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ABSTRACT.

This thesis descrihes the work of the author tov/ards an M. 
Phil, degree in the field of Fault-Tolerant Digital Machine Design.

As a previev/, fail-safe machine design is discussed in detail, 

and various new design techniques are presented.
The fundamentals of fault-tolerant digital machine design are 

presented, along with various design techniques.
Both hardv/are construction and computer simulation programs 

have Been used liberally throughout this study.
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CHAPTER INTRODUCTION

One of the prime requirements of a computing system is the 

ability to operate correctly over a sufficiently long period of 

time. Therefore, certain measures must be taken, either in the 

initial design or in the subsequent testing of the system, in 

order to satisfy this requirement. In the past, computers 

were used largely in an off-line, batch-processing mode, and the 

consequences of undetected hardware malfunctions were relatively 

minor. However, because of the increasing use of computers in 

on-line, real-time applications such as the control of nuclear 

reactors, spacecraft trajectories and military equipment, notably 

missile-guidance systems, incorrect computer operation in any of 

these applications can be potentially disastrouso Furthermore, the 

increasing size and complexity of digital computers have made it 

more and more difficult to ensure correct machine operation.

There are various failures which may occur within a digital 

machine, although this study shall be concerned only with logical 

faults. These produce soma changes in the logical behaviour of 

the machine. Thus, component failures which affect voltages, 

currents, shapes of pulses or delays, but do not alter the logical 

function realised by a particular circuit, will not be consideredo 

Also included in this category are failures of power supply, 
external input signals, and clock signals.

A fault in a digital circuit is a physical defect of one or 

more components, which can cause the circuit to malfunction.

Ageing or manufacturing defects can cause a component to gradually 

deteriorate, giving rise to marginal faults. Noise and overly 

close tolerances can cause intermittent faults, which are time—



varying, being present in some intervals of time and absent in 

others» Many faults that are originally intermittent eventually 

become solid, which implies that the malfunction is permanent 

until repairs are made»

Throughout this study, only solid logical faults will be 

considered. The majority of solid faults which occur in digital 

circuits create either stuck-at~high or stuck-at-low conditions.

The basic T.T.L. logic gate is illustrated in Figure 1(a). A 

simplified version, representing a UAIíD gate as shown in Figure 

1(b), illustrates some of the stuck-faults that can occur in 

this type of gate.

Mode 1 represents a permanently open base connection, while 

mode 2 represents a permanently open collector connection. Under 

these faults, the transistor output Q would appear to be stuck-at- 

higho On the other hand, mods 3 represents a short from collector 

to emitter, therefore Q would appear to be permanently stuck-at-lov/»

Any of these failure modes can seriouslj' upset the functional 

capabilities of a digital circuit, hence the need for circuits v/hich 

can automatically detect a fault as soon as it occurs, or more 

important in this study, circuits which can continue to operate 

correctly even although a fault has occurred.

Improvements in the behaviour of digital circuitry under 

fault conditions can be achieved by:

(a) Fail-Safe Design.

(b) Fault-Tolerant Design.

(c) Easily-testable Circuit Design

Fail-safe and fault-tolerant design are similar in the respect 

that they involve srecial design tech.nd.oues, whereas diagnostic



( a  ) b a s i c  T. T. L,  g a t e

( b)  s i m p l i f i e d  version showing fai lu re  modes
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testing involves the application of test sequences to 
conventionally designed circuitry. There is an abundance of 

literature on the subject of diagnostic testing, therefore it 
will not be considered in this study. [”l] Hov/ever, the design 

and operation of fail-safe and fault-tolerant circuitry will be 

investigated in detail.

Chapter 2 deals with the various mathematic definitions and 

theorems necessary for theidesign of fail-safe digital circuitry, 

while Chapter 3 puts forward several design techniques.

Chapter 4 presents some theoretical aspects on the subject 

of fault-tolerant digital machine design, while Chapter 5»  ̂s^d 

7 are devoted entirely to several different design techniques.

Chapter 8 presents the overall conclusions and outlines 

possible topics of future research. The various computer 

programs used throughout this study are listed in the Appendices.

