d  o f 
algorithm circu it d e s ig n , b a s e d  o n  s to c h a s tic  c o m p u tin g  
tech niq ues, d e s c r ib e d  p re v io u s ly (6 ).

(II) P e n a l t y : (on  a c tio n  a ,)  
p ,( n - i - l )  =  1 — P p M  
p ,( n - h 1 )  =  p o ^ n )  

w h e re  0  <■ /? <  o <  1

A s  b e fo r e  a  tru th -ta b le  is c o n s tr u c te d  to  e n a b le  th e  a lg o ­
rith m  to  b e  tra n s la te d  in to  a c irc u it d e s ig n :

p ,(h ) Pj<n) P/R p ,( n - t - 1 )

0 1 0 » P ,( n )
0 1 1 3 P t( n )
1 0 0 1 —  a p ^ n )
1 0 1 1 —  3 P j( h )

B y  c o m p a r is o n  w ith  th e  tru th -ta b le  fo r  th e  L r . p  s c h e m e , 
It is e v id e n t th a t th e  c irc u it c a n  b e  c o n v e r te d  to  a n  

c irc u it s im p ly  b y  re v e r s in g  th e  "/} p ,( n ) ”  a n d  " 1  —  
P  p ^ n ) "  c o n n e c tio n s . T h e  c irc u it a r r a n g e m e n ts  fo r th e s e  
lin e a r s c h e m e s  a r e  s u m m a r is e d  in F ig u r e  2 .

3. ALGORITHM CIRCUIT DESIGN

A s  m e n tio n e d  e a r lie r , th e  A D D I E  s to c h a s tic  le a rn in g  a u to ­
m aton e n a b le s  s e v e ra l o f th e  r e in fo r c e m e n t s c h e m e s  
described previou sly<5) to  b e  im p le m e n te d .

The  linear re w a rd /p e n a tty  s c h e m e  L r -p  m a y  b e  
e xpressed in tw o -s ta te  fo rm  a s :

(i) R e w a r d : (a c tio n  a ,)  
p ^ n - f - 1 )  =  o p ^ n )  

p ,( n - t - 1 )  =  1 —  o p ^ n )

(ii) P e n a lty  : (a c tio n  a ,)  
p ,( n ^ - i )  =  p p ,{ n )
P j f n -t -1 )  =  1 — /J p ,(n ) 

w h e re  0 ^  <r < ,  1 a n d  0  <• P <■ f

R g u re  2  A lg o rith m  C irc u its  fo r  L in ear S c h e m e s .

Sim ilar e x p re s s io n s  h o ld  fo r a c tio n  a ^  A lg o r ith m  c irc u itry  
was d e sign e d  u sin g  a  fo rm  o f " tr u th - t a b le " :

P .(n ) P7<n) p /n P ,( n - i - 1 )

0 1 0 « P ,( n )
0 1 1 l - 3 P i ( n )
1 0 0 l - » P » ( n )
1 .  0  • 1 3 P .( n )

The design c a n  o b v io u s ly  b e  e x te n d e d  to  c o v e r  th e  x-o p tim a l 
linear re w a rd -re w a rd  (Lr .r ) a n d  re w a rd -in a c tio n  (Lr .|) 
schem es. T h e  L r ^  s c h e m e  is p a rtic u la rly  s im p le  to  a c ­
c o m m o d a te , s in c e  th e  o n ly  m o d ific a tio n  re q u ire d  is to  s e t 
the fa ctor 3 = 1 .  T h e  Lr .r  s c h e m e , in w h ic h  th e  p e n a lty  Is 
replaced b y  a le s s e r r e w a r d , is g iv e n  b e lo w  in tw o -s ta te  
form:

(I) N o n - p e n a lt y : (on  a c tio n  a ,)  
p , ( n - n )  =  1 — a p ^ n )
P?(n 1 )  *  a  p ^ n )

A lth o u g h  th e  b e s t o f th e  lin e a r s c h e m e s , th e  L r ^  s c h e m e , 
h a s  b e e n  w id e ly  r e p o rte d  a s  m o s t s u ita b le  fo r  m a n y  a p p li­
c a tio n s . c o n s id e ra b le  s tu d y  h a s  b e e n  m a d e  o f n o n lin e a r u p ­
d a tin g  s c h e m e s ^ S ) T h e s e  te n d  to  s h o w  fa s te r  in itital c o n v e r ­
g e n c e  r a te s , a n d  in d e e d  o n e  re a s o n  fo r  th e  e m p h a s is  p u t on 
th e s e  s c h e m e s  is to  o b ta in  o p tim u m  c o v e r g e n c e  tim e s , 
e s p e c ia lly  w h e n  th e y  a r e  in c o r p o r a te d  in h y b rid  s c h e m e s .

T h e  s im p le s t o f th e  n o n lin e a r s c h e m e s  is th a t d e n o te d  a s  
N 'r .r , w h ic h  h a s  " s q u a r e - la w "  n o n lin e a rity . It h a s  b e e n  
s h o w n  th a t th is s c h e m e  is c o n d itio n a lly  o p tim a l, p ro v id in g  
o p tim a l c o r tv e r g e n c e  if c ,  '/i ^  c ,  a n d  e x p e d ie n t 
o th e rw is e  (Cj r e p re s e n ts  p e n a lty  p ro b a b ilitie s ). T h is  s c h e m e , 
a g a in  fo r  th e  tv>n)-state c a s e , if g iv e n  b e lo w :

0) N o n -p e n a lty  (on  a c tio n  a ,)
p ,( n  - f  1 )  =  p ,( n )  +  a  p ,( n )  [1  —  p ,(n )]
P t(n  - i - 1 )  =  p ,( n )  —  a  p ,( n )  [1 —  p ,(n )]

(II) P e n a lty  (o n  a c tio n  a ,)
p ,( n - t - 1 )  =  p ,( n )  — 3 p ,( n ) ( l  —  p ,(n )]
P i(n  -1 -1 )  =  p ,  -I- 3 P i(n ) [1 —  P i(n )l

w h e r e  0  <  a  . 3 ^ 1
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The tru th -ta b le  fo r th e  a b o v e  s c h e m e  is a s  fo llo w s :

p ,(n ) P ,(n )  P f R  P ,(n  +  1)

(1 —  a p , ) p ,  
H I  — j J p , ) p ,  
H 1  —  o p , ) P ,  

(1 — / J p ,) p ,

The  circuit d ia g ra m  fo r this s c h e m e  is s h o w n  in F ig u r e  3 .

Figure 3 A lg o rith m  C ircu it fo r  N(1)R.p S c h e m e

The c o n fig u ra tio n  is e s s e n tia lly  sim ilar to  tha t o f th e  L p p  
circuit, e x c e p t th a t in th e  c a s e  o f th e  N ' p p  s c h e m e , th e  c o n ­
stants a a n d  p a re  re p la c e d  w ith  te r m s  o f th e  fo rm

(1 —  a p i ) a n d ( 1  — /Jpi).

4. EXPERIMENTAL RESULTS

T h e  A O O I E  s to c h a s tic  le a rn in g  a u to m a to n  w a s  te s te d  
using a  s to ra g e  o s c illo s c o p e  to  o b s e r v e  s ta te  tra je c to rie s  
directly. Le a rn in g  c u r v e s  o b ta in e d  w ith  th e  s c h e m e  
using a m a in  s y s te m  c y c le  c lo c k  o f 1 0 0  k H z  a re  s h o w n  in 
Fig u re  4 .

T h e  c u r v e s  c le a rly  s h o w  h o w  the  d e g re e  o f e x p e d ie n c y  
in c re a s e s  a s  th e  re w a rd -p e n a lty  " y ”  is in c re a s e d  fr o m  1 to

1-0  ,  s ta rtin g  fr o m  a n  initial c o n d itio n  o f ra n d o m
6 4  (y =  --------).

1-̂
S ta te  s e le c tio n  a t tim e  to . i .e . p ,(0 ) z  p ^ O ) =  0 .5 .

T y p ic a l le a rn in g  c u r v e s  o b ta in e d  fr o m  th e  i-o p tim a l 
s c h e m e  w ith  o  =  0 .7 5  a re  illu s tra te d  in F ig u re  5.

P2
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_ 1

r i
1j

i

1
¡ oC.075
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1
1 i

<1---------
!

o i _ _ _ _
{

C.075a U) U » T» 120 
I. mS

R g u re  5 L earn in g  C u rv e s  fo r L p .| S c h a m a

W ith  this s c h e m e , th e  a u to m a to n  e xh ib its  v irtu a lly  full c o n ­
v e r g e n c e  to  p , =  1 o r p ,  =  1 .  a c c o rd in g  to  th e  re la tive  
v a lu e s  o f th e  p e n a lty  p ro b a b ilitie s . F ig u r e  6 s h o w s  le a rn in g  
c u r v e s  fo r th e  L p ^  s c h e m e , a g a in  illustratin g th e  h ig h e r 
d e g re e  o f e x p e d ie n c y  o b ta in e d  w ith  h ig h  y .

T h e s e  re su lts a re  c o n s is te n t w ith  p re v io u s  sim u la tio n  
s tu d ie s .(S X 9 ) a lth o u g h  th e  a c tu a l c o n v e r g e n c e  tim e s  a re  
m a s k e d  b y  th e  re s p o n s e  tim e  o f th e  o u tp u t A D D I E  (sto - 
c h a s tic -to -a n a lo g u e  c o n v e r te r ) . T h is  e le m e n t h a s  a re s tric t­
e d  b a n d w id th  in o rd e r to  p ro v id e  a s u ita b le  c o m p r o m is e  
b e tw e e n  le a rn in g  tim e  a n d  v a r ia n c e  in th e  s te a d y -s ta te  o u t­
p u t. N e v e r th e le s s , th e  re s u lts  p re s e n te d  h e re  in d ic a te  le a r n ­
ing tim e s  o f le ss th a n  1 0  m s . p o in tin g  to  th e  fe a sib ility  o f 
p r a c tic a l, o n -lin e  o p e r a tio n .

In th e  c a s e  o f the  N ' p . p  s c h e m e , th e  c o n d itio n a l o p ti­
m a lity  p r o p e r ty  w a s  in v e s tig a te d  b y  fe e d in g  th e  p e n a lty
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probaDillty sig n a ls v ia  a s w itc h in g  c irc u it to  c o m p a r e  the 
degree o f c o n v e r g e n c e  in " o p t i m a l "  a n d  " e x p e d ie n t "  c o n d i­
tions. O n e  p e n a lty  p ro b a b ility  w a s  fixe d  a t 0 .1 2 5  a n d  the 
other w a s  s w itc h e d  fr o m  0 .5 6  to  0 .4 4 . a s  in d ic a te d  b y  th e  
switching w a v e fo r m  in F ig u r e  7 .

Ci*0125 
Cj« 0 S6, 

0-U.

F igure  7 L earn in g  C urvea  fo r N r .p  S c h e m e

This sh o w s th a t w ith  Cj =  { 0 . 1 2 5 . 0 . 5 6 } ,  th e  s ta le  tra je c ­
tories yield o p tim a l c o n v e r g e n c e , w h e r e a s  w ith  C{ =  
(0 .12 5  , 0 .4 4 ) ,  th e  s y s te m  d e g r a d e s , a s  e x p e c te d , to  e x ­
pedient b e h a v io u r.

5. 128-STATE SYSTEM

H aving ve rifie d  th a t th e  tw o -s ta te  A O D I E  s to c h a s tic  
learning a u to m a to n  h a d  s a tis fa c to r y  le a rn in g  c h a r a c te r is ­
tics. atten tion w a s  s u b s e q u e n tly  fo c u s s e d  o n  th e  d e v e lo p ­
ment of a m u c h  la rg e r, p ra c tic a lly  u s e fu l s y s te m , a n d  th e  
attendant, p ro b le m  o f m in im is in g  th e  a m o u n t o f c irc u itry  
required w hile  p re s e rv in g  h ig h  o p e ra tin g  s p e e d s .

The solutio n to  this p ro b le m  is to  s u b d iv id e  th e  s ta te  
space a n d  p e rfo rm  th e  r a n d o m  s e a rc h  b e tw e e n  th e  s ta te s  
via a set o f le ve ls in a  h ie ra rc h ic a l s tru c tu re . It h a s  b e e n  
suggested p re v io u s ly  (^ ) th a t a  m u lflle ve l a p p r o a c h  c a n  b e  
used to o v e r c o m e  this p ro b le m  o f h ig h  d im e n s io n a lity , a n d  
the a pplicatio n o f s im p le  - tw o -le ve l s tru c tu re s  h a s  b e e n  
considered(10).

The  re q u ire m e n t fo r  a m e m o r y  c a p a b ility  in th e  a u to m a ­
ton stru ctu re  to  e sta b lis h  a  p rio rity  o f s ta te  o rd e r d u rin g  th e  
learning p e rio d  is e m b o d ie d  in th e  12 8 -s ta te  h ie ra rc h ic a l 
system d e s c rib e d  h e r e . A  tw o -s ta te  S L A  " c e l l "  is tim e - 
shared b e tw e e n  e a c h  lo c a tio n  in a  s e v e n -le v e l “ d e c is io n  
tree ", a n d  in te rfa c e d  w ith  a  r a n d o m -a c c e s s  m e m o r y  ( R A M )  
to store in te rm e d ia te  p ro b a b ility  v a lu e s , a s  illu s tra te d  In 
Figure 8. S in c e  th e s e  s e v e n  tw o -s ta te  d e c is io n s  a re  e q u iv a ­
lent to o n e  d e c is io n  in a  sin g le -le ve l 1 2 8 -s ta le  a u to m a to n , 
the hiera rch ica l s tru c tu re  g iv e s  a n  e n o r m o u s  s a v in g  in h a rd ­
ware, a nd a lth o u g h  it d o e s  in v o lv e  m o r e  s e ria l p ro c e s s in g  
operations, th e re  is no t a n  e x c e s s iv e  p e n a lty  in te rm s  o f 
operating s p e e d . A n o th e r  a d v a n ta g e  o f this c o n fig u ra tio n  
IS that it c a n  b e  m a d e  e n tire ly  m o d u la r in c o n s tru c tio n , 
which sim plifies th e  d e s ig n  o f  v e r y  la rg e  s y s te m s .

A  fu rth er c o n s id e ra tio n  is th e  Im p le m e n ta tio n  o f th e  re­
inforcement s c h e m e . W ith  this d e s ig n . It is p o s s ib le  to  u se  
the sam e  tw o -s ta te  a lg o rith m  c irc u its  a s  b e fo r e , a ls o  lim e - 
shared b e tw e e n  e a c h  d e c is io n  le ve l.

8. SYSTEM OPERATION

T h e  tw o -s ta te  A D D I E  S L A  w h ic h  fo r m s  th e  " c e H "  o f th e  
s tru c tu re  is e s s e n tia lly  sim ila r to  th a t d e s c r ib e d  e a rlie r . T h e  
m a in  d iffe r e n c e  is th a t n o w  m e m o r y  in te rfa c e  c irc u its  a re  
re q u ire d , sirm e th e  S L A  n o  lo n g e r a c ts  in a c o n tin u o u s , 
s e lf-c o n ta in e d  c y c l e , b u t o p e r a te s  in s te a d  in a  t im e -s h a re d  
m o d e  w ith in  th e  “ d e c is io n  t r e e ” . T h e  full o p e r a tin g  c y c le  
fo r this s y s te m  is a s  fo llo w s ;

In itia lly, e a c h  m e m o r y  lo c a tio n  is s e t a t 0 .5 , s o  th a t e a c h  
d e c is io n  h a s  a n  e q u a l p ro b a b ility  o f o c c u r r in g ; c o n s e q u e n tly  
th e  p ro b a b ility  o f s e le c tin g  a n y  o n e  s ta te  is ( 0 .5 ) ', i .e . 1 / 1 2 8 . 
A t  e a c h  m a in  s a m p lin g  clocic p u ls e , th e  ce ll o u tp u t w ill b e  
e ith e r 1 o r 0 , a n d  this " d e c is io n  b it "  is s to re d  in a  7-b it 
" s ta t e  la t c h " . A f t e r  a  s e a r c h  th ro u g h  th e  d e c is io n  t r e e , th e  
s ta te  la tc h  c o n te n ts  will th e r e fo r e  d e fin e  u n iq u e ly  o n e  o f 
1 2 8  s ta te s , a n d  a ls o  re p re s e n t th e  o u tp u t  to  th e  p la n t. T h e  
se c o T K l h a lf o f th e  c y c le  c o n s is ts  o f re tra c in g  th e  s a m e  
p a th  th ro u g h  th e  d e c is io n  tr e e , th is tim e  a p p ly in g  a  rein­
fo r c e m e n t s c h e m e  to  a lte r  th e  d e c is io n  p ro b a b ilitie s  re p re ­
s e n te d  b y  th e  A O D I E  in a c c o r d a n c e  w ith  th e  p la n t r e s p o n s e . 
U p d a tin g  a t e a c h  le ve l is c o n tro lle d  b y  th e  p u n is h m e n t/  
re w a rd  s ig n a l (P / R ) a n d  th e  c o r r e s p o n d in g  d e c is io n  b it.

T h e  n e x t  full c y c le  c a n  th e n  c o m m e n c e , w ith  re v is e d  
d e c is io n  p ro b a b ilitie s  a n d  c o n s e q u e n tly  a  re v is e d  s e t o f to tal 
s ta te  p ro b a b ilitie s . A s  th e  le a rn in g  p r o c e s s  e v o lv e s , th e  d e ­
c isio n  p a th  le a d in g  to  th e  o p tim u m  s ta te  w ill b e  r e in fo rc e d  
u n til, in th e  lim it, a s s u m in g  th e  u s e  o f a n  o p tim a l s c h e m e , 
all th e  d e c is io n  p ro b a b ilitie s  a lo n g  th a t p a th  te n d  to  u n ity .

T h e  m e m o r y  re q u ire m e n ts  a re  d e te r m in e d  b y  th e  n u m b e r  
o f le ve ls  In th e  s y s te m . F o r  e a c h  d e c is io n , th e  b in a r y  w o r d  
In th e  A O O I E  r e p r e s e n ts , to g e th e r w ith  its im p lic it c o m p le ­
m e n t, th e  d e c is io n  p ro b a b ilitie s  fo r e a c h  " d i r e c t i o n " . T h e  
firs t d e c is io n  le ve l th u s  re q u ire s  o n e  w o r d  o f s to r a g e , th e  
s e c o n d  le ve l re q u ire s  tw o  w o r d s , th e  th ird , fo u r w o r d s , a n d  
so  o n . T h e r e f o r e , th e  1 2 8 -s ta te  s y s te m  re q u ire s  a  to ta l R A M  
a llo c a tio n  o f 1 2 7  x  n b its  (n =  8 —  1 2 ) . A  c e n tra l fe a tu r e  
o f th e  h ie ra rc h ic a l s y s te m  o p e ra tio n  Is th e  m e m o r y  a d d r e s s
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procedure . S in c e  e a c h  d e c is io n  is a b in a ry  o n e . th e  d e s ig n  
of the c o n tro i c irc u itry  is g re a tly  s im p lifie d , a n d  th e  a d d re s s  
code is d e rive d  fr o m  th e  s ta te  la tc h , w h ic h  is e fie c tiv e ly  
a small " s c r a tc h -p a d "  m e m o r y  tracJcing th e  d e c is io n  p a th .

7. RESULTS

T h e  o p e ra tin g  p rin c ip a l o f th e  h ie ra rc h ic a l s y s te m  Is Il­
lustrated In F ig u re  9 .

Figure 9 L earn in g  B eh av io u r o f 8 -S ta ta  S y s te m

This s n o w s  th e  le a rn in g  b e h a v io u r o f a th re e -le v e l. B -sta te  
syste m , w ith  th re e  s im u lta n e o u s  ‘ T e a m in g  c u r v e s " , o b ­
tained via a  D / A  c o n v e rte r fr o m  th e  tim e -s h a re d  A O O I E .  
representing c o n v e r g e n c e  to  s ta te  1 0 0 , (i.B . s ta te  4 ). T h e  
learning p e rio d  Is typ ic a lly  th re e  tim e s  th a t e x p e c te d  o f a  
single tw o -s ta te  s v s te m .

Static a n d  d y n a m ic  o p tim is a tio n  e x p e rim e n ts  w e r e  c a r ­
ried out o n  th e  lull 12 & -s ta te  s y s te m , u sin g  a s im p le  s im u ­
lated " p l a n t"  In vrh ic h  o n e  s e le c te d  s ta te  c a rrie d  a  lo w  p e n ­
alty proba bility (0 .2 5 ). a n d  all o th e r s ta te s  a  h ig h e r o n e  
(0.875). F o r  th e s e  re s u lts , th e  s y s te m  m a s te r d o c k  w a s  set 
at 2 .5  M H z .  a lim it g o v e r n e d  b y  th e  R A M  a c c e s s  tim e , a n d  
the syste m  s ta te  w a s  s a m p le d  e v e r y  m illis e c o n d , w ith  D / A  
conversion o f th e  s ta te  la tc h  c o n te n ts  p ro v id in g  a  “ m a p "  of 
the s ta ts  o u tp u t.

1

•
' 'l

1

s
f

t
1 * I 1

a e w M i a i « « M y ì M n

i i '1 1

1
 ̂ 1 TT— '

0 U  K  120 160 200
time(mS)

^ g u r e  10 C o n v e rg e n c e  o f H ie ra rch ica l S y s te m  w ith  
S tead y  S ta te  E n v iro n m en t

R g u r e  1 0  s h o vrs a typ ic a l s ta te  o u tp u t m a p  o f c o n v e r ­
g e n c e  to  s ta te  4 1 .  u s in g  a n  L r i  re in to r c e m e n t s c h e m e  w ith  
o  =  0 .2 5 . T h e  s ig n ific a n t fe a tu re  o f this re su lt is th a t th e  
In d ic a te d  le a rn in g  tim e  is le ss th a n  5 0  m s . D u e  to  th e  v a r i­
a n c e  o f th e  8-bit A D D i E  u s e d  h e r e , th e re  is a n o n -z e r o  
p ro b a b ility  o f  In c o rr e c t d e c is io n s  a t a n y  le v e l, a fte r  th e  initial 
te a m in g  p e r io d , a n d  th is re su lts in th e  s p o ra d ic  " J u m p s "  to 
o th e r s ta te s  s e e n  in th e  o u tp u t.

F ig u r e  1 1 .  th e  o p tim u m  s ta te  is s w itc h e d  p e rio d ic a lly  fr o m  
s ta te  58 to  s ta te  1 0 6 . a n d  th e  a u to m a to n  o u tp u t is s e e n  to 
fo llo w  th e  s w itc h in g  w a v e fo r m  w ith in  5 0  m s .
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R g u re  11 H ie ra rch ica l S y s te m  w ith  S w itc h e d  
Envirorw nent

T h e  trarrsition in te rv a l is c h a ra c te ris e d  b y  ra n d o m  s e le c tio n  
b e tw e e n  " o l d "  a n d  " n e w "  s ta te s , until th e  n o w  s ta te  fina lly 
p re d o m in a te s .

8. CONCLUSIONS

T h e  a p p lic a tio n  o f dig ital s to c h a s tic  c o m p u tin g  m e th o d s  
to  th e  h a rd w a re  s y n th e s is  o f le a rn in g  a u to m a ta  h a s b e e n  
d e s c r ib e d . T h e  u s e  o f th e  A D D I E  a s  a  b a s ic  b u ildin g  b lo c k  
to r th e  s y s te m  h a s  e n a b le d  e xc e lle n t le a rn in g  c h a r a c te r is ­
tics to  b e  a c h ie v e d  w ith  a lg o rith m  c irc u itry  c a p a b le  o f im p le ­
m e n tin g  a  u s e fu l ra n g e  o f  re in fo rc e m e n t s c h e m e s , a n d  
le a rn in g  tim e s  o f th e  o rd e r o f m illis e c o n d s  a re  
d e m o n s tr a te d .

T h e  d e s ig n  o f la rg e  s ta te  o rd e r s y s te m s  h a s  b e e n  a c ­
c o m p lis h e d  b y  in c o rp o ra tin g  th e  tw o -s ta te  A D D I E  S L A  in a 
h ie ra rc h ic a l s tru c tu re . T h e  re su lts o b ta in e d  fr o m  th e  1 2 8 -  
s ta te  s y s te m  d e s c r ib e d  h e re  r « v e  v e rifie d  th a t fa s t , e c o ­
n o m ic a l le a rn in g  b e h a v io u r  is p o s s ib le  u n d e r c o rx filio n s  o f 
s ta tic  a n d  d y n a m ic  o p fim is a lio n . a n d  re p re s e n t a n  im p o rta n t 
d e v e lo p m e n t in th e  im p le m e n ta tio n  o f o n -lin e  le a rn in g  c o f v  
tro lle rs . W o r k  Is c u r re n tly  in p ro g re s s  o n  the  p ra c tic a l a p p li­
c a tio n  o f le a rn in g  a u to m a ta  to  s to c h a s tic  s y s te m s  w ith  m u l­
tim o d a l p e r fo r m a n c e  c rite ria .
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ADAPTIVE CONTROL OF MULTIMODAL STOCHASTIC SYSTEMS USING LEARNING AUTOMATA

R G N e v il le  and P Mars

S cdoo l o f  E le c t r o n ic  and E l e c t r i c a l  E n g in e e r in g , R G I T, A berdeen AB9 IFR, S c o tla n d

In  many p ro c e s s  c o n t r o l  p ro b lem s, th e  
c h a r a c t e r i s t i c s  o f  th e  p ro c e s s  a re  f u l l y  
known, and a com plete m a th e m a tic a l 
d e s c r ip t io n  o f  th e  p ro c e s s  and o f th e  
c o rre sp o n d in g  c o n t r o l  s t r a t e g y  i s  p o s s ib le .  
However, a la r g e  number o f  s i t u a t i o n s  a r i s e  
w here u n c e r t a i n t i e s  a re  p r e s e n t ,  e i t h e r  due 
to  an in c o m p le te  m a th e m a tic a l model o f  th e  
p r o c e s s , o r  due to  o p e r a t io n  in  a random 
en v iro n m en t. T here th e  p r o b a b i l i s t i c  n a tu re  
o f  th e s e  u n c e r t a i n t i e s  1s known, s t o c h a s t i c  
c o n t r o l  th e o ry  can be a p p l ie d ,  b u t in  th e  
ca se  o f h ig h e r  o r d e r  u n c e r t a i n t i e s  w here 
th e  p r o b a b i l i s t i c  c h a r a c t e r i s t i c s  ca n n o t be 
e a s i l y  a s c e r ta in e d ,  i t  i s  o n ly  p o s s ib le  to  
g a in  s u f f i c i e n t  know ledge o f  th e  p ro c e s s  
by 'b n - l in e " ,  o b s e rv a t io n .  H ere in  l i e s  th e
a p p l ic a t io n  a r e a  f o r  s t o c h a s t i c  le a r n in g  
au to m ata . E s s e n t i a l l y  s t o c h a s t i c  le a r n in g  
au to m ata  p ro v id e  a  n o v e l and a t t r a c t i v e  mode 
o f  s o lv in g  a la r g e  c l a s s  o f  prob lem s 
In v o lv in g  u n c e r t a in t i e s  o f  a h ig h  o rd e r .

Many problem s o f  a d a p tiv e  c o n t r o l ,  p a t t e r n  
r e c o g n i t io n ,  f i l t e r i n g  and i d e n t i f i c a t i o n  
can , u n d er p ro p e r  a s su n q jtlo n s , be re g a rd e d  
as p a ra m e te r  o p t im is a t io n  p ro b lem s. A 
le a r n in g  autom aton can be f r u i t f u l l y  a p p l ie d  
to  s o lv e  such  p r o b le m s ,e s p e c ia l ly  u n d er 
n o isy  c o n d i t io n s  when th e  a p r i o r i  in fo rm a tio n  
i s  s m a ll .  F or such  p roblem s, u n l ik e  
s t o c h a s t i c  ap p ro x im a tio n  m e th o d s ,th e  le a r n in g  
autom aton has th e  d e s i r e d  f l e x i b i l i t y  n o t  to  
g e t  lo c k ed  on to  a l o c a l  optim um, and t h i s  
f a c t  makes th e  au to m ata  approach  p a r t i c u l a r l y  
a p p l ic a b le  to  m u ltim o d a l p e rfo rm ance  
c r i t e r i a  sy s te m s .

The p a p e r  w i l l  c o n s id e r  e x p e r im e n ta l  r e s u l t s  
o b ta in e d  f o r  th e  r e a l - t im e  c o n t r o l  o f  n o isy  
m u ltim oda l sy s tem s u s in g  r e c e n t ly  d ev e lo p ed  
hardw are h i e r a r c h i c a l  s t r u c t u r e  le a r n in g  
au to m ata . The approach  w i l l  be shown to  
p e rm it th e  e f f e c t i v e  econom ic r e a l i s a t i o n  o f 
h ig h -sp e e d  c o n t r o l l e r s  f o r  r e a l - t im e  system  
c o n t r o l .

INTRODUCnOM

One o f  th e  p r i n c i p a l  a p p l i c a t io n  a re a s  f o r  
s to c h a s t i c  com puting r e s e a r c h  i s  th e  
Im p lem en ta tio n  o f  a d a p tiv e  c o n t r o l  sy stem s 
u s in g  s t o c h a s t i c  le a r n in g  au to m ata  (SLA) 
s t r u c t u r e s  ( 1 ) .  A le a r n in g  autom aton i s  
I d e a l ly  s u i t e d  to  th e  prob lem  o f  p a ra m e te r  
o p t im is a t io n  o f  a n o is y  m u ltim o d a l sy s tem , 
s in c e  th e  I n h e re n t  p r in c i p l e  o f  random 
s e a rc h  av o id s  th e  e f f e c t  o f  lo c k in g -o n  to  
lo c a l  op tim a u n a v o id a b le  w ith  norm al g r a d ie n t  
m ethods, f o r  exam ple. The au tom aton , by 
means o f  a s i i l t a b l e  I n t e r f a c e ,  I n t e r a c t s  w ith  
th e  env ironm en t in  a m anner ana logous to  a 
c o n v e n tio n a l feedback  c o n t r o l  sy stem  to  
ev o lv e  a ' s u i t a b l e '  f i n a l  structT xre  
( f i g u r e  1 ) .

Through a com bination  o f  e a r l i e r  work in  
hardw are s t o c h a s t i c  com puting sy s te m s , and 
e x te n s iv e  s im u la t io n  s tu d i e s  o f  le a r n in g

autom aton b e h a v io u r  C 2 )> lt has  been  p o s s ib le  
to  s y n th e s is e  p r a c t i c a l  l e a r n in g  sy stem s 
c a p a b le  o f  o n - l in e  o p e r a t io n .  Hardware 
d e s ig n s  f o r  2 - s t a t e  sy s tem s have been 
d e s c r ib e d  ( 3 ,4 ,5 )  w hich v e r i f i e d  t h a t  s u i t ­
a b ly  f a s t  l e a r n in g  b e h a v io u r  was p o s s ib le .

In  o r d e r  to  im plem ent l a r g e - s c a l e  s y s te m s , a 
h i e r a r c h i c a l  s t r u c t u r e  au tom aton was 
d ev e lo p e d , u s in g  th e  2 - s t a t e  SLA in  a tim e -  
s h a re d  mode. T h is  sy s te m , r e p o r te d  
p r e v io u s ly  ( S ) ,h a s  been  t e s t e d  u s in g  s im p le  
s im u la te d  p l a n t  r e s p o n s e s .  The work 
d e s c r ib e d  h e re  a l s o  d e t a i l s  a p p l i c a t i o n s  to  
more p r a c t i c a l  exam ples o f  sy s tem s w ith  
m u lt id im e n s io n a l ,  m u ltim o d a l p e rfo rm an ce  
c r i t e r i a ,  and th e  a d a p tiv e  c o n t r o l  o f  a r e a l ,  
s m a l l - s c a le  p r o c e s s .

The Automaton

The co n c ep t o f  ''au to m a to n "  in  th e  c o n te x t  o f  
th e  work r e p o r te d  h e re  can be d e f in e d  as 
fo l lo w s . An autom aton i s  e s s e n t i a l l y  a 
d e v ic e  w hich i s  c a p a b le  o f  r e c e iv in g  in p u t 
s ig n a l s  o r  re s p o n se s  a t  d i s c r e t e  i n t e r v a l s  
o f  tim e and d e te rm in in g  one o f a f i n i t e  
ntanber o f  o u tp u t a c t io n s  by means o f  some 
in te r m e d ia te  d e c is io n -m a k in g  p ro c e s s  a c t in g  
on i t s  i n t e r n a l  s t r u c t u r e  o r  s t a t e .

The v a r io u s  e le m e n ts  o f  t h i s  b ro a d  d e f i n i t i o n  
can be s t a t e d  more p r e c i s e l y  as fo llo w s  ;

( i )  The in p u t to  th e  au to m ato n , d en o ted  
x ( n ) ,  i s  an e lem en t o f  th e  s e t

X -  {X j  , X2. -----

w here k may be f i n i t e  o r  i n f i n i t e .

( i l )  The s t a t e  o f  th e  au to m ato n , d en o ted  
4 ( n ) ,  i s  an e lem en t o f  th e  s e t

(♦j. *2' s  i s  f i n i t e

( i i i )  The o u tp u t a c t io n  o f  th e  au tom aton ,
d en o ted  a (n )  i s  an e lem en t o f  th e  s e t

i^l' r  i s  also f in i te

In  a d d i t io n ,  -two f u n c t io n a l  r e l a t i o n ­
s h ip s  e x i s t  w hich r e l a t e  th e  above 
v a r i a b l e s  and com plete- th e  d e f i n i t i o n  
o f  th e  au tom aton

( iv )  The t r a n s i t i o n  f u n c t io n  F r e l a t e s  
th e  c u r r e n t  s t a t e  and in p u t a t  s ta g e  n 
to  th e  n e x t s t a t e  a t  s ta g e  n-i-1

l . e .  4 (n + l)  -  F [ « ( n ) ,  x (n ) ]

(v )  The o u tp u t fu n c t io n  G r e l a t e s  th e  
c u r r e n t  s t a t e  o f  th e  au tom aton  to  th e  
r e s u l t i n g  o u tp u t a c t io n  a t  s ta g e  n.

i . e .  a (n )  -  G [* (n ) ]
f

The autom aton i s  t h e r e f o r e  d e f in e d



m a.ttism a.tica.ll7 by a q u ln tu p la  
{X, « , A, ? , G). Tbs iu n c t io n s  ? and G 
may b« d a te x m in is t ie  o r  s t o c h a s t i c  m appings. 
l i  7 and G a re  b o th  d e t e r m in i s t i c ,  th e  
au tam aton  i s  d en o ted  a " d e t e r m l n i s t l e  
a u to o ia to n " , in  v h ic h  e a se  th e  n e x t s t a t e  and 
o u tp u t a c t io n  a re  u n iq u e ly  d e i in e d  l o r  a 
g l^en  c u r r e n t  s t a t e  and in p u t .  The worlc to  
be d e s c r ib e d  h e r e ,  how ever, c o n c e n t r a te s  oe 
th e  s t o c h a s t i c  au to m ato n , in  w hich ?  o r  
G, o r  b o th , a re  s t o c h a s t i c  I n n e t io n s .  In  

« c a s e ,  th e r e  a re  o n ly  p r o b a b i l i t i e s  
a s s o c ia te d  w ith  th e  s u c c e s s io n  o l  s t a t e s  
and o u tp u t a c t i o n s .

A r e p r e s e n ta t io n  o l  th e  s t r u c t u r e  o l  th e  
au tam aton  can be g iv en  in  te rm s o l  th e  
t o t a l  s t a t e  p r o b a b i l i t i e s  ;

tj^(n) -  P r  {« {n )  -  

o r  th e  t o t a l  a c t io n  p r o b a b i l i t i e s  :

Pj^(n) -  P r  { a (n )  -  â }̂

A gain , to  p r e s e rv e  p r o b a b i l i t y  m easu re ,' i t  
lo l lo w s  t h a t

I  ir̂  -  I  p . ■ 1.
i  1 1  1

I t  i s  I r e q u e n t ly  th e  c a se  t h a t  G d e n o te s  
a o n e - to -o n e  m apping betw een  s t a t e s  and 
a c t io n s ,  in  w hich case  t ( n )  and p (n )  a re  
e q u iv a le n t .

The E n y lro n a e n t

The en v ironm en t encom passes a l l  th e  
e x t e r n a l  l a c t o r s  w hich in f lu e n c e  th e  
s t r u c t u r e  o r  b e h a v io u r  o l  th e  a u tam a to n .
I t  a c c e p ts  th e  o u tp u t a c t io n s  o l  th e  
au tom aton as  i n p u t s ,  and p ro d u c e s  o u tp u t 
re sp o n se s  w hich a re  i s  tu r n  le d  back  to  th e  
au tom aton . The en v iro n m en t i s  t b e r e lo r e  
c h a r a c t e r i s e d  by th r e e  s e t s  o l  v a r i a b le s  
lo rm ln g  th e  t r i p l e  (A, C, X> where A and 
X a re  r e s p e c t i v e ly  th e  a c t io n  and in p u t 
s e t s  o l  th e  autom aton as d e f in e d  ab o v e , and 
C i s  a  s e t  o l  " p e n a l ty  p r o b a b i l i t i e s " .

C <• {c,!■ ^ V *
In p r a c t i c e ,  i t  i s  c o n v e n ie n t to  
c o n c e n t r a te  on th e  p a r t i c u l a r  au to m ato n - 
en’v ironm ent c o n f ig u r a t io n  in  w hich th e  s a t  
X h as  J 'u s t two e le m e n ts , i . e .  X “ £o, 1 ] .
By co n v e n tio n  x •  0 d e n o te s  a fa v o u ra b le  
re sp o n se  o r  " rew ard "  and x •  1 d en o tea  as 
u n fa v o u ra b le  re sp o n se  o r  " p e n a l ty " .

Bach e lem en t c , o l  C i s  a s s o c ia te d  w ith  as 
e lem en t a , IroCft th e  a c t io n  s e t  A, and i s  
d e f in e d  as lo lo w s :

Cj ■ P r  ix ( n )  -  1 /  a (n )  ■ a^} .

The Concept o f  L ea rn in g

The co n cep t o f  " le a r n in g "  i s  a p p l ie d  h e re  
to  d e s c r ib e  th e  b e h a v io u r  o f  a  v a r i a b le  
s t i u c t u r e  au tom aton  o p e r a t in g  in  an 
env ironm en t as d e f in e d  above. A le a r n in g  
autam aton  i s  c a p ab le  o l  d e te rm in in g  th e  
su c c e s s  o l  each  a c t io n  in  e l i c i t i n g  a 
rew ard  from th e  e n v iro n m e n t, and , in  th e  
s p e c i f i c  ca se  o l  a v a r i a b le  s t r u c t u r e  d e v ic e , 
o r d e r in g  i t s  s t r u c t u r e  so  as to  in c r e a s e  th e  
p r o b a b i l i t y  o l  s e l e c t i n g  a  more s u c c e s s f u l  
a c t io n .

C le a r ly ,  11 th e  ĉ  ̂ wore a l re a d y  known, th e

s t r a t e g y  o l  th e  au tam aton  w ould be s im p ly  to  
s e l e c t  th e  a c t io n  a c o r re sp o n d in g  to  th e  
m̂ n̂ TTlllm p e n a l ty  p r o o a b l l i t y  c . The 
e le m e n ts  c , o l  C a re  t h e r e f o r e  assum ed to  be 
unknown a t ^ a l l  t im e s .

R e ln lo rce m e n t Scheme

A v a r i a b l e  s t r u c t u r e  au tam aton  m o d if ie s  i t s  
p o l ic y  f o r  s e l e c t i n g  o u tp u t  a c t io n s  by th e  
a p p l i c a t i o n  o f  a  r e in lo rc s m e n t  s c h r a s ,  
d en o ted

f °  { p^(n ) —  P yC a)} , su ch  t h a t

Pj^(h+1) -  Pj^(n) + f ^  { }, i - 1 ------ r

A gain , t o  p r e s e r v e  p r o b a b i l i t y  m easu re , a l l  
such  schem es m ust e n s u re  t h a t

I  f ?  { } •  0
i - 1  ^

An an exam ple , one o f  th e  m ost w id e ly  
i n v e s t i g a t e d ,  and in d e e d  e a r l i e s t  p ro p o sed  
sch em es, th e  l i n e a r  re w a rd -p e n a l ty  schem e, 
d en o ted  w i l l  now be d e s c r ib e d .  The
a lg o r i th m . S ta te d  in  t o t a l  p r o b a b i l i t y  form , 
i s  as fo llo w s  :

Ca) Rewa rd - ( a c t io n  â }̂

p , ( n + l )  -  1 -  I  p ,C n + l)
^ j ^ i  ^

(b )  P e n a l ty  ( a c t i o n  a ^ )

p ^ (n + l)  -  S p ^ (n )

■ P j ( a )  + pj^(n)

w here 0 < a ,  B < 1

I f  th e  p e n a l ty  c o e f f i c i e n t  3 -  1 , th e  
schem e i s  tr a n s fo rm e d  to  l i n e a r  rew ard - 
i n a c t i o n ,  d en o ted

Review o f  H ie r a r c h ic a l  Svstem

The h i e r a r c h i c a l  SLA e v o lv e d  as a means o f  
e n a b l in g  a p r a c t i c a l  l a r g e - s c a l e  au tom aton 
t o  be c o n s t r u c te d  w hich w ould be c a p a b le  o f  
h ig h -s p e e d  o p e r a t io n  w ith  th e  minimum o f 
h a rd w are . The app roach  a d o p te d  was t o  t im s -  
sharw  a  s in g l e  3 - s t a t e  SLA in  a t r e e -  
s t r u c t u r e  , as  shown in  f ig u r e  2 . The random 
a c c e s s  memo ry , w hich s t o r e s  th e  in te r m e d ia te  
d e c is io n  p r o b a b i l i t i e s ,  f u l f i l s  th e  r e q u i r e ­
m ent f o r  a memory in  th e  au tom aton  to  
e s t a b l i s h  th e  p r i o r i t y  o f  s t a t e  o r d e r  d u r in g  
th e  le a r n in g  p e r io d .  Any o a t  s t a t e  o r  
a c t io n  p r o b a b i l i t y  i s  g iv en  by th e  p ro d u c t 
o f  th e  d e c is io n  p r o b a b i l i t i e s  a lo n g  th e  
a p p r o p r ia te  p a th  th ro u g h  th e  t r e e .  T h is  
c o n f ig u r a t io n  does o f  n e c e s s i ty  in v o lv e  
more s e r i a l  p r o c e s s in g  o p e r a t i o n s , b u t  th e  
s a v in g s  in  hardw are  a re  f e l t  to  f a r  ou tw eigh  
th e  sp e ed  p e n a l ty .  A no ther ad v a n ta g e  i s  
t h a t  'a  m o d u la r c o n s t r u c t io n  g r e a t ly  
s i s g i l i f i e s  th e  d e s ig n  re q u ire m e n ts  o f  much 
l a r g e r  sy s te m s . The r e in fo rc e m e n t a lg o r i th m  
c i r c u i t  can r e t a i n  th e  s ta n d a r d  (4 - te rm )  
fo rm at u se d  p re 'v io u s ly  w ith  2 - s t a t e  s y s te m s , 
and i s  a l s o  t im e - s h a r e d  a t  each  l e v e l .

U sing th e s e  p r i n c i p l e s ,  a  hardw are  sy stem  
w ith  up to  128 s t a t e s  was c o n s t r u c te d ,  
b a se d  on tb e  a v a i l a b i l i t y  o f  a s u i t a b l e



conm erciaJ. random a c c e s s  memory CBAU) w ith  
128 b y te s  o i  s to r a g e .  The memory r e q u i r e ­
m ents a re  d e te m ln e d  by th e  number o f  
l e v e l s  in  th e  sy s tem . The num ber o i  
d e c is io n  p r o b a b i l i t i e s  to  be remembered a t  
l e v e l  p i s  2P~^; t h e r o i o r e , an r - l e v e l  
sy stem  (2~ s t a t e s )  r e q u i r e s  a  t o t a l  SAM 
a l lo c a t io n  o f  J u s t  ( 2^ - 1 )  b y te s .

I n i t i a l  E xperim en ts

I n i t i a l  o p t im is a t io n  e x p e r im e n ts  w ere 
c a r r i e d  o u t u s in g  an e le m e n ta ry  s im u la te d  
p l a n t ,  in  w hich one s e l e c t e d  a c t i o n ,  in  
t h i s  ca se  number 41, c a r r i e s  a low p e n a l ty  
p r o b a b i l i t y ,  c ,  “  0 .2 5 ,  and a l l  o th e r s  a 
h ig h e r  o n e , c. 0 .8 7 5 . F ig u re  3 shows th e  
r e s u l t i n g  l e a n i n g  b e h a v io u r  p r e s e n te d  in  
th e  form  o f an 'o u tp u t  map’ , d e r iv e d  by D/A 
c o n v e rs io n  o f  th e  au tom aton  o u tp u t l a t c h  
c o n te n ts .  The app ro x im ate  le n g th  o f  one 
sy stem  i t e r a t i o n  i s  50 u s ,  so  t h a t  th e  
in d ic a te d  le a r n in g  tim e o f  50 ms c o r r e s ­
ponds to  some 1 000 i t e r a t i o n s .

Beoause o f  v a r ia n c e  in h e r e n t  in  th e  hardw are  
e s t im a tio n  o f p r o b a b i l i t y ,  th e r e  i s  alw ays 
a s l i g h t  chance o f  i n c o r r e c t  d e c is io n s ,  a t  
any l e v e l ,  beyond th e  i n i t i a l  l e a r n in g  
p e r io d .  T h is  r e s u l t s  in  th e  s p o r a d ic  
o c c u rre n c e  o f  i n c o r r e c t  o u tp u t a c t io n s  w hich 
can be seen  on th e  o u tp u t map.

A p p lic a tio n  to  M ultim odal System

In  o r d e r  to  s im u la te  a m u ltim o d a l 
e n v iro n m e n t, a  r a t h e r  more s o p h i s t i c a t e d  
p la n t  was r e q u ir e d .  I t  was d e c id e d  to  u se  
as an exam ple a P . I .  f u n c t io n  (7 )  w hich has 
a d i s t i n c t  g lo b a l  optimum, a  l o c a l  optimum 
and a s a d d le - p o in t .  The fu n c t io n  1s g iv e n  
by ;

I ( x ,y ) (1  f  8x -  7x*-^ I  X* -  I  x*)y* .-y
In  o r d e r  to  p r e s e n t  t h i s  P . I .  s u r f a c e  t o  th e  
SLA, th e  f u n c tio n  was e v a lu a te d  a t  d i s c r e t e  
p o in ts  and programmed i n t o  a r e a d -o n ly  
memory, th u s  s t o r l s g  th e  c . v a lu e s  a s  S - b l t  
num bers, each  a d d re s se d  b y ^ th e  a p p r o p r ia te  
a c t io n  o u tp u t from th e  SLA. The p re se n c e  
o f  n o is e  on th e  s u r fa c e  was s im p ly  e f f e c t e d  
by in te r p o s in g  a f u l l  ad d e r fe d  w ith  n o is e  
d e r iv e d  from th e  c e n t r a l  pseudo-random  
b in a ry  n o is e  s o u rc e .  In  a d d i t io n ,  a n o n -  
s t a t i o n a r y  en v iro n m en t was c o n v e n ie n tly  
accooinodated by s to r in g  a l t e r n a t i v e  
v e r s io n s  o f  th e  P . I .  in  d i f f e r e n t  s e c to r s  
o f  th e  PROM.

A r e p r e s e n ta t iv e  r e s u l t  o f  th e  o p t im is a t io n  
o f  t h i s  sy stem  by th e  h i e r a r c h i c a l  
s t r u c t u r e  autom aton i s  d e p ic te d  in  f ig u r e  4. 
T h is  shows th e  o u tp u t map f o r  th e  ca se  o f  a 
n o n - s ta t lo n a r y  en v ironm en t ( s w itc h e d  a f t e r  
2 000 system  i t e r a t i o n s )  u s in g  an L_ .  
autom aton w ith  th e  fo llo w in g  p a r a m e te n  ;

0 .5

fo llo w in g  param ef 

S -  0 .9 9 2 .

D uring th e  f i r s t  le a r n in g  p h a s e , th e  sy stem  
converges to  a c t io n s  19 and 20 , b o th  n e a r  
th e  o p t imum. An in te r im  a d ju s tm e n t p e r io d  
fo llo w s  th e  s w itc h ,  c u lm in a tin g  in  
convergence to  th e  'new ' optimum o f  a c t io n  
100. T h is  r e s u l t  c l e a r ly  i l l u s t r a t e s  th e  
a b i l i t y  o f  th e  SLA to  tra c J t a  n o n - s ta t lo n a r y  
env ironm ent w ith o u t e x c e s s iv e  d e la y .

P ro c e s s  C o n tro l

The a p p l i c a t io n  o f  th e  SLA to  a d a p tiv e

c o n t r o l  was d e m o n s tra te d  w ith  th e  a id  o f  a 
s m a l l - s c a le  th e rm a l p r o c e s s .  T h is  c o n s i s t s  
o f  a  c e n t r i f u g a l  fan  w ith  an a d ju s ta b le  i n l e t  
o r i f i c e  w hich fe e d s  a i r  p a s t  a g r id  b e a te r  
and th ro u g h  an o u t l e t  p ip e .  The e x h a u s t 
te m p e ra tu re  i s  m easured  by a m in ia tu r e  bead  
th e n n i s to r  and com pared w ith  th e  s e t - p o i n t  
to  d e r iv e  an e r r o r  s ig n a l  w hich in  tu r n  i s  
u se d  to  c o n t r o l  th e  h e a te r  pow er o u tp u t .

A tw o -te rm  (P  I )  c o n t r o l l e r  was d ev e lo p e d , 
in  w hich th e  p r o p o r t i o n a l  band  and i n t e g r a l  
tim e  c o e f f i c i e n t s  w ere each  a d j u s ta b le  o v e r  
8 s t e p s  (33% -  175% and 0 .5  s  -  8 s  
r e s p e c t i v e l y ) .  A 6 4 - a c t io n  SLA was th e r e ­
f o r e  u sed  to  ' t u n e '  th e  c o n t r o l l e r ,  as shown 
in  th e  b lo c k  d iag ram  ( f ig u r e  5 ) .  A 
c o n v e n ie n t m easure o f  p e rfo rm an ce  f o r  t h i s  
sy stem  was th e  I n t e g r a l  o f  S q u a red  E r r o r  o r  
ISE c r i t e r i o n  r e s u l t i n g  from  th e  a p p l i c a t io n  
o f  a s t e p  in p u t .  The ISE was tra n s fo rm e d  
i n t o  re w a x d /p e n a lty  in fo rm a tio n  f o r  th e  
au to m ato n , w h ile  th e  d i r e c t  e r r o r  s ig n a l  
p ro v id e d  th e  in p u t  to  th e  c o n t r o l l e r .

The p erfo rm an ce  o f  t h i s  a d a p tiv e  c o n t r o l l e r  
i s  i l l u s t r a t e d  by th e  ISE p l o t  o f  f ig u r e  
6 ( a ) .  A f te r  th e  i n i t i a l  a d ju s tm e n t p h a s e , 
th e  sy s tem  was d is r u p te d  by o p en in g  up th e  
b lo w er a p e r tu r e .  I t  can be seen  t h a t  th e  
au tom aton r e a c t s  to  t h i s  d is tu rb a n c e  and 
r e c o v e r s  c o n t r o l  q u i t e  r a p id l y .  F ig u re  6 (b )  
shows a s i m i l a r  r e s u l t  in  w hich n o is e  was 
su p e rim p o sed  on th e  s e t - p o i n t , and i s  
c h a r a c t e r i s e d  by s l i g h t l y  lo n g e r  a d ju s tm e n t 
tim e  and h l ^ e r  l e v e l s  o f  s t e a d y - s t a t e  e r r o r .

C o n c lu s io n s

These r e s u l t s  c l e a r l y  d e m o n s tra te  th e  power 
o f  th e  au tom aton  app roach  to  th e  
o p t im is a t io n  o f  n o n - s ta t io n a r y  m u ltim o d a l 
s y s te m s , i r r e s p e c t i v e  o f  s u r f a c e  c o n to u rs  
o r  o f  th e  p re se n c e  o f  n o is e  in  th e  sy s te m .
In  p a r t i c u l a r ,  i t  sh o u ld  be s t r e s s e d  t h a t  
a t  n o  tim e  d id  convergence  to  th e  lo c a l  
optimum o c c u r ,  i n d i c a t in g  t h a t  th e  SLA baa 
p u re ly  a l t i t u d e  s e n s i t i v i t y  o v e r  a P . I .  
s u r f a c e , as opposed  to  th e  g r a d ie n t  
s e n s l t i ' ^ t y  o f  c o n v e n tio n a l  m ethods.

P ro c e s s  c o n t r o l l e r s  f in d  w id e sp re a d  
a p p l i c a t io n s  in  m snu fac tx irln g  i n d u s t r i e s ,  
and th e r e  i s  a  need  f o r  f r e q u e n t ,  o f te n  
u n p r e d ic ta b le  a d ju s tm e n ts  to  be made o n - l in e .  
The s u c c e s s  o f  th e  au tom aton  in  a c h ie v in g  
a d a p tiv e  c o n t r o l  o f  th e  th e rm a l p ro c e s s  
d e s c r ib e d  above i s  f e l t  to  be o f  c o n s id e r ­
a b le  im p o rta n c e , r e p r e s e n t in g  a f r u i t f u l  
a r e a  o f  a p p l i c a t io n  f o r  p r a c t i c a l  hardw are 
sy s te m s .
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