NEVILLE, R.G. 1980. Synthesis of stochastic learning automata. Robert Gordon's Institute of Technology, PhD thesis.
Hosted on OpenAlIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1993222

Synthesis of stochastic learning automata.

NEVILLE, R.G.

1980

The author of this thesis retains the right to be identified as such on any occasion in which content from this
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any
original images only — re-use of any third-party content must still be cleared with the original copyright holder.

mAl R This document was downloaded from @ @
https://openair.rgu.ac.uk

@RGU

https://doi.org/10.48526/rgu-wt-1993222

SYNTHESIS OF
STOCHASTIC LEARNING AUTOMATA

by

RICHARD GRAHAM NEVILLE B Sc with
First Class Honours in Electronic Engineering,

A thesis submitted in partial fulfilment of the
requirements of the Council for National Academic
Awards for the Degree of Doctor of Philosophy (Ph D).

School of Electronic and Electrical
Engineering

Robert Gordon's Institute of Technology

Schoolhill

Aberdeen

AB9 1FR

October 1980.

- i

to my Mother

DECLARATION

I hereby declare that this thesis is a record of work undertaken
by myself, that it has not been the subject of any previous application
for a degree, and that all sources of information have been duly
acknowledged.

In the course of this research, the following were included in
an approved programme of advanced studies:

(i) SRC Vacation School on ''System Modelling
and Optimisation' held at Cambridge University,
March 1977.

(ii) SRC Vacation School on 'Stochastic Processes
in Control Systems' held at Warwick University,
April 1978.

(iii) Workshop on 'Fuzzy Reasoning - Theory and

Applications' held at Queen Mary College, London,
August 1978.

(iv) lst International Symposium on ''Stochastic
Computing and its Applications' held at the
Institut National Polytechnique de Toulouse,
France,
29 November - 1 December 1978.

(v) Pre-Doctoral Fellowship in the Department of
Engineering and Applied Science at Yale University,
Connecticut, USA,

August - December 1979.

R G Neville
October 1980

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor,
Professor Philip Mars, for his guidance and encouragement
throughout the course of this project.

I would also like to thank various colleagues in the department
for numerous helpful discussions, and in particular technicians
Colin Nicol and John Still for their assistance with hardware
developments.

I hereby acknowledge the Science Research Council for their
support of this project, including my appointment as a Research
Assistant, and the provision of a travel grant to visit the Department
of Engineering and Applied Science at Yale University, U S A. In
this connection, I greatly appreciate the co-operation and hospitality
extended by Professor Kumpati Narendra and his colleagues.

Finally, I thank Mrs Anne Hobbs for her superb efforts in
deciphering my handwriting and typing this thesis.

CONTENTS

Abstract
CHAPTER 1

CHAPTER 2

CHAPTER 3

Basic Concepts of Stochastic Learning

Automata

1.1 Introduction

1.2 The Automaton

1.3 The Environment

1.4 The Concept of Learning

1.5 Reinforcement Schemes

1.6 The Automaton/Environment
Configuration

1.7 Criterion of Performance

1.8 Digital Stochastic Computing

1.9 Stochastic Computing Elements

Synthesis and Operation of a Two-State

System

N N ONDN NN DD DN DN DN DN

1
2
3
4
5
.6
7
8
9
1
1

0
1

Initial Design Considerations
Two-State System

Revised Design

Noise Sources

Output Interface
Experimental Results
Parameter Optimisation
Learning Controller

Plant Simulator

Simulator Results

Conclusions

Development of an ADDIE SLA

3.1
3.2
3.3
3.4
3.5

Design Requirements
Basic Configuration
Design of the ADDIE SLA

Testing and Development

/

Page

Number

(1)

o o o O N =

11
12

21
21
24
25
26
27
28
29
31
32
33

52
52
53
95

Page

Number
3.5 Operating Sequence 57
3.6 Algorithm Circuits 57
3.7 Non-Linear Scheme 58
3.8 Construction 61
CHAPTER 4 Results from the ADDIE SLA
4.1 Introduction ' 69
4.2 LR—P Scheme 69
4.3 LR—I Scheme 70
) o i
) R-P
4.6 Plant Simulator 72
4.7 Performance Curves 73
4.8 Non-Stationary Environments 74
4.9 Results 75
4.10 Conclusions ' 77
CHAPTER 5 Development of a Hierarchical
Structure SLA
5.1 System Expansion 103
5.2 Hierarchical System 103
5.3 Design Evolution 104
5.4 128-State System Design 105
5.5 Decision Path Control 107
5.6 Memory Address 108
5.7 System Clocks 109
5.8 Operating Sequence ‘ 110
5.9 Variable Size Facility 113
5.10 Construction 113
CHAPTER 6 Results from the Hierarchical SLA
6.1 Preliminary Results 129

6.2 Application to Multimodal Systems 130
6. Data Logging 132
6

4

w

Page

Number
6.4 Results and Comments 133
6.5 Conclusions 137

CHAPTER 7 Process Control with a Learning Automaton

7.1 Introduction 173
7.2 Thermal Process 174
7.3 Control System 175
7.4 Performance Evaluation 176
7.5 Experimental Results 178
7.6 Conclusions 181

CHAPTER 8 Conclusions - Review and Outlook

8.1 Review of the Project 195
8.2 The Future ' 196
REFERENCES 199
BIBLIOGRAPHY . 207

APPENDIX A Al

ABSTRACT
SYNTHESIS OF STOCHASTIC LEARNING AUTOMATA

by
RICHARD G NEVILLE

Over the past two decades, considerable interest has developed
in the field of stochastic learning automata theory and, consequently,
the application areas for learning systems. In control engineering,
they are viewed as a means to implement optimal adaptive controllers
for situations where little or no a priori information on the plant is
available.

Stochastic automata with a variable structure operate by means
of a global random search, interacting with the environment to improve
the action strategy towards optimum performance. They represent
therefore a novel and attractive solution to a large class of problems
involving high order uncertainties.

At the same time, research has progressed in digital stochastic
computing, in which variables are represented by random pulse trains,
enabling analogue functions, effectively transformed into Boolean
logic operations, to be performed at high speed by conventional digital
hardware. These techniques were seen as ideally suited to the
practical implementation of stochastic learning automata.

This project is seen as the convergence of these two lines of
activity, developing hardware automaton designs and devising
applications to simulated and real system parameter optimisation
problems. To provide continuity with previous theoretical studies
and also lay the necessary foundations of hardware system design
experience, basic two-state systems were designed and constructed
initially. A standard modular design evolved which was
incorporated in a hierarchical structure. This design philosophy
enabled large state order automata to be implemented, providing a
powerful tool for the optimisation of multivariable, multimodal
systems.

A prototype hierarchical structure 128-state automaton has
been constructed and tested in both static experiments and a real
process control application, based on a small-scale thermal system.
The hardware learning automaton approach has been shown here to
permit the effective, economic realisation of high-speed real-time
system controllers.

CHAPTER 1
BASIC CONCEPTS OF STOCHASTIC LEARNING AUTOMATA

1.1 Introduction

One of the potential application areas for stochastic

(1 - 4)

computing research is the implementation of learning

systems for optimal control by means of stochastic

(5)

automata. For many control system problems, the
characteristics of the process are well understood and a
complete mathematical description of both process and
control strategy is possible. Conventional programmed-

(6)

computer control techniques can then be used.

A large class of problems exists, however, which
cannot be solved by these techniques, due to incomplete
knowledge of plant dynamics, or operation in a random or
"noisy" environment. If the probabilistic nature of the
uncertainties can be determined, stochastic control theory
may provide a solution, but if, as is often the case, the
uncertainties are of a high order, no conventional theoretical
framework exists. It is in just such a problem area that a
"learning'' controller, which actually develops the requisite
control action by way of real-time on-line interaction with

the plant, finds its application.

(7, 8)

Stochastic automata have been shown previously to

be suitable for the modelling of learning systems in general,

and more recently they have been introduced into the field of

(9 - 16)

control engineering. This project aims to combine

the results of earlier work in hardware stochastic computing
(17, 18)

automata(,19 = 21) in order to realise their potential in

systems and extensive simulation studies of learning

practical control applications for the first time.

Before proceeding to describe the synthesis techniques

which /

1.

which have brought about the implementation of hardware
stochastic learning automata systems, it is first of all
necessary to define what exactly is meant by ''automaton',
the nature of the "environment in which it operates,

and the manner in which it can be said to ''learn'.

This chapter also contains an exposition of the relevant
techniques of digital stochastic computing systems. This
in turn will lay the foundations for the following chapters
which detail the use of these techniques in the actual
synthesis and operation of hardware automata. In
general, the notation used here will follow closely that which

is standard practice in the literature.

The Automaton

The concept of "automaton' in the context of the work
reported here can be defined as follows. An automaton is
essentially a device which is capable of receiving input signals
or responses at discrete intervals of time and determining
one of a finite number of output actions by means of some
intermediate decision-making process acting on its internal

structure or state.

The various elements of this broad definition can be

stated more precisely as follows:

(i) The input to the automaton, denoted

x(n), is an element of the set
X={x1, x2,---xk}
where k may be finite or infinite.

(iiy The state of the automaton, denoted

@(n), is an element of the set
$ - {gbl, ?,, - - -(,‘bs} : s is finite
(iii) /

(iii) The output action of the automaton, denoted

a(n), is an element of the set
A=4a,, a, - --a ; r is also finite
1 2 r

In addition, two functional relationships exist
which relate the above variables and complete

the definition of the automaton

(iv) The transition function F relates the
current state and input at stage n to

the next state at stage n+1.
i.e., @(nt+l) = F {Q)(n) 5 x(n)}

(v) The output function G relates the current
state of the automaton to the resulting output

action at stage n.
i.e., af(n) = G {gb(n)}

The automaton is therefore defined mathematically by a
quintuple ¢ X, @, A, F, G} , as summarised in
Figure 1.1. The functions ¥ and G may be
deterministic or stochastic mappings. If F and G
are both deterministic, the automaton is denoted a
""deterministic automaton', in which case the next state and
output action are uniquely defined for a given current state and
input. The work to be described here, however, will
concentrate on the ‘stochastic automaton, in which F or G,
or both, are stochastic functions. In this case, there are
only probabilities associated with the succession of states

and output actions.

State transition probabilities are defined as follows:

p.. = Pr {(])(n+l) = ¢j / @) = Q)i, x(n) = x}

1]

denotes the probability that the automaton moves from state
(Z)i to state (pj for a given input x. The Pi; are the

elements |/

1.

elements of an s x s transition matrix T,

i.e., G(n+1) = T ((n)
Since X% pij = 1 for all i, in order to preserve
J .
probability measure, it follows that T 1is a stochastic

matrix.

In the case of a fixed structure automaton, the pij have
constant values. However, it is frequently found useful to
update the transition probabilities at each stage so that the
automaton can improve its performance in some respect.

In this case, the pij are a function of n, and the

automaton is said to have '"'variable structure'.

An alternative representation of the structure of the

automaton can be given in terms of the total state probabilities:

7.(n) = Pr {¢(n) - cbi}

or the total action probabilities:

p.(n) = Pr {a(n) = ai}

1

Again, to preserve probability measure, it follows that

i i i
a one-to-one mapping between states and actions, in which

Zr =Zp = 1. It is frequently the case that G denotes
i

case w(n) and p(n) are equivalent.

The choice of representation depends on whether
transition or total state probability information is more
important for a given problem. However, an important
consideration to bear in mind is that the updating process for
the latter case involves fewer quantities (s, rather than 52),
which becomes a significant factor in the implementation of

large structures.

1.

The Environment

Within the field of learning automata theory, the
"environment'' can be defined as the general medium in
which the automaton itself is required to operate. The
environment thus encompasses all those external factors
which influence the structure or behaviour of the automaton.
It accepts the output actions of the automaton as inputs, and
produces output responses which are in turn fed back to the
automaton. The environment is therefore characterised
by three sets of variables forming the triple {A, G X}where
A and X are respectively the action and input sets of the
automaton as defined above, and C is a set of ''penalty
probabilities'!, C = Cis Co---C - In practice,
it is convenient to concentrate on the particular automaton-

environment configuration in which the set X has just two

elements, i.e., X = E), 1_] . By convention,
x = 0 denotes a favourable response or ''reward' and
x = 1 denotes an unfavourable response or ''penalty'.

The work reported here will, in fact, concentrate on this
example of a binary environment response, which is

classified as the "P-model'" (see Figure 1.2).

Each element ci of C 1is associated with an element

ai from the action set A, and is defined as follows:

c; = Br {x(n) =1 [a@) = ai}

In general, the normalised environmént response, as
a measure of some performance index, may be quantised
into discrete levels, giving the '"Q-model'', or represented
as a continuous element on the interval [0 " 1] , giving the
"S-model". Although the Q and S-models permita
greater degree of discrimination in specifying the
environment response, the P-model has the advantage of
greatest simplicity. Also, from the point of view of the

research /

1.

.5

research reported here, the inherent binmary form is ideally

suited to practical implementation with digital circuitry.

It was assumed above that the ci have fixed values, thus
defining a '"'stationary environment''. However, a great
deal of interest is centred on environments which are
non-stationary in some respect, in which case the c, are

functions of time.

The Concept of Learning

The concept of ''learning' is applied here to describe
the behaviour of a variable structure automaton operating in
an environment as defined above. A learning automaton is
capable of determining the success of each action in eliciting
a reward from the environment, and, in the specific case of
a variable structure device, ordering its structure so as to

increase the probability of selecting a more successful action.

Clearly, if the c, were already known, the strategy of
the automaton would be simply to select the action a
corresponding to the minimum penalty probability C The
elements {ci} of C are therefore assumed to be unknown

at all times.

Reinforcement Schemes

A variable structure automaton modifies its policy for
selecting output actions by the application of a reinforcement

scheme, denoted £ {pl(n) - - - pr(n)} , such that

p;(n+1) =pi(n)+f?{}, P2 loe =

Again, to preserve probability measure, all such

schemes must ensure that
r
) £ {} = 0.
. i
i=1

Extensive /

Extensive simulation studies of stochastic automata have
been carried out, with a view to application in diverse fields,
and much attention has been focussed on the performance of

(22 - 30)

a variety of reinforcement schemes. In particular,

Narendra and Viswanathan have undertaken an exhaustive
survey(zo’ 21) of learning algorithms in order to quantify
their performance both in terms of transient response,

i.e. learning time, and steady-state behaviour,

i.e. asymptotic probability of performing the chosen output

action.

As described above, the reinforcement scheme is a
function of the total state, or alternatively, the transistion
probabilities, and may be linear or non-linear. . In addition,
schemes have been proposed which combine linear and
non-linear forms of updating, usually dépending on the current
value of pi(n), in order to obtain the best overall convergence.

These are termed hybrid schemes.

As an example, one of the most widely investigated, and
indeed earliest proposed schemes, the linear reward-penalty

scheme, denoted L will now be described. The

R-P’
algorithm, stated in total probability form, is as follows:

(a) Reward (action ai)

pj=i(n+1) @ pj(n)

pi(n+1) 1- -E. pj(n+1)

J=1

(b) Penalty (action ai)

pi(n+1) B pi(n)

p;(m) + {i . ? } p;(n)

where 0<a, BK1

pj=i(n+1)

In /

P

In the case of the two-state SLLA, which has been widely
considered in theoretical and simulation studies, the learning

algorithm has a particularly simple form:

(@) Reward (action a

1)
p,(n+l) = 1-ap,(n)
Py(ntl) = @ p,(n)
(b) Penalty (action al)
+ =
p,(n+l) = Bp (n)
+ = -
p, (n+1) 1-ppym)
Similar expressions hold for the case when action a,
is performed. Reinforcement algorithms will be discussed

in more detail in the chapters which follow on hardware

synthesis.

The Automaton/Environment Configuration

The fully annotated automaton-environment interconnected
system is as shown in Figure 1.2. This depicts an
arrangement, analogous to a closed-loop feedback system, in
which automaton actions become environment inputs and output
responses from the environment in turn become inputs to the
automarton. Also represented as an ''input' to the system
are the random disturbances, about which the designer has

little knowledge and over which he has no control.

Starting from some initial state q)i(O), the automaton
performs the corresponding action ai(O). This elicits a
response x(0) from the environment, which in turn evokes
a change in the state of the automaton to (bj(l). In the case
of a variable structure automaton, the application of the

reinforcement /

) A8

reinforcement scheme at each stage alters the total state,
or transition, probabilities themselves, so that the
relationship between @(n+1) and @(n) will be updated

also.

The iterative process just described, whereby the
automaton interacts with a random environment in such a
way as to improve its performance, as judged by some
criterion, characterises the learning behaviour. In this
way, the automaton, if it is to be of some use, should
settle into a steady-state condition such that its policy for
selecting output actions minimises the received penalty.
This corresponds to selecting am, ie., the actioh with
lowest penalty probability cm. It should be noted that there
is always a non-zero probability of penalty even for the
optimum action, the important point being that the strategy of
selecting this action guarantees the lowest probability of an

unfavourable response.

Criterion of Performance

As described above, the automaton performs a sequence
of actions on the environment in the course of its operation,
and is deemed to ''learn' in the process if its performance
can be seen to improve in some respect. ' A useful
criterion for judging the performance of a learning automaton
is the average received penalty, denoted by:

r
M(n) = .2 pi(n) c;
i=1

In a "pure chance'' situation, an automaton selects each
action at all times with constant, equal probability,
pi(n) =1 , i=1, 2 --r. The value of M(n) in this case

r
is simply the arithmetic mean of the Css denoted by:

n
R
IRYE
[=Y
(@]

For an automaton to be said to learn, it must achieve a

level of performance at least better than pure chance.

A learning automaton is termed ''expedient if the
asymptotic average received penalty, in the expected sense,
is less than M0 i.e.,

lim E E\A(ni‘ < Mo

n—>ao

"optimal" if the

A learning automaton is termed
asymptotic value of received penalty is absolutely minimised,
i.e.,

lim E E\d(n] = c ; c = min{c.}
n —> o m m i

Optimality implies that action am is chosen with probability
one, representing ideal and in fact impractical conditions.
Indeed, in a non-stationary environment it would be highly
undesirable for the automaton to lock-on irrevocably to one
particular action. Accordingly, a third class of automaton
with sub-optimal behaviour is defined. This class of
automaton is termed '€-optimal'', and achieves a level of
performance described as follows:

lim E [M(n)"] = ¢ +€
m

n —>a

where € > 0 is an arbitrary constant, which may be as

small as desired.

It has become general practice to describe a
reinforcement scheme in terms of the resulting behaviour of
the automaton. That is, if for example a certain
reinforcement algorithm produces ¢-optimal performance
from the system, that scheme is referred to as an

"e-optimal scheme"'.

/

10

8

1.

8

Digital Stochastic Computing

Stochastic computing techniques(1 - 4, 17, 18, 31)

provide an ideal basis for the practical simulation of random
processes. Digital stochastic circuits use the probability

of switching a digital circuit to represent an analogue quantity.
Using this principle, it is possible to implement all the

standard operations of summation, inversion, multiplication

and integration found on the analogue computer. In addition,

a highly flexible, programmable interconnection system can

be constructed using standard digital multiplexing elements.(17’ #4)
Much work has already been done oh the development of

(33 - 36)

stochastic-to-digital interface elements and the

problems connected with the generation of uncorrelated

digital noise. (L% 317 = 40)

The great advantage of the digital stochastic machine lies
in its unique speed-economy combination, matching the
low-cost circuitry of the digital computer with the high-speed
parallel processing inherent in the analogue machine. (41, -~ 44)
The result of applying these techniques to the synthesis of
stochastic learning automata is that simulations of learning
processes which normally require several seconds or even
minutes of computer time can be performed in the order of
milliseconds on a dedicated hardware system.

Several means of representing variables for the purposes
of stochastic computing have been described. {1 4
However, since the variables associated with the learning
automaton are generally probabilities or constants in the
range 0 to 1, it is sufficient to consider the simple unipolar
representation. As illustrated in Figure 1.3, a variable
is represented here by the probability of a high logic level in
a stochastic or random pulse train. This particular example

shows two sequences having eight 1's in an interval of twenty

clock pulses, representing the value 0. 4.

/

11

Stochastic Computing Elements

Using the representation of variables just described, it
is found that the resulting stochastic computing elements have
particularly simple forms. The multiplication function,
as shown in Figure 1.4(a), is performed by a single
AND -gate. Since the output of the gate is high only if
pulses coincide on the inputs, the probability ofa 'l' in one
pulse train is effectively multiplied by the corresponding

probability represented by the other pulse train.

The special case of the squaring circuit is shown in
Figure 1.4(b). In this case, a delay of one clock interval
is introduced into one of the inputs by means of a D-type
flip-flop triggered by the same clock as the noise generator.
This preserves the requisite property of statistical
independence between the noise characteristics of the actual

multiplier inputs which is essential for valid operation.

Inversion, as illustrated in Figure 1.4(c), is simply
achieved by passing the signal through a standard inverter,
but summation is a rather more complicated function.
Although the basic operation involved is logical-OR, it is clear
that if just a single gate is used, the output cannot be correct
for the condition where pulses coincide on the inputs. It is
necessary to maintain the mapping of variables into the range
0 to 1, which in turn dictates that the inputs to the (two-input)
summer are limited to a maximum value of 0.5. This is
achieved by the circuit shown in Figure 1.4(d). A noise
line is used to switch at random between the two inputs,
which effectively performs the multiplication by 0.5 and
prevents pulse coincidence at the OR-gate inputs. It is
evident that repeated summation operations involve successive
attenuation of the problem variables, placing an inevitable

limitation on the accuracy of the system.

The /

12

The function of integration is performed basically by

feeding the pulse train to a counter (Figure 1.5). Clearly,
the sum of pulses accumulated over a certain time interval,
or number of clock pulses, represents the time integral of

the variable represented by the signal.

The interface between a deterministic signal, presented
in digital form, and the stochastic machine is shown in
Figure 1.6. The input signal is compared with a random
number sequence in a standard digital comparator. Provided
that the noise source has a uniform distribution, the
probability of a logic 'l' output from the comparator is
directly proportional to the value of the input number as a

fraction of full scale.

The output of the stochastic machine can be converted to
either an analogue or a digital value. The analogue output
interface in its simplest form consists of a first-order R-C
low pass filter, since all that is required is to derive the

average value or 'd-c' component of the bit stream.

Stochastic-to-digital conversion involves a similar
averaging process, though the circuitry is of necessity rather
more complex. The standard configuration, as shown in
Figure 1.7, is called a noise ADDIE, abbreviated from
"Adaptive Digital Logic Element". ts 83 - 28) An up-down
counter is connected to a noise comparator, and a feedback
loop arranged as shown. As a result, the counter will
count up or down until p(F) = p(A), effectively providing a

continuous estimate of the input probability value.

In conclusion, it should be stressed once again that all
the computing elements described above are implemented

using entirely standard hardware components.

13

¥I

, state
input set X | .g. output set A
-

transition function| output function

F: i X X"’i G: Q*A

Figure 1.1 The stochastic learning automaton

ST

DISTURBANCES\ | CLASSIFICATION

"
| (i) P-MODEL: X = {01}
RANDIOM | x =0 =D>REWARD
/> ENVIRONMENT \ _— AP iy
ACTION i ex | il GEMODEL: X= x5,
aj ' ;
: XiE [0,1]
(i) SMODEL: X ={0.1
AUTOMATON R o

| (SAVS) -

tREINFORCEMENT SCHEME
p;(n+1)=p;(n) +fi”[pl(n) —--p.(n)]

Figure 1.2 Automaton - environment configuration

ﬂ H (a)

1001 11001 1000100001 0O

——U—l_ U - (‘b')

Q011000001 101QO0OI10QI1 10

NI,

Figure 1.3 Stochastic representation of variables

16

" ‘
D Q
C =A.B B= A
Slock——
(a) multiplier (b) squarer

A ‘
s ER
notse

A e © =
(&) a2

(c) inverter (d) summer

l

B=i-A B

Figure 1.4 Stochastic computing elements

17

up

_,Do___ down

counter (N)

clock N = [Adt

Figure15 Stochastic integrator

18

digifal

input
~(A)
comparator A>g stochastic
output
noise(B)

Figure1.6 Digital-to-stochastic conversion

19

clock

p(A)
counter
down
D': &
olF) ﬂQ comparatfor
digital
noise

Figure 17 The noise ADDIE

20

CHAPTER 2
SYNTHESIS AND OPERATION OF A TWO-STATE SYSTEM

2.1 Initial Design Considerations

The starting point for the synthesis of a hardware system
was taken to be the Markov Chain simulator described by

Baxter et al. (18, 32)

This is a special purpose simulator
designed for high speed calculation of the nth power of the
transition matrix of a Markov Chain process. The circuitry
consists basically of a sequential network to process signals
representing the transition probabilities which are derived
from stochastic comparators and steered via appropriate
pulse-steering logic. The difference between this system
and the design requirements for the SLA is essentially that
the Markov Chain system has fixed transition probabilities, .
i.e., the elements of the transition matrix, whereas the
intrinsic feature of the variable structure SLA is the

updating of the transition (or total state) probabilities,“ by

means of the reinforcement scheme, at each iteration.

The design of the SLLA therefore involved replacing the
transition probability generating circuits with a hardware
version of the learning algorithm to effect the implementation
of the reinforcement scheme (Figure 2.1). It should be
noted that in this hardware design, each stage or iteration is
performed by one clock pulse applied to the sequential network.
Since clocking frequencies for standard logic circuitry can be
of the order of tens of megahertz, it is immediately apparent

how fast such a system can potentially operate .

2.2 Two-State System

It was decided to design initially a two-state system, in
view of the simplicity of the corresponding learning algorithms.

This /

21

This would enable valid comparisons to be made with the

20, 21
2L) on two-state

simulation work reported previously
SLLA's, and allow opportunity for generalisation to the
r-state case when design experience had been built up.

As explained earlier, the choice of P-model automaton is
logical here, because of the natural affinity between a binary

reward/penalty response and the operation of digital circuitry.

The sequential network in the case of a two-state system
consists of a single flip-flop, with the transition diagram as
shown in Figure 2. 2. If a J-K flip-flop is used with the
state assignment ”pl(n) = Q, pz(n) = Q", the input signals
to the J and K lines represent pl(n+1) and pz(n+1)
respectively. Therefore, the operation of the system
consists of clocking the flip-flop to produce an output 'l' or
'Q', i.e., action a_, or a

1 2’
depending on the current input condition. This output is

with a certain probability

then transformed via the algorithm circuit and reappears at
the input with a revised probability to be clocked through on
the next cycle. As the learning process evolves, the
probability of one of the output lines being 'high' should tend
towards unity. It can be seen that an inherent feature of
the system is a race-around or regenerative condition.

This is a consequence of the reinforcement scheme which by

its very nature represents a positive feedback system.

The reinforcement scheme used was the linear reward-
penalty (LR_P) which is reproduced below, in total state
probability form, for the two-state case:

(a) Reward (action al)
pl(n+1) * 1-o pz(n)
P,(m+1) = ap,(n)

by /

22

2.

3

(b) Penalty (action al)

]

p,(n+1) = Bp,(n)

py(ntl) = 1 - B p, ()

Similar expressions hold for action a,-
It is convenient to express the learning algorithm in the

form of a ''truth table', indicating the terms which must be

generated for each combination of current action and

reward/ penalty response.

al(n) az(n) P/R pl(n+1) pz(n+1)
0 1 0 a pl(n) 1-a pl(n)
1 0 0 l1-a pz(n) a pz(n)
1 0 1 B p,(n) 1-Bp,n)

The various algorithm terms a Py etc., are simply
formed using the stochastic computing elements outlined in

Chapter 1.

It was found subsequently during initial circuit tests that
a design embodying a J - K flip-flop would not work correctly.

The problem stemmed from the complementary nature of the

signals on the J and K lines. As in the Markov Simulator,
pulse-steering logic was used to ensure that p-z(n) = 1- pl(n)
at all times. The resulting waveforms are shown in

Figure 2.3, indicating that a steady-state condition is

established whereby the output is alternately set and reset at
each clock pulse. A fresh design procedure was therefore
adopted to exploit the feature of complementary signals while

avoiding this drawback.

23

2.4

Revised Design

The approach used in the revised design was to employ

a D-type flip-flop, and generate pl(n+1) alone as the input.
Q and Q represent pl(n) and pz(n) as before, but
pz(n+1) exists only as the implicit complement of pl(n+1)'
It was realised that using the current state signals to select
algorithm terms as well as acually form them would lead to
anomalies; for example, 1 - a P, would become simply 1
if action a, is performed because P, is then zero for the
duration of the cycle.

The revised system was therefore designed with two
dependent but separately clocked loops: one with a fast clock
for the algorithm computation cycle, the other with a slower
clock representing the main system cycle. The full circuit
diagram, incorporating algorithm, sequential network and

simulated plant, is shown in Figure 2.4.

Algorithm terms formed by the stochastic computing
elements are selected according to the current action and the
resulting reward/penalty signal (P/R). A standard TTL
four-to-one line data selector provided a convenient and
compact method for selecting the appropriate term to
represent pl(n+1), with the fast feedback loop, associated
with FF1, feeding the algorithm with current action
probability values (p1 and p2) and the slow loop, associated
with FF2, establishing the address for the data selector (al).
Therefore FF2 can be identified as the principal ''system
flip-ﬂop". A 10:1 ratio of clock frequencies was found in
practice to give satisfactory results. The reward/penalty
signal was derived from a simulated ''environment"
consisting simply of two penalty probability signals, C;»
selected by the appropriate action a,. The generation of

these signals is described below.

24

2.4

2.

5

Noise Sources

The various noise-related constants required for the
above system were derived from a common central digital
noise source, consisting of a standard shift-register PRBS

generator. (37, 43)

A 31-bit shift register, with
exclusive -OR feedback connected to bits 3 and 31 as

shown in Figure 2.5, will cycle at random through every

state bar ''all-zeroes' before repeating. This is referred
to as a maximal or m-length sequence. (46) The total number
of states is 2" - 1, which in the case of n = 31 exceeds

2 x 109. Each cell of the register is thus in effect a digital

noise source, producing a stochastic bit stream with a '"'value"
of 0.5. By virtue of the clock pulse delay between each
cell, the noise lines are statistically independent, which
guarantees the validity of computations performed between
them, and also between any signals derived from them.

Also incorporated in the noise generator is a ''one-shot'
circuit which ensures that the ''all-zeroes' condition cannot

occur at switch-on and prevent the sequence from starting.

A wide range of factors based on fractions of % or their
complements can be generated by combining noise lines via
arrays of AND-gate multipliers, together with inverters

The arrangement adopted here is shown in Figure 2.6.

As reported by Narendra et al, the degree of expediency
of the LR-P’ and other reinforcement schemes, depends on
the relative values of the step-size factors o and B.

The reward-penalty ratio (1-a)/(1-), denoted by y , is
thus an important element in the classification, and
performance, of individual schemes. The noise sources
described above enabled a variety of < and y factors to be
selected, so that a useful range of experiments with the

LR-P scheme could be carried out.

/

25

« 10

Output Interface

Some form of output interface circuit was required as a
means of obse_rving the behaviour of the SLA. It was
decided that the most suitable way of studying the learning
characteristics was to use a storage oscilloscope to display
individual ''learning curves''. The learning curve is a
plot of action probability against time from the commencement
of the learning period. Typical results obtained in this
way were then photographed and reproduced in a format
similar to that of previously published results. (20, 21)
The system output, which is a stochastic pulse train containing
frequency components of the order of the clock frequency of

the main system flip-flop, was passed through a filter to

produce an analogue measure of the action probability value.

The filter circuit used for this particular stochastic-to-
analogue conversion process was the well-proven an order
Butterworth type, together with a level-shifter and calibration
stage to convert the TTL signal to a convenient 0 - 10 volts
output swing. The circuit is shown in Figure 2.7. The
choice of time constant or cut-off frequency for the output
interface clearly influences the observed response time, and
a compromise exists between learning time and variance in
the steady-state for a given clock frequency. The values
shown gave reasonably low variance at a clock rate of 1 MHz,
as demonstrated by the results detailed below, while

permitting a response time of approximately 5 ms.

The complete two-state system, including noise sources
and simulated environment, was assembled on two small
circuit cards and fitted in a cabinet with a front-panel 'patching'
facility for the selection of C;» @ and B. A photograph

of this unit is reproduced as Figure 2. 8.

26

. 6

Experimental Results

For the first experiments, the simulated environment
response was set up with ¢, © 0.75 and cy = 0. 25,
while y was varied from 1 to 64 using combinations of
the available noise sources. The system master clock
was set at 1 MHz, resulting in a clock frequency of 100 kHz

for the main system flip-flop.

The family of learning curves illustrated in Figure 2.9
clearly shows how the degree of expediency increases as ¥y
increases. In each case, the system flip-flop was preset
initially to a,, i.e., the "wrong' action, and the output
subsequently converged to a steady-state condition with a high

probability of choosing a the action with the lower penalty

2 3
probability. When ¢ = 1, the system converged toa
level corresponding approximately to the reward probability
for the better action. This is to be expected in a situation

where reward and penalty factors are of equal magnitude.

The overall characteristics of the system are well
summarised by the results presented in Figure 2.10.
These curves show how the SLA can lock-on to whichever
action carries the lower penalty probability, from either

initial state, using in this case a scheme with y = 8.

The influence of environment characteristics on learning
behaviour is illustrated in Figure 2.11. This shows the
results from two separate trials, again using the " 5 = 8"
scheme, in which the effect of changing the penalty
probabilities was investigated. While c, was fixed at

1

0.%785, c, was increased from 0.25 to 0.5. The degree
of expediency, as represented by the steady state value of

P,, is clearly reduced for the latter case.

A significant feature of all these results is that learning

times /

27

2.

7

times of the order of milliseconds were consistently
recorded. Moreover, an investigation of the actual
flip-flop output showed a very rapid transition to the
steady-state pulsing situation, so the learning times
indicated here are in fact dominated by the output filter
time constant. A learning period of 5 ms with a main
system clock frequency of 100 kHz implies that
approximately 500 cycles are used to reach steady-state
conditions. This order of magnitude of ''stage number"
is in accordance with software simulation results reported

previously. (20, 21)

Parameter Optimisation

An application area of particular importance for the
SLA is the multimodal parameter optimisation problem. 47=61)
The general problem is that of identifying the extremum of
a noisy multimodal performance surface, which can be
described by a function g (3, z). Here, a denotes the
vector of system parameters, and 2z represents the
superimposed noise amplitude, i.e., g(a, z) = f(a)+ z

(see Figure 2.12).

Such problems are frequently insoluble by existing
techniques, because of either a lack of sufficient a priori
information concerning plant structure and dynamics, or
mathematical difficulties involving computation time and
problem complexity. In addition, plant and controller
variables are of course subject to random disturbances,
the intrusion of noise making reliable prediction or
measurement impossible. Even in such cases where

a solution by conventional techniques(sz’ 48]

can be
envisaged, this will tend to result in convergence to some
"local" optimum unless prior knowledge can somehow be
acquired to enable the selection of a suitable starting value

for /

28

2.

8

for the search.

The use of the SLLA avoids all these problems, because
of the inherently random nature of its search in the parameter
space. Automaton actions are assigned, in some arbitrary
fashion, to represent respective values of system parameter,
so that each point on the P I surface has a non-zero
probability of being selected during the initial learning
period, regardless of contour irregularities or even
discontinuities. In addition, it is not necessary to have
any knowledge of the distribution of noise on the surface.
These features give the automaton the ability to locate the
global optimum at all times, which will of course yield the
lowest probability of received penalty. The SLA is, in
effect, ''altitude' rather than ''gradient' sensitive.

This particular optimisation problem has received much
attention in previous simulation studies, (47 - 50, 54, 53)
and clearly represents an important area of investigation with

the hardware system.

Learning Controller

The general configuration of a learning controller is
shown in Figure 2.13. A key feature of this system is
the '"evaluation section'’, which represents the interface
between the environment and the SLA. The performance
index (P I) measure has to be translated to a reward/penalty
response, which must have a binary form if the P-model is

(

to be used. Narendra 49) described how this translation
problem could be side-stepped by employing an S-model
automaton to handle a suitably normalised measure of the

P I asa direct input. Also, an adaptive method was
proposed to cater for the situation of unknown P I bounds,

which would often be the case in practice.

Since /

29

Since the hardware design effort has been concentrated
on the P-model automaton, for reasons already discussed,
the problem of implementing a P I evaluator suitable for
this model was investigated. For the sake of simplicity,
a non-adaptive system was initially considered, and the result
was the configuration shown in Figure 2.14. This consists
essentially of a standard digital-to-stochastic interface
(see Section 1.9) which compares the digitised input with a
random noise source. The output of the comparator is thus
a stochastic bit stream whose value i.e., the time averaged
ratio of 1's to 0's, represents the value of the digital input

as a fraction of full scale.

The P I is therefore presented as a digital value,
assumed to be normalised, feeding directly to the comparator.
The resulting output pulse train represents an instantaneous
measure of g (ai) and hence also of ¢, This will reach an
absolute minimum value, Crn’ “when the search locates
g (am) corresponding to action a_ s which is the global
minimum. If a flip-flop is placed on the comparator output
as shown and clocked at some instant, the situation is
analogous to tossing a weighted coin, in that the probability of
a 'l' at the output depends on the average ratio of 1's to
O0's in the input pulse train. Using this deceptively simple
configuration, it is therefore possible to perform a truly
global search of the P I surface, and obtain a reward/penalty

response in binary form as required for the P-model.

The basic system as described assumes that the bounds
of the P I are known, to avoid exceeding the capacity of
the comparator. However, with the P I presented in
digital form, it should be possible to design an adaptive
interface employiﬁg some form of ''autoranging' technique,

as used in standard multirange DVM's for example, to map

any /

30

2.

9

any incoming signal into the range of the comparator.
This approach would be essentially similar to Narendra's
method of handling unknown P I boundary values, referred

to above.

Plant Simulator

The ability of the prototype flip-flop SLA to perform
with a simulated ''noisy' plant was then investigated. In
the case of a two-state system, the performance ''surface'
consists of merely two discrete points, with superimposed

noise causing random fluctuations in their values.

Translating this into hardware terms, the two "P I"
points were represented by two numbers stored in binary
counters. The counter contents were then converted to
¢ signals using the above comparator method. The effect
of superimposed noise was then simulated by allowing the
counters to undergo a ''random walk'' between set limits.
This was achieved by feeding the up/down lines of the counters
with noise signals from the PRBS generator, resulting in an
equal probability of counting up or down. The chosen end-
points for the counters were detected by combinational logic
feeding back to inhibit the count as necessary. A latch
was placed between each counter and its comparator to allow
the counter to cover its full permitted range between samples.
At each sampling instant, the resulting cs value could be
anywhere within these set limits. Two clock frequencies
were therefore required: a fast clock for the counter, and
a slower clock for the latch. The system was designed
with 4-bit counters, giving the P I representation shown

in Figure 2.15.

The circuit configuration of the plant simulator is shown

in Figure 2.16, and the "end-points' logic in Figure 2.17.

In /

31

2.

2.

10

11

In practice, it was found convenient to use the two clock

lines from the SLA to run the plant. A simple change

in the end-point detection circuit produced the alteration in
the noise boundary shown by the dotted line in Figure 2. 15.
This enabled the ability of the SLLA to deal with the case of
overlapping noise with asymmetrical distribution on the P I
surface to be investigated. The SLA should be capable
of locking on to the correct action provided that, on average,
one of the ¢, signals is found to be lower, despite the

fluctuations caused by superimposed noise.

Simulator Results

The assembled plant simulator circuit was incorporated
within the existing flip-flop SLA box (Figure 2.8), and
tests were made using an LR-P reinforcement scheme with
y = 8. Learning curves were obtained as before with
both possible assignments of c'i to a favouring first one
action, then the other. The result is shown in
Figure 2.18. The ''low-noise' curves illustrate the
ability of the SLA to identify the correct action despite the

noise on the ci.

The noise boundary was then altered, as shown in
Figure 2.15, to increase the variation on one of the ¢
There is still, on average, a difference between them,
but a greater deal of overlap exists, making discrimination
much more difficult. The experiment was then repeated,
and the resulting ''high noise' curves are again shown in
Figure 2.18, superimposed for the purposes of comparison
with the first result. It is significant that, although the
quality of convergence obtained is less expedient, as would
be expected from previous results with similar, fixed values
of Cys the SLLA is nevertheless able to identify the correct

action.

/

32

2.

Il

Conclusions

The above results clearly demonstrate the potential of
the SLLA as a means of achieving optimisation even under
extreme conditions of intrinsic noise, while the fast learning
times obtained indicate that practical, on-line operation is

feasible with the hardware system.

Although this simple prototype did provide satisfactory

simulation of the expedient L scheme, its usefulness

was limited in particular by itlz iiability to implement

€ -optimal schemes such as the linear reward-inaction, or
LR-I scheme. Inspection of the circuit shows that setting
B = 1 (i.e., infinite o) would simply cause the system
flip-flop to remain in whichever state was initially selected.

This was easily demonstrated in practice.

These considerations, together with the need to develop
larger systems, led to the design of a more sophisticated
SLA circuit, capable‘ Vof operating with a comprehensive
range of reinforcement schemes. This development is

described in the following chapter.

33

/’

transition

probabilities

reward/penalty

from plant

-

Figure 2.1

et it =
St
Markov Simulator
[—)
A s I sl

stafre
utput

clock /

Stochastic learning automaton

Evolution of SLA design

34

Figure 2.2 Two-state system fransifion diagram

35

Figure 2.3

J=-K system waveforms

36

LE

"1

2y

— FF2

D—
' P/R
|/ a,
p 2) S
c(' —_8'-< i ad‘aress
P 1) D° 3 1/P
- Y. [':‘
- [>o 5
A — :
p' &j .‘. (yp
L/ 1data
selector

Figure 2.4

Flip-flop SLA circuit

)

+10

o(k

I

b,

8¢

*‘-’-SV

%

noise lines out

il

|OpF

i

31

O clock

31-bit shift register

-
L 11
‘D——1 2|3
:®
Figure 2.5

PRBS generafor

oo
wnin

o
vn

vun

oo

6¢€

¥

©)

. 0.25
— 075
os-/“L&’ L [>o « 0.875
D—ﬁ 8)11 >0 . 0.96875
_0-5/ 0-5'/“}
LD—& . 09921875
05 0-5-/’*} ’

Figure 2.6 Generation of stochastic variables

(054

InS

M

\
1M

nS

a7

Figure 2.7

IOk

SLA

22k

output

—AA———

W/
o

S
.

|%22k

interface

[8%

Figure 2.8

Flip - flop

SLA

¢y

1.0

{.
(
(
1

" ou
(@]

X o<
"
~N

"
—

N/ S B s
4
-

. /,
G =075

0-5

0 5 10 15 20 25 30
. . time[ms]
Figure 2.9 Learning curves for Lgp scheme

15 4

1.0
T N AT <] = 015
)z ~— G= 025
0-8 \\ “
0-6 \
>< ¥=28
: /
2 04 /
94 4= 025
/_ P < T C12; 0.-75
| 0
5 10 15
time[ms]

Figure 2.10

Learning behaviour for both states

1474

1.0
o~ | —~———
0.8 V4
/"“/‘/’\“—”M
0-6 Z//,
il
0.2
0
10 15
Fime [ms]

~ Figure 2.1

Comparison of expediency for different cj

Ci= 025,075

Ci= 05,075

Sy

fla)A

noise distribution

optimum

|
|
|
} global
=l
|
|
1

Figure 2.12

Multimodal performance index with superimposed noise

97

| RANDOM
4 ENVIRONMENT)

P S e e e L e e e e S M e e em e e SRR W e Tm T T T e T e e e e = . . - - - —

. INPUT .
learning X evaluation
section section

(AUTOMATON)

LEARNING SYSTEM

\--———------———---&-——----‘—-— T . G R m e W Gwe e R G G . e - ————— - -

L.e. performance

, iIndex
Figure 213 Generalised learning controller

digitised

P 1
cr P/R
comparator L p G
Ck
noise sample
clock
Figure 2.14 Plant - SLA interface

47

fla) s

__--_;---_-K_-_
Yene . o _._
1
12/16-«
R P E
X
10/164
816
X !
116 !
!
- !
i
4116 | :
Y '
d oo .__ : _*"
I I
2)16 : E
i : :
i I '
] a
o) 01 :

438

67¥

fc o

LOAD

inhibit

Ck counter

u/D

———— 00-5noise line

END POINTS

LOGIC

Ck

latch

comparator

NOISE
Figure 2.16 Plant

simulator circuit

counter
outputs

=

(4 ‘

U/D I \ 0O (1)
ig — INRIBIT

A —

= & |

D ‘

8

% &

UIéﬂ ‘ | \ o

z : N Bn(z)
=Dl

¥ C for low noise

oOw >

C for ’high noise

Figure 2.17 End - points logic

50

18

“low noise”
T "% (,<q
PR e i ——t~————— “high noise’

4

V /“\-\//' T — ———t “low Mise. C c
<
2
/ / N~~~ ———~_{ "high nois¢" 1
10 ‘ 15
time[ms]

Figure 2-18 Plant simulator results

CHAPTER 3

DEVELOPMENT OF AN ADDIE SLA

3.

3.

1

2

Design Requirements

As was stated at the end of Chapter 2, the simple
flip-flop SLLA was very restricted in its range of application,
in particular by its inability to operate with superior
reinforcement schemes such as the €-optimal LR—I scheme.
Attention was therefore focussed on improving the hardware
design, with a view also to the intended development of large

state order systems.

On considering the reinforcement algorithms in their
general, r-state form, it is clear that there must be a
memory capability built into the automaton structure, so that
some priority of state or action probabilities is established
during the learning period. Unless this were so, the past
experience of the SLLA would be wiped out after each system
cycle (or clock pulse). This consideration led to the idea
of representing the total state probabilities of an automaton,
not by the probability of a flip-flop being in a certain state at
the occurrence of a clock pulse, but by a number stored in

a counter. Conversion from this representation to a

- single-line bit stream can be easily achieved by the noise

comparator method described earlier.

Basic Configuration

The basic configuration of an r-state SLA using the
counter implementation is shown in Figure 3.1.
Associated with each counter is a flip-flop, and it should be
noted that again pulse-steering logic is required to ensure
that, at each sampling instant (system cycle) only one of
the D-types can be triggered to indicate the state of the
automaton at that particular stage. It is immediately

apparent /

52

3.

3

apparent that a large state order system, say r >10,
calls for a considerable amount of hardware and

interconnection, a point which will be raised again later.

The implementation of the algorithm involves operating
on the contents of the counters as determined by the
reinforcement scheme. Although parallel computations
offer the attraction of the highest operating speed, they suffer
the disadvantage of considerable complications in terms of
circuit design and overall system timing. It was therefore
decided to apply the reinforcement scheme in serial form,
operating on the count-up and count-down lines of the counter.
The resulting configuration began to bear a strong
resemblance to the noise ADDIE (adaptive digital logic
element) of Figure 1.7, which is the standard stochastic-
to-digital interface element in digital stochastic computing

as described earlier.

In view of this, consideration was given to integrating
the circuitry for the automaton and the reinforcement scheme
in the form of an ADDIE structure. The result was the
evolution of a new design for a hardware learning automaton,
which is referred to accordingly as the ADDIE SLA, in order
to distinguish it from the earlier flip-flop SLA. It
should be noted that the use of ADDIE structures has also
been proposed for implementing the related ''two-armed

bandit" controller.(57’ 55)

Design of the ADDIE SLA

As before, a two-state system was considered initially,
for the sake of simplicity. It follows that results obtained
can be extended to the general r-state case. Calling on
the design philosophy of the flip;flop SLLA, a further
simplification .can be made here in that only one counter is

actually /

53

(56

)

3.4

actually required, representing one state probability
explicitly; the other probability is simply the complement
The counter-comparator arrangement of Figure 3.1 is
configured as a true ADDIE, measuring the updated state
probability from the algorithm circuit. The algorithm
therefore retains a single input, single output format, and
can be designed using exactly the same principles as outlined

previously in Chapter 2.

The current state probability value must be stored for
the duration of each cycle to maintain a constant input signal
pi(n) for the algorithm circuit while the ADDIE converges
to an updated value pi(n+1). This task is performed by
a latch which is loaded with the counter contents at the start
of each cycle, and is itself connected to a noise comparator
to generate pi(n) as a bit stream. The full circuit

configuration is shown in Figure 3.2.

The output of the ADDIE is sampled by a D-type
flip-flop which represents the current state at each stage
and thus corresponds to FF2 of the flip-flop SLA
(Figure 2.4). The environment is simulated, as before,
by the selection of one of two locally-generated c; signals.
This plant simulator also incorporates a flip-flop which
samples the selected c; signal to generate a single binary
reward/penalty response. As before, this has the
function, along with the system flip-flop output, of providing
the address for the algorithm circuit data selector, which is
then fixed for the duration of one system cycle. The clock
waveform illustrated on the diagram allows a brief setting-up
period for this address, followed by a much longer

adjustment or learning period.

54

3.4

Testing and Development

The two-state ADDIE SLA was implemented in 8-bit
form, although the ADDIE's, integrators etc. reported

elsewhere (41,

42) for applications in digital stochastic
computing have been, in general, 12-bit devices. It
was felt that an 8-bit system would have sufficient
resolution for the purpose, and would also have the advantage
of extra speed, since the duration of each iteration, apart
from any considerations of environment response time, is
dictated primarily by the time taken for the ADDIE counter
to adjust to its ''new'' state. The output filter
(stochastic-to-analogue convertor) and noise sources used
were similar to those developed for the flip-flop SLA.

The 8-bit noise inputs required for the ADDIE and latch

comparators were tapped off an additional PRBS generator.

It was found during initial testing that the system exhibited
a marked asymmetry in its characteristi'cs. Considerably
higher variance was noted when the ADDIE approached the
state corresponding to 'all-ones''. This behaviour was
traced subsequently to the basic characteristics of the
comparator. If the input from the counter is ''all-zeroes',
then this cannot of course exceed the value of the noise input,
and hence the "A > B'" output will always be low. However,
if the input is all-ones, the comparator output will not
always be high, as it should be, because whenever the noise
input is all-ones, the A > B condition no longer holds, and

the comparator gives an erroneous low output.

The solution adopted initially was to detect the all-ones
condition in the noise lines and set the most significant bit
to zero under these circumstances using the circuitry shown
in Figure 3.3. This was felt to be a reasonable
compromise, since the resulting slight distortion produced
in the probability distribution of the noise would occur at

0.5, |/

55

3.

5

0.5, which should not destroy the symmetry and hence

affect adversely the performance at either extreme.

However, a more serious problem presented itself when
the dynamic béhaviour of the SLLA was studied in detail.
It was found that the counter in the ADDIE was liable to
jump states in an unpredictable manner, causing severe
distortion of the learning curve and steady state trajectories.
In order to avoid spurious pulse-beating effects, it was
necessary to synchronise the PRBS and ADDIE clocks to a
central master clock. It was found that merely placing an
inverter in the clock feed to the latch PRBS generator
considerably reduced the severity of the state-jumping effect.
This in turn suggested that the root cause of the problem was
pulse coincidence effects in a system containing an
unavoidable mixture of leading and trailing edge-triggered

devices.

The overall solution to this problem was applied in two
parts. The synchronous counters in the ADDIE were
replaced with asynchronous types so that no input condition
constraints would be violated in operation. The ADDIE
was then modified to include end-point detection’circuits
which stopped the counter just short of all-ones or all-zeroes
using the asynchronous parallel load facility to temporarily
"freeze'' the ADDIE at the boundary value. Satisfactory

operation then ensued.

A useful feature of the ADDIE SLA is that it permits a
realistic initial condition to be established for the learning
process, i.e., pl(O) = 0.5, corresponding to random state
selection at time to. This was achieved in practice by
loading ''one-all-zeroes' via a data selector on the parallel
inputs. The circuit of this fully-developed ADDI E is

shown in Figure 3.4.

56

3.

3.

5

6

Operating Sequence

The full operating sequence for the ADDIE SLA is now
described. ~The initial load operation sets up the requisite
value of pl(O) = 0.5, as above. The output of the ADDIE
comparator is therefore a bit stream with an equal probability
of 1's and O0's. At the first system clock pulse, this
signal is sampled by the system flip-flop, and simultaneously
the counter contents are copied into the latch. The action
a; represented by the system flip-flop output selects a
reward/penalty or <, signal from the environment. On
the falling edge of the clock pulse, this signal is sampled,
setting up the algorithm address, while the ADDIE clock is
enabled, allowing the learning period to commence. During
this time, the ADDIE adjusts to the updated value of pl(l),

which in turn forms the basis for the next cycle of operation.

The fundamental advantage of this deéign is that no
hardware race-around or locking-on problems can occur.
The design is such that several of the reinforcement schemes

(19)

reported previously, in particular the more suitable
€ -optimal schemes, can be successfully employed, utilising
the established method of algorithm circuit design described

in Chapter 2.

Algorithm Circuits

The design for the L scheme has already been

R-P
described, and the obvious development from here is the
implementation of the €-optimal linear reward-inaction
(LR_I) and linear reward-reward (LR_R) schemes.

The LR—I scheme is particularly simple to accommodate,
since the only modification required is to set B = 1.

The LR-R scheme, in which the penalty response is

replaced /

97

3.

7

replaced by a lesser reward, is given below in two-state

form:
(a) Reward (action al)
py(n+l) = 1-ap,(n)
Po(ntl) = ap,(n)
(b) Penalty (action al)
p,(n+1) = 1-Bp,m)
py(ntl) = B py(n)

where 0< B <a <1

As before, a truth-table can be constructed to enable

this algorithm to be translated into a hardware design:

a, (n) a,(n) P/R p, (n+1)
0 1 0 a pl(n)
0 1 1 B P, (n)
1 0 0 1-oa pz(n)
1 0 1 1-8 p2(n)

Note that p2(n+1) need not be stated explicitly.

Comparing this with the truth table for the L scheme,

R-P

it is evident that the LR-P circuit can be converted to an

LR-R circuit simply by reversing the B pl(n) and 1 -8 pz(n)
connections to the data selector. The circuit arrangements

for these linear schemes are summarised in Figure 3.5.

Non-Linear Scheme

Although the 'best' of the linear schemes, the L

(20, 21, 59) Bt

scheme, has been widely reported as most

suitable for many applications, considerable study has also
(8, 19, 27)
been made

These /

of non-linear reinforcement algorithms.

58

These tend to show higher rates of convergence, and

indeed the chief motivation behind the investigation of

these schemes has been the desire to obtain the best
possible convérgence times. This is especially the case
if they are incorporated with a linear algorithm to form a

hybrid scheme.(1 9).

The simplest of the non-linear schemes is that
denoted by Narendra et al as NE({l-)P , which has '"square-

(8, 19) that this

law'" non-linearity. It has been shown
scheme is conditionally optimal, providing optimal

convergence if ci < % < cj, and expedient‘otherwise.
This scheme, again considering the two-state case, is

given below:

(a) Reward (action | al)

p,(n+1) = p,(m) + ap (). [1-p m]
Py(ntl) = py(n) - ap () [1-pm)
(b) Penalty (action a,)
p,(n+l) = p.(m) - Bp,m) [1-p m)

Py(m+1) = p,m) + Bp;(m) [l -p m]

where 0 <o, B <1

The truth-table for this scheme is as follows:

0 1 1 Py + B Pyl - py)
4 -

1 0 0 p, +a p,(1-p)

1 0 1

P, - Bpy(1-py)

The hardware implementation of this scheme as

expressed here is complicated by two factors. The first

is /

59

is the presence of terms of the form pi(n) .El - pi(n)] ;
1. €., pl(n) . pz(n). This product cannot be formed
simply by an AND-gate as before, because of the direct
complementar'y relationship between the signals. The
solution here is to interpose a delay of one clock interval
on one of the multiplier inputs, along the lines of the
stochastic squarer circuit shown in Figure 1.4(b).

The other,. more serious problem is that summation of
stochastic variables involves an AND-OR configuration
with random switching between the two signals by means of
a separate noise line (Figure 1.4(d)). | As explained

earlier, this introduces an attenuation factor of 0. 5.

It was therefore felt preferable to re-arrange the terms
of the algorithm so that they involved only multiplication and
inversion operationé. Again, only pl(n+1) is required
to be generated. The algorithm terms are then

transformed as follows:

(l) p1+a Pl(l'pl) 1= Ez-a Pl(l'Pl)] = 1- (1"0 pl) p2

ete.

This results in the following truth-table:

a, a, P/R pl(n+1)

0 1 0 (1-a pz) Py

0 1 1 1- (1-Bpy P,
1 0 0 1- (1-ap)p,

Comparing this revised version with the table for the

standard LR—P scheme, an essential similarity is
evident. In the Ng-)P scheme, the simple constants

a, B are replaced with terms of the form (1 - o pi) and

60

3.

8

(1 - B pl)‘

The hardware implementation for this scheme is shown in
Figure 3.6, showing how two levels of multiplication are
involved. The extra D-type flip-flop introduces a one bit
delay on the o P; and B P; signals to preserve the property

of statistical independence between multiplier inputs.

Construction

As in the case of the flip-flop SLA, the assembled system
was fitted in a cabinet with a front panel patching arrangement
to provide a choice of constants for a, B and ¢ Due to
the similarity between the family of algorithm circuits, it
was possible also to accommodate a simple switching
arrangement to select the desired reinforcement scheme.

The ADDIE SLA is illustrated in Figure 3.7, and the results

obtained from this system are detailed in the following chapter.

61

counter

- —— from algorithm circuit

comparator

: 4noisep

counfer

| |

comparator

4noisep

counfer

|

comparafor]

q:noiée?

Figure 3.1

r-state SLA configurafion

62

€9

Addie

algorithm

Figure

3.2

—

latch
T e
comparator D d ga fo
4nois! \OClOCk
B I
o plant response o &H—
et

Two - state ADDIE SLA

ecccomscse ------th---- coamenese
‘,/ '\\.
i i
LSB MSB
Vg,
N P S— }D_
AN A [—] & |
Y, N, W, W, W, N— |
O, . (S, S, W, W) P |
e W, W W, WY, W, W, U
i !
% M
Sewecccescccancenn 1r
noise lines

to comparator

from PRBS generator

Figure 3.3

Modified noise supply

64

S9

initial
load

[/P

data selector

enable load
counter

up/down

end-paint
detfection

\

comparator

)

_Figure 3.4

Practical ADDIE in SLA application

o 2 = e S =
o3 o3 o3 o3
- ¥ et BJ (o by

66

Lrr

circuits

Algorithm

Figure 3.5

b—o
0/P

daha
selector
4
q,(n) P/

o o3 =
‘ 3 "
N 7]
=
o]
i
J
‘* wv
-
a ¥ = o= g
c
||||||||||||||||||||||||||||| L
o
e

.
D
s O
&
Py o—— al— 20
3 v [&
N o——a
i D}
noise
clock 10

Figure 3.6 Algorithm

—® |
D 1 4/1
data p——o0
& { selector e
/J

1%@

a,(n) PR

circuit for the Néjl scheme

89

LR-R i
/LR-P/I

CHAPTER 4

RESULTS FROM THE ADDIE SLA

4.

4,

4.

1

2

3

Introduction

A series of experiments was carried out with the ADDIE
SLLA in order to assess its learning characteristics with a
variety of reinforcement schemes in operation. As before,
it was decided to present the results via storage oscilloscope
display, using a filter on the output of the system flip-flop
to provide the requisite stochastic-to-analogue interface.

The master clock was set to run at 10 MHz, while the main
sampling clock consisted of 100 ns pulses at a frequency

fs of 100 kHz, giving a system cycle time of 10 us.

LR—P Scheme
Learning curves obtained with the LR-P scheme are
reproduced in Figures 4.1 - 4.4. The first two results

confirm that, as before, the effect of increasing
reward-penalty ratio ¥ 1is to increase the degree of
expediency. Comparing these curves with those from the
flip-flop SLA (Figure 2.9) which used the same system
clock rate, it can be seen that learning times and steady-

state action probability values are virtually identical.

Two other experiments performed earlier on the
flip-flop SLA were also repeated here. Figure 4.3
shows the characteristics for both possible allocations of
penalty probabilities, usinga ¥ = 8 scheme. In each
case, the automaton can be seen to select the action which
incurs the lower penalty probability. The influence of
relative c; values on the outcome is illustrated in
Figure 4.4. As before, it turns out that reducing the
discrimination between the ¢ results in less expedient

behaviour, using in this casea ¥ = 2 scheme.

/

69

4.3

4.4

I: Scheme

-R-I
The results obtained with the €- optimal LR—I scheme
are illustrated in Figures 4.5 - 4. 7. They show that with

this scheme thé automaton's performance is indeed almost
optimal, with pl(n) (or pz(n)) close to unity in the steady-
state. There is a small probability of not performing the
correct action, as indicated by the various ''blips" on the
trace, particularly evident in Figure 4.6, which are
chiefly the result of ADDIE variance. A comparison of
Figure 4.6 and 4.7, which in fact record the results of
two separate trials with the same system parameters, gives
some indication of the typical variations to be found in the
transient and steady-state behaviour. Figure 4.7 is
particularly interesting, showing a state trajectory with

two clear reversals in learning behaviour during the initial -

learning period.

The choice of algorithm reward factor also influences

. the learning characteristics of the L automaton.

R-I
Results obtained with o = 0.75 exhibit a slightly higher

steady-state value, 1i.e., higher expediency, than was
obtained for the case with o« = 0.25 (Figure 4.5).
This accords with the conclusions of previous simulation

(#8; 21) showing that for best results with this

studies,
scheme, the ''step-size' factor, which is 1 - @ here,

should be small.

L‘R-R Scheme |
The LR R scheme is comparable in expediency to the
LR-I scheme when ¢y is sufficiently high, though its rate of

(20)

convergence has been found to be slower. The results
obtained here with this scheme are reproduced in Figure 4. 8.
As with the LR-P scheme, the curves indicate a degree of
expediency /

70

4.

5

expediency which increases with .

The general conclusion to be gained from all the linear
scheme results is that there is no significant difference in
expediency, as far as this hardware implementation is
concerned, between LR-I schemes, and LR—P or LR-R
schemes with high Y¥-factor. In addition, there appears
to be little discernible difference between the learning times
of the various schemes investigated so far. However, the
chief determinant of transient response in the hardware is the
output filter. As explained in section 2.5, this element
has a bandwidth which is purposely restricted in order to

achieve an acceptable compromise between the speed of

convergence, and variance in the steady-state.

NED

Nelp Scheme

The Ngzp scheme is the most elementary of the
non-linear schemes to have been reported, and is, as
described in Section 3.7, quite straightforward to implement
in hardware. It was possible to verify in practice the
property of conditional optimality which is a prominent

feature of this scheme.

Using penalty probabilities }of 0.25 and 0.75, the
system converged as shown in Figure 4.9, with generally
lower variance than was evident with the best of the linear
schemes. However, when the ci values were altered to
0.75 and 0.875 (i.e., both greater than 0.5), the system
displayed a rather low level of expediency with considerable
variance. Figure 4.10 shows a typical result, with an
"optimal" curve superimposed for comparison. The time
scale here is 5 ms per division, which enables the fast
learning time for the latter curve in particular to be
appreciated. Figure 4.11 illustrates the results of

experiments /

71

4.

6

experiments with more widely separated Cys which serves
to emphasise the very high degree of expediency which can

be achieved with this scheme, given the right conditions.

The scheme was further investigated by feedin.g the
penalty probabilities via a switching circuit, thus enabling
a direct comparison to be made of steady-state behaviour

"expedient' conditions. The

under "optimal" and
result is shown in Figure 4.12. One of the penalty
probabilities was set at 0.125, while the other was switched

periodically about the critical value of 0.5, as indicated by

the control waveform. It can be seen that with
c; = 0.125, O. 56} , the state trajectories yield optimal
convergence, Wwhereas with ci = <¢0.125, 0.44, , the

system degrades, as predicted, to expedient behaviour.

Plant Simulator

It was decided to test the ADDIE SLA also with the
plant simulator circuit developed originally for the flip-flop
SLA. This system, described in detail in Chapter 2,
is effectively a generator of ''noisy' co and represents
the more practical situation in which the reward/penalty

signals are themselves subject to random variations.

The two systems were linked up and tested with two

reinforcement schemes of high expediency: the L

R-I
scheme (o = 0.75) and the LR—R scheme (y = 64).
The result for the L automaton is shown in Figure 4.13.

R-I
The high noise boundary clearly has a degrading effect on

the learning ability of the system, though the choice of

action 1 does predominate.

The plant simulator was then tested on the LR-R
automaton, and a typical result is shown in Figure 4. 14,

this time favouring action 2. In this particular example,

a.

72

LT

a marked reversal of learning behaviour in the initial stages
is evident, similar to the effect noted in Figure 4.7.

A gain, the result is characterised by lower expediency and
higher variance, in comparison with those experiments

which used invariant ci values.

Both results indicate, however, that as in the case of
the flip-flop SLA, the ADDIE automaton has the ability to
discriminate in its choice of action even if the reward/penalty
information is heavily noise-corrupted. The rather high
steady-state variance observed in these plant simulator
results is probably due in part to the fact that the sampling
frequency for the noisy C i. e., the latch clock of
Figure 2.16, is just one-tenth that of the main system
clock. This means that in practice the rate of fluctuation
of ¢ values from one iteration to the next cannot be very
high, thereby causing considerable excursions from the

main learning trend.

Performance Curves

As an adjunct to the learning curve results described
above, it is instructive to consider also an alternative
presentation of automaton behaviour in the form of a
performance curve which shows the variation in average
received penalty as the learning process evolves. As
defined in Chapter 1, average received penalty is
denoted by:

M(n) = I p,(n) c;m)
c., are all present in the hardware

17 72
simulation, it is a simple matter to generate a continuous

Since pl’ p2, c

signal representing the quantity M, and present the result

on the oscilloscope via a filter as before.

Figures /

73

4.

8

Figures 4.15 through 4.18 illustrate typical
performance curves for the following reinforcement
sczlll)emes: LR-I?(Y =), LR_I(Q = 0. 125),- LR—R(Y = 7T),
NR—P respectively. In each case, c, = {0. 25, 0. 75} s
so that the asymptote of optimum performance is
Mo = 0. 25. As expected, the more expedient schemes
are most successful in achieving performance verging on the
optimum, whereas the LR-P scheme falls somewhat short,
and also shows characteristically higher variance.

Non-Stationary Environments

The results presented so far have concentrated on
learning behaviour in a stationary environment. Since
most physical systems are not time-invariant, however, it
is important from a practical veiwpoint to evaluate the
édaptive or ''tracking' properties of the learning automaton.
In a non-stationary environment, the ci are some function
of stage number n; this relationship may be linear or
non-linear, periodic or random in nature. Rather than
consider excessively complex systems, it was decided to
concentrate on a two-action system, undergoing some
step-wise interchange in the relative order of the cs (Figure

4.19).

An important criterion of performance for an SLA

operating in a non-stationary environment is the mean

(62)

adjustment time. This parameter can be defined as

the average number of iterations n_ such that:
€
P,(n) > py(n), forall n [o, no] ,
and p,(n) > p,(n) ,

where it is assumed that the penalty probabilities were

switchedat n = 0.

Since /

74

(60-64)

.9

Since the linear reinforcement schemes L and

R-P
LR—I are of primary interest, they form the basis for the
following experiments. It is possible to calculate the

mean adjustment time of an automaton as a function of the
learning scheme parameters and the penalty probabilities,
so that each experimental result can be compared with the
corresponding theoretical value. In Appendix A,
expressions are derived for the expected value of state
probability for two-state L and L automata.

R-P R-I
It is shown that for L

E ljpl(n+1£}

and for LR-I:

E E)l(n+1£l

As expected, the LR—I formula, though derived separately,

turns out to be the particular case of the LR P formula with

B = 1. Mean adjustment time is then deduced from the

R-P°

(ey-cy) (a-B) (p(n))’

+ [1+(1-0) (c,-c) - 2(1-B)e,] b, (m)+(1-B)e,

[1+(1-0) (cy-c) (1-p (n))] p,(n)

above by solving iteratively for n_ such that pl(no) < 0.5,
where pl(O) is the steady-state starting value prior to

switching, e.g., 0.90,

Results

The dynamic characteristics of the SLLA operating in
a non-stationary environment can be readily observed by
feeding the s via a changeover circuit with either periodic
or random switching. Figure 4.20 shows typical
behaviour observed in each case, using an LR-I scheme
with o = 0,125, It can be seen that provided the minimum
switching period of the environment exceeds the SLA

adjustment time, successful tracking is achieved.

In /

75

In order to observe the actual state transition
characteristics with greater accuracy, it was decided
to dispense with the filter output interface and use instead
a D/A converter connected directly to the ADDIE counter.
Figure 4.21 shows a typical transition curve obtained in this
way, complete from one state to the other, with the system
clock waveform for the period up to pi(n) = 0.5
superimposed. In this particular case, 27 iterations

occurred in the adjustment period.

Past results have confirmed that there is considerable
variation in the transient behaviour of the automaton from one
learning cycle to another. It was therefore felt necessary
to take large sample average measurements of adjustment
time to obtain sufficiently reliable experimental values.

This consideration led to the design of an automatic logging
facility,. outlj.ned in Figure 4.22, which records a large,
preset number of readings from a system with continuous,
periodic switching of the environment. Each time the ¢,
are switched, SL.A sampling clock pulses are passed to the
totalising counter via gates 1 and 2 while the ADDIE state
undergoes transition from 0.90 to 0.5. The occurrence
of each burst of pulses is recorded by a separate logging
counter controlling gate 2. After 5000 cycles, the
totalising counter thus presents a direct readving of (mean

adjustment time) x 5000.

A series of experiments was carried out with the LR-I
scheme, in which both the reward factor « and the sampling
clock frequency fs were varied. The results are plotted

in Figure 4.23, with the theoretical values included for
comparison. It can be seen that the mean adjustment time
decreases as the algorithm step»size (1 - @) increases, as
would be expected. The variation in fs does appear to have

some /

76

4,

10

some influence also, with the median value of 12.5 kHz
returning the most consistent results. It appears that
there is in practice an optimum duration for the updating
phase, which must be of sufficient length to accommodate
fully each ADDIE transition dictated by the reinforcement
algorithm, while not permitting undue ''drifting"” errors

caused by steady-state variance to build up.

Results for the LR-P scheme are shown in Figure 4. 24.
The variation in reward-penalty ratio %y, which is of course
proportional to 1 - @, produces a similar trend in mean
adjustment time against step size to that observed above.

It is also interesting to note that, comparing LR-I and
LR—P schemes with the same reward parameter, e.g.,
a =-0.75, ¢y = 32, the LR-P gives faster adjustment.
The presence of just a small penalty factor clearly enhances
the ability of the automaton to recognise and adapt to changes

in the environment.

Conclusions

The foregoing results have verified that the ADDIE SLA
has very suitable learning characteristics, and are entirely
consistent with previous theoretical predictions. Although
a certain amount of serial processing is involved in its
operation, the combination of 8-bit configuration and high
clocking rate have enabled it to return similar learning times
to the basic flip-flop SLA. Indeed, the results from that

prototype system, using the L scheme, have been

R-P
virtually duplicated here, with the additional advantage that
a more comprehensive range of reinforcement algorithms

can be implemented.

It has been shown also that the ADDIE SLA is well able
to adapt to changes in the environment, again yielding results

which /

T3

which are in good agreement with the theoretical values.
This has important implications for the use of the automaton
with non-stationary systems, where most practical

applications are likely to be found.

The ability to obtain convergence in the space of a
few milliseconds represents a very significant advance,
particularly in view of the subsequent extension to learning
systems calling for much higher state order, but
incorporating the same basic ADDIE SLA design. This

development is detailed in the following chapter.

78

6L

1.0
0-9

0-8

0.6

0.5

0.7

™
%
(W

Figure 41

+— Sms —i
Lr-p scheme (1)

Ci= 025075

08

1.0

0-9

08

0.7

0-6

0-5

f

Figure 4.2

La-rp

l— Sms—
scheme (2)

C; = 0.25,0.75

18

1.0

0-8

0-6

0-4

0-2

.

o | le— 5ms —
Figure 4.3 Learning behaviour for both states

Cp = 025
Cq= 0.75

Cq = 0-25
Cp= 075

¢8

1.0

08

0-6

0.4

0-2

|
o

'y._.Sms_.j
Figure 4.4 Comparison of expediency for different (3

(= 025,075
Ci= 0.5,0.75
% =2

€8

1-0

N\/WF\’_\
0.8
0.6 /
b0

0.2
0 I S

to e—5ms —

| Figure 4.5 La_; scheme(1)

C1 = 075
C2 = 025

oK =025

C1 = 025
0.75

mM
~N
i

78

1.0

0-8

0-6

0-4

0-2

f—20ms —«|
Figure 4.6 Lr-1 scheme(Z)‘

f

0-75
0-25

0-75

0-25
0-75

G8

Figure 4.7

10 1—99-‘_’-?
08
A
0-6
B
0-4
0-2
0
to l~—20 ms —

scheme, showing initial reversal

Cq = 0-75
Cy = 0-25

€ =025
C; =075

98

1.0

0-9

0.8

07

0-6

05

_~\\\\\~\\\\\\\‘
< A

Figure 4.8

L r_g scheme

l«—5 ms —f

C4 = 025,075

L8

1.0

0-8

0.4

0-2

~~_1—— 1 =075
0-6
/ o :ﬂ =1
=025
__/\VM/\-—\,
—5ms — C2= 075
Figure 4.9 N“) scheme (1)

R-P

88

1.0

0-8

0.6

0.4

0.2

?

o

Figure 4.10

N (1)

R-P

—5 ms ——

scheme, showing onditiona convergence

Ci= 075
G= 025

(1= 0-875
o= 0.75

68

1.0

0-8

0-6

0.4

0-2

Cy = 0.875
Cp= 0.25

1

o = P

(= 0-25

L antAA 4 v vy b g
e—10 mS— C2= 0-875

Figure 4.11 N scheme (2)

R-P

06

1.0

0-8

0.6

04

02

/ TR

| Ci=0125
Cj=0.56, 0-L4

LA

w’LW

Figure 4.12

F—10 ms —
N,(JF? behaviour with switched conditions

16

1.0

08

06

S

0-2

o le—5 ms —f
Figure 4.13 Plant simulator results : Lg-1 scheme

“high noise”

*low noise”

SEa.

43

1.0

0-8

0.6

0-4

0-2

VoV ad

™~

A

fo

Figure 414

Plant simulalor results :

le—5 MS —

L g-gSCheme

*low noise

* high noise”

E2< C1

€6

0-55

0-45 \
0-35
0.25 Mo
015
<
0
0 0 20 0 L0 ,
time(ms)

Figure 415 Performance curve: Lg_p scheme

¥6

0.55

Figure 4.16 Performance curve: L,_; scheme

0.45
035
0-25 Mo
015
<'
0
0 10 20 30 L0 50
time(ms)

G6

0-55

0-&5\
0-35
0.-25 Mo
0-15
>
0
10 20 30 ,
time(ms)

Figure 417

Performance curve: Lg_p scheme

96

0-55

0-45

0-35

0-25

0-15

10
Figure 4.18

20 30 L0

(1)
Performance curve: Ng_, scheme

50 time(ms)

T
|
]
r
I
]
]
P ——— — -
|
!
| - ~
o)
Anigogaud Ayousd

97

Figure 4.19

C

C2

1/ =
0 0 time

Step- wise switched environments

g

=M T

= l

]
oWt IWEER

(@) Periodic switching

naili

;ﬂ
- 3
3

action probability

o D | W |y

(b) Random switching
Figure 4.20 Switching behaviour of 2-shate SLA

98

66

probability

action

e
U

[T

L]

I

Figure 4.21

v_.o.msm._?

SLA transition curve

00T

—o<}——-‘

Ci’ switch

]}\Dﬂﬁ (SLA)

P,

log counter

'l
state 239
detection
0.5

Figure 4.22 Automatic logging of mean adjustment time

total counter

H)—1&
1

SLA clock

101

key
30 + theoretical value
o fg = 625kHz
—_ A fg = 12.5kHz
« o fg = 250kHz
v
=
(=
B -
- N
w)
N \
£ o
50 \Fﬁ
ol I
0 01 02 03 0-4 05 0.6 07 08 0.9
| (1-0oC)
Figure 4.23 SLA adjustment characteristic : Lg.; scheme

a0l

time (clock pulses)

adjustment

32 L8
Figure 4.24 SLA adjustment characteristic: L g_p scheme

key
30 + theoretical value
A f. = 12.5kHz
A
\ [S = 0.992]
20
10 \QN‘
o —
0 16 64 /]

CHAPTER 5

DEVELOPMENT OF A HIERARCHICAL STRUCTURE SLA

S.

5.

1

2

System Expansion

The results described in the foregoing chapters enabled
useful experience of the performance of simple two-state
automata to be built up. The next step was then to undertake
the development of a much larger system, since it was felt
that practical applications lay in that direction. Rather
than simply consider extending the design to, say, a
10-state automaton, which has been investigated in previous

simulation studies, (48, 49)

it was decided to proceed with
the implementation of a much larger system with state order
r > 100. With this order of system size, there was a
clear problem of minimising the amount of circuitry required,
while at the same time preserving as much as possible the
high operating speeds which are a feature of the two-state

hardware systems.

It was decided that the most feasible solution to this
problem would be to subdivide the state space and perform
the random search between automaton states via a set of
levels in a hierarchical structure. It has been suggested

(5)

previously that a multi-level design would be a suitable way
of overcoming this very problem of high dimensionality,
and the application of simple two-level systems has been

(65)

considered.

Hierarchical System

It was argued during the development of the ADDIE SLA
(Chapter 3) thata large system must have a built-in memory
capability. This concept is embodied in the hierarchical
structure described here, in which a simple low-order SLA

module /

103

5.

3

module or ''cell'" is time-shared between each lecation in
the ''decision tree'' and interfaced with a random access
memory (RAM), as illustrated in Figure 5.1. Any
one state or action probability is therefore represented by
the product of decision probabilities at each node along the

appropriate path through the tree.

The saving in hardware is immediately evident from the
consideration that an m-level system based on a single
r-state cell results in an automaton with r'" states.

Each learning cycle, however, consists of m decisions
between r states, i.e., a total of r x m decisions,
rather than a single level decision between r'™ states.

This configuration does of necessity involve more serial
processing operations, but the savings in hardware are felt
to far outweigh the speed penalty. A further advantage is
that a modular construction greatly simplifies the design
requirements for even larger systems than those considered

at present.

Design Evolution

It is recommended that the basic "cell" of the
hierarchical system should have a binary multiple of state
order, for suitable compatability with the organisation of
standard random access memories. Clearly, the larger
the cell, the fewer the levels which are required. For
example, an 8-state cell in a three-level structure can
cover 512 states, whereas a two-state cell needs nine

levels to achieve the same coverage.

Several conflicting requirements arise when considering
the size of the cell to be used. Small cells, such as
two-state, give fast decisions at each level, but more
levels are required for a given system size. On the other

hand, /

104

5.4

hand, the control circuitry involved in timing, RAM

addressing etc., has the least complexity.

In view of this, it is felt that the use of a two-state
cell confers several advantages. In particular, the
algorithm circuitry retains the standard 4-term format
used previously with basic two-state systems, with its
application time-shared now at each decision level. At
a later stage, it may be found advantageous to modify the
reinforcement scheme at different levels, or stages,
during the learning process, to secure the best overall
performance. Also, if each decision has just two
outcomes, simple binary coding can be used to represent
the decision paths through the hierarchical structure.
This in turn renders the least complex design for the control

or ''housekeeping'' circuitry.

The realisation of an automaton with a non-binary
multiple of states is more complicated. One possible
solution, yet to be tried, would be to insert a decoder
between the SLA and the plant. The SLA would be
organised with the next-highest binary number of states, with
the decoder arranging for redundant states to be paired off
with "active' states. This would cause some initial bias
in learning behaviour, but the effect may not be too significant

when averaged out over the whole learning period.

128-State System Design

The basic cell of the hierarchical system is the
two-state ADDIE SLA described earlier. This single
computing element effectively controls each decision at every
node across and down the decision tree, with the ADDIE
counter interfaced toa RAM to store intermediate decision

probability values.

The /

105

The memory requirements are dictated by the number
of levels used in the system. For each decision, the
value stored in the counter at the relevant sampling instant
represents, together with its implicit complement, the
decision probabilities for each outcome. The first decision
level thus requires one word of storage, the second level
requires two words, the third, four words, and so on.
Therefore, an r-state system requires a total RAM
allocation of (r-1) x w bits, where w is the word

length.

In ordér to preserve the highest possible operating speed,
the transfer of information between the SLLA cell and its
memory should be a parallel process. This implies that
the internal structure of the memory should be byte-oriented,
with a common data bus interface. In the case of MOS
devices, a good access time and TTL compatibility are also
desirable. The device chosen initially to fulfil these
requirements was the Motorola MCM 6810 AL, part of the
"6800" microprocessor family. This isa 1 K static
RAM witha 128 x 8 bit organisation, and is therefore
directly suited for application ina 128-state system.

Indeed, this device has available six "chip select' lines,
giving ample scope for memory expansion if required.
Subsequently, a TTL memory card was constructed with
pin-for-pin compatibility, using an array of 74S200 type
RAMs which are organised as 256 x 1 bit. As expected,

these devices permitted a higher rate of data transfer.

The full configuration of the 128-state hierarchical
system is shown schematically in Figure 5.2, with the
corresponding seven-level decision tree in Figure 5. 3.
The two-state ADDIE SLA which forms the cell of the
structure is essentially similar to that depicted in Figure
3.4. The main difference is that memory interface

circuits /

106

5.

5

circuits are now required, since the ADDIE no longer acts
in a virtually continuous, self-contained cycle, but operates
instead in a time-shared mode. A block diagram of this

slightly modified system is shown in Figure 5.4.

The input and output buffers connected to the ADDIE

are tri-state devices, designed for application with a common,

bi-directional data bus. This considerably simplifies the
design of the system, and of course reduces the ''pin-out"

requirements on the associated circuit cards.

Decision Path Control

As mentioned earlier, the use of a two-state cell
enables simple binary coding to be used to track the decision
path taken by the system in selecting an output action on each

cycle. The means of achieving this are now described.

At each main sampling clock pulse to the cell, the

- resulting output from the flip-flop will be either 1 or 0,

and this ''decision bit'"' is stored in a 7-bit latch, each

of whose locations corresponds to a particular decision level.
As a result, at the end of a search through the decision tree,
the contents of this ''state latch' will define uniquely one of
the 27 states, and also represent the oufput to be fed to the
plant. When a second scan is made along the same path
to apply the reinforcement scheme in accordance with the
plant response and update each of the decision probabilities,
the state latch effectively provides a ''map' of the route to
be taken through the decision tree. That is, one machine
cycle must involve two traversals of the decision tree, the
first in the nature of a '"'random walk'', the second in turn
guided by the outcome of the first. The formation of the
state latch contents is simply accomplished by using a ring
counter as a commutator to steer each decision bit to its

correct /

107

5.

correct location, as shown in Figure 5. 5.

Memory Address

A central feature of the hierarchical system is the
memory address procedure. The counter in the ADDIE
SLA must be interfaced correctly to the memory location
corresponding to its current position in the decision tree

at every stage.

Consider an m-level system, with the memory

partitioned as follows:

Decision level 1, 2, 8, ----- m

Rows of memory : 1, 2, 4, - - - - - 2

When the cell is at level d, say, it will have made d -1
decisions. The state latch therefore will contain d -1
bits, which are sufficient to form all address codes
required for the number of rows of memory at that level.
The address code is derived accordingly from the state latch,
itself in effect a small ''scratch-pad' memory tracking the

decision path.

The details of the addressing method are illustrated in
Figure 5.6, usinga 4-bit example for clarity (i.e., a
16-state system). In the table shown, the position of the
circulating bit from the ring counter is marked with an
asterisk, while state latch contents at each level are
enclosed in dotted lines. At the upper levels, there are
insufficient information bits from the state latch to assemble
the requisite m-bit address word. The address

words are therefore completed with the ring counter bit plus

a string of zeroes as appropriate. The resulting progression

of address codes can be seen to assume a well-ordered
BCD type of layout, illustrating how easily the design
philosophy can be extended to any desired number of levels.

Address /

108

5.

7

Address words are formed, therefore, by suitably
combining the ring counter output and state latch contents,
with blocking inverters arranged to generate the necessary
zeroes. The circuit configuration for this is shown in
Figure 5.7. It can be seen that this arrangement also
allows for the address lines to be cycled from an external
counter to facilitate the loading of 0.5 into each memory
location as an initial condition. The operation of this
address circuit can be verified by considering the example
illustrated in Figure 5. 8. This shows the build-up of
address codes at successive levels during one cycle.

The procedure is identical for both ''search' and
"reinforcement'' phases of operation. The ring counter
is clearly an important component in the control circuitry,
since it supervises both the loading of the state latch and

the formation of the memory address.

System Clocks

Overall control of the sequence of operations which
comprises one complete iteration of the hierarchical
automaton is achieved by means of a multi-phase clock
generator. Since each cycle consists of an ordered,
repetitive sequence of events, it was decided to base the
design on a ring counter, each of whose cells would act as
a source of clock pulses for one particular operations.

A logic array on the ring counter outputs enables certain
portions of each waveform to be blanked off as appropriate.
By coincidence, it turned out that a seven stage counter
was called for, matching the seven-bit commutator
described earlier. One of the functions of the primary
ring counter is of course to clock the commutator; at the
same time, the first and last commutator bits are used for
certain masking and reset operations on the primary clock

generator. /

109

5.

8-

generator. The two ring counters can therefore be

considered as a nested pair (Figure 5.9).

The full timing diagram for the 128-state hierarchical
system is illustrated in Figure 5.10. For convenience,
each waveform has been assigned a mnemonic. In the
detailed description of system operation which follows,
these will be explained as necessary, together with references

to appropriate elements of the circuitry.

Operating Sequence

The master clock, denoted MC, is the central source
for all the clock waveforms, and all events are therefore
synchronised to it. While synchronisation is primarily
required for the sequential processing operations, it is also
necessary, as explained earlier, to apply it to all associated
noise sources. The same master clock is therefore used to

supply the four PRBS generators used in the design.

SLLA operation is initiated by a reset pulse (RST) which
may be automatically, manually, or ''power-on' activated.
This clears all registers, latches and counters. The next
phase, which occurs just once in the learning process, is the
establishment of the initial conditions. For this operation,
the memory read/write line (R/W) is set to "write' mode,
and the data bus select line (DBS (2)) arranged to feed the
"one all-zeroes' initial condition onto the data bus.

Figure 5.11 shows the principal elements of the data bus
interface. The initial condition counter then starts to

count up, cycling through all the address codes as explained
earlier. When the final carry or overflow bit (ICCOB)

goes high, the counter stops, the primary ring counter is
enabled, and the main multi-phase clock sequence commences.
The output of a flip-flop, denoted ''sequence flag' (SF)

then /

110

then goes low, indicating that the automaton has entered

14

the '"search’ phase.

During this phase, the memory is held in ''read"
mode, and the secondary ring counter is clocked (COMCK).
This sets up the first level address and prepares for steering
the decision bit to the first cell of t‘he state latch. The
current or ''old" value of pi(n) held in memory is clocked
into a latch (OPLCK), and a decision bit is obtained by
sampling with the associated system flip-flop (SFFCK).
This sequence is performed seven times in the case of a
128-state system. The state latch contents are then loaded
into a system state output latch (SSOLCK), which acts as the
digital output interface, and also a parallel-in serial-out
(PISO) register from which the decision bits will be recovered
in correct sequence for the operation of the algorithm circuit
(see below). Figure 5.12 illustrates the components

involved in this data transfer.

This single clock pulse (SSOLCK) also sets a flip-flop
whose output (CKSTP) effectively ''freezes'' the primary
ring counter (Figure 5.11) by maintaining a high logic
level on one of its feedback lines. This facility allows the
automaton to wait for the plant response, which must be
assﬁmed to be totally outwith the control of the automaton
clock. The plant response is assumed to include a signal
pulse (PLTRDY) which resets this flip-flop and allows the
cycle to continue. If a2 simulated plant with essentially
"instant'' response is used, however, this facility is not

required and the CKSTP signal can be held low all the time.

The system is now ready to enter the reinforcement
phase. The first commutator clock pulse changes the
state of the sequence flag, thereby enabling the appropriate

clock signals for this phase. The plant response is sampled

by /

111

5.

by the reward/penalty flip-flop (PRFFCK), and the memory
contents at the first level address are read into the ADDIE
(DBS (1)) and the latch (OPLCK). Another holding
operation on the primary ring counter is then initiated,

using a counter denoted ''learning period timer". As
before, a high logic level is fed back until the most
significant bit (LPTQD) éhanges state. In the interval,
the ADDIE adjusts to the updated value of pl(n+1) supplied
by the algorithm circuit. The address for the algorithm
data selector consists of the output from the reward/penalty
flip-flop, and successive decision bits clocked out from the
PISO register, mentioned earlier, using the DBS (1)
clock signal. The memory is then switched to ''write"
mode, and the ADDIE output buffer control line (DBC (2))
switched accordongly, to allow the updated ADDIE contents
to be dumped in the memory. After seven such operations,
one system iteration is completed. The automaton is then
ready to re-enter the search phase and repeat the process.

If at any time the system is reset, the memory will be
"scrambled'" by the initial condition phase and the whole

learning process will start over again.

The learning experience of the automaton is represented
by the reinforcement of the path leading to the optimum state
as the decision probabilities at each node on the path approach
unity. The chief determinant in the cycle time, again
setting aside consideration of the plant time constant, is
the ADDIE adjustment period during the reinforcement
phase. Since seven updating steps occur in each iteration,
it can be provisionally estimated that the learning time for
the 128-state system will be at least seven times that of

the two-state ADDIE SLA with its single updating step.

112

5.

5.

10

Variable Size Facility

Since the last bit of the commutator controls the length
of the primary clock sequence, it is possible to alter the
effective size of the SLLA simply by moving the tap-offs on
the secondary ring counter and masking appropriate feedback
lines, as shown in Figure 5.13. In this way, the
hierarchical system can be set up with 7, 6, 5 or 4 levels,
i.e., 128, 64, 32 or 16 states. A set of data selectors
is used to facilitate switching between the various combinations
of control signals, so that just two external address lines

require patching-up by the operator.

Construction

The complete system was assembled on a total of ten
circuit cards, each representing a distinct function: clock
generator, state latch and address, memory (MOS or TTL),
ADDIE (8 or 12 bit), data latch, noise (1), noise (2),
algorithm, output interface, display functions. A cabinet
was constructed providing all the requisite input/output and
control facilities for system operation on the front panel.
Photographs of the unit are reproduced in Figures 5.14 and

5. 15.

113

PIl

2-state SLA

memory

time shared /N mmmm e 1st level decision (RAM)

locations \

‘‘‘‘‘ s Bdeaadaca iy, | r--"—-r-"'-"\

P | i i | :

] : [] | 1

] [[]

i ' ' : l |

b e [J IS DR)

— ——-2nd level decision
T A H ¢!, r 1 A I A
' ' ') ' H ' ' | | ‘
] t (] ; 1 [] 1 ¥
i ' i I R :
1]

Comomem l] Lo | H Lo b - T]

Figure 51 Hierarchical structure with 2-state cell

+— action [ay]

/ PLANT
PRIG]
ALGORITHM

Q 2l memery
—0of ADDRESY —!] :
'r’"r-z] \ g : :

=177
L} . :
HE S R S -
:
1
/ ; l \ :
po=—ffocy go=R==my pocFoscy mecjem=a .
R EEE N . D |
13 . L
eodood el bellbed Lo ! H

..........

oufput action

g, toLuu;]

o> to PLANT

Figure 5.2 128-state hierarchical SLA

115

a11

DECISION 'TREE'

N

_/
N

SN S

st 2nd

Figure 5.3

7 - level decision free

pl‘ Puza

i e o=

LIT

input buffer
L~

Addie

i

memory data bus

—

-

% output buffer

digital [stochastic

convertor

N\ {
/
LATCH o
read [write
control
COMPARATOR]___

n)

noise

system
flip-flop

oL

ALGORITHM

‘_\o plant response

Figure 5.4 ADDIE SLA with me

mory interface

D

k<> clock

ring counfer

1 |O1O|0O
SLCK
N—e]
GISICIS
sysftem
flip-flop
. Q
Ck |
| state latch
SFFCK
y
stafe
oufput
Figure 5.5 State latch loading method

118

O O O O__________Not used

-_—— — ——— ——158t. leve| address

] w 2
& o &
3 3 3
© © o
> > >
= o o
2 o <
N q._m %
| I “
I
| " |
| I |
\lL__ , \ . Jﬁ il /
O O o o o (@) u.ml. — — — T — —
—||||I|IIII||||Ill|l|iI s
OO0 O c— 00 0O « «— «— «!
i _ I
r~———"~—~>"—7"—7"" =777 =~ A
I
|

Partitioning the RAM address

Figure 5.6

119

021

Q= O]

1)
. 8)— J
latch @_ / ‘ _I_\
i —
ZF A -t : I\
_J
1 ' . £
| g
. D
ring 0
counter 0 ‘ :
initiol load
addressing

Figure 57 Memory address circuit

L

address
output

121

- ———- e

decision
bit

-

e

state latch

Ist level| 1

e

2nd level| ()

3rd level| 1

_4hilevel| O

—>

|evels/—

Figure 5.8

ring counter states address outputs

TR S PIY S—— RIS PRI SR

0(1]0]0 011

1
il
______ 1

0lolo] ololo|1

Ist 2nd 3rd 4th Ist 2nd 3rd 4th

levels /

Memory address example

MC

l____.j_j
F ' ‘
— [ring counter1]
SSOLCK T
3 q CKSTP| ~central clock
R generator
PLTRDY
:
| ClL LPT
i Ck
) i "
i 'SF’ .
Q logic. arra
x g y
b
Lo clock lines
§ e e s e out
[ring counter2]
-
Ck
commutator
Qa Qe
:

to state latch

Figure 5-9 Clock generationin the hierarchical system
122

€cl

RST

: ON
(g:Ll [l l

ve [LLMIL ST

Icc oB

CKSTP

DBS(2)

DBC(2) |

R/ W
COM CK
Pé#F CK
OPL CK
DBS (1)
SFFCK
SLCK

SSOL CK

SF

LPT Qp

[

[

|
[.

[

.

3

[

3

3

[

<————— Initialising phase ————><€¢—— search phase —

Figure 5-10

System

ki

v

E reinforcement phase
ming diagram

[

(1)'*5 data
C selector

1 N\
s
Addie

__OQ__,

Initial ¢

condition (0.5) '*.k

DBC(2) selecror

end-point
detection
I
buffer
i)
(1
RAM DATA BUS

Figure 5.11 ADDIE- dota bus inferface details

124

I

data bus

(buffer)

OPL
comparator {—
] [SFFCK
noise
'p‘(n+1)"
o fhe Algorithm
——IP/R
Figure 5.12 System

COM

|

SL

U 1

to address

circuit SSoL
v _J:>
PISO | ‘

SLA -
ﬁk 0/P

DBS(1)

data

latches

9¢1

COM S
Qo Qe O Qo 0
% /.__._

: , e—1

Bclclo pa=

! S o 4
e—3

Figure 5-13

Variable

size facility

e32
e16

key 128 state
/:5/. -

to clock logic

ALGORITHM PARAMETERS CURRENT

ALPHA /64 RESET
-~ AO Al
- A 1 O sl ee
32 | ‘d . gacad’ MAN EXT 1/p ofe CONTROL
™
BETA/64 ‘ POWER ‘
T) D '-.\
AN 8 .8
32 6 8 4 2 { SYSTEM
oo j vy RESPONSE

HIERARCHICAL STRUCTURE LEARNING
]

Figure 5.14 128 - state system

OUTPUT
INTERFACE

“. ANALOGUE

DIGITAL

ADDIE

AUTOMATON

- front

128

128 - state system - rear

Figure 515

CHAPTER 6

RESULTS FROM THE HIERARCHICAL SLA

6.

1

Preliminary Results

During the initial assembly of the hierarchical automaton
in prototype form, it was found convenient to test the various
sub-sections separately, as far as was possible, and then
to operate the full system initially at a low number of levels
as an aid to fault-finding. Figure 6.1 shows the learning
characteristic subsequently obtained from a 3-level, 8-state
arrangement converging to state 4. The discrete, nested
learning curves give a good illustration of the operating
principle of the system. The learning time here is typically
three times that of a comparable 2-state system, as would
be expected from the time-shared nature of the learning
process. The hierarchical SLA, it is felt, should be
considered akin to a system of co-operative games(66’ 67)
between 2-state automata, one at each level. Fach
automaton decides, in turn, which of the two locations
below its own current position in the decision tree should be
selected, having been steered to that position by the

cumulative efforts of the automata above (c.f. Figure 5.1).

Initial optimisation experiments with the 128-state
system were performed with the most elementary of simulated
plant circuits, as shown in Figure 6. 2. This is merely
an extension of the 2-state system plant, in that one
selected action, in this case number 41, results in a low
penalty probability, c,= 0.25, and all others a high one,
¢y © 0. 875. Figure 6.3 shows the typical learning
behaviour, presented here in the form of an 'output map'
of the state latch contents at successive sampling instants,

obtained by D/A conversion and presentation on a storage

oscilloscope.

The identity of the optimum action can easily be varied

by /

129

6.

2

by altering the front-end logic in the plant. To verify the
absence of any bias in the system, the experiment was

repeated for actions near each end of the range: number 5

and number 120. The results are shown in Figures 6.4
and 6.5 respectively. In each case, convergence is
achieved in the range of 50 to 100 ms. The approximate

length of one iteration, using the 8-bit ADDIE and a
2.5 MHz master clock, is 100 us, so the indicated learning

times correspond to between 500 and 1000 iterations.

There is always a small probability of incorrect decisions
beyond the initial learning period, atany level, due to
variance inherent in the operation of the ADDIE. This
results in the sporadic occurrence of incorrect output actions
which show up on the output map as scatter points off the main

trace.

As before, it is a simple matter to simulate a non-
stationary environment by switching the identity of the optimum
action. Figure 6.6 shows how the SLLA can adapt to an
environment in which the optimum action is switched between
58 and 106. It is significant that not only does the SLA
adapt successfully, but also that the adjustment period is

virtually the same as the initial learning response time.

Application to Multimodal Systems

Having establishedsatisfactory operation of the
hierarchical SLLA with a very basic 'plant', ' the next step
was to consider its application to the more practical situation
of multivariable systems with multimodal performance
criteria. In order to simulate such an environment, a
rather more sophisticated plant circuit was required.

It was decided to use as an example a widely-reported P I

function /

130

(68, 69)

function which has a clearly defined global optimum,

a local optimum and a saddle point.

The objective function describing this particular

performance index is given by

f(x, y) = (1+8x- 7x2+ %XS - %x‘l) y2 e
where x and y are the two control variables. In order

to match the P I to the S‘LA, a program, denoted ''SLIG",
was written which computed f(x, y) over the requisite range
and provided a choice of output formats. Figure 6.7
shows the surface plotted on a fine grid to illustrate its
general features. Figure 6.8 presents an alternative
view, using this time a 16 x 8 grid to illustrate the
partitioning of the surface into 128 discrete elements.
SLIG also generates a table of penalty probability values

(¢,) corresponding to each surface element, and writes
these to a dump file. A third output option is to produce a
punched tape of binary ¢, values to feed a PROM
programmer designed specifically for 2708-type PROMS

(1 K x 8-bits).

A useful feature of the program is the provision for a
choice of ""compression factor'' to be applied to the range of
c; values derived from normalisation of the P I objective
function. This enables the final values of the penalty
probabilities to be constrained between chosen limits within
the full-scale range EO, 1] . as a test of the discriminatory
powers of the SLA. For the experiments reported below,
the compression factor was set at 0. 95, giving a minimum c;
of 0.025 and a maximum of 0.85 for the full 128-state

system.

The principal elements of the plant simulator circuit are
shown in Figure 6. 9. The PROM is at the centre,

storing the c; values as 8-bit numbers, each addressed
by /

131

6.

3

by the appropriate action output from the SLA. In
order to evaluate the performance of the SLA under
non-stationary conditions also, it was arranged that a
"reflected" version of the P I be stored in the next

128 bytes of the PROM (i.e., x and y - axes reversed).

In this way, simply switching the most significant address

line abruptly changes the environment as seen by the SLA.

It was decided to dispense with the earlier method of
simulating surface noise or observational error described in
Chépt er 2, which called for a two-phase clock and a rather
slow sampling rate. Instead, the presence of noise is
effected by introducing a full adder fed with random numbers
in the form of noise lines tapped off the central PRBS source.
The resulting noise-corrupted c; value is then applied to a
standard noise comparator arrangement which produces a
stochastic pulse train representing the penalty probability.
This is subsequently sampled by the penalty/reward flip-flop
to provide the appropriate environment response
(0: reward, 1: penalty) for use by the SLA in the
reinforcement phase. The use of computer facilities in
the preparations for these experiments is summarised in

Figure 6.10.

Data Logging

In order to obtain maximum flexibility in the presentation
of data from SLA learning runs, it was decided to use a

computerised data logging system. A program, ''SLOG'",

was written which recorded the output action after each iteration

and stored the information in a data file, together with the
relevant parameters for the particular experiment. A
companion program, ''SLAG'", was then written to enable
processing of the data, together with the ¢ file provided by
SLIG, to form an output map, a penalty curve (i.e., a plot
of /

132

6.4

of received penalty against iteration number), and a set of
cumulative distribution curves illustrating the evolution of
automaton action at various stages during the learning
process. Of this family of programs, SLAG and SLIG
were written primarily for main-frame system operation
(DEC-20), while SLOG was runonan LSI 11/03.

All three programs are in FORTRAN, though some MACRO
routines are called as appropriate. The application of
SLOG and SLAG to the logging and presentation of

experimental data is summarised in Figure 6.11.

The logging process requires the SLA to interrupt
the 11/03 whenever an output action is available. The
circuit used to accommodate this is shown in Figure 6.12.
The clock pulse which triggers the system state output latch
is differentiated to produce a narrow spike, sufficiently
shorter than the computer's interrupt response time.
This sends an interrupt request via the flip-flop, which is
subsequently reset by the reply signal from the computer.
The selected action, held in the seven bit output latch, is

then read via the I/O ports to a disk file.

Results and Comments

A total of seven experiments performed with the
hierarchical SLA is reported here, using the performance
index described above with a superimposed noise cdmponent
of +z distributed uniformly over the surface. Four bits
of noise were in fact added, so that 2z represented
approximately 3% of the full-scale range (0-255) of the
8-bit c; values. The results are detailed below with

appropriate comments.

Experiment 1: /

133

Experiment 1: © 128-state, L scheme

R-P
o = 0.437, B = 0.992

The output map, penalty curve and distribution curves
for this experiment are shown in Figures 6.13, 6.14, 6.15
respectively. The form of the output map bears a close
resemblance to that of Figures 6.3 - 6.5, which were
reproduced directly from an oscilloscope trace, and as
before convergence is achieved in around 1000 iterations.
This particular learning run shows convergence to the
optimum action (100), while the effect of spurious state
transitions producing suboptimal actions, commented on
earlier, shows up clearly on the penalty curve as transient
spikes to a higher level of received penalty. Although the
values of received penalty are only calculated at discrete
points, it was decided to present the result as a continuous

curve to illustrate more clearly the underlying trend.

Experiment 2: 128-state, LR-P scheme

a = 0.25, B = 0.875 (Figures 6.16 - 6.18)

This experiment was chosen to demonstrate the effect of
a low ratio of reward to penalty, in this case y = 6.
The output map presents a rather chaotic picture, as does
the penalty curve to some extent. However, the
distribution curves prove that the SLLA does, in fact, favour
actions at or near the optimum, since a set of peaks is
clearly evident, spaced at intervals of 8 in accordance with
the partitioning of the surface into 16 x 8 elements for 128

possible actions.

This result, therefore, bears out the expected
performance of an LR-P automaton with a small measure of
expediency, i.e., reliable convergence to a condition in which
favourable actions are selected, though with probability

somewhat |/

134

somewhat short of unity.

Experiment 3: 128-state, LR-I scheme

a = 0.25 (Figures 6.19 - 6.21)

This result is a classic example of an LR-I automaton
locking-on to the wrong action. The learning
characteristics are very similar to those of Experiment 1,
but this time the system homes in on action 91. This
illustrates the basic flaw in the LR-I scheme, in that its
very high degree of expediency (€-optimality) can lead to
an inability to escape from a situation where the chosen action
turns out to be sub-optimal, which may well arise in the case

of a non-stationary environment.

Experiment 4: 128-state, LR-P scheme

a = 0.5, B = 0.992 (Figures 6.22 - 6. 24)

While the previous experiments were logged over
2000 iterations using a static environment, this experiment
was run for 5000 iterations, with the plant switched after
2048 iterations, as described earlier, under the control
of a binary counter fed with state output latch clock pulses.
In this particular case, the set-up was reversed so that

the '"reflected' plant was chosen first.

The result shows, first of all, convergence
predominantly to actions 19 and 20, which are low penalty
but suboptimal actions. After the plant is switched, there
follows an interim adjustment period, culminating in
convergence to the ''new'’ optimum of action 100.

Although the first half of this trial did not yield optimal
behaviour, since action 28 would have been preferred,
the overall result does nonetheless demonstrate the ability of
the SLLA to track a non-stationary environment without

excessive /

135

excessive delay, provided a '"suitable'" (I_,R P)

reinforcement scheme is employed.

The following three experiments were chosen to
illustrate the flexibility provided by the hierarchical structure
of this hardware SLLA design. Using the front panel
patching facility to alter the programmable system clock
described previously, it is a simple matter to change

the size of the structure immediately (in binary multiples).

Experiment 5: 64 -state, LR—I scheme

a = 0,125 (Figures 6.25 - 6.27)

In the case of the 64-state system, the
automaton addresses only every second point on the P I
surface (odd numbers). The optimum' action here is 101,
which becomes 51 in the nomenclature of the 64-state
system. The result of this particular experiment
demonstrates once again how an L scheme can lock-on

R-I
to the wrong action, in this case number 50.

Experiment 6: 32-state, LR -I scheme

a = 0.125 (Figures 6.28 - 6. 30)

This result for a 32-state system is essentially similar
to Experiment 5, showing convergence to action 24,

whereas 26 is optimum.

Experiment 7: 16-state, LR-I scheme

a = 0,125 (Figures 6.31 - 6. 34)

This last experiment is significant, in that by
addressing itself only to every eighth element of the P I
surface, the 16-state automaton in effect sees only the
rather shallow front edge (see Figure 6.8), reducing the
problem to a simple two-dimensional system. However,

the /

136

6.

5

the corresponding penalty probability range here is only -

from 0.71 to 0.85, which clearly presents a severe test
of discrimination. The result indicates convergence

to action 15, whereas 13 is the optimum. However,
the penalty curve verifies that a useful reduction in

received penalty is achieved as a result of automaton action.

As the number of states is reduced, the learning times
are clearly reduced also. Therefore, two sets of
distribution curves were obtained from this experiment.

The first set, covering 2000 iterations as before, shows
that all significant acitvity is over within the first 1000
iterations. A second set (Figure 6.34) was accordingly
obtained to cover this initial period and to illustrate in

greater detail the evolution of the selected action.

In all of these experiments, a 12-bit ADDIE was
used in the interests of greater precision and lower variance,
though at the expense of operating speed. Actual learning
times for the above results can be estimated in the context of

an approximate iteration time of 1 ms.

Conclusions

As before, all the results are derived from ''one-off'
trials. It was felt that the nature and complexity of the
128-state system precluded the presentation of results
averaged in some way over many experiments. Sufficient
information can, in any case, be derived from representative

samples such as those detailed above.

The results of these experiments clearly demonstrate
the power of the hierarchical SLLA as a means of achieving
rapid optimisation of a multimodal system, irrespective of
contour and despite the presence of measurement noise.

Even /

137

Even in cases where sub-optimal convergence occurred,
stemming from a reinforcement scheme of which such

behaviour is a known hazard (L the automaton

R-T°
succeeded in choosing actions which were adjacent to the
optimum. It can therefore be said to have performed its
allotted task of reducing the average received penalty.

This in turn implies an improvement in system performance

which at least approaches the ideal.

It must be stressed that at no time did convergence to
the local optimum occur, demonstrating conclusively that
the SLLA has purely altitude sensitivity over the P I surface,
as opposed to the gradient sensitivity characteristic of the
conventional hill-climbing methods of optimisation. The
successful results obtained with switched environments
are particularly significant, since it is likely that most SLA

applications will involve non-stationary plant.

The presence of measurement noise on the P I surface
does not seem to impair significantly the performance of the
SLA. Indeed, it can be argued that its perturbating effect
on the value of received penalty on a short-téi‘m basis might
help to dislodge a highly expedient learning scheme from an
incorrect action to which it might otherwise lock-on. This
would permit a slightly higher degreé of expediency, which
does have desirable features, to be catered for in the

reinforcement process.

The development of a viable hardware automaton enables
a fully operational learning controller to be implemented,
and the following chapter is devoted to the study of a practical

system and the results achieved.

138

6€T

probability

state

addie

1.0__._._._4..____.,._.._;__..___._._______.E_.._-_.T_.._.___.éa_mm_i
m_____
._.s /,ﬂm:mém\
p!
"
o
U
0.5 4 f,.r___.,‘ 1
) . ﬂjﬁ\\\uzxa<3
,flrrr1r=: “T=
0 Wl ot bl
0 b 8 12 16 20
time(ms)
Figure 6.1 Leaming characteristic of an 8 -state system

0%1

SLA
0/P

wn
-+
a
-
1)

T S S
:

- LSB

.

- MSB

Y Y| VY

Figure 6.2

Y
-

Simple plant

i(l‘

P/R

Ck

‘\T’

PRFFCK

simulator (action 41)

€9 aunbiy

(1% uoijdp) dow yndynQ
(sw)awiy
00Z 09L 0ZL 08 o 0
L]
) :_....1%. .- 4 91
o by Yl Y Rk
QUL UL .._lsaﬁ:i._.__ N) ', 3m.
[] v
[1, m
¢ 4 1 #Ow
2 I 4
I+ 087
' 1 96
t.
v 4%}
] ..
8zl

141

(34

128 —— 1
g Mol
112 an rl" lll'l'ulI| [
96'\“‘”'|| “| !
oo LS B
a | ! |(| b'l' "
§6L { I'c 'IL l|'|
o L8 " :l“ .l.|=4|g :
Bt W) |
NI E I
16 HAH :
0L l[b‘ L ﬂ“ulyillllllllldlﬂw dllwlullpnumlu Pt g
0 160 200

time(ms)

Figure 6.4 Output map (action5)

eVl

128
e I R |kg’i“'HWWM"HHIIWWI"MI!»’H
96 tyed ".'u'L n]!
: .II ||.|l||“|l'
EWEL], .
380 |-] |l’ |'l|l‘| l) :
€ H i | - |
561’ '\'|..u T T |'
.."_‘1'8 l.ll“.I'-hiu 1' ' Bl
532 : J';.!:'f:.hu'.
Ay .
16—+t 4 s
|]
' L‘ . |
: 40 80 120 10 200
Fime(ms)

Figure 6.5 Output map (action120)

ia4"

128
1
112 , :
L
: Ghbm'm'uu'-'m'u ' N Qe W
sl AR ‘
@)]
im]] I
E 64
2 wl NN N vt T+ | g
]
. 48 ' : | "
= .
= 32 :
16
0
0 40 80 120 160 20

time(ms)

Figure 6.6 Output map for switched environment

S¥I

//

el

X-D1MENS 10N +-s00

Figure 6.7 Computer-generated view of P I surface

9%1

0.30 .90 '.SO ! Z.10 21.10 3.30 _3.90‘1
X-DIMENSION
Figure 6.8 P-L

4.50 ¢°°

surface with 128- point grid

SEA
STATE /P ITERFLG

[—

A B
FULL ADDER
>

A
COMPARATOR A>B 0 Q—PR
B Ck

NOISE PRFFCK

Figure 6.9 Plant simulator using EPROM

147

8¥%1

P I surface
parameters

DEC-20

off-line

“SLIG”®

Figure 6-10 Data preparation for SLA experiments

PROM
PROGRAMMER

off- line _

)

EPROM

SLA

6¥1

SLA

on-line

/

Figure 611 Logging

off - line
DECLAB
11703)| pEC-u
'SLOG” SLAG
graphical
0/P

and presentation of SLA learning runs

0ST

SLA -

data bus

o

ZZME

/7

Figure 6.

DECLAB 11/ 03
|

o S
DATATR INT REQ.
+5V
Cl Q
‘&0 Pr £
D 0 AAN
Ck 330n

»

12 Interrupt processing circuit

161

ACTION

1284

361

D
-

32+

-
S’) 0 T
s _2Te r e cemee sae an oo omea _a_me o sans o anene me onn ;o o anme o o --(_.l
o " i

. ¢ == -

500

1000

ITERATIONS
Figure 6-13 Output map (1)

1500 2000

¢Sl

PENARLTY

EC.

R

1

0

.00 -

-75 1

-50 1

-25 A

.00

il

AL

i

il

___ﬁ <MIN

1000

ITERATIONS
Figure 614 Penalty curve (1)

1500

2000

gql

PRQOE .

REL.

PROB.

REL.

w
(o]
a
o
o
w
oz
ne il Hinn .
64 128 1 3z 64 a6 128
ACTION N=500 ACTION N=1000
o
o
o
o
3
['¥]
oz
_A—MN‘J-hn _r(e W{nﬂ}'nk
32 64 9% 129 1 32 €4 96 129
RCTION N=1500 ACTION N=2000

Figure 6-15 Distribution

curves (1)

el

12897 . -

. . e) . OPT

96+ = 7 . . : . - .
=z . 8 y -
()) -
H54 - -
I
W
T

324 _ -

1

500 1000 1500 2000

ITERATIONS
Figure 6.16 Output map (2)

uuuuuuuuu

PROB.

REL .

9¢G1

PROS .

REL .

PRQJB .

REL.

64) '
ACTION N=1000

PROB .

REL.

a6 129 1 32

96 128

64 64
ACTION N=1500 ACTION N=2000

Figure 6.18 Distribution curves (2)

LST

128+

96

64

ACTIGON

321

COPT

500

1000

1500

ITERATIONS

Figure 6.19

Oufput map (3)

2000

ALTEN3Id " 3J3d

Nl
N 'M il

1000 1500 2000

ITERATIONS
Figure 6-20 Penalty curve (3)

6ST

REL. PRQE.

REL. PROE.

64
ACTION

el

3z 64
ACTION

N=500

N=1300

REL. PRQE.

Jmmﬂmmmmmm&mmumm{“ﬂﬂﬂﬂnmmlﬂmm P il Iwﬂ

G4
RCTION N=1000

REL. PROE.

A ol

128 \ 32 64 86 128
ACTION N=2000

Figure 621 Distribution curves (3) |

091

ACTION

128+

961

=)
2

32

LOPT

1250

2500 37150
ITERATIONS
swit.

Figure 6.22 Output map (4)

8000

opPT!

191

REC. PENALTY

N

w (=]

N)
e ——

(i

- UNU_LL L U_LQ_MIN,_NIN‘
250 2500 3750 5000
m/erERmmNs -

Figure 6.23 Penally curve (4)

(4°R¢

PRQE .

REL.

PROB.

REL .

PROB.

3
w
o
O el A1 ol
> o 56 129
ACTION HZ1230
o
! (2]
'S
a
3
w
[4
ﬂrmn-“ Ao, = 96 128
ACTION N=3730

Figure 6.24

v = < hermcCiell 26 128
ACTION N=2500
1
oo o coxia. Mol
3% 4 o6 128
RCTION N=5000

Distribution curves (&)

€91

ACTIGN

64 -

a8q -

3zq

161

OPT

500

1000

ITERATIONS

Figure 6.25

Output

map

1500

(5)

2009

500

164

Figure

<MIN

1000 1500 2000

[TERATIONS
626 Penalty curve(5)

€91

PROE.

REL.

PROB.

REL.

16 32 10 64
ACTION N=500
Tl
13 37 a8 64
ACTION N=1300

Figure 6.27

PRJE.

3
W
o
\ 16 2 48 64
ACTION N=1000
.
@
(=]
o
a
3
w
o
] o SEP—.
1 16 32 A8 64
ACTION N-2000

Distribution curves (5)

991

32 4 -

241 -

"ACTION

16

-~ e onawe

® coamee oo o

* e o= -

OPT

500

1000
ITERATIONS
Figure 6.28 Output map (6)

1500

2000

LIT

PENARLTY

REC .

1

-00 1

.75 1

<MIN

500

1000 1500

ITERATIONS
Figure 6.29 Penalty curve (6)

2000

891

PRQOB.

REL .

PROB.

REL.

PROB.

2
w
0
16 74 EYd E] 16 24 32
ACTION N=500 ACTION N=1000
w
(=]
o
.
i
w
o
16 - %2 1 [] 18 I 3z
ACTION N=1500 RCTION N=2000

Figure 630 Distribution curves (6)

691

16 1

124

ACTION

<OPT

500

1000

ITERATIONS

Figure 6.31

Output

map

1500

(7)

2000

0LT

PENALTY

REC.

1.00 -

0.50 1

0.25 1

0.00

<MIN

500

1000
I TERAT
Figure 6.32

o 1500
IONS
Penalty curve (7)

2000

LT

PROB.

REL .-

PRQE.

REL .

— I 771]
8 12 16
ACTION N=S00
) - T I 13
ACTION N=2000

Figure 6-33

PREB.

_
Wy
o
1 A a8 BET I 16
ACTION »-1000
®
(=}
o
a
2
w
o
i x ? BT 3
ACTION N=1500

Distribution curves (7a)

oLl

PROB.

REL. PROB.

REL.

]

LB . 1z 18
ACTION N2250
e == | 1 7
1 Py .] : iz ; 1€
ACTION NeT50

Figure 6-34

PROJ8.

1
W
o
— B s O I s
s [] 12 16
. ACTION N=300
®
(=]
[3
o
)
W
ac
=L Ty]
1 a4 L) iz 16
ACTION N=1000

Distribution curves (7b)

CHAPTER 7
PROCESS CONTROL WITH A LEARNING AUTOMA TON

7.1 Introduction

The results of the experiments presented in the
previous chapters have confirmed that the hardware stochastic
learning automaton has useful potential for applications in
adaptive control systems. However, these were confined
to simulated and of necessity artificial plant dynamics. It
was felt, therefore, thata more convincing demonstration
of automaton performance in this area would accrue from

experiments which involved a real physical process.

While much theoretical study has been made of adaptive
control strategies, conventional process controllers of the
two term (proportional plus integral) or three term
(proportional plus integral plus derivative) variety are still
widely used in manufacturing industries. With these systems,
there is usually a need for frequent, unpredictable
adjustments to be carried out on-line. This 'tuning”
function, involving the simultaneous adjustment of several
interdependent control parameters, could be performed by an
automaton, and represents a fruitful area of application for

a practical hardware system.

Adaptive control systems can be broadly classified as
either plant measuring or performance measuring. Plant
measuring implies the identification or observation of the
parameters of the environment in order to develop a control
strategy. Since the learning automaton is ideally suited to
the situation where information about the environment is
difficult or impossible to obtain, i.e., the classic ''black

box''

problem, the control philosophy to be followed here
will be performance measuring, where the only information
available from the environment is in the form of some criterion

of /

173

T

of performance, presented at the output port, in response

to an input test signal such as a step or impulse.

It was eventually decided to base these applications
studies on a small thermal process with a two term
(proportional plus integral) controller. This was felt
to be a suitable representation, on a laboratory scale, of
the type of system commonly encountered in real-life

situations.

Thermal Process

The thermal process used in these experiments was
the laboratory tutor model PT 326 (manufactured by
F eedback Litd). This comprises of a centrifugal fan with
an adjustable inlet orifice which blows air through a grid
heater element, down a pipe, and out to the atmosphere.
A miniature bead thermistor is used to monitor the exhaust
air temperature, providing a measured value of process
variable which is compared with the desired set-point in a
detector bridge. This generates the resultant error signal
or deviation which is fed to the controller. Control signal
amplifier and heater drive circuits are incorporated within
the unit, as is provision for external modulation of the

set-point.

The characteristics of this process are approximated
by a distance-velocity lag followed by two exponential lags,

giving the following forward loop transfer function:

-sT
1
Gls) = ——u— (a+ 2)
(1+ 8T,)
2
where T1 = 0.2 sec, T2 = 0. 26 sec

A convenient measure of performance for this system

is /

174

is the Integral of Squared Error (ISE) criterion resulting
from the application of a step input. This criterion is
particularly relevant here, since the error signal relates
directly to the voltage applied to the heater. The ISE
is therefore a measure of the energy consumption of the

system in its response to a disturbance.

It was decided that a two-term controller would be
used, to enable a useful range of parameter adjustment
to be made with the hierarchical automaton. It is therefore
instructive to consider the relationship between the ISE
and the control parameters. A set of ISE contours for
different settings of proportional band and integral time in
the controller has been obtained(Sz), and is reproduced as
Figure 7.1. The principal feature of this performance
characteristic is a well-defined shallow ridge, which implies
comparative insensitivity to proportional band setting in the

region of the optimum: 69% proportional band, 0.385 sec

integral time.

The complete system block diagram is presented in
Figure 7.2. This shows the essential features of the
process, together with its nested control system: an inner
loop, consisting of a standard two-term controller, and an
outer loop, containing the automaton, which evaluates the
error separately and acts on the controller accordingly.

In effect, the automaton sees the process and the controller

combined as the 'environment'.

Control System

The two-term controller section is essentially
straightforward, as shown by the circuit diagram in
Figure 7.3. It consists of a front end buffer, followed
by an integrator which connects via an inverter stage to the

final /

175

7.4

final summing amplifier. Standard IC operational
amplifiers are used throughout, with no special arrangements
made for precision balancing or temperature compensation.

In keeping with the spirit of the automaton approach, factors
such as ambient temperature variations are placed in the
category of random disturbances over which the designer can

assume no control.

Integral time adjustment is achieved by varying the
proportion of error signal which is integrated, while the
proportional band setting is changed by altering the gain of the
final summing amplifier. Both functions are controlled
from the automaton by means of programmable attenuators
(PA1 and PA2 respectively) as detailed in Figure 7.4.

This shows a set of potential dividers (Ra:R activated

bx)
by CMOS switches on the ''earthy' side of each of the
lower resistors. Selection is performed by means of
two 3 to 8-line demultiplexers, addressed by the SLA
output bus. Thus eight settings of proportional band
(33% - 175%) and eight settings of integral time

(0.5 sec - 8 sec) are available, controlled by the automaton

in a 64-action (6-level) configuration.

Performance Evaluation

The performance evaluation section is of central
importance to the automaton-plant interface. The function
of this section, as discussed earlier in Chapter 2, is to
quantify whatever measure of performance can be derived
from the plant, and in turn formulate the requisite binary

reward/penalty response for the automaton.

For these experiments, the performance evaluator
is divided into three sub-sections, which are described with
reference to Figure 7.5. The first section provides for

the /

176

the calculation of ISE, and is implemented on a Solartron

HS7 hybrid computer for accuracy and repeatability. The
patch-up consists of a 4-quadrant multiplier unit in squaring
mode, an integrator with facilities for external control of

the reset and compute modes (via a comparator), and suitably
scaled buffer amplifiers. The ISE output is then passed
toan A/D converter via a potentiometer labelled ''set range'',
which is adjusted initially to establish a convenient dynamic
range for the converter. This would be supplemented

in the case of a comprehensively adaptive system by an

autoranging facility (see Section 2. 8).

The overall operation of the system is supervised by
the sequence control section, which consists basically of two
monostables interacting with the SILA clock sequence to
effect control of the integrator reset/compute modes in the
HS7, operate the A/D converter, and generate a signal
which is the source of the plant disturbance. The
automaton itself can run at its normal fast clock frequency
of the order of megahertz, while making use of the CKSTP/
PLTRDY facility, described in Chapter 5, to arrest the

system between each iteration.

The set-point input signal is a square wave with a
period of 6 seconds, since it was found thata 3 second
interval was sufficient for the plant to register its reaction
to the disturbance, followed by 3 seconds in which to
recover. A TTL signal from the sequence control section
is applied to the MSB input of a D/A converter whose output
voltage in turn provides the process set-point input. The
addition of noise to the system is easily brought about by
connecting lines from a PRBS generator to less significant
bit inputs of the D/A converter. The effect of a
step-wise disturbance on the process is shown in Figure 7.86.

In /

177

7.

5

In (a), no noise is present, and the plant response,
mirrored in the received error signal, shows the typical
features of lag and overshoot. In (b), noise has been
superimposed on the set-point, and the additional
disturbances, random in amplitude and duration, are
clearly evident. The peak value of the noise envelope
here is approximately 12% of the nominal step input

amplitude.

Experimental Results

The overall performance of this learning control
system was assessed by feeding the ISE output voltage from
the HS7 toan X-Y chart recorder. A simple R-C
low-pass filter was used to smooth out variations in the trace
resulting from the long interval between each up-dated reading
(6 secs), while the X-axis was driven by the output of a
""'system iterations' counter via a D/A converter to provide

a suitabie time scale.

A series of experiments was performed to illustrate
various aspects of the learning controllers characteristics.
The results are presented and discussed below. As before,
these are ''one-off' trials, chosen as representative

examples of system behaviour.

Experiment 1: LR—P scheme (Figure 7.7)

These error curves are the result of single learning
runs obtained with the LR—P reinforcement scheme. In
(a), with no noise present, the system converged rapidly
to a low level of steady state ISE after approximately 200
iterations, with little additional variance-induced error in
the later stages. In (b), noise was superimposed on the

set-point, causing the learning phase to be somewhat

prolonged, /

178

prolonged, and a higher level of fluctuation in steady-state

error.

Experiment 2: LR-I scheme (Figure 7.38)

In similar fashion, these curves show the learning
characteristics using the LR—I scheme. Compared to
the above, the initial learning phase was more erratic, but
the system converged just as rapidly, with a virtually constant
level of steady state error, which would be expected from this
highly expedient reinforcement algorithm. In the case of
superimposed noise (b), it is significant that the system

has converged to a sub-optimal action, resulting in a higher

final level of system error.

Clearly, the general features of these learning
schemes which were observed in the earlier, static experiments
are coming to the fore also in this practical system. The
last result is particularly interesting, illustrating once again
that the LR—I automaton does lock on occasionally to a less
than optimal action.

Further experiments were then carried out in which
plant or controller disturbances were introduced, in order
to simulate the situation of a non-stationary environment to
which the automaton is particularly suited, and indeed which

is most likely to be encountered in practice.

Experiment 3: LR-P scheme, blower switch (Figure 7.9)

In this experiment, the blower inlet aperture was
opened abruptly from 20° to 60°. The disturbance was
set manually, when the initial learning phase was deemed to
have advanced sufficiently to steady state conditions. In
the no-noise case (a), the initial learning period was notably
rapid. Immediately following the switch, there was a

considerable /

179

considerable increase in received error, which subsequently
receded as the automaton re-adjusted the controller. A
similar result was obtained in (b) with noise added to the
system. The main feature here is a generally higher
average level of system error, though adjustment times in

each case are virtually identical.

Experiment 4: L scheme, blower switch

R-I
(Figure 7.10)

The above -experiment was then repeated with the
LR-I scheme. In the no-noise case (a), the reaction to
the disturbance was rapidly controlled, and the final error
value very low. With added noise (b), the system
exhibited longer adjustment times and a higher overall level
of ISE. Again, the almost constant level of steady state

error with this scheme is apparent.

Experiment 5: L scheme, controller switch

R-I
(Figure 7.11)

As a further test of the adaptability of the automaton,
a more drastic disturbance' was introduced into the system
by switching the controller characteristics. This was
achieved by changing over two address lines at the inputs to
the programmable attenuators, one for the proportional band
selector and one for thé integral time selector, thereby
completely restructuring the relationship between automaton

actions and controller settings.

In curve (a), the reaction to the controller
disturbance was swiftly compensated. Furthermore, it
appears that in this case the reconfigured controller was able
to lock on to a better control setting, as indicated by the

lower error level of the latter portion of the trace.

With /

180

7.

6

With noise added (b), the reaction to the disturbance
was noticeably more erratic. However, the time taken to
re-adjust did not appear to be significantly longer than in the

previous example.

Experiment 6: LR—I and LR—P schemes,

controller switch (Figure 7.12)

This final experiment gives an excellent illustration

of the pitfalls involved in using the L scheme, rather

R-I

than LR P in a non-stationary environment. In (a)

controller switching was performed onan L system.

It is clear that the automaton simply did not];'{esfpond to the
change in conditions. Since the current choice of action,
and therefore the control setting, was no longer suitable,
the ISE rose to a higher level,at which it remained locked
within the confines of this experimental log (512 iterations).
The jitter on the trace is mainly a result of the R-C filter

on the chart recorder input. '

In (b), a direct comparison can be made with the

performance of an L system under identical conditions.

The initial adjustmenlt:{plfl?ase was longer than the above,

while the initial reaction to the disturbance was very similar.
However, the all-important difference is that the LR—P
automaton was able to re-adjust in the light of the changed
conditions, thereby restoring the system operating error to

its original level.

Conclusions

With these experiments, a practical process
controller with stochastic learning automaton supervision has
been shown to operate successfully. No apriori
information was assumed in the application of the automaton

to /

181

to the system, save for establishing the dynamic range at
the input of the simplified, non-adaptive performance

evaluator (Section 7.4).

The system gave a highly satisfactory demonstration
of adaptive control, achieving minimisation of error under
stationary and non-stationary plant conditions. In this
context, the disturbances applied were quite severe. In
most physical plant the system parameters vary slowly and
continuously, calling for a tracking ability from the
automaton rather than the comprehensive re-adjustment of

which it has been shown nevertheless to be fully capable.

As before, the intrusion of externally derived noise
produced only a marginal degradation in performance.
Convergence times, though long compared with the process
time constants, were notably shorter here than was the case
for the experiments with static plant (ROM) reported in
Chapter 6. This is probably a consequence of the
particular contours of the process performance characteristic
(Section 7.2), which would be expected to encourage rapid
convergence to the general vicinity of the optimum. By
comparison, the automaton computation cycle time (i.e.,
the search and reinforcement phases) is quite insignificant.
This confirms the view that a large-scale multivariable
controller could be constructed along the lines of the system
described here, with no speed penalty from the automaton

in operation.

The process under consideration was a comparatively
simple one, but it did exhibit the general properties of a
real large-scale system. Furthermore, by employing an
automaton to tune a standard two-term process controller,
an application has been devised which can be readily
assimilated by the existing and established technology of

process control.

182

b
o (o~ o

€81

Al

inrregu‘l time (sec.)

~N

0.34

0-20

ISE=Q16

25 50 7% 10 125 150 175 200
proportional band (%)

Figure 71 . SE. contours

81

~

- e e e ---—— -

. [step input (+naise)

e e ma e e e e mem e e e em - ————

; sef \
air point '
]
\§Q . , L 3 ‘
H |
blower ! heater | do!::c;or : i

1 measuring bridge H)

______________ | N
supply
P plus I
control ler * W,

action a; 64 - state

)

ISE —b

porformmcé evaluation

e e e e cc e et e e =

P/R

S.LA

Figure 7.2 Block diagram of process confrol system

100k

RA1

integral time

47

control

k

1pF

100 k

Figure 7.3

100 k

100k
L AAA——
100k K
. [\ AR >—<'——‘\}"“——° process
V control
A o O/P
PA.2
prop.band
control

Controller circuit

981

CMOS switch

select
3-8line demultiplexer prap.

Figure 7.4 Programmable attenuator

---=}select integral
M{W ((.-..} time
R A
SLA

QP bus

L81

process

set point

disturbance €——

error

o,___?__‘
: 002

resel/compute =_=—_1MU
; ISE.
1 10
0-2
set
range
Figure 7.5 Performance evaluation

sequence
control

SSOLCK

status convert
commaond

8-bit
ADC.

PLTf?DY

> SLA

€

clock

comparator

MC

noise

section

P/R

200mS— k-

+
N

)

|
-

error (volts)
(&]

|
N

(@) without noise

+
N

+
—

!
—

error (volts)
o

|
N

(b) with noise

Figure 7.6 System sfep response

188

I.SE.(volts)

A

)

1

q2 Q3 94 9

Q1

Akl)

A

os I.SE.(volts

—

0.4

0.3

Q.2

[a]

100

300 400
iterations

[b]

Figure 7.7

300 400
iterations

System error curves (1)

189

os ISE (volts)

0.4

QR"[* = Y6l _D

ISE (volts)

05

0.4

?.1

03

0.2

A

e

[a]

200 300 400
iterations

CLR-I[< =1/BAD

0 %0 400

i terations

Figure 7.8 System error curves (2)

190

volts)

0.4 0.5 1.SE: {

0.3

02

01

G-F[““géln s @SAD

I.SE (volts)

0.5
A

[a]

100 20 0 400
swt. i terations

EEVEY)

[b]

T T

100 200 300 400

swi i terations

Figure 7.9 System error curves (3)
191

ISE (volts)

02 03 04 05

0.1

(=)

(al]

02 03 04 o5 ISE (volts)

0.1

400
iterations

GR-I [« =%, -D

[b]

T T T

™ 20 W
swt.

Figure 7-10

192

A

400
iterations

System error curves (&)

I.SE (volts)

0.5

4

0,

(LR_I[-C =¥z J

I1SE (volts)

0s

[a]

%0 200 I 3 400
wi iterations

QR-:E"‘J@D

[b]

100 200 300 %80

swi. i terations

Figure 7.11 System error curves (5)
' 193

0.2 0.3 04 05 IS E (volts)

01

Q-R-l["< =Z$/.J>

I.SE. (volts)

0.4

0-3

(al

10 200 00 tfl-bo

sw jterations

Qa-p[} %, 5 =5364D |

[b]

0 20 w L{ 400

iterations

Figure 7.12 System error curves (6)
194

CHAPTER 8
CONCLUSIONS - REVIEW AND OUTLOOK

8.1 Review of the Project

This project was initiated against a background of
5,7,8

considerable developments in learning automata theory(T).
Their behaviour was well understood, and application areas

(9-13, 16, 47-51) P

were being actively pursued
this, investigations began into the feasibility of developing
hardware automata for practical engineering applications, with

(1-4)

digital stochastic computing providing the ideal medium.
The vast majority of theoretical studies had concentrated on
two-state automata; therefore they formed the basis for the

initial experiments in hardware synthesis.

The first two-state design (flip-flop SLLA - Chapter 2)
was rathef limited in scope, but realised quite a promising
performance. The general learning characteristics were
broadly similar to those reported previously(zo’ 21), both in
transient and steady-state behaviour, i.e., learning time
(in terms of system iterations), degree of expediency and
variance; The results achieved here could not, by the
nature of the hardware involved, approach the precision of
these previous simulation studies, but the same general
conclusions could be drawn. A simple plant simulator was

developed also, and the degree of insensitivity of the system to

superimposed noise was demonstrated.

The circuit design for the reinforcement algorithm turned
out to be as flexible as it was simple, and was subsequently
incorporated in a more advanced form of SLA design (ADDIE
SLA - Chapter 3). Again, the salient features of each
learning scheme could be verified with the ADDIE SLA, and
a comprehensive understanding of the performance of this

system /

195

8.

2

system was built up. The experiments (Chapter 4),
which dealt with a wide variety of reinforcement schemes,
linear and non-linear, progressed a stage further with the
consideration of non-stationary environments. In addition,
the effect of superimposed noise in the environment was

further investigated.

The ADDIE SLA had been devised using the concept of
memory in the learning process, and acted as a prelude to
the development of a large state order system in which a
hierarchical structure based on a time-shared two-state
automaton ''cell' was employed (Chapter 5).

Conservation of hardware and ease of operation were paramount
in the design, but operating speed was not to be unduly
compromised. The hierarchical SLLA was initially tested
with a simulated multimodal performance characteristic

stored in a PROM (Chapter 6). The results obtained in
these experiments, which could be considered much closer

to real-life systems, indicated that the transition from simple
two-state applications to the multivariable, multimodal

problem had been successfully accomplished.

The applications studies culminated in the operation of a
real small-scale thermal process controller under automaton
supervision (Chapter 7). Successful control, reflected
in the minimisation of error in the step response, was
achieved in conditions which involved quite severe external
disturbances to the system, demonstrating conclusively the

viability of the automaton approach.

The Future

Although the hardware system described here has proved
its worth, there is undoubtedly a case to be made for further
development. A hierarchical array of two-state cells,

constructed /

196

constructed with dedicated hardware using digital stochastic
computing techniques, has been shown to.be an eminently
suitable solution to the high speed control of large-scale
systems. However, the strict binary nature of the state
order does represent a handicap. Some method of internally
ordering the decision paths in a large hierarchical structure
system would be useful in accelerating the convergence process
by eliminating more rapidly the obviously less suitable
directions for the ''search' phase (see Section 5. 8).

Such an approach, wherein the structure of the automaton
itself has adaptive properties, is in sympathy with the type of

(5)

multilevel automaton arrangement envisaged by Narendra

A possible solution for non-binary r-state systems was
touched upon in section 5.3, in which it was suggested that a
binary hierarchical automaton would have its output decoded
down to the requisite number of actions for a particular
application. However, it is likely that the best approach
to the design of general r-state automata lies in the use of
microprocessors. Preliminary work in this area has in

(71)

fact been reported recently Such systems are ideally

suited to the telephone traffic routing problem<59), particularly
in view of the development of stored 'program exchange control
techniques. In this context, the dedicated hardware system
would still have a part to play, providing a means for the

high speed simulation of learning schemes prior to the

implementation of automata in communication networks via the

controlling software.

For medium speed applications, the microprocessor is
not at a severe disadvantage, since the algorithm calculations
can be performed rapidly enough, using an external
arithmetic processor if necessary. Delays arise, though,
in using software random number generating routines. For

fastest /

197

fastest operation, digital stochastic hardware has the inherent
advantage that calculations are effectively performed at each
single clock pulse. If the hardware stochastic computing
approach is to remain viable in the long term, however, it
would be preferable to have the requisite functions integrated

(32). This

in the form of a universal stochastic module
element would provide all the standard stochastic functions
(Chapter 1) on a single programmable L SI chip, withall

the attendant advantages of space and cost-effectiveness.

In the process control application area, speed is not
usually a priority, given the long time constants which are
often encountered. It may well become an important factor,
however, when large multivariable systems are involved.
Consi'derable development effort will be required in the detail
design of performance evaluation systems for the plant-automaton
interface, since communication at this point is vital to the

overall effectiveness of the controller.

In conclusion, the union of digital stochastic computing
techniques with learning automata theory has produced a form
of learning machine which has real potential for on-line

adaptive control systems.

198

REFERENCES

1

10

11

Gaines B R
'Stochastic Computing'
AFIPS 30 SICC 1967 pp 149 - 156

Gaines B R

'Stochastic Computing Systems'

in 'Advances in Information and Systems Science'
ed J Tou 2 1969 p 37 - 172

Poppelbaum W J, Afuso C and Esch J W
'Stochastic Computing Elements and Systems'
AFIPS 31 FJCC 1967 pp 631 - 644

Ribiero S T

'Random Pulse Machines'

IEEE Trans on Electronic Computers
16 3 June 1967 pp 261 - 276

Narendra K S and Thathachar M A L
'Learning Automata - A Survey'

IEEE Trans on Systems, Man and Cybernetics
4 4 July 1974 pp 323 - 334

Bibbero R J
'"Microprocessors in Instruments and Control'
Wiley 1971

Tsetlin M L

'On the Behaviour of Finite Automata in Random Media'
Avtomatika i Telemekhanika (Automation and Remote Control)
22 10 October 1961 pp 1345 - 1354

Varshavskii VI and Vorontsova I P
'On the Behaviour of Stochastic Automata with a Variable Structure'
ibid 24 March 1963 pp 353 - 360

Sklansky J

'Learning Systems for Automatic Control'
IEEE Trans on Automatic Control

11 January 1966 pp 6 - 19

Fu KS

'Learning Control Systems - Review and Outlook'
ibid 15 April 1970 pp 210 - 221

/

199

11

12

13

14

15

16

17

18

19

20

Riordon J S

'An Adaptive Automaton Controller for Discrete-Time
Markov Processes'

Automatica 5 Pergamon Press 1969 pp 721 - 730

Riordon J S

'Optimal Feedback Characteristics from Stochastic
Automaton Models'

IEEE Trans on Automatic Control

14 February 1969 pp 89 - 92

Jones L E and Fu KS

'On the Selection of a Sub-Goal and the Use of a Priori
Information in Learning Control Systems'

Automatica 5 Pergamon Press 1969 pp 705 - 720

Tsypkin Y Z
'Adaptation and Learning in Automatic Systems'
Academic Press 1971

Jarvis RA

'Optimisation Strategies in Adaptive Control: A Selective
Survey'

IEEE Trans on Systems, Man and Cybernetics

7 3 March 1977 pp 125 - 143

El-Fattah Y M and Najim K

'Practical Problems Related to the Use of Learning Models
for Control of Industrial Processes'

Proc of the Workshop on Applications of Adaptive Control
Yale University Connecticut U S A

August 1979 pp 164 - 169

Brown AW

'Design of a Digital Stochastic Computer'

M Phil Thesis

Robert Gordon's Institute of Technology, Aberdeen
1975

Mars P, McIntosh F G and Baxter T

'High-Speed Simulation of Discrete Dynamic Probabilistic
‘Systems!'

Mathematics and Computers in Simulation

21 1979 pp 21 - 38

Viswanathan R and Narendra K S
'Expedient and Optimal Variable-Structure Automata'

Becton Centre Yale University Connecticut USA
Tech Rep CT-31 April 1970

/

200

20

21

22

23

24

25

26

27

28

29

Viswanathan R and Narendra K S

'Simulation Studies of Stochastic Automata Models'
ibid Tech Rep CT-45 December 1971

Viswanathan R and Narendra K S

'Comparison of Expedient and Optimal Reinforcement
Schemes for Learning Systems'

J of Cybernetics

2 1 1972 pp 21 - 37

Viswanathan R and Narendra K S

'A Note on the Linear Reinforcement Scheme for
Variable-Structure Stochastic Automata'

IEEE Trans on Systems, Man and Cybernetics
2 April 1972 pp 292 - 294

Glorioso R M and Grueneich GR

'A Training Algorithm for Systems Described by Stochastic
Transition Matrices'

ibid 1 January 1971 pp 86 - 87

Mason L G

'An Optimal Learning Algorithm for S-Model Environments'
IEEE Trans on Automatic Control

18 October 1973 pp 493 - 496

Lakshmivarahan S and Thathachar M A L
'Absolutely Expedient LLearning Algorithms for Stochastic
Automata'

"IEEE Trans on Systems, Man and Cybernetics

3 May 1973 pp 281 - 286

Sawaragi Y and Baba N

'A Note on the Learning Behaviour of Variable-Structure
Stochastic Automata'

ibid 3 November 1973 pp 644 - 647

Sawaragi Y and Baba N

'"Two. €-Optimal Non-Linear Reinforcement Schemes for
Stochastic Automata'

ibid 4 January 1974 pp 126 - 131

Baba N .

'On the Learning Behaviour of the SLR-I Reinforcement
Scheme for Stochastic Automata'

ibid 6 August 1976 pp 580 - 582

/

201

29

30

31

32

33

34

35

36

37

38

Lakshmivarahan S and Thathachar M A L
'Absolute Expediency of Q - and S-Model Learning
Algorithms'

ibid 6 March 1976 pp 222 - 226

Lakshmivarahan S and Thathachar M A L
'Bounds on the Convergence Probabilities of Learning
Automata'

ibid 6 November 1976 pp 756 - 763

Miller A J

'"Digital Stochastic Computation'
Ph D Thesis

University of Aberdeen

1976

Baxter T

'Some Aspects of the Design, Construction and Applications

of a Digital Stochastic Computer'

M Phil Thesis

Robert Gordon's Institute of Technology Aberdeen
1975

Miller A J, Brown A W and Mars P

'Adaptive Logic Circuits for Digital Stochastic Computers'

Electronics Letters
9 21 1973 pp 500 - 502

Miller A J, Brown A W and Mars P

'A Study of an Output Interface for a Digital Stochastic
Computer'

Int J of Electronics

37 5 pp 637 - 655

Miller A J, Brown A W and Mars P
'"Moving-Average Output Interface for Digital Stochastic
Computers'
Electronics Letters

10 20 pp 419 - 420

Miller AJ and Mars P

'Optimal Estimation of Digital Stochastic Sequences'
Int J of Systems Science ‘
8 6 1977 pp 683 - 696

Miller AJ and Mars P

'"Theory and Design of a Digital Stochastic COmputer
Random Number Generator'

Mathematics and Computers in Simulation

19 1977 pp 198 - 216

/

202

38

39

40

41

42

43

44

45

46

47

48

Birolini A

'Hardware Simulation of Semi-Markov and Related
Processes'

ibid 19 1977 pp 75 - 97

Albareda A and Castanie F

'Optimisation of the Structure of a Random Number Generator

with Correlated Bits'

Proc of the 1st Int Symp

on Stochastic Computing and its Applications
INPT Toulouse France 1978 pp 89 - 102

Schwind M

'On Generating and Applicating a Set of Independent
Bernoulli-Sequences'

ibid pp 103 - 112

McLean H R and Mars P

'High-Speed Matrix Inversion by Stochastic Computer'
Electronics Letters

12 18 September 1976 pp 457 - 459

MclLLean HR and Mars P

'Implementation of Linear Programming with a Digital
Stochastic Computer!

ibid 12 20 September 1976 pp 516 - 517

Mars P and Grover D
'"This Random Pulse will Speed up the Processing'
Computing Europe

.October 7 1976 pp 14 - 15

Witten I H and Madams P HC

'A Low-Cost Long-Term Stochastic Integrator'’
Electronics Letters

14 10 May 1978 pp 293 - 294

Damashek M

'Shift Register with Feedback Generates White Noise'
Electronics

May 1976 pp 107 - 109

Golomb S
'Shift Register Sequences'
Holden-Day 1967

McMurtry, GJ and Fu KS

'A Variable Structure Automaton used as a Multimodal
Searching Technique'

IEEE Trans on Automatic Control

11 July 1966 pp 379 - 387

/

203

48

49

50

51

52

53

54

55

56

Shapiro IJ and Narendra K S

'Use of Stochastic Automata for Parameter Self-Optimisation

with Multimodal Performance Criteria’
IEEE Trans on Systems Science and Cybernetics
b) 4 October 1969 pp 352 - 360

Viswanathan R and Narendra K S

'Application of Stochastic Automata Models to Learning
Systems with Multimodal Performance Criteria'
Becton Centre Yale University Connecticut U S A
Tech Rep CT-40 June 1971

Jarvis R A

'Adaptive Global Search by the Process of Competitive
Evolution'

IEEE Trans on Systems, Man and Cybernetics

5 3 May 1975 pp 297 - 311

Baba N

'"Theoretical Considerations of the Parameter
Self-Optimisation by Stochastic Automata'
Int J of Control

2% 2 1978 pp 271 - 276

Levy NM

'"The Application of Hill-Climbing Methods to the Adaptive
Control of Small-Scale Practical Systems'

IEEE Trans on Industrial Electronics and Control
Instrumentation

24 1 February 1977 pp 74 - 80

Kubrusly CS and Curtain RF

'Identification of Noisy Distributed Parameter Systems
Using Stochastic Approximation'

Int J of Control

25 3 1977 pp 441 - 455

Jarvis R A

'Adaptive Global Search in a Time-Variant Environment
‘Using a Probabilistic Automaton'

Proc IREE (Australia) July 1969 pp 210 - 226

Jarvis R A

'Adaptive Global Search in a Time-Variant Environment
Using a Probabilistic Automaton with Pattern Recognition
Supervision'

IEEE Trans on Systems Science and Cybernetics

6 3 July 1970 pp 209 - 217

g

204

56

57

58

59

60

61

62

63

64

65

Neville R G, Nicol CR and Mars P

'Design of Stochastic L.earning Automata Using Adaptive
Digital Logic Elements'

Electronics Letters

14 11 May 1978 pp 324 - 326

Witten I H

'Finite-Time Performance of Some Two-Armed Bandit
Controllers'

IEEE Trans on Systems, Man and Cybernetics

3 March 1973 pp 194 - 197

Witten I H

'Stochastic Implementation of Learning Controllers'
IEE Colloquium on Parallel Digital Computing Methods
1976 Digest No 1976/30 paper 6

Narendar K S and Thathachar M A L

'On the Behaviour of a Learning Automaton in a Changing
Environment with Application to Telephone Traffic Routing'
Proc of the 1st Int Symp on Stochastic Computing and
its Applications »

INPT Toulouse France 1978 pp 301 - 317

Tsuji H etal

'An Automaton in the Non-Stationary Random Environment'
Information Sciences

6 1973 pp 123 - 142

Baba N and Sawaragi Y

'On the Learning Behaviour of Stochastic Automata Under
a Non-Stationary Random Environment'

IEEE Trans on Systems, Man and Cybernetics

5 March 1975 pp 273 - 275

Loui M C and Narendra K S

'Comparison of Learning Automata Operating in
Non-Stationary Environments'

Becton Centre Yale University Connecticut US A
Tech Rep CT-65 May 1965

Coutts MJ and Mars P

'"Theory and Applications of a Modified-Estimating Automaton'

Proc of the 1st Int Symp
on Stochastic Computing and its Applications
INPT Toulouse France 1978 pp 303 - 320

Mackie NJ and Mars P
'Stochastic Automata in Non-Stationary Environments'
ibid pp 321 - 344

/

205

65

66

67

68

69

70

71

Narendra K S and Viswanathan R

'A Two-Level System of Stochastic Automata for Periodic
Random Environments'

IEEE Trans on Systems, Man and Cybernetics

2 April 1972 pp 285 - 289

Viswanathan R and Narendra K S
'Games of Stochastic Automata'
ibid 4 January 1974 pp 131 - 135

Langholz G and Katz E
'Learning Automata in a Three-Move Zero-Sum Game'
ibid 9 5 May 1979 pp 304 - 309

Asai K and Kitajima S

'A Method for Optimising Control of Multimodal Systems
Using Fuzzy Automata'

Information Sciences

3 1971 pp 343 - 353

Asai K and Kitajima S

'Optimising Control Using Fuzzy Automata'
Automatica

8 Pergamon Press 1972 pp 101 - 104

Luders G and Narendra K S

'An Adaptive Observer and Identifier for a Linear System'
IEEE Trans on Automatic Control 18 October 1973
pp 496 - 499

Swan G B

'Investigation and Design of an n-State Learning Automaton'
B Sc¢ Thesis Robert Gordon's Institute of Technology
Aberdeen 1980

206

BIBLIOGRAPHY

Astrom K J and Wittenmark B
'On Self-Tuning Regulators'
Automatica 9 Pergamon Press 1973 pp 185 - 199

Atkinson R C, Bower G H and Crothers E J
'An Introduction to Mathematical Learning Theory'
John Wiley and Sons 1965

Bharucha-Reid A T
'Elements of the Theory of Markov Processes and their Applications'
McGraw-Hill 1960

Booth T L
'Sequential Machines and Automata Theory'
John Wiley and Sons 1968

Charlesworth A S and Fletcher J R
'Systematic Analogue Computer Programming'
Pitman 1967

Eveleigh VW
'Adaptive Control and Optimisation Techniques'
McGraw-Hill 1967

Gaines B R
'Stochastic and Fuzzy Logics'
Electronics Letters 11 9 May 1975 pp 188 - 189

Gould E E
'An Automatic Control System with Self-Adjustment of Two Parameters'
MSEE Thesis University of Washington Seattle 1960

Halliwell J
'Stochastic Computers Solve More Problems Faster'
Electronic Engineering October 1970 pp 63 - 65

Hasdorff L
'Gradient Optimisation and Non-linear Control'
John Wiley and Sons 1976

Healey M

'Principles of Automatic Control'

3rd ed Hodder and Stoughton 1975
Hillier F S and Lieberman GJ
'Introduction to Operations Research'’

Holden-Day Inc 1967

Howard R A /

207

Howard R A
'Dynamic Programming and Markov Processes'
MIT Press 1960 '

Ichikawa K
'Principle of Luders-Narendra's Adaptive Observer'
Int J of Control 31 2 1980 pp 351 - 365

Jackson A S
'Analogue Computation'
McGraw-Hill 1960

Karlin S and Taylor HM
'A First Course in Stochastic Processes'
Academic Press 1975

Kickert W.J M and Mamdani E H
'Analysis of a Fuzzy Logic Controller'
Fuzzy Sets and Systems 1 1978 pp 29 - 44

Korn G A
'Random Process Simulation and Measurements'
McGraw-Hill 1966

LaCarna RJ and Johnson J R

'A Learning Controller for the Megawatt LLoad-Frequency
Control Problem!'

IEEE Trans on Systems, Man and Cybernetics 10 1
January 1980 pp 43 - 49

Mackie N J, Chrystall M S and Mars P
‘Some Aspects of Stochastic Learning Automata in
Non-Autonomous Environments'
Robert Gordon's Institute of Technology Aberdeen
Tech Rep 1979

Mahmoud M S
'"'Multilevel Systems Control and Applications: A Survey'
ibid 7 3 March 1977 pp 125 - 143

Maisel L
'Probability, Statistics and Random Processes'
Simon and Schuster 1971

Mamdani E H
'Application of Fuzzy Algorithms for Control of Simple Dynamic Plant'
Proc IEE 121 12 December 1974 pp 1585 - 1588

Mamdani E H and Assilian S
'An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller'
Int J of Man-Machine Studies 7 1975 pp 1l - 13

Narendra K S /

208

Narendra K S, Mason L G and Tripathi SS

'Application of Learning Automata to Telephone Traffic Routing
Problems')
Becton Centre Yale University Conn USA Tech Rep CT-60
January 1974

Narendra KS and Wright EA

'Application of Learning Automata to Telephone Traffic Routing
Problems'

ibid Tech Rep CT-69 May 1976

Narendra K S and Lakshmivarahan S
'Learning Automata - A Critique'
ibid Systems and Inf Sci Rep 7703 May 1977

Narendra K S and Thathachar M A L

'On the Behaviour of a LLearning Automaton in a Changing
Environment with Application to Telephone Traffic Routing'
IEEE Trans on Systems Man and Cybernetics 10 5
May 1980 pp 262 - 269

(@stergaard JJ

'Fuzzy Logic Control of a Heat Exchanger Process'

Technical University of Denmark Copenhagen Publication No 7601
January 1976

Poppelbaum W J

'Statistical Processors'

Department of Computer Science University of Illinois at Urbana
Illinois USA Report May 1974

Saridis G N
'Self-Organising Control of Stochastic Systems'
Marcel Dekker Inc 1977

Thathachar M AL and John OB
'Discretized Reward-Inaction Learning Automata'
J of Cybernetics and Inf Sci 2 1979 pp 24 - 29

Tou J T (ed)
'Applied Automata Theory'
Academic Press 1968

Watanabe S

'Creative Learning and Propensity Automaton'
IEEE Trans on Systems Man and Cybernetics 5
November 1975 pp 603 - 610

Zadeh L A

'Outline of a New Approach to the Analysis of Complex Systems
and Decision Processes'
ibid 3 1 January 1973 pp 28 - 44

209

APPENDIX A
THE EXPECTED VALUE OF ACTION PROBABILITY

(i) Linear Reward-Penalty
The L reinforcement algorithm can be re-stated
R-P
. L (62)
linguistically as follows :
pl(n+1) = apl(n)+(1-a), if action a, was

performed and rewarded, with

probability 1 -cl,

or apl(n), if a, was performed and
rewarded, with probability 1—02,
or Bpl(n), if a, was performed and

penalised, with probability s

or Bpl(n)+(1-B), if a, was performed
and penalised, with probability Cy-

From this, the expected value of (n+1) is obtained as:
Py

E l:pl(n+l)]

[ap+(1-a)] (1-c)p +ap, (1-c)(1-p))

+8p, e + [Bp,+(1-8)] cy(1-p,)

= p,[Bp,c,-c,p,#(1-B)e,p -(1-B)c,-ap,
+aplcz+ap1+1-a-aplc] -(1-a)c1+Bc2
+a—a/c2-J+(1-B)c2

- plz[_‘cl-(1-B)cl-c2+(1-3)c2-a+c2-(1-a)cz

+a-c1+(1—af)cl] +p, [l-a-(l-B)cz-(l-af)c1+c2

-(1—B)c2+ar+(1-a)02]+(1-B)c2

Hence

E [pl(n+1)i]

(e,c)(@-B) p, (n)
+[1+(1-0)(c,=c)-2(1-B)c, Jp, ()

+(1-BZc2

Al

(ii) Linear Reward-Inaction

The LR-
pl(n+1)
or
or
Then

E[:pl(n+1)j}

I

algorithm can be stated in similar fashion:

apl(n)+(1-a),

and rewarded, with probability 1-c

apl(n), if

rewarded, with probability 1-c

if a, was performed

1,
a, was performed and

2

pl(n), if a penalty response was received.

[@ p1+(1-a)]

9
*P, cl+p1(1

Py |P [1 F-

(1_cl)p1+ap1(1-cz)(l-p1)
—pl)cz

-p,)e ta(l-p,)(1-c,)

+[ap1+(1-a)] (1-¢c,)

+
P, @lcl (1

-aclpl-(l—a)clj

P El-pp [--o)(1-c,)]

+(1-a)(1-p))
Hence
-
E lp,)| = [1+(1-a)(c,-
- .
Note that if B =1 in the L
- m
B =
E |p,(n+1) 9

— -

i.e., the formula is reduced to the expression for the L

+ EH'(I'Q')(CZ_C

+0

E+(1-a)(cz—c1)-(l-a)(cz-cl)pl(n)]. pl(n)

1+(1-a)(c

scheme, as derived above.

A2

R-

(1-C]:)+p]]

(1 a-p, (n)) pl(gl

P scheme, then

(e ,-c)a-1) p, (n)

-0 p,(m)

2-31)Q_-_p1(n))]p1(g

-pl)-(l—a)(l—pl)(l—C2)+ap1+(1-af)

R-I

PUBLICATIONS

1

4%

6%

Neville R G, Nicol CR and Mars P
'Synthesis of Stochastic LLearning Automata'
Electronics Letters 14 1978 pp 206 - 208

Neville R G, Nicol CR and Mars P

'Design of Stochastic Learning Automata Using Adaptive
Digital Logic Elements'

ibid 14 1978 pp 324 - 326

Neville R G, Nicol CR and Mars P
'Design of Non-Linear Stochastic Learning Automata'
ibid 14 1978 pp 396 - 397

Neville R G and Mars P

'Hardware Synthesis of Stochastic Learning Automata'
Proc 1st Int Symp on 'Stochastic Computing and its
Applications

INPT Toulouse France 1978 paper 7.4

pp 345 - 365

Neville RG and Mars P

'Hardware Design for a Hierarchical Structure Stochastic
Learning Automaton'

J of Cybernetics and Inf Sei 2 1979 pp 30 - 35

Neville R G, Chrystall M S and Mars P

'Application of a Hierarchical Structure Stochastic

Learning Automaton'

Systems and Inf Sci Becton Centre Yale University USA
Report 7906 September 1979

Neville RG and Mars P

'Adaptive Control of Multimodal Stochastic Systems Using
Learning Automata'

Paper submitted to the IEE Int Conf on 'Control and

its Applications' @ Warwick University March 1981

*Not eneclosed

The first solution has the advantage of a low surface
doping, hence providing higher gate-drain avalanche
breakdown voltage. The second solution, however, should have
a better (lower) source and drain contact resistance, and is
probably somewhat easier to approximate in practice. Both
profiles may be approximated by epitaxial growth and ion
implantation techniques, or a combination of both.

Although the details of the profiles might require alteration
to account for the effects of contact resistances and the
variation of the drain voltage along the load line excursion,
1t 1s believed that the basic features of the profiles will not be
altered

ROBERT A. PUCEL

Research Division
Rayrheon Company
Walrham. Massachuserts 02154 USA

13th January 1978

References

I PERLOW, S. M. ‘Third-order distortion in amplifiers and mixers’,
RCA Rev , 1976, 37, pp. 234-267

2 STATZ, H., HAUS, H. A., and PUCEL, R. A.: ‘Noise characteristics
of gallium arsenide field-effect transistors’, [EEE Trans., 1974,
ED-21, p. 549

3 PUCEL. R. A.. HAUS, H. A, and STATZ, H.: ‘Signal and noise
properties of gallium arsenide field-effect transistors’, in ‘Advances
in electronics and electron physics 38" (Academic,- New York,
1975)

4 PUCEL, R. A, MASSE, D. J., and KRUMM, C. F.: ‘Signal and
noise propertiés of gallium arsenide field-effect transistors’, JEEE J.
Solid-State Circuits, 1976, SC-11, p. 243

5 WILLIAMS, R. E., and SHAW, D. W.: ‘GaAs f.e.t.s with graded
channel doping profiles’, Electron. Lert., 1977, 13, pp. 408-409

0013-5194/78/0847-0204 $1.50/0

SYNTHESIS OF STOCHASTIC LEARNING
AUTOMATA

Ind rerms. Stochasti Logic design, Special
purpose computers

The application of digital hasti puting technique
to the hard sy is of stochastic learni 1S

considered. Experimental results are presented for a two-state

automaton realised ‘using a linear rewndlpnnnhmcm
algorithm. The fast | times ined are believed to be
of significance to the viability of duect ondine control of

stochastic systems.

Introduction. In many process control problems, the charac-
tenstics of the process are fully known, and a complete
mathematical description of the process and of the corres-
ponding control strategy is possible. However, a large number
of situations arise where uncertainties are present, either due
to an incomplete mathematical model of the process, or due
to operation in 2 random environment. Where the probabilistic
nature of these uncertainties is known, stochastic control
theory can be applied, but in the case of higher order
uncertainties where the probabilistic characteristics cannot be
easily ascertained, it is only possible to gain sufficient
knowledge of the process by ‘on-dine’ observation. Herein
lies the application area for stochastic learming automata
(s.la.)

A stochastic automaton with variable structure (s.a.vs.)
changes the probabilities of its actions in response to .the
random inputs from the environment within which it is
operating. These changes are brought about by a ‘reinforce-
ment scheme’ built into the automaton structure such that it
tends to converge to a suitable state to satisfy the immediate
control requirements of the environment (Fig. 1A). For an
r-state automaton at time n,

pin + 1) = Tp(n)

206

where p(n) is the vector of total state probabilities and T is
a stochastic matrix whose /, jth element, p;;, denotes the
probability of transition from state i to state j. Total state
probabilities and transition probabilities are thus both valid
representations of the sa.vs.

disturbances classification

——
\
fandom (i) p-modet: X« {0,1}

environment x= oamm
x=1 =>penaity
tm' (i) -modet:X=ix, xrx, |

‘xicx I ‘i'p‘]

automat
u on

(s.av.s)

[(ii) s-model X={0,1}
1

~ L
“Nreinforcement scheme
P, (nel) = P (n)e fl"[p' (m._.pr nj

a
Fig. 1A A ion-envi feedb

=)

L.

The techniques of digital stochastic computing’ provide
an ideal method for the practical synthesis of leaming
automata, and this letter describes the design of systems which
will for the first time enable the hardware simulation of
stochastic learning automata controllers.

Classification: The automaton/environment interaction can be
classified as one of three types, depending on the nature of the
environment response, as shown in Fig. 1A. An automaton
functioning in a stationary environment is said to be:

(a) expedient if the asymptotic average penalty M is less than
the arithmetic mean of the penalty probabilities

(b) optimal if the asymptotic average penaity equals the
minimum of the penaity probability set, denoted by

{C:i=1,2,...,7}

(C) e-opamal ifM< Ci(m,') +e€

The convergent behaviour of the automaton is determined
by the algorithm employed in the reinforcement scheme.

Algorithms: A large number of algorithms have been
described®® for updating schemes, and their properties
compared. Updating can be applied to total state probabilities
or transition probabilities. The former may be preferred
because updating is performed on a smaller number of
quantities, but in other cases the actual transition information
may be desired.

In the work described here, the algorithm employed was
the simple linear reward-penalty scheme, denoted Lg_p. The
Lg-p scheme applied to a P-model structure was considered
to be a suitable system to implement in hardware form, since
the binary system response and the stochastic multiplication
involved are well-suited to digital circuitry.

The algorithm is stated as follows:

(i) Non penalty: (on action o)
Pjeiln + 1) =apin), 0<a<l

pin+1)=1-3 pin+1)
J#i

(ii) Penalty: (on action a;)

pin + 1) = fpin), 0<B<l

=
Pjeiln + 1) =pfn) + {]P.r(n)
An automaton using the above scheme is found to be
expedient. In the case of a two-state s.l.a. the algorithm has a

ELECTRONICS LETTERS 16th March 1978 Vol. 14 No. 6

particularly simple form
(a) Non-penalty: (on action a;)
pi(n + 1) =1 —apy(n)

pa(n + 1) = ap,(n)

() Penalty: (on action a,)
pi(n+1)=fpy(n)
paln+ 1) =1 —fp,(n)

Hardware implementation: A 2-state automaton was designed
in order to investigate its behaviour and compare results with
previous software simulation work.* The algorithm circuit
shown in Fig. 1B was designed with the aid of a ‘truth-table’

derived from the aigorithm as follows:
R _aode
LS pp Ocdress Eo
/ ' awon&‘

§‘. '—‘-&_ et Tex s,

g' é-llp 0]

p: @E | oe— ——Ck

R 4/ data | 3

5
seiector
6 m_to_m:t:,

Fig. 1B 2<rare s.La L ppaigorithm

pi(n) pa(n) PR piln +1) pa(n+1)
0 1 0 ap,(n) 1=ap,(n)
0 1 1 1 —dp3(n) Bpa(n)
1 0 0 1 —ap;(n) apa(n)
1 1 1 Bp1(m) 1= fpy(n)

Clearly, only py(n+ 1) need be formed, since p(n+1) is
always the complement. Simple AND gates are used to form
the products ap,(n) etc., the appropriate term being seiected
by the 4/]1 data selector, whose ‘address’ consists of the
present state signal p,(n) and the punishment/reward signal
(P/R). The address must not change as rapidly as the algorithm
inputs, or the correct factors will not be formed. Therefore a
slower clocking rate than that of the algorithm cycle is used
for the state output flip-flop (FF 2), from which the address

Thus p,(n).is represented by the probability of this flip-flop
input being logic 1 at the occurrence of a clock pulse, and this
probability will either increase or decrease as the system is
clocked depending whether that state is rewarded or penalised.

The requisite noise lines for the various constants were
obtained from a 31-bit mdength sequence generator, consisting
of a 31-bit shift register with exclusive-OR connected feedback
from bits 3 and 31.° Factors other than 0-5 were simply
obtained by AND-gate multiplication, enabling a varety of
Lp-p schemes, denoted by y=(1—a)/{(l—§), to be
impiemented.

Some form of output interface circuit was required in order
to enable the characteristics of the s.l.2. to be observed. It was
decided that the most suitable way of studying the learning
behaviour of the automaton was to display individual ‘learning
curves’ on a storage oscilloscope. The system output which is a
stochastic pulse train was converted to an anaiogue measure of
probability by means of the standard adaptive digital
logic elements described previously.*™

Experimental results: In the initial experiments, the simulated
environment response was set up with C; =075 and
Cy =025, while y was varied from 1 to 64 using the available
noise sources. The pr.bs. generator and sla. clocks were set
at 10 MHz and 1 MHz, respectively; the main system flip-flop
clock was therefore 100 kHz.

ELECTRONICS LETTERS 16th March 1978 Vol. 14 No. 6

The family of learning curves shown in Fig. 2A clearly
shows the increasing expediency resulting from increasing v,
In each case, the system flip-flop was preset initially to p,,
ie. the ‘wrong’ state, and the output subsequently converged
towards p,, the state carrying the lower penalty probability.

1or

o8t Y= 64
o-8r
Sa™
0-7F
06 " e L " N s
1 2 3 4 S 3
B (Cyu0-75 Cpm0-25) time, ms

a

Fig. 2B Learming behaviour for both states
With y= 1, the system converged to a level corresponding
approximately to the reward probability for the state. This is
to be expected in s'situation where reward and penalty factors
are of equal magnitude. The overall characteristics of the
system are well summarised in Fig. 2B.- This shows the ability
of the sla. to lock on whichever state carries the lower
penalty probability, from either starting state, using in this
case a “y = 8’ scheme.

10

08
T o0
?&"‘
0-&
0-2
o n N N A i)
0 1 2 3 4 5 6
oy (Y=8) time,ms
“ P

Fig. 2A Learning curves—Lg p scheme

It was realised that a reward-inaction (Lg.;) scheme
cannot be implemented with this system, since inspection of
the circuit shows that setting 8 = 1 (i.e. infinite) will cause
the flip-flop to remain in whichever state is initially selected.

_A significant feature of the results is that learning times of
the order of 5 ms can be obtained. It is believed that learning
times of this magnitude enable for the first time direct on-line
contral of several stochastic systems including multimodal
stochastic system optimisation and the adaptive routing of
telephone traffic systems.®!® Further development of the
system clearly requires an extension in the number of states,
without incurring the penalty of excessive hardware require-
ments. Work is now in progress on a 128-tate hierarchical
system nmgatwo-cmc:.la.onltnnechuedbm These
resuits will be reported subsequently.

Acknowledgment: The authors wish to gratefully acknowiedge
the support of 2 UK Science Research Council Grant.

R. G. NEVILLE 2nd February 1978
C. R. NICOL

P. MARS

School of El ic and Electrical Engi g

Robert Gordon’s institute of Technology

Aberdeen ABY 1 FR, Scotiand

207

References

| GAINES, B. R.
pp 149-156

2 NARENDRA, K. S., and THATHACHAR, M. A. L.: ‘Learning
automata—a survey’, [EEE Trans., 1974, SMC4, pp. 323-334

3 VISWANATHAN, R., and NARENDRA, K. S.: ‘Expedient and
optimal variable structure stochastic automata’. Becton Centre,
Yale University, 1970, Technical Report CT-31

4 VISWANATHAN, R., and NARENDRA, K. S.: ‘Compamon o(
expedient and optimal reinfor h for | Y 73
J. Cybern., 1972, 2, pp. 21-37

SMILLER A. J., and MARS P.: ‘Theory and design of a digital

ber generator’, Trans. IMACS,

‘Stochastic computing’, AFIPS SJCC, 1967, 30,

1977, 19, pp. 198-216

6 MILLER, A. J.,, BROWN, A. W., and MARS, P.: ‘Adaptive logic
circuits for digital stochastic computers’, Electron. Lett., 1973,
9, pp. 500-502

7.MILLER, A. J., BROWN, A. W, and MARS, P.: ‘Study of an output
interface for digital stochastic computers’, Inr. J. Electron., 1974,
37, pp. 637655

8 MILLER, A. J., and MARS, P.. 'Optimal estimation of digital
stochastic sequences’, Int. J. Syst. Sei., 1977, 8, pp. 683-696

9 SHAPIRO, I. J., and NARENDRA K. S.: ‘Use of stochastic
automata for with multi-modal
performance cmem IEEE Tmnx. 1969 SSC-5, pp. 352-360

10 NARENDRA, K. S., WRIGHT, E. A., and MASON, L. G.: ‘Applica-
tion of leaming automata to telephone traffic routing and control’,
{EEE Trans., 1977, SMC-7, pp. 785-792

ERRATA
VERRAZZANI, L.. ‘Bandwidth and demodulation gain in
q.s.s.b. f.m.’, Electron. Lett., 1978, 14, pp. 18-19

The author would like to make the following corrections to his
paper’

The third expression after eqn. | should read

R(7) =4 Re (exp (jun1) lexp {~a[f(r) + f(t + 7)]
=iBf(2) = f(t +)])

In the first expression on p. 19 the first equality for B/B
should read

B _R(0)
£ R(0)

The caption to Fig. 1 should read
Fig. 1 Mean-square bandwidth of q.s.s.b. f.m. versus fraction

of power in sidebands for lowpass rectangular input spectrum
with unity cutoff frequency

208

ADDENDA

SHAMASH, Y.: ‘Computing the invariant zeros of multi-
variable systems’, Electron. Lett., 1977, 13, pp. 722-723

The author would like to make the following addition to his
letter:

In this letter, a method was suggested for computing the
invariant zeros of multivariable systems. The author has since
been made aware, through private communications with
Professor B. Porter, of the fact that the essential idea of the
method had been independently prepublished by Kwahernaak
and Sivan.! The author wishes to thank Professor Porter for
bringing this to his attention.

Reference
1 KWAHERNAAK, H., and SIVAN, R.: ‘Linear optimal control
systems’ (Wiley, 1972)

CRANE, R. K., and DEBRUNNER, W. E.: Worst month
statistics’, Electron. Lett., 1978, 14, pp. 3840

The authors would like to make the following addition to the
acknowledgments section of their paper:

Dr. Crane’s participation in the work of CCIR Study Group 5

was supported by the National Aeronautics and Space
Administration under Contract NAS 5-24209.

ELECTRONICS LETTERS 16th March 1978 Vol. 14 No. 6

recovered signal is proportional to the frequency deviation and
is a differentiated version of the original modulating signal.
Thus, for a small group delay 7, the multimode fibre actsasa
frequency discriminator. In low dispersion graded-index fibres
72 I ns/km, and hence the delay demodulation effect is
negligible except at very high acoustic frequencxes and large
phase deviations.

(c) Triple-transit echo: p.m. to a.m. conversion may also occur
if the optical fibre end reflections (which have made multiple
transits of the fibre) interfere (or homodyne) with the direct
signal. If we represent the direct signal by expr. 1, then, con-
sidering any one mode, we may write for the most significant
optical reflection, i.e. the triple-transit echo,

A r 10720 E, sin [wet + 348 sin wm? +¢] (13)
where r, = r, = optical intensity reflection coefficients (=3-5%
for a silica-air interface), @ = optical attenuation constant and
I = length of fibre. Notice that the modulation index for the
first echo is 3A8 since it has passed through the modulated
region of the fibre three times. We shall assume that the
propagation time for the echo (= 5us/km) is insignificant
with respect to the period of the modulating signal. Going
through the same procedure as before and expanding in terms
of Bessel functions, we may write for the photodiode current

i(t) = 3Ar, r, 1072%}[1 + Jo(248)cos ¢
+ 2J,(2A0)sin ¢ sin wm?
+ 2J,(248)cos ¢ cos 2wt + ...] (14)

Again, for small A6 and quadrature optical bias (¢ = £m/2),
we may write

(1) = +/{r, 1, 1072} AB sin Wt (15)
Egn. 15 reveals an important feature of optical homodyne or
heterodyne systems, in that the echo retumn loss \/r, r, 1072}
has a minimum value of 29dB (assuming 3-5% fibre end
reflections, perfect temporal coherence and zero fibre attenua-
tion), whilst in direct (incoherent) detection systems it has a
minimum value of 58 dB, This difference arises from the fact
that a squarelaw detector functions as a linear demodulator
in coherent systems. Thus echo signals in coherent optical
fibre systems are a potential source of interference to those
signals produced by the differential phase discriminator

effect (a). The relative sensitivity of discriminators (2) and (c)
depends not only on coherence, echo return loss, number of
propagating modes and mode-mixing effects, but also on the
acousto-optic interaction length and as to how the fibre is
subjected to stress.

Conclusions: The fibredyne system described and analysed
above is a very simple device for exploiting the microphonic
aspects of multimode fibres, where the fidelity of reproduc-
tion is not important, e.g. in intruder alarms. The analysis also
indicates that problems may arise in conventional direct
detection fibre systems if the laser is to coherent. Experi-
mental evidence of these p.m. to a.m. phenomena will form
the subject of the second paper in this series.

Acknowledgments: This work was supported by the UK
Science Research Council. We are indebted to both GEC and
STL for provision of optical fibres.

S. A. KINGSLEY
D. E. N. DAVIES

Department of Electronic & Electrical Engineering
University College London

Torrington Place

London WCI 7JE

England

17th April 1978

References

1 SMITH, L. W and SNI'!‘ZE!L E. ‘F:ml developmmt report for
fibre optics inf y Optical C
Report 600-TR-F, 1969

2 DAVIES, D. E. N, and KINGSLEY, S. A.: ‘An optical fibre data
collection highway’. Proceedings of Electro-optics/Laser Inter-
national *76 UK, Brighton, 1976, pp. 64-72

3 KINGSLEY, S. A., and DAV‘IES. D. E. N.: “Use of optical fibres

as . Digest of technical papers, Con-
ference on hmmdebctm-opﬂul systems, San Diego, Calif.,

1976, pp. 24~25
4 NEI.SON D F KLEIN'MAN D. A., and WECHT, K. W.:
of fibregui ission’, Appl.

Phy: Lert., 1977, 30. PpP. 94-96

BUCARO, J. A, DARDY, H. D., and CAROME, E. F.: ‘Optical
fibre acoustic sensor’, Appl. Opt., 1977, 16, pp. 1761-1762
BUCARO, J. A., DARDY, H. D.,and CAROME, E. F.: ‘Fibre-optic
hydrophone’, J. Acoust. Soc. Am., 1977, 62, pp. 1302-1304

COLE, J. H., JOHNSON, R. L., and BHUTA, P. G.: ‘Fibre-optic
detection of sound’, ibid., 1977, 62, pp. 1136~1138

CULSHAW, B, DAVIES.D E. N, and KINGSLEY, S. A.:
*Acoustic sensitivity of optical-fibre waveguides’, Electron. Lett.,
1977, 13, pp. 760~761

0013-5194/78/1053-0322 51.50/0

0 N o0 W

DESIGN OF STOCHASTIC LEARNING
AUTOMATA USING ADAPTIVE
DIGITAL LOGIC ELEMENTS

Indexing terms: Stochastic automata, Logic design, Special
purpose computers, Learning systems

The hardware design of hastic learni using
adaptive digital logic el is considered. Such techni
based on digital nodnni'c computing, m shown to provule

ical and fast k time
results are presented for a variety of lhnu hamm; dgoxmmu.

Introduction: One of the potential areas for applying the
results of stochastic computing research'™® is in the imple-
mentation of learning systems for optimal control using
stochastic automata structures. A stochastic automaton with a
variable structure (s.a.v.s.) changes the probabilities of its
actions in response to inputs from a random environment.*
A ‘reinforcement scheme’ built into the automaton causes
updating of the action probabilities so as to improve per-
formance and produce convergence to a suitable final
structure.® Recently a simple flip-flop stochastic learning
automaton based on a linear reward/penalty (Lg_p) algorithm
has been described.® In order to incorporate superior learning
algorithms and to improve the viability of large-state order
systems attention has been focused on improving the original

324

hardware design. A consideration of the various reinforcement
algorithms shows that it is essential to include a memory
capability within the automaton structure in such a manner as
to establish priority of state probabilities during the learning
period. If this is not so the past experience of the stochastic
learning automaton is erased after each system cycle (or clock
pulse). Such considerations led to the idea of representing the
probability of state occupation not simply by the probability
of a flip-flop being in a certain state at the occurrence of a
clock pulse, but by a number stored in a counter, which may
be subsequently converted to a stochastic sequence. The result

\sclock
o O e
output
“clock
]' cl;;)orit....l o

plant response
a

Fig. 1A Two-stare Addie s.La.
ELECTRONICS LETTERS 25th May 1978 Vol. 14 No. 11

is the evolution of a new design for 2 hardware learning
automaton based on the adaptive digital logic elements
(Addies) described previousty.” It should be noted that the use
of Addie structures has also been proposed for the related
‘two-armed’ bandit problem.®

Design of the Addie stochastic learning automaton: A 2-state
stochastic learning sutomata can be implemented using a single
Addie, as shown in Fig. 1A; The contents of the Addie counter
represent state probability p, (n), while p, (n) is simply taken to
be the compiement.

A B—< .'?91
| oy
2 >
i data
P 1D oP
A Ep]—n
By | — B
Lre lm VPR

Fig. 1B Algorithm circuits for linear schemes

An egpsential feature of the operation of the sutomaton is
the updating of state probabilities in accordance with the
environment or plant response. This is achieved in the Addie
tla. by loading p,(n) from the Addie to a latch, and perform-
ing digital/stochastic conversion. The resulting stochastic pulse
train is then transformed via the algorithm circuitry to an
updated state probability p;(n + 1). The Addie then reaches
an estimate of py (n + 1), and, after a suitable settling time, the
next cycle can commence. A flip-flop on the comparator out-
put represents the present state occupied, and state trajectories
can be observed by filtering the output, or by direct digital/
analogue conversion of the Addie contents.

The operating sequence of the Addie s.la. is as follows: The
initial load operation sets up the requisite value of 0-5 (i.e.
‘one-all zeros’) in the counter, so that the output of the com-
parator is a stochastic sequence with an equal probability of
1s and Os, representing random state selection at initial time
% At the first clock puise, this sequence is sampied and at the
same time, the counter contents are copied into the latch.
Then, when the clock pulse goes low, the punishment/reward
signal resulting from the state of the D-<ype flip-flop is
latched, and the Addie clock enabled, -allowing the ‘learning
period’ to commence. During this time, the Addie converges
to the new value of p; (1), which is then used as the basis for
the next cycle.

The advantage of this design is that, since no locking-on
problems can occur, it is possible to implement the more
suitable e-optimal schemes, using the established method of
algorithm circuit design based on stodnmc computing
techniques described previously.®

Algorithm circuit design: As mentioned earlier, the Addie
stochastic leaming automaton enables several of the reinforce-
ment schemes described previously® to be implemented.

The linear rewud/pemltylchamel,k.,mybeduuibed
for the two state case as:

(@) Reward: (action ap)
pa(n+ 1) = op;(n)
Pi(r+1)=1—ap(n)
(b) Penalty: (action ay)
pi(n+1)=§p (n)
py(n+1)=1=8p,(m)
where0<a<1 and 0<B<1.

Similar expressions hold for action @, The hardware
implementation for the L. p scheme has been described and is
shown in Fig. 1B (Reference 6). The obvious extension of this
scheme is to implement the e-optimal linear reward-reward

ELECTRONICS LETTERS 25th May 1978 Vol. 14 No. 11

(Lg-g) and reward-4naction (Lg.p schemes. The Lg_; scheme
is particularty simple to accommodate, since the only modifi-
cation required is to set the factor § = 1. The Lg_g scheme. in
which the penalty is replaced by a lesser reward, is given below
in two-state form:
() Nonpenalty: (on action a;)

pi(n+1)=1-ap,(n)

pa(n+ 1) = apy(n)

(if) Penalty: (on action a;)
pi(r+1)=1—8p,(n)
Pa(n+ 1) =fpy(n)

where 0 <f<a<l.

As before a truth-table is constructed to enable the
algorithm to be translated into a circuit design:

pi(n) pa(n) P/R p(n+1)
0 1 0 apy(n)
0 1 1 Bp(n)
1 0 0 1 —apyn)
1 0 1 1 - BpAn)
or
o9+
o8-
B2
o7+
|
05
0 5 "
Xy m
to . (47l
¢, =075
0 ___EM
0 &0 60 80 100 120
L gm mS
b
=64
Y- 8
A ¢, = 025,075
07
(o . "
[+} 5 10 15 20 25 30
to . mS
Fig. 2 Learning curves
@ Lg.pscheme
b Lg.rscheme
¢ Lg.g scheme
325

By comparison with the truth-table for the Lg._p scheme,®
it is evident that the Lg_p circuit can be converted to an Lg_g
circuit simply by reversing the fp,(n) and 1 -fp,(n) con-
nections. The circuit arrangements for these linear schemes are
summarised in Fig. 1B.

Experimental results: The Addie stochastic learning auto-
maton was tested using a storage oscilloscope to observe the
state trajectories directly. Learning curves obtained with the
Lg.p scheme are shown in Fig. 2a. The curves show how the
degree of expediency increases with reward/penalty ratio ¥
(y=(1-a)/(1 =F)). It should be noted that the counter
implementation allows a proper initial condition to be set up,
corresponding to random state selection at time f, i..
p;(0) = 0-5. For these experiments, the Addie clock was set at
10MHz and the noise generator clock at 1 MHz, while the
main system clock consisted of 100ns puises with 100 kHz
repetition rate.

The results obtained with the e-optimal Lg_; scheme are
illustrated in Fig. 2b. With this scheme the automaton exhibits
virtually full convergence to p; = 1 or p, = 1. It is known that
the Lg_g scheme is comparable in expediency to the Lg_;
scheme when v is high but the Lg_z scheme is expected to
exhibit a slower rate of convergence. The results obtained
with a Lg.p scheme are shown in Fig. 2¢. As expected the
degree of expediency increases with 7.

The general conclusion to be gained from the above results
on linear schemes is that there is little difference in expediency
between the schemes with high y-factor. The criterion of
relative convergence rates, which is stressed in the reported
software simulation studies,’ is less important in the work
reported here. Indeed, there appears to be no discernible
difference in learning time between the schemes investigated.
The chief determining factor in the transient response of the
hardware systems is the output Addie. This element has a
restricted bandwidth in order to obtain an acceptable com-
promise between convergence speed and steady-state variance.

Conclusions: The above results have verified that the Addie
stochastic learning automaton has very satisfactory learning
characteristics. Although its operation involves a certain
amount of serial processing, similar leaming times to the flip-
flop automaton have been obtained. Indeed the results
obtained previously® for the Lg_p scheme have been virtually
duplicated by the new circuit, which has of course the added
advantage of being able to implement a more comprehensive
range of reinforcement schemes. The ability to optimise in less
than 10ms represents a significant development, particularly
in view of the proposed extension to systems of much larger
state order, embodying the same basic Addie stochastic auto-
maton within a hierarchical structure.

Acknowledgment: The authors wish to gratefully acknowledge
the support of a UK Science Research Council gmn

R. G. NEVILLE
C. R. NICOL
P. MARS

Robert Gordon's Institute of Technology
School of Electronic & Electrical Engineering
Schoolhill, Aberdeen AB9 1FR

Scotiand

12th April 1978

References

IG%SBGR ‘Stochastic computing’, AFIPS SJCC, 1967, 30,
PP.
2 MI&LEI} A. ., and MARS, P.: ‘Theory and design of a digital

', Trans. IMACS,
. 1977, 19, pp. 198-216
3 MILLER, A. J., and MARS, P.: ‘Optimal estimation of
stochastic sequences’, /nz. J. Syst. Sci., 1977, 8, pp. 683-696
4 NARENDA, K. S.; and THATHACHAR, M. A. L.: ‘Leaming auto-
mata—a survey’, JEEE Trans., 1974, SMC~4, pp. 323-334
5 VlSWANATHAN R., and NARENDA, K. S.: ‘Expedient and
optimal variable structure stochastic automata’, Becton Centre,
Yale University, 1970, Tech. Rep. CT-31

326

6 NEVILLE, R. G, NICOL, C. R., and MARS, P.: ‘Synthesis of
stochastic learning automata’, Elecrron. Lert., 1978, 14, pp. 206-208

7 MILLER, A. J.,, BROWN, A. W., and MARS. P.: ‘Adaptive digital
logic circuits for digital stochastic computers’, ibid., 1973, 9,
pp. 500-502

8 WITTEN, L J.: ‘Stochasti of learni llers’,
IEE colloguium on plnllel dlaul computing methods, 1976
Digest 1976/30, Paper 6

9 VISWANATHAN, R., and NARENDA, K. S.: ‘Simulation studies
of h dels’, Becton Centre, Yale University,
1971, Tech. Rep. CT-45

0013-5194/78/1043-0324 $1.50/0

MATERIAL DISPERSION IN
LIGHTGUIDE GLASSES

Indexing terms: Optical fibres, Glass
Material dispersi are reported on six charac-
teristic lightgnide glass siti The were

made on bulk specimens and cover the wavelength range from
08tol$um ltboburveduminthounhuulhmm

length at which persion is zero is in all cases
greater than 1-2 um.

Introduction: In order to increase the bandwidth of light-
guides it is desirable to minimise material dispersion—the
wavelength dependence of the light group velocity in the
transmission medium. Measurements of material dispersion
have been reported on certain bulk samples of lightguide
glasses’*? and also on optical fibre specimens.®* Both types
of analyses are being pursued at this laboratory. Although bulk
specimens may not duplicate the materials comprising those in
lightguides, dispersion measurements on bulk specimens
provide the following advantages: (2) accurate sample chemical
composition determinations can be made on bulk material;
(b) measurements are free of waveguide effects which may
complicate dispersion analyses on fibres; (¢) measurements can
be performed on materials contemplated for optical waveguide
claddings such as B,0~Si0O, compositions; (d) dispersion can
be analysed in materials prior to the achievement of low-oss
lightguides made from them.

The results of such measurements obtained on characteristic
compositions of materials currently used in waveguides are
reported herein.

Experimental: The glass compositions on which material
dispersion is reported are listed in Table 1. Glass A-D were
prepared at this laboratory by r.f. plasma fusion of vapour or
presintered powder, glass E was prepared by Hereaus Quarz-
schmelze and glass F was prepared at this laboratory by a
conventional high-purity crucible melting technique. The
compositions reported are those indicated by chemical analysis
of the prepared glass and are accurate to +0-1 mole %.
Refractive indices were measured at the wavelengths given
in Table 2. The measurement method utilised was the

Table 1 COMPOSITIONS AND ZERO MATERIAL DIS-

PERSION FOR GLASSES STUDIED
Zero material
Sample Composition dispersion
Moles #m
A Quenched Si0, 1284
B 13-5Ge0, : 86-58i0, 1-383
C 9-1P,0; : 90-9Si0, 1274
D 13-3B,0, : 86-7Si0, 1-231
E 1-0F : 99-0Si0, 1-284
F 16-9Na,0 : 32:5B,0, : 50-6Si0, 1-283

ELECTRONICS LETTERS 25th May 1978 Vol. 14 No. 11

References

| JOSEPHY, R. D.: ‘MOS-T zur Leistungs arkung im
HF-Bereich', Philips Tech. Rdsch., 1970/71, 31, pp. 262-269

2 MORITA, Y., TAKAHASHI, H., MATAYOSHI, H., and
FUKUTA, M.. ‘Si UHF MOS high-power FET', JEEE Trens., 1974,
ED-21, pp. 733-734

3 OAKES, J. G., WICKSTROM, R. A, TREMERE, D. A, and
HENG. T. M. S.: ‘A power silicon mi 'MOS istor’,
ibid.. 1976, MTT-24, pp. 305-311

4 REINDL. K.: ‘Spun on arsenosilica films as sources for shallow
arsenic diffusions with high surface concentration’, Solid-State
Elecrron., 1973, 16, pp. 181-189

5 DECLERCK, G. J., HATTORI, T., MAY, G A., BEAUDOUIN, J.,
and MEINDL, J. D." ‘Some effects of tricloroethylene oxidation on
the characteristics of MOS devices', J. Electrochem. Soc., 1975,
122, pp. 436-439

0013-5194/78/1112-0394 $1.50/0

DESIGN OF NONLINEAR STOCHASTIC
LEARNING AUTOMATA

" Ind terms: Stoch.

j 5 ic Logic design, Special
purpose computers, Learning sy stems

The hardware design of I hastic learni

using adpative digital logic elements is considered. Such tech-

niques, based on digital stochastic computing, are shown to

provide faster convergence rates than automata based on linear

learning algorithms. Experimental results are presented and
lidati btained for th ical predicti i

optimal convergence.

Introduction: A significant application area for digital
stochastic computing techniques’~® is in the hardware syn-
thesis of stochastic learning automata. Stochastic automata
modify their action probabilities in response to inputs from a
random environment. Previous work has demonstrated syn-
thesis techniques for stochastic automata using a variety of
linear reinforcement schemes including reward/penalty,
reward/inaction and reward/reward.*$

Although the best of the linear schemes, the Lgy (reward/
inaction) scheme has been widely reported® as most suitable
for many applications, investigations have also been made of
nonlinear updating schemes.”® These tend to show faster
initial convergence rates, and indeed one reason for the
emphasis placed on these schemes is to obtain optimum con-
vergence times, especially when they are incorporated in
hybrid schemes. The present work presents a synthesis tech-
nique for nonlinear stochastic learning automata and provides
experimental results for learning characteristics including
conditions for optimal convergence.

Nonlinear learning algorithm: Previous work® has demon-
strated the design of a 2-state stochastic learning automaton
using adaptive digital logic elements (Addies). The basic
schematic of the system which has been described previously
is shown in Fig. la.)

The simplest of the nonlinear schemes is that denoted as
N{p, which has ‘squaredaw’ nonlinearity. It has been shown®
that this scheme is conditionally optimal, providing optimal
convergence if ¢, < §<c, and expedient otherwise. (¢ repre-
sents penalty probabilities). This scheme for the two-state
case, is given below:)

(a) Non-penalty (on action a;)
Pi(n +1)=py(n) + apy (n)[1 = py ()]
pa(n + 1) =py(n) — apy (n)[1 = py ()]
(&) Penalty
py(n + 1)=p,(n) — Bp, (n)[1 —p,(n)]
pa(n+1)=p; + 8pi (nJ[1 = py(n)]
0<a,p<1

The truth-table for this scheme is as follows:

p(m) pa(n) PR pi(n+1) pa(n+1)
0 1 0 pi-apa(1-py) patapa(l-po)
0 1 L pu+bp(1-p) p=Bpa(1-pd)
1 0 0 prtap(1=-p) pr~api(l1-py)
1 0 1 pi=Bpi(1=p) P2+ 8pi(1-py)

The hardware implementation of the scheme is complicated by
two factors. The first is the presence of terms of the form
prn)[1 —pdn)]. This product cannot simply be formed by an
AND gate because of the direct complementary relationship
between the two signals. The solution here is to interpose a
delay on one of the inputs, along the lines of the conventional
stochastic squarer circuit.' The other difficulty is that sum-
mation in stochastic form requires an AND-OR configuration
with random selection of the two signals by a separate prb.s.
noise line. This entails an overall division by two.

4/ data
|selector j—eQP

p‘ E

noise |Cy
clock
mEn LT_Tm
‘,’“ PIR
Fig. 1

@ Two-state Addie s.la. .
b Algorithmic circuit for Myp scheme

It is therefore preferable to rearrange the algorithm terms
so that they contain only muitiplication and inversion opera-
tions. The algorithm circuitry is designed to generate py(n + 1)
alone and the algorithm terms are then transformed as follows:

pr+ap(1-p)=1-[p—ap,(1-p1)]
) =1-[(1-apyp]
Py~ Bp1(1 = p) = (1 — Bp2)Py, and so on.
This leads to a revised truth-table:

pi(n) p2(n) P/R pi(n+1)
.0 1 0 (1 —ap)p,
0 1 1 1 - [(1 = Bpyesl
1 0 0 1= [(1 —ap)ps]
1 0 1 (1 - bp;y

The hardware implementation for this scheme, witha=§=1,
is shown in Fig. 1b. Comparing this circuit with that for the
Lg_p scheme described previously, an essential similarity is
evident.* In the M), scheme, the simple constants a, § are
replaced with terms of the form (1 — og;) and (1 ~Bp;).

ELECTRONICS LETTERS 22nd June 1978 Vol. 14 No. 13

Experimental resulrs: The N} scheme considered is the
simplest of the nonlinear schemes to be reported, and is
fairly easy to implement, as described above. It was possible to
verify in practice the property of conditional optimality
mentioned earlier by suitable choice of penalty probabilities
G. With ¢ vaiues of 0-25 and 0-875, the system yielded the
optimal convergence curves shown in Fig. 22, with generally
lower variance than was evident in the case of the best linear
schemes.

The conditional optimality characteristic of this scheme
was investigated by feeding the penalty probabilities via a
switching circuit, so that the degree of convergence as the
system was switched from ‘optimal’ to ‘expedient’ conditions
could be observed. Fig. 2b shows the resulting state outputs,
with the switching waveform superimposed (central trace).

ror VT e C 2 085

C,2025
TeB el
Cy=025
C, =0-875
YaBal
06+ C =012%
B3| C =0 56,
p2| 170
L \
02;' i
0s y, \ ok
b T%ms

Fig. 2
' & Learning curves for Ng_p scheme
b Optimal/Expedient switching characteristics

One penalty probability was fixed at 0-125, and the other
was switched periodically about the critical point of 0-5 from
0'56 (switching waveform low) to 044 (switching waveform
high). The results show that with ¢ ={0:125, 0-56}, the state
trajectories exhibit optimal convergence, whereas with
¢, ={0-125, 044}, the system degrades to expedient
behaviour. These results are enwely consistent with previous
theoretical predictions.®

Conclusions A design technique has been described for the
synthesis of nonlinear stochastic automata based on digital
stochastic computing methods. Experimental results have
demonstrated the fast learning times ob d from nonli
algorithms and proved the validity of previous theoretical
predictions concerning conditions for optimal convergence.

Acknowledgment: The authors wish to gratefully acknowledge
the support of a UK Science Research Council grant.

R G. NEVILLE
C. R. NICOL
P. MARS

School of Electronic end Electrical Engineering
Robert Gordon's Institute of Technology

12th May 1978

Schoolhill
Aberdeen AB9 IFR
Scotiend

References

1 GAINES, B. R.: ‘Stochastic computing’, AFIPS SJCC, 1967, 30,
pp. 149-156

2 M!LLER.A.J mdMARS.P ‘Thorymddemofldmul

. Trans. IMACS,

- 1977, 19, pp. 198-216
3 MILLER, A], and MARS, P. ‘Opumul estimation of digial
stochastic uqu-ncs.lnt J. Syst. Sci., 1977, 8, pp. 683-696
4 NEVILLE, R G., NICOL, C. R., and MARS, P.: ‘Synthesis of
chastic b ', Elecrron. Leti., 1978, 14, pp. 206~

208
5 NEVILLE.ILG NICOL, C. R., and MARS, P.: Design of
using adaptive digital logic
elements’, ibid., 1978, 14, pp. 324-326
6 VISWANATHAN “R., and NARENDRA. K. S.: “‘Companson of
and | reinf for } systems’,
J C:vbtm 1972.2.PP 21-37
7 V‘ISWANATHAN. R., and NARDIDRLK S.: ‘Simulation studies
', Becton Centre, Yale University,
Tech Rept. CT-4S, December 19‘71
8 VIS\VANATHAN. R., and NARENDRA, K. S: ‘Expedient and
', Becton mne, Yale

University, Tech. Rept. CT-31, April 19'?0

0013-5194/78/1135-0396 $1.50/0

CYCLOTRON AND UPPER HYBRID
RESONANCE FREQUENCY IN REFLECTED
PULSE BY MAGNETOPLASMA HALF SPACE

Plasma waves

Reﬂwud m{unm of unpnum plane waves incident on a

o magnetop hall space (with d.c.

ic field perpendicular to the propagation vector) are
mmmnthcdo:dlmbyh-l(mawmofﬁrnkmd
and fractional order. Thc cyclotron plasma [xeqnncynnhud
to the first normali in the refh
waveforms. Cyclotron and upper hybrid resonance plasms
frequencies are related to the delay of the first maximum
excursion in the reflected waveforms.

Indexing terms: Cycl

Introduction: The reflection of an impulsive plane wave by a
lossless magnetoplasma half space has been studied previously
for small to moderate plasma anisotropy (ag = wp/w, < 0-3)
by the perturbation method (Stani¢ er a/') and numerically
for strong anisotropy (Jinno er al?®). In both cases the
impulsive plane wave (with the wave vector perpendicular to
the external d.c. magnetic field) was incident normally to a
magnetoplasma half space with sharp boundary. Schmitt®
made experiments with nanosecond pulses and used transient
signals as a diagnostic tool. Here, the time domain solution is
obtained in closed form by the standard Laplace transform

ELECTRONICS LETTERS 22nd June 1978 Vol. 14 No. 13

technique for an arbitrary value of anisotropy parameter
ap = wp/wp.

Theory: An electromagnetic pulse is incident to the free space
(z <0)~ plasma (z > 0) interface (z = 0). The wave vector is
perpendicular to the external d.c. magnetic field. The
reflection coefTicient in the frequency domain is

kolko — 1
kolko + 1

R(w)= (¢}
where
ko= w)/c is.the free space wave number -

- L .
o D
whar= wp + wh = wj(1 + ab) is the upper hybrid frequency
wia=(wp(2 + of tag(dad + 1))
ag= wp/w, is the anisotropy parameter
wp is the electron cyclotron frequency
wp is the electron plasma frequency

is the magnetoplasma wave number

397

HARDWARE DESIGN FOR A
HIERARCHICAL STRUCTURE
'STOCHASTIC LEARNING
AUTOMATON

Richard G. Nevilie and Philip Mars

School of Electronic and Electronic Engineering
Robert Gordon''s Institute of Technology
Schoolhill .
ABERDEEN ABS 1FR, Scotland

The hardware design of stochastic leaming automata
using adaptive digital logic elements (ADDIES) is consid-
ered. Such techniques, based on earlier research into digital
stochastic computing, are capabie of providing usefully fast
learning time computations, and experimental results are
presented here for a variety of linear and noniinear leaming
algorithms.

A hardware design for a 128-state stochastic learning
automaton using a hierarchical structure is then described,
and experimental results of static and dynamic optimisation
are presented. This system is shown to be capable of tast,
economical learning behaviour suitabie for the practical im-
plementation of ondine learning controllers.

1. INTRODUCTION

One of the potential areas for applying the results of
stochastic computing research(1) (2) (3) is in the implemen-
tation of learmning systems for optimal control using sto-
chastic automata structures. A stochastic automaton with a

variable structure (SAVS) changes the probabilities of its'

actions in response to inputs from a rangom environment(4).
A “reinforcement scheme' built into the automaton causes
updating of the action probabilities so as to improve per-
formance and produce convergence to a suitable final
structure(S). Recently a simple flip-flop stochastic learning
automaton based on a linear reward/penalty (LR.p) algo-
rithm was described(6). In order to incorporate superior
learning aigorithms and to improve the viability of large state
order systems attention has been tocussed on improving the
original hardware design. A consideration of the various re-
inforcement atgorithms shows that it is essential to include a
memory capability within the automaton structure in such a
manner as to establish priority of state probabilities during
the ieaming period. If this is not so the past experience
of the automaton is erased after each system cycle (or ciock
pulse). Such considerations led to the idea of representing
the probability of state occupation not simpty by the proba-
bility of a flip-fiop being in a certain state at the occur-
rence of a clock pulse, but by a number stored in a counter,
which may be subsequently converted to a stochastic se-

quence. The result is the evolution of a new design for a
hargware learning automaton based on the adaptive digital
logic elements (ADDIES) describeg previousty(7). It shouid
be noted that the use of ADDIE structures has also been
proposed for the related “‘two-armed"” bandit problem(8).

2. DESIGN OF THE ADDIE STOCHASTIC
LEARNING AUTOMATON

A 2-state stochastic learning automaton (SLA) can be im-
piemented using a single ADDIE, as shown in Figure 1.

Addie
lotth
T
\otlock
:;mn;mmt;I D Y ;r‘ure
pose o clock
algorithm
pln_nr response
Figure 1 Two-State ADDIE SLA

The contents of the ADDIE counter represent state proba-
bility p,(n). while p,(n) is simply the complement.

An essential feature of the operation of the automaton
is the updating of state probabilities in accordance with the
environment or plant response. This is achieved in the
ADDIE SLA by loading p,(n) from the ADDIE to a latch. and
periorming digital-to-stochastic conversion. The resulting
stochastic pulse train is then transformed via the algorithm
circuitry to an updated state probability p,(n + 1). The ADDIE
then reaches an estimate of p,(n + 1), and, after a suitabie
settiing time, the next cycle can commence. A flip-flop on
the comparator output represents the present state occu-

pied, and state trajectories-can be observed by filtering the
output, or by direct digital/analogue conversion of the
ADDIE contents.

The operating sequence for the ADDIE SLA is as follows.
The initial load operation sets up the requisite value of 0.5
(ie. “one - all zeros™) in the counter, so that the output
of the comparator is a stochastic sequence with an equal
probability of 1's and Q's, representing random state selec-
tion at initial time t5. Al the first system clock puise, this
sequence is sampled and at the same time, the counter con-
tents are copied into the latch. Then, when the clock puise
goes low, the punishment/reward signal resulting from the
state of the D-type flip-flop is latched, and the ADDIE clock
. enabled, allowing the “learning period”’ to commence. Dur-
ing this time, the ADDIE converges to the new value of p,(1),
which is then used as the basis for the next cycle.

The advantage of this design is that, since no locking-on
problems can occur, it is possible to implement the more
suitable e-optimal schemes using the established method of
aigorithm circuit design, based on stochastic computing
techniques, described previously(6).

3. ALGORITHM CIRCUIT DESIGN

As mentioned earlier, the ADDIE stochastic learning auto-
maton enables several of the reinforcement schemes
described previousiy(S) to be implemented.

The linear reward/penalty scheme Lp.p may be
expressed in two-state form as:

(i) Reward:(actiona,)
PAN+ 1) = apyn)
PN+ 1) = 1 —apyn)

(i) Penalty : (action a,)
pn+1) = ﬂD«(n)
pAn+1) = 1 —pBp,n)
where0 £ o £ 1and0 & g < 1

Similar expressions hold for action a,. Algorithm circuitry
was designed using a form of *‘truth-table’":

P.(n) p4n) PR py(n+1)
0 1 0 ap,(n)
0 1 1 1- B p4n)
1 0 0 1- @ p,(n)
1 0 1 Bp.(n)

The design can obviously be extended to cover the e-optimal
linear reward-reward (LR.R) and reward-inaction (LR.)
schemes. The Lm.| scheme is particularly simple to ac-
commodate, since the only modification required is to set
the factor § = 1. The LR.R scheme, in which the penalty is

:eDiaced by a lesser reward, is given below in two-state
orm: .

() Non-penalty : (on action a,)
P(N+1) = 1 —ap,n)
PN+ 1) = a py(n)

31

(ii) Penalty : (on action a,)
Pyn+1) = 1 —fpyn)
PN + 1) = fDy(n)

where0 < f &£ a £ 1

As before a truth-table is constructed to enable the aigo-
rithm to be transiated into a circuit design:

py(n) p4An) PR pn+1)
0 1 0 a D,(ﬂ)
0 1 1 Bpy(n)
1 0 0 1 — apyn)
1 0 1 1 — B pLAn)

By comparison with the truth-table for the Lr.p scheme,
it is evident that the LR.p circuit can be converted to an
LR-R circuit simply by reversing the g p,(n)" and "1 —
B p«n)" connections. The circuit arrangements for these
linear schemes are summarised in Figure 2.

g

g
Prnd R

L

Figure 2 Algorithm Clrcuits for Linear Schemes.

Although the best of the linear schemes, the LR.| scheme,
has been widely reported as most suitable for many appli-
cations, considerable study has been made of nonlinear up-
dating schemes(S). These tend to show taster initital conver-
gence rates, and indeed one reason for the emphasis put on
these schemes is to obtain optimum covergence times.
especially when they are incorporated in hybrid schemes.

The simplest of the nonlinear schemes is that denoted as
N'R-p, which has ‘‘square-law’’ nonlinearity. It has been
shown that this scheme is conditionally optimal, providing
optimal convergence if ¢, < Y2 < ¢, and expedient
otherwise (c; represents penaity probabilities). This scheme,
again for the two-state case, it given below: ’

(i) Non-penaity (on action a,)
pyn+1) = py(n) + @ py(n)[1 —p,(n)]
PN + 1) = py(n) — a p,y(n) [1 — py(n)]

(1) Penalty (on action a,)
pn+1) = p,(n) — A p,(n) [1 —p,(n)]
PAN+1) =p, + Aps(n) [T —py(n)]
where0 £ a , f < 1

The truth-table for the above scheme is as follows:

py(n) P4An) PR py(n+1)
0 1 0 (1 —apy)p,
0 1 1 11 —pp,)P:
1 0 0 11 —a 91)01
1 0 1 (1—Bp)p,

The circuit diabram for this scheme is ‘shown in Figure 3.

3 &
-
P1— /1
a data p—eQ/P
[Ul selecior
clock
A

1 pJ T
M PR

Figure 3 Algorithm Circuit for N(1)g.p Scheme

The configuration is essentially similar to that of the Lgp
circuit, except that.in the case of the N'Rp scheme, the con-
stants @ and § are replaced with terms of the form

(1 —apj)and (1 — B pi).

4. EXPERIMENTAL RESULTS

The ADDIE stochastic learning automaton was tested
using a storage oscilloscope to observe state trajectories
directly. Learning curves obtained with the LR.p scheme
using a main system cycle clock of 100 kHz are shown in
Figure 4. :

10
s L g
‘s / ,,/\V N\
¥28
L / /N e
P2 07 }/ /N\ -
" gl
0-50 g }1) - nsﬁ

Figure 4 Learning Curves for Lg.p Scheme

32

The curves clearly show how the degree of expediency
increases as the reward-penalty “'Y"' is increased from 1 to
B4y = 1o)starting from an initial condition of random
Y " .
state selection at time tg, i.e. p,(0) = p,{0) = 0.5.
Typical learning curves obtained from the e-optimal Ly,
scheme with ¢ = 0.75 are illustrated in Figure 5.

T g tarna F-l [|'°75
m iszOZS

] | .
i |

=J

| !
L =075

|

|

1

i
_J

0

32

02 \;
| (202
ol S &g&.ﬁ& (=075
w

0 D @ &0)
Y ms

Figure 5 Learning Curves for LR.; Scheme

" With this scheme, the automaton exhibits virtually full con-

vergence to p, = 1 or p, = 1, according to the relative
values of the penaity probabilities. Figure 6 shows learning
curves for the Lr.g scheme, again illustrating the higher
degree of expediency obtained with high y.

. /VVT\/\“
NIVINER
R/ T I
7] |

LU

Q 2 > 30
te mS

9¢

=]

Figure 6 Learning Curves far LR.p Scheme

These resultls are consistent with previous simulation
studies,(5X9) aithough the actuai convergence times are
masked by the response time of the output ADDIE (sto-
chastic-to-analogue converter). This element has a restrict-
ed bandwidth in order to provide a suitable compromise
between learning time and variance in the steady-state out-
put. Nevertheless, the results presented here indicate learn-
ing times of less than 10 ms, pointing to the feasibility of
practical, on-line operation.

In the case of the N'R.p scheme, the conditional opti-
mality property was investigated by feeding the penalty

probability signais via a switching circuit to compare the
degree of convergence in “‘optimal’’ and *‘expedient’’ condi-
tions. One penalty probability was fixed at 0.125 and the
other was switched from 0.56 to 0.44, as indicated by the
switching waveform in Figure 7.

YT

o= ’xl
¥ o (120125
A (=056,
04k
/i)
0 _A-Jl M
v} T
to mS

Figure 7 Learning Curves for NR.p Scheme

This shows that with ¢; = {0.125 , 0.56}, the state trajec-
tories yield optimal convergence, whereas with ¢; =
{0.125 , 0.44}, the system degrades, as expected, to ex-
pedient behaviour.

5. 128-STATE SYSTEM

Having verified that the two-state ADDIE stochastic
learning automaton had satisfactory learning characteris-
lics, attention was subsequently focussed on the develop-
ment of a much larger, practically useful system, and the
attendant. problem of minimising the amount of circuitry
required while preserving high operating speeds.

The solution to this problem is to subdivide the state
space and perform the random search between the states
via a set of levels in a hierarchical structure. It has been
suggested previously (4) that a mulfilevel approach can be
used to overcome this problem of high dimensionality, and
the application of simpie -two-evel structures has been
considered(10),

The requirement for a memory capability in the automa-

lon structure to establish a priority of state order during the
learning period is embodied in the 128-state hierarchical
System described here. A two-state SLA “‘cell” is time-
shared between each location in a seven-level *‘decision
tree”, and interfaced with a random-access memory (RAM)
10 store intermediate probability values, as illustrated in
Figure 8. Since these seven two-state decisions are equiva-
lent to one decision in a single-level 128-state automaton,
the hierarchical structure gives an enormous saving in-hard-
ware, and although it does invoive more serial processing
Operations, there is not an excessive penalty in terms of
Operating speed. Another advantage of this configuration
'S that it can be made entirely modular in construction,
which simplifies the design of very large systems.
. A turther consideration is the implementation of the re-
inforcement scheme. With this aesign, It is possible to use
the same wo-state algorithm circuits as before, also time-
Shared between each decision level.

33

level 7 . .

L memneenesse S S

Pt -P128 o 1o PLANT

Figure 8 128-State Hierarchical System

6. SYSTEM OPERATION

The two-state ADDIE SLA which forms the *‘ceil” of the
structure is essentially similar to that described earlier. The
main difference is that now memory interface circuits are
required, since the SLA no longer acts in a continuous,
self-contained cycle, but operates instead in a time-shared
mode within the *‘decision tree'’. The full operating cycle
for this system is as follows:

Initially, each memory location is set at 0.5, so that each
decision has an equal probability of occurring; conseguently
the probability of selecting any one state is (0.5)", i.e. 1/128.
At each main sampling clock puise, the cell output will be
either 1 or 0, and this “‘decision bit" is stored in a 7-bit
“'state latch”’. After a search through the decision tree, the
state latch contents will therefore define unigquely one of
128 states, and aiso represent the output to the plant. The
second half of the cycle consists of retracing the same
path through the decision tree, this time applying a rein-
forcement scheme to alter the decision probabilities repre-
sented by the ADDIE ir: accordance with the plant response.
Updating at each level is controlied by the punishment/
reward signal (P/R) and the corresponding decision bit.

The next full cycle can then commence, with revised
decision probabilities and consequently a revised set of total
state probabilities. As the learning process evolves, the de-
cision path leading to the optimum state will -be reinforced
until, in the limit, assuming the use of an optimal scheme,
all the decision probabilities along that path tend to unity.

The memory requirements are determined by the number
of levels in the system. For each decision, the binary word
in the ADDIE represents, together with its implicit comple-
ment, the decision probabilities for each ‘‘direction’’. The
first decision level thus requires one word of storage, the
second level requires two words, the third, four words, and
so on. Therefore, the 128-state system requires a total RAM
allocation of 127 x n bits (h = 8 — 12). A central feature
of the hierarchical system operation Is the memory address

re. Since each decision Is a binary one, the design
of the control circuitry is greatly simplified, and the address
code Is derived from the state latch, which is effectively
a small “‘scratch-pad’’ memory tracking the decision path.

7. RESULTS

The operating principal of the hierarchical system is -
justrated in Figure S.

10 e
L
|/\'ﬂlﬂw
£ G
8 ol
%05 ,l-w!
-g ‘g fju‘(/.mmm
@ ‘/\\/.Jmn-wl
IR AN
0 %‘%w

0 &) 1 16 -
time(mS)
Figure 8 Leaming Behaviour of 8-State System

This shows the learning behaviour of a three-level, B-state
system, with three simultaneous “leamning curves’’, ob-
tained via a D/A converter from the time-shared ADDIE,
representing convergence to state 100, (i.e. state 4). The
learning period is typically three times that expected of a
single fwo-state system.

Static and dynamic optimisation experiments were car-
ried out on the full 128-state system, using a simpie simu-
lated *‘plant”’ in which one seiected state carried a iow pen-
alty probability (0.25), and all other states a higher one
(0.875). For these results, the system master clock was set
- at 2.5 MHz, a limit governed by the RAM access time, and
the system state was sampled every miliisecond, with D/A
conversion of the state latch contents providing a “map’* of
the state output. : '

13
D. .
12 -
i
L]
9%
. m«:c 1 —
? L ;
2
N '
s 1, awwns aes ﬂ"“\“ﬁwf‘“l
83 L - — .
o -
16 - 'L:“' . -p
»
0
0] & 120 20
time (mS)
Figure 10 Convergence of Hierarchical System with
Steady State Environment

Figure 10 shows a typical state output map of conver-
gence to state 41, using an Lp) reinforcement scheme with
e = 0.25. The significant feature of this result is that the
indicated learning time is less than 50 ms. Due to the vari-
ance of the 8-bit ADDIE used here, there is a non-zero
probability of incorrect decisions at any level, after the initial
learning period, and this results in the sporadic “jumps’ to
other states seen in the output.

Figure 11, the optimum state is switched periodically from
state 58 to state 106, and the automaton output is seen to
foliow the switching waveform within 50 ms.

128
L
"2—1- T e St .
96' soinionssmls ! |
y !
- 8o ; :
P]
€
g 6 = -—l-”m_ ‘—> = _nm' ']
o w .
= '
< 32
16
)] 1
0 (] 80 120 160 0
time{mS)
Figure 11 Hiersrchical System with Switched
Environment

The transition interval is characterised by random selection
between “‘old"" and "‘new’’ states, until the new state finally
pregominates.

8. CONCLUSIONS

The application of digital stochastic computing methods
to the hardware synthesis of learning automata has been
described. The use of the ADDIE as a basic building block
for the system has enabled excelient learning characteris-
tics to be achieved with aigorithm circuitry capable of impte-
menting a useful range of reinforcement schemes, and
learning times of the order of milliseconds are
demonstrated.

The design of large state order systems has been ac-
complished by incorporating the two-state ADDIE SLA in a
hierarchical structure. The results odtained from the 128-
state system described here have verified that fast, eco-
nomical leamning behaviour is possible under conditions of
static and dynamic optimisation, and represent an important
deveiopment in the implementation of on-ine learning con-
trollers. Work is currently in progress on the practical appii-
cation of learning automata to stochastic systems with muk
timodal performance criteria. :

ACKNOWLEDGEMENT

The authors wish to gratefully acknowiedge the support of
a U K Science Research Councli grant.

REFERENCES

1. Gaines, B. R.: “'Stochastic Computing"* AFIPS SJCC,
1967, 30, pp 148-156.

2. Miller, A. J. and Mars, P: “Theory and Design of a
Digital Stochastic Computer Random Number Genera-
tor'* Trans IMACS, 1977, 19, 3, pp 198-216.

3, Miller, A. J. and Mars, P “Optimal Estimation of Digi-
tal Stochastic Sequences”. int J of Systems Science,
1977, 8, 6, pp 683-696.

4. Narendra, K. S. and Thathachar M. A. L: “Leaming
Automata — A Survey' |EEE Trans Syst, Man and
Cyvbern, 1974, SMC+4, 4, pp 323-334.

. Viswanathan R. and Narendra K. S.: “‘Expedient and
" Optimal Variable Structure Stochastic Automata’* Bec-
ton Centre, Yaie University, 1970, Tech Rep CT-31.

35

6. Nevilie R. G, Nicol C. R. and Mars, P.: '"Synthesis
of Stochastic Learning Automata’’; Electronics Letters,
1978, 14, pp 206-208.

7. Milier, A. J.M., Brown, A. W. and Mars, P.: "‘Agaptive
Digital Logic Circuits for Digita! Stochastic Computers”’
electronics Letters, 1973, 8, pp 500-502.

& Witten, L. J.: “Stochastic implementation of Learning
Controllers”™ IEE Colloquium on Parailel Digital Com-
puting Methods, 1976, Digest No. 1876/30, Paper 6.

8. Viswansthan R. snd Narendra, K. S: ‘‘Simulation
Studies of Stochastic Automata Models” Becton Cen-
tre, Yale University, 19171, Tech Rep CT-45.

10. Narendra, K. S. and Viswanathan R.: A Two-Level
System of Stochastic Automata for Periodic Random
Environments'’ IEEE Trans, 1972, SMC-2, pp 258-288.

MARCO SOMALVICO
Marco Somalvico was born in
Como, Italy, on October 10,
1941. He received the Dr. Ing.
degree in electronic engineering
from the Politecnico di Milano,
Milan, ltaly, in 1965.

From 1965, with a Postdoc-
. toral Fellowship, he joined the
3 Computer Science Laboratory of
1 the lIstituto di Elettrotecnica ed
Elettronica of the Politecnico di
Milano, Italy, where he worked as a Research and Teaching
Associate in the area of computer-aided circuit analysis and
design. In 1969 with a Fulbright-Hays Postdoctoral Fellow-
ship, he joined, as a Visiting Scholar, the Artificial Intelli-
gence Project of the Computer Science Department, Stan-
ford University, Stanford, CA. In 1971 he was named As-
sistant Professor of Electrical Engineering and in 1974 Asso-
ciate Professor of Computer Science at the Politecnico di
Milano. His present research interests lie in artificial intelli-
gence, mathematical theory of computation, and robotics.
Dr. Somaivico is a member of the Association for Computing
Machinery. He was awarded the Premium Somaini as the
Best Undergraduate in the schools of Como in 1960, and the
Gold Medal of the Politecnico di Milano as the Best Gradu-
ate in electronic engineering in 1965.

M.A.L. THATHACHAR

M.A.L. Thathachar was born in

Mysore City, India in 1939. He re-

ceived the B.E. degree in Electri-
. cal Engineering from the Univer-
; sity of Mysore in 1959 and the
M.E. and Ph.D. degrees from the
Indian Institute of Science, Ban-
galore in 1961 and 1968 respec-
tively. He was on the faculty of
the indian Institute of Technolo-
gy, Madras during 1961-64.Since
1964, he has been with the Indian Institute of Science,
Bangalore, where he is currently Professor in the Depart-
ment of Electrical Engineering. He visited Yale University,
New Haven, CT in 1973 as well as in 1978-79. His major
research interests are in Learning Systems and Stability
Theory.

OOMMEN B. JOHN

Oommen B. John was born on
September 9, 1953 in the Nilgiris
in India. He received his B. Tech.
degree from the Indian Institute
of Science in Bangalore, india,
both in electrical engineering. He
received his M.S. from Purdue
University in Lafayette, IN in May
1979 where he is currently work-
ing on his Ph.D. in electrical engi-
neering and is majoring in

Computers.

His research interests include automata theory and for-
mal languages, stochastic automata and some applications
of artificiat intelligence techniques.

37

R.G.NEVILLE

Richard G. Neville was born in
Bishops Stortford, England on
April 21, 1954. He received the
B.S. degree with First Class Hon-
ours in Electronic and Electrical
Engineering from Robert Gor-
don’'s Institute of Technology,
Aberdeen, Scotland, in 1976. He
is presently at Science Research
Council Research Feliow in the
School of Electronic and Electri-
cal Engineering, Robert Gordon's Institute of Technoiogy.
His current research interests are mainly in the areas of
of digital stochastic computing and learning systems.

PHIL MARS'

Phil Mars was born in Liverpool,
England, on July 30, 1941. He re-
ceived the B.S. degree with hon-
ours in Electricai Engineering
from Durham University, Eng-
land, in 1964 and the M.S. and
Ph.D. DEGREES FROM THE Uni-
versities of Newcastle upon Tyne
and Liverpool, in 1969 and 1971
respectively. He is currently
Head of the School of Electronic
and Electrical Engineering at Robert Gordon's Institute of
Technology, Aberdeen, Scotland. His research interests are
in the area of stochastic automata and special purpose
digital systems design. He is the author of numerous pub-
lications in the fieids of digital and solid state electronics
and is an industrial consultant in these fields. Dr. Mars is a
member of the United Kingdom Council of National Aca-
demic Awards Electronic and Electrical Engineering Board.

ADAPTIVE CONTROL OF MULTIMODAL STOCHASTIC SYSTEMS USING LEARNING AUTOMATA

R G Neville and P Mars

School of Electronic and Electrical Engineering, R G I T, Aberdeen AB9 1FR, Scotland

In many process control problems, the
characteristics of the process are fully
known, and a complete mathematical
description of the process and of the
corresponding control strategy is possible.
However, a large number of situations arise
where uncertainties are present, either due
to an incomplete mathematical model of the
process, or due to operation in a random
environment. Where the probabilistic nature
of these uncertainties is known, stochastic
control theory can be applied, but in the
case 0f higher order uncertainties where
the probabilistic characteristics cannot be
easily ascertained, it is only possible to
gain sufficient knowledge of the process

by '‘bn-line'. observation. Herein lies the
application area for stochastic learning
automata. Essentially stochastic learning
automata provide a novel and attractive mode
of solving a large class of problems
involving uncertainties of a high order.

Many problems of adaptive control, pattern
recognition, filtering and identification
can, under proper assumptions, be regarded

as parameter optimisation problems. A
learning automaton can be fruitfully applied
to solve such problems, especially under

noisy conditions when the apriori information
is small. For such problems, unlike
stochastic approximation methods, the lominz
automaton has the desired tlexibility not to
get locked on to a local optimum, and this
fact makes the automata approach particularly
applicable to multimodal performance

criteria systems.

The paper will consider experimental results
obtained for the real-time control of noisy
multimodal systems using recently developed
hardware hierarchical structure learning
automata. The approach will be shown to
permit the effective economic realisation of
high-speed controllers for real-time system
control.

INTRODUCTION

One of the principal application areas for
stochastic computing research is the
implementation of adaptive control systems
using stochastic learning automata (SLA)
structures (1). A learning automaton is
ideally suited to the problem of parameter
optimisation of a noisy multimodal system,
since the inherent principle of random
search avoids the effect of locking-on to
local optima unavoidable with normal gradient
methods, for example. The automaton, by
means of a suitable interface, interacts with
the environment in a manner analogous to a
conventional feedback control system to
evolve a 'suitable' final structure

(figure 1).

Through a combination of earlier work in
hardware stochastic computing systems, and
extensive simulation studies of learnming

automaton behaviour (2),it has been possible
to synthesise practical learning systems
capable of on-line operation. Hardware
degigns for 2-state systems have been
described (3,4,5) which verified that suit-
ably fast learning behaviour was possible.

In order to implement large-scale systems, a
hierarchical structure automaton was
developed, using the 2-state SLA in a time-
shared mode. This system, reported
previously (6),has been tested using simple
gsimulated plant responses. The work
described here alsc details applicatioms to
more practical examples of systems with
multidimensional, multimodal performance
criteria, and the adaptive control of a real,
small-scale process.

The Automaton

The concept of "automaton' in the context of
the work reported here can be defined as
follows. An automaton is essentially a
device which is capable of receiving input
signals or responses at discrete intervals
of time and determining one of a finite
number of output actions by means of some
intermediate decision-making process acting
on its internal structure oOr state.

The various elements of this broad definition
can be stated more precisely as follows

(1) The input to the automaton, denoted
x(n), is an element of the set

RisiE - 2 —— K)
where k may be finite or infinite.

(ii) The state of the automaton, denoted
¢(n), is an element of the set

ﬂ = {01, N -—¢s} ; s is finite

(1ii) The output action of the automaton,
denoted a(n) is an element of the set
A= {a.l, 3.2--11,} ; ris also finite

In addition, two functional relation-
ships exist which relate the above
variables and complete the definition
of the automaton

(iv) The transition function F relates

the current state and input at stage n
to the next state at stage n+l

i.e. ¢(n+1) = F [o(n), x(n)]
(v) The output function G relates the

current state of the automaton to the
resulting output action at stage n.

i.e. a(n) = G [¢(n)]
The automaton is therefore defined

mathematically by a quintuple

{X, ¢, A, P, GI}. The functions F and G
may be deterministic or stochastic mappings.
I P and G are both deterministic, the
automaton is denoted a "deterministic
automaton”, in which case the next state and
output action are uniquely defined for a
given current state and input. The work to
be. described here, however, concentrates on
the stochastic automaton, in which F or
G, or both, are stochastic functions. In
this case, there are aonly probabilities
associated with the succes=ion of states
and output actioans.

A representation of the structure of the
automaton can be givenm in terms of the
total state probabilities

7,(a) = Pr {¢(n) = ‘i}
or the total action probabilities :
vi(n) = Pr {a(n) = "1}

in, to preserve probability measure, it

focllows that .

In, =2l p, =1,

i ¢ i 1
It is frequently the case that G denotes
a cne-to-one mepping between states and
actions, in which case 7(n) and p(n) are
equivalent.

The Environment

The environment encompasses 211 the
external factors which influence the
structure or behaviour of the automaton.

It accepts the ocutput actions of the
automaton as inputs, and produces output
responses which are in turn fed back to the
automaton. The envirocnment is therefare
characterised by three sets of variables
foming the triple {4, C, X} where 4 and
X are respectively the sfction and input
sets of the automaton as defined above, and
C is a set of "penalty probabilities”,

C= {c;, cg = °r}‘

In practice, it is convenient to
concentrate on the particular autcmaton-
environment configuration in which the set
X has just two elements, i.e. X = [0, 1].
By convention x = 0 denotes a favourable
response or "reward" and x = 1 denotes an
unfavourable response or "penalty".

Each element ¢, of C is associated with an
element a, fro® the action set A, and is
defined a& folows :

¢y = Pr {x(n) = 1 / a(n) = ":.} .

The Concept of Learning

The concept of "learning"” is applied here

to describe the behaviour of a variable
structure automaton operating in an
environment as defined above. A learning
automaton is capable ¢f determining the
success of each action in eliciting a
reward from the environment, and, in the
specific case of a variable structure device,
ordering its structure so as to increase the
pro:n.biuty of selecting a more successful
action.

Clearly, if the ¢, were already knbwn, the

strategy of the automaton would be simply to
select the action a_ corresponding to the
minimum penalty proBability c_. The
elements c, of C are thereforf assumed to be

unknown lti&ll times.

Reinforcement Scheme

A A variable structure automaton modifies its

policy for selecting output actions by the
application of a reinforceament schems,
denoted

£ {py(n) == p_.(2)}, such that

pi(nd-l) = pi(n) + f.g {1}, i=1 r

Again, to preserve probability nc;nure. all
such schemes must ensure that

=
z t? {l1=0
=1

An an exsmple, one of the most widely
investigated, and indeed earliest proposed
schemes, the linear reward-penalty scheme,
denoted LB- , will now be described. The
algorithm, gt;tod in total probability fomm,
is as follows :

(a) Reward (action l.i)
pj,.‘(n-rl) - uva(n)

pi(nd»l) =1 -2z pJ(nﬂ)

Jei
(b) Penalty (action ai)

p,(a+1) = & p,(n)

Pygs(a*1) = py(a) + E===3} p,(2)

where 0 < a, B < 1

If the penalty coefficient 38 = 1, the
scheme is transformed to linear reward-
inacticn, denoted I‘E-I‘

Review of Hierarchical Svstem

The hierarchical SLA evolved as a means of
enabling a practical large-scale automaton
to be constructed which would be capable of
high-speed operation with the minimum of
bardware. The approcach adopted was to time-
share a single 2-state SLA in a tree-
structure, as shown in figure 2. The random
access memory, which stores the intermediate
decision probabilities, fulfils the require-
ment for 2 memory in the automaton to
establish the priority of state order during
the learning period. Any one state or
action probability is given by the product
of the decision probabilities along the
appropriate path through the tree. This
configuration does of necessity involve

‘more serial processing operations, but the

savings in hardware are felt to far ocutweigh
the speed penalty. Another advantage is

that 'a modular construction greatly
simplifies the design requirements of much
larger systems. The reinforcement algorithm
circuit can retain the standard (4é-term)
format used previously with 2-state systems,
and is also time-shared at each level.

Using these principles, 2 hardware system
with up to 128 states was ccnstructed,
based on the availability of 2 suitable

commercial random access memory (RAM) with
128 bytes of storage. The memory require-
ments are determined by the number of
levels in the system. The number of
decision proba?ilitiea to be remembered at
level p ig 2P=L; therefore, an r-level
system (2° States) reﬁuires a total RAM
ocation of just (2¢-1) bytes.

Initial Experiments

Initial optimisation experiments were
carried out using an elementary simulated
plant, in which one selected action, in
this case number 41, carries a low penalty
probability, cy = 0.25, and all others a
higher one, :}n- 0.875. Figure 3 shows the
resulting le ing behaviour presented in
the form of an 'output map', derived by D/A
conversion of the automaton output latch
contents. The approximate length of one
system iteration is 50 us, so that the
indicated learning time of 50 ms corres-
ponds to scme 1000 iterations.

Because of variance inherent in the hardware
estimation of probability, there is always
a slight chance of incorrect decisions, at
any level, beyond the initial learning
period. This results in the sporadic
occurrence of incorrect output actions which
can be seen on the output map.

Application to Multimodal System

In order to simulate a multimodal
environment, a rather more sophisticated
plant was required. It was decided to use
as an example a P.I. function (7) which has
a distinct global optimum, a local optimum
;nd a saddle-point. The function is given
Y

In order to present this P.I. surface to the
SLA, the function was evaluated at discrete
points and programmed into a read-only
memory, thus storing the ey values as 8-bit
numbers, each addressed by~ the appropriate
action output from the SLA. The presence
of noise on the surface was simply effected
by interposing a full adder fed with noise
derived from the central pseudo-random
binary noise source. In addition, a non-
stationary environment was conveniently
accommodated by storing alternative
versions of the P.I. in different sectors
of the PROM.

A representative result of the optimisation
of this system by the hierarchical
structure automaton is depicted in figure 4.
This shows the output map for the case of a
non-stationary environment (switched after
2000 system iterations) using an L§
automaton with the following parame ahs -

a=0.5, 8= 0.992.

During the first learning phase, the system
converges to actions 19 and 20, both near
the optimum. An interim adjustment period
follows the switch, culminating in
convergence to the 'new’' optimum of action
100. This result clearly illustrates the
ability of the SLA to track a non-stationary
environment without excessive delay.

Process Control

The application of the SLA to adaptive

control was demonstrated with the aid of a
small-scale thermal process. This consists
of a centrifugal fan with an adjustable inlet
orifice which feeds air past a grid heater
and through an outlet pipe. The exhaust
temperature is measured by a miniature bead
thermistor and compared with the set-point
to derive an error signal which in turm is
used to control the heater power output.

A two-term (P + I) controller was developed,
in which the proportiocmal band and integral
time coefficients were each adjustable over
8 steps (33% - 175% and 0.5 s - 8 s
respectively). A 64-action SLA was there-

.fore used to 'tune' the controller, as shown

in the block diagram (figure 5). A
convenient measure of performance for this
system was the Integral of Squared Error or
ISE criterion resulting from the application
of a step input. The ISE was transformed
into reward/penalty information for the
automaton, while the direct error signal
provided the input to the comtroller.

The performance of this adaptive controller
is illustrated by the ISE plot of figure
6(a). After the initial adjustment phase,
the system was disrupted by opening up the
blower aperture. It can be seen that the
automaton reacts to this disturbance and
recovers. control quite rapidly. Figure 6(b)
shows a similar result in which noise was
superimposed on the set-point, and is
characterised by slightly longer adjustment
time and higher levels of steady-state error.

Conclusions

These results clearly demonstrate the power
of the automaton approach to the
optimisation of non-stationary multimodal
systems, irrespective of surface contours
or of the presence of noise in the system.
In particular, it should be stressed that
at no time did convergence to the local
optimum occur, indicating that the SLA has
purely altitude sensitivity over a P.I.
surface, as opposed to the gradient
sensitivity of conventional methods.

Process controllers find widespread
applications in manufacturing industries,
and there is a need for frequent, often
unpredictable adjustments to be made on-line.
The success of the automaton in achieving
adaptive control of the thermal process
described above is felt to be of consider-
able importance, representing a fruitful
area of application for practical hardware
systems.

REFERENCES

1 Narendra, K.S., and Thathachar, M. A. L,
"Learning Automata - A Survey",

IEEE Trans. S%st.‘ Man. and Cybern.,
t S s ? PP -

2 Viswanathan, R., and Narendra, K. S.,
"Simulation Studies of Stochastic
Automata Models', Technical Report,
CT-45, 1971, Becton Centre, Yale
University.

3 Neville, R.G., Nicol, C.R., and Mars, P,
"Synthesis of Stochastic Learning
Automata", Electronics Letters, 1978,
14, pp 206 - 208

4 Neville, R.G., Nicol, C.R., and Mars P.,

"Design of Stochastic Learning Autocmata
using Adaptive Digital Logic Elements",
Electronics Letters, 1978, 14,

PP = ©

5 Neville, R. G., Nicol, C.R., and Yars, P.
"Design of Non-Linear Stochastic
Learning Automata'", Electronics Letters,
1978, 14, pp 396 - 357

6 Neville, R. G., and Mars, P.,
"Hardware Design for a Eierarchical
Structure Stochastic Learning Automaton”, (
J. of Cybern, and Inf. Seci., 1979, HEETE B R
r &0 PP -

Asai, E., and Kitajima, S., BRI
"4 Method for Optimising Control of
Multimodal Systems using Fuzzy

Automata”, Information Sciences, 1971,)
3, pp 343 - 353.

dg : ! cmemecccacaal | |
Acimowledgement ‘_._ T _~l

~3

One of the authors (R G Neville) wishes to

acknowledge the support of an S.R.C. ;
research assistantsaip. \T///

The work reported here has been funded by oufput action
S.R.C. grant GR/AS3956. . E o gu;

Figure 2 128-State Hierarchical Structure

Automaton
128 ~
L]]
12 . 1'4
96 '
s T
gl 1L
E‘e .! L .l
532 R _',-n-u-nwm'—u'“
" Sl G
16 e
L
0 %)) 1

- 20
time(ms)

Figure 1 Automaton - Eavirooment Figure 3 Output Map (Action 41)
Configuration

Lory!

5
| &
" g
| |
:
| ,
. w
. i £
PEs
¥ o
4 -
-‘j M -
G 5
i E
f'.\. .
P = =

3
NJ[Ll3®

Figure 4 Output Map - Switched Environment

_r step inout
......... ——— 2 OISR
alf sef ‘i
\ pant |
5 detector .
'| blower ! heater and T
; measurmng brage | «
: : ;
PROCESS suppty
P plus !
controller
performance
evatuction
LSE ——= P/R

achionsil 4i-state |

)

SLA

Figure 5 Thermal Process with

SLA Control

z
3
- PRCTRY S
ﬂ
é
.‘I
‘.'3
sl k
|
3 W
T
la] e w-w;nn
=
3
<l
< griste 1/66]
j
-4 k{* ——
31 -, | rerarons
Figure € Error Curves from the Learning
Controcller

	coversheet_template_THESIS
	NEVILLE 1980 Synthesis of stochastic learning