Note that, throughout this study, all design techniques 

apply to synchronous, sequential circuits, unless otherwise stated, 

since these provide most of the computational power in any modern 
computer system.
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CHAPTER 2. FUNBAMERTALS OF FAIL-SAFE DIGITjiJ. MACHIR^ DESIGN

Fail-safe digital circuits are designed in such a v/ay that, if a 

logical fault occurs within the system, the output values always adopt 

a knovvn "safe" state. This means that the extent of damage is much 

less than if the system fails v/ith any other output state. Therefore, 

a logical system is said to be "fail-safe" if, in the event of failures, 

its output is either error-free or assumes a safe valueo

As a practical example, consider a traffic controller v/ith two 

light signals, red and green» The green signal denotes "safe state" 

or "go" and the red signal denotes "dangerous state" or "stop". Then 

the controller should show the red.signal when the traffic control system 

fails, regardless of the actual situation on the road» If the failed 

traffic controller shows the green light, while the actual situation 

on the road is in the dangerous state, a fatal accident could occur.

In order to understand fail-safe circuit design requirements, some 

basic definitions and theorems are needed. These are listed below. 

Preliminary Mathematical Definitions
Definition 1; A Boolean function f of n-variables is monotonie 
increasing if, and only if, x y implies f(x)3;f(y), where
x=(x. ,x ,”.... ,x^), ♦...,y^), and x>y means ^^7^
ia=1,2,... ,no Similarly, a monotonie* decreasing function is defined 
to be one for which x^y implies f(x)^f(y).

Definition 2; A Boolean function which is monotonie increasing with 
respect to sonre variables and monotonie decreasing with respect to 
the remàining variables is called a unate function. Thus^ f_̂ * ^+X3 
is unate while xy +xz is monotonie increasing and f^* xy+xz is 
monotonie decreasing»

Definition 3? If in a system the loss caused by a faulty 1 output 
is much greater than that caused by a faulty 0 output, then the system 
is said to be 0-fail-safe. In a similar manner, a 1-fail-safe system 
can be defined.
Definition 4  ̂ A logical component which, when it fails, always fails 
with a O(orl) output is said to be S^-asymmetric (or S^-asymmetric)»
Such components are called asymmetrical components.
Definition 5? A realisation of a sequential machine is said to be



output - fail safe, if, and only if, no failure can cause unsafe 
errors at the output terminals.
Definition 6; If the realisation of a machine, in addition to "being 
output-fail-safe, goes on to a predetermined set F of states in the 
event of a failure, then it is said to be F-state fail-safe.

F-state fail-safe machines are more desirable from an error indication

point of view since, in the event of a failure, the machine enters a

known state F and therefore, an error-detecting circuit can be easily

designedo

2o 2 Criteria for State Assignment

In order to produce permissible state assignments for any type

of fail-safe digital machine, certain basic theorems must be upheldo

Formal proofs of these theorems may be found in the indicated references.

Theorem 1 ; A sequential circuit is output-fail-safe if, and only if, 
its state functions as well as its output functions are monotonie 
increasing with respect to the state variables, when all the logical 
components used in the realisation fail as^mametrically. [s]

The follov/ing theorem gives the necessary and sufficient

condition for a state assignment to satisfy the requirements of

theorem 1o
Theorem 2: The next state and the output functions of any sequential
machine become monotonie with respect to the state variables if, and 
only if, the binary vectors used for the state assignment are not 
paiCTise comparable, under the ordering relation of Definition 1. [2j

Theorem 3t A state assignment which uses a set of unordered code 
vectors will result in an F-state fail-safe sequential circuit if 
the state functions are all realised either in sum-of-products or in 
product-of-sums form» [3]

From the above three theorems, it can be seen that only certain 

code vectors can be chosen as the state assignments of a particular 

sequential machine, if the system is to become fail-safe. The 

vectors in any assignment must be pairwise incomparable; this simply 

means that a Hamming distance^ 2  must exist between all the vectors.

The term "monotonie increasing" has been used frequently in



this discussiono Since this is a rather abstract concept, it is 

v/orthwhile investigating furthero Definition 1 gives a strict 

mathematical explanation; however, it is much simpler to deal in 

graphical terms»

2o3 Spatial Representation of a Boolean Quantity

Consider the diagram shown in Figure 2»1» Let X be an n~

dimensional vector» Each of the n components can take two values 

0 or 1, so that X has 2^ distinct possibilities» Nov/ consider, in 

n-dimensional space, the points whose coordinate values are 0 or 1.
To each possible X there corresponds one and only one of these points» 

The points form the vertices of a hypercube»

The cbncept of monotonie increasing functions may be depicted 

quite easily using the hypercube» Two examples of Boolean expressions 

are shown in Figure 2=2»
The black circles represent points which satisfy their respective 

functions; for example, in Figure 2»2(a), 101 satisfies - 1

but 001 does not» Figure 2»2(a) is an example of g monotonie 

increasing function because as one moves up the hypercube (following 

the interconnecting lines from the point 000), once a function point 

has been reached, all the coordinate points above this point are all 

function points» Since, in Figure 2»2(b) the point 000 satisfies the 

function, this is not the case» Therefore, x^+x^x^x^ » 1 is not a 

monotonie increasing function»

The hypercube can also be used to represent pairwise incomparable 

binary vectors as shown in Figure 2.3*• Tt can be seen that groups 

of pairwise incomparable vectors lie on the same level of a hyr^ercube 

as shown by the dashed lines» Investigation of four-dimensional 

and five-dimensional hj’percubes produced the same results» This 

led to the formulation of a theorem»
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Theorem; The fact that a group of "binary vectors lies on the 
same level of a hypercube implies that the vectors are pairwise 
incomparable with each other.

It would seen reasonable to assume, therefore, that all state 

assignments used in the design of fail-safe circuitry consist of 

binary vectors which lie on the same level of a hypercube« However, 

the theorem above is peculiar in the respect that its converse is not 

trueo The example of Berger coding, which will be investigated 

later, will clearly illustrate thiso

Figure 2o4 illustrates a four-dimensional hyparcube. The 

increasing bomplexity of hypercubes beyond four variables and the 

anomaly of the above theorem, led to the construction of a series 

of computer programs which would produce legal groups of binary 

vectors» This will be discussed in the next chapter.

For the moment, however, it is essential to consider the 

state diagram of a general fail-safe machine in order to justify 

the above definitions and theorems.

General State Diagram of a Fail-Safe Sequential Machine

A sequential machine can be represented by a stats diagram, 

which shov/s the various states the machine adopts under certain 

external-input conditions.

Figure 2.5 shows the state diagram of a general sequential 

machine. In this case it is an autonomous machine, such as a 

counter, for the sake of simplicity. The network has six legal 

states 1 — 6, but it also has the possibility of entering an 

erroneous state if a single logical fault occurs. This state 
is outwith the derived state assignment and, since this machine has 

no built-in fail-safe facility, the machine may leave this state at 

any point and continue to operate incorrectly.

The state diagram of a fail-safe machine may be represented

10



Figure 2.5 General State Dia,s:ran]
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in a similar fashion, as shown in Figure 2.6. This machine also 

has six legal states, but, of course, the individual states may 

be different, since they must satisfy the conditions laid dovm 

earlier. The error-free operation of this machine is identical 

to the machine of Figure 2.5> except that, instead of entering a 

purely random erroneous stats v/hen a logical fault occurs, the 

machine enters a fail-safe state, the F-state. which is usually 

the all-zeroes or all-ones state, depending on the type of fault 

and the combinational logic structure of the machineo

The important factor is that the machine cannot leave the 

F-state until the fault has been repaired, hence this system never 

functions incorrectlyo

How this type of state diagram is implemented to produce a 

fail-safe digital machine will be dealt v/ith in the next chapter.

12



CHAPTER 3o FAIL-SAFE DBSIGH TSCHHIQUES.

Several fail-safe design techniques are investigated in 

detail in this chapter. The first is a straight forward method 

using the transition table of the desired machine and is also 

outlined in reference [p] . The second is a technique v/hich was 

constructed after thorough investigation of the Karnaugh Map 

minimisation method used in conventional digital machine design»

The application of these techniques to the design of autonomous sequential

circuits is also presented, along with the use and advantages of

NANL synthesis in fail-safe design. Finally, computational

methods of state assignment selection are outlined and

presented in flow chart form along with selected program

results»

3.1 Transition Table Technique
This technique is best illustrated by example. The three 

binary vectors

'0 1 1'
101 
110_

are known to be pairwise incomparable (Figure 2.3)> so these may 
be chosen as the state assignment of a simple synchronous, sequential 

machine» The actual design requirement was chosen to be a circuit 

which retains its state when an external 0 is applied and cycles con
tinuously through the three states on the application of an external 

1. The state transition table is shown in Figure 3»1*
D-type flip-flops are used as memory elements, the control 

data being derived from the standard characteristic equation» The 

control functions can be derived by any minimisation technique, or 

intuitively from the table. They are:

13
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X

p r e s e n t  state n e x t  s t a t e c o n  t r o t s

yi >̂ 2 ^2 >'7 >̂2 2̂ Dl D2 03

0 0 1 1 0 1 1 0 1 1
0 1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 0 1 1 0
1 0 1 1 1 0 1 1 0 1

1 1 0 1 1 1 0 1 1 0
1 1 1 0 0 1 1 0 1 1

Figure 3»1 Conventional State Transition Table
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Figure 3»2 Circuit Representation
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D3 - + xoy^
The circuit is realised using AM) and OR logic gates as 

illustrated in Figure 3°2. Rote that, in practice, the 

complenented external input signals would he obtained via simple 

inverter gates, but are shown already complemented for the sake 

of clarityo

This is the conventional design approach for most types 

of sequential circuitso Hov/ever, to produce a fail-safe 

version of the above design, a slightly different technique is 

employedo '

Consider the column in the transition table of Figure 3»1*

It contains four ones corresponding to the minterms of the function.

These minterms ares

•72*^3 5 ^•yi*y2°y3 ’ =̂>y-i*y2“y3 ’ ^"y-i°y2°^3
However, let D.(q,I ) denote the control data in the transition table 

where q represents the row and the column of the table, and (ŷ ,, „».»yĵ ) 
denote the binary vectors in the assignments Row, according to the 

proof of Theorem 2 in Chapter 2, each minterm in each for which 

D. (q,I ) * 1 will have only those state variables for which y, * 1°1 X
Therefore, only uncomplemented state variables can appear in the 

expression of all R^*s, and so they are all monotonic increasing 

with respect to the state variableso

Under this criterion, the minterms above are reduced to 
the product terms:

x^y^^y^ j ^oy^°y2  > ^ “^2*^3 ’ ^ 1 °  ^3

The other product terms are produced in a similar fashion, so that

+  X o y ^

15



the control functions of the now fail-safe circuit become:

-  (7 ^ *7 3  (7 2 * ^ 3  ^ ^

^2  "  (72*73 + ^1 *^2^^  ■*■ (^1 *^3  ^

î 3 - (72=73 + 7^*73)^ + (72*73 + 7^°72) X
This circuit was constructed using AND and OR logic gates

as shown in Figure 3»3* The circuit was tested for fail-safe 

operation and the results tabulated as illustrated in Figure 3*4= 

Certain conclusions may be drawn from the operation table 

of this circuito

(a) The most important point is the fact that fail-safe 

operation has been achieved, since the machine enters 

the F-state (OOO) when a single stuck-at-0 fault occurs.

(b) However, the machine may continue to operate correctly 

under a stuck-at-0  fault, depending on whether or not 

the particular failed gate is required to generate a 

control function. This occurs because the circuit

is constructed in such a way that a network of logic 

gates may be enabled or disenabled depending on the 

value of the external input Xo For example, if gate 

2 in Figure 3°3 has its output stuck-at-0, and X has 

the value 0, then gate 2 is never used, in this 

condition, to generate the control function Il̂ j therefore 
the circuit continues to operate correctly. Only 

when X becomes 1 will the circuit enter a fail-safe 
state.

(c) When this circuit was tested, all the logic gates were, 

in turn, given a simulated stdck-at-0  fault by 

disconnecting the output and grounding the input of 

the following gate. However, since the combinational

16
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Circuit Realisation using Transition Table Technique
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logic networks feeding the flip-flops are identical, it is 

sufficient to test only a few selected gates as shown in 

Figure 3°3o
(d) To produce a fail-safe representation of Figure 3*2, a 200% 

increase in the number of gates used is required in this 

particular case»

This transition table technique has proved satisfactory in 

the design of fail-safe sequential circuitryo The modified Karnaugh- 

Mapping technique will now be investigated in detailo

3.2. Modified Karnaugh-Mapping Technique

A Karnaugh-map is a graphical method of minimising Boolean 

functionso. The minterms (or maxterms) of a function are arranged 

in such a way that adjacent terms may be combined in groups of two, 

four, eight or sixteen, thereby reducing the number of final terms 

wbàch describe the function' [̂4] •

Figure 3«5 shows the general form of the Karnaugh-map 

applied to the transition table of Figure 3<>1. Thè ininterms and 

maxterms are entered in the appropriate place on the map, while 

the remainder of the positions are denoted by a slash, indicating 

a "don’t-care" stateo These permit a minimal set of control 

functionso

In a similar fashion, the Karnaugh-map may be utilised in 

a specific way to produce the control functions for a fail-safe 

sequential machineo In this case, hov/ever, only certain groupings 

of adjacent terms may be chosen to ensure that the functions 

obtained are all monotonie increasing» There is also a restriction 

on the number of "don't-care" states permitted in the Karnaugh-map 

itselfo (As will be seen in Section 3*4, this restriction applies

19



D-¡ = xy^ + x y j
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Figure 3.5 Karnaugh-Map Minimisation 
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(b)

only to sequential circuits with external inputs, and not to 

autonomous circuits.) For a four-variable Karnaugh-map, 

the legal "don't care" states are:

(a) the all-ones position (1111)

the X111 position, where X represents the external 

input with value 0. Note that the external 

input X may take up any position, (for example 

1X11, 11X1, 111X)o

These "don't-care" positions and the permitted term groupings 

for fail-safe design are illustrated in Figure 3*6. Note that 

two and three variable maps may be constructed in a similar 

manner.

As an example of this technique, consider Figure 3°7> which 

illustrates a modified Karnaugh-raap minimisation of the original 

transition table of Figure 3*1*
The control functions now become:

1 y^.y^ + x.y^.y^ + Soy^.y^ 
y^.y^ + x.y^.y^ + Xoy^.y^

The circuit is shovm in Figure 3.8 v/hile a table of operation 

under logic failures is illustrated in Figure 3*9.

Certain conclusions may be drawn from this table.

(a) The circuit is fail-safe to stuck-at-0 logic 

faults.

(b) As before, the circuit may continue to operate 

correctly, even although a logic fault has occurred.

(c) Using this technique, an increase in the number

of logic gates of onl2/ 133*3/^ is required, compared 

with 200;;̂  for the previous technique.

21
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The main advantage of this modified Kernaugh-map technique 

over the transition table method is the fact that, in most 

cases, fewer logic gates are needed to produce a fail-safe 

version of a particular sequential machineo

The use of UAND synthesis in fail-safe design will now 
be discussed.

3o3 The Use of HAND S:/nthesis

This is a technique whereby circuits, using conventional 

M D  and 0H logic gates, may be translated into equivalent circuits 

using only NAM'D gates This is probably of greatest

importance in the manufacture of microcircuits using large 

scale integration (L.S.I.),

This technique is illustrated purely by example»

The circuit shown in Figure 3=8 may be translated quite 

easily into a NAND logic circuit as shown in Figure 3°10* The 

most important point to note in this procedure is the fact that 

3-input NAND gates are readily available in TTL package form 

whereas AN'D and OR gates are usually produced only in 2-input 

versions. Therefore the two-level AND and OR networks shown in 

Figure 3o8 may be replaced by a one-level NAND gate as shown in 

Figure 3»10. The table of operation shown in Figure 3=11 

illustrates that:

(a) the circuit may continue to operate correctly 

under a stuck-at-0 fault.

(b) the circuit is fail-safe to stuck-at-0 logic 

faults. However, it is clearly seen that 

sometimes the F-state is 000 and sometimes it

is 111. This was found to be characteristic of
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fail-safe circuits constructed using N M D  logic; 

if a stuck-at-0 fault occurs in an "odd" level (see 

Figure 3»10)j the F-state is 000; if the fault occurs 

in an "even" level, the F-state is 111o This is 

obviously an advantage when repairing a fault in a 

more complex circuit since attention can be restricted 

to either even or odd levels. An error-detecting 

circuit for a 111 F-state can easily be incorporated 

as beforeo
(c) using this technique, the number of logic gates 

required is increased by only 33^°
In general, this NAND synthesis technique can usually 

be applied to produce an overall minimal circuit.

The design of autonomous sequential circuits using the 

Karnaugh-map method will now be discussed.

3o4 Autonomous Circuit Design
An autonomous circuit is a sequential machine with no 

externally-applied input signals. The circuit is controlled 

solely by the sequence of clock pulses applied to the memory 

elements in the circuit» Fail-safe autonomous circuitry can be 

designed using the transition table technique, exactly as before» 

However, the Karnaugh-map method is slightly different when 

applied to autonomous circuits, since there is no restriction on 

the number of "don't-care" states appearing in the Karnaugh-map; 

however, there is a restriction on the number of term groupings, 

since all the variables in the Karnaugh-map are state variables» 

(Beforehand, the map contained the input variable x, which is 

not classed as a state variable and may appear in complemented 

form in the final control functions, without violating the
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condition that ail the functions must he monotonic increasing).

The legal term groupings are illustrated in Figure 3<>12.

An example will demonstrate this techniqueo Figure 3*13 

illustrates the transition table, conventional control functions 

and circuit diagram of an autonomous sequential machine which simply 

cycles through four states continuously. Note that, for the 

purpose of comparison, the state assignment vectors are pairwise 

incomparable with each other. However, when the modified Karnaugh- 

map minimisation technique is used, as shown in Figure 3«14, a 
fail-safe circuit is obtained. This is clearly shewn by the table 

of operation illustrated in Figure 3*15*
This technique is quite a simple one to use. Indeed, 

beginning with a known state assignment, any of the above design 

procedures is a relatively straightforv/ard task. However, problems 

can arise when choosing a particular state assigrjnento The stats 

vectors must, first of all, satisfy the original design requirement; 

but they must also satisfy a specific ordering relation, as seen 

earlisTo More often than not, these requirements are contradictory, 

and producing a state assignment which satisfies both conditions can 

be a very tedious task indeed. Therefore, a computer program was 

constructed to alleviate this problem.

3o5 Computational Methods of State Assignment Selection

As mentioned earler in Section 2.3? it seemed reasonable 

to assume that all feasible groups of pairwise incomparable binary 

vectors lie on the same level of a hypercube, whether this cube be 

of 3, 4 om even 10 variables.
Therefore, a computer program was written in BASIC to 

compute these groups cf vectors. The flowchart is shown in Figure 

3ol6, while the actual program is illustrated in Appendix 1.
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Figure 3«12 Term Groupings for Autonomous Design
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Figure 3 » Operation Table
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The results for 3> 4 and 5 variables are shown in Figure 3o17, 

the vector groups asterisked being those used in the earlier 

sections on fail-safe designo

The operation of the program is straightforward:

A reference binary vector is chosen from each level of 

a hypercube and all other vectors compared with themo If a 

vector is found to be pairwise incomparable with the reference 

vector, then it is printed.

The reference vector is chosen to be the least decimal

equivalent in each level; for example, in the 3-variable

case, the reference vectors correspond to decimal 0,1,3 and 7
Ica progression of 2 -1 where k = 0,1,2,3* Although this program 

performs well, it produces only a sub-set of the total possible 

groups of pairwise incomparable vectorso

A code, known as the Berger code, produces the binary vectors 

shown below£33
llOO*

1010 
1001 
0l1i_

By inspection, it can be seen that these vectors are pairwise 

incomparable with each other, but, more important, with reference 

to Figure 2o4, three of the vectors lie on the same level of a 

hypercube, while one of them lies on a level above. However, 

this important group of vectors would be missed using the above 

computer program, since there is an underlying assumption that 

incomparable vectors lie on the same level of a hypercube.
To overcome this problem, a new program was written. The 

flowchart for this program is illustrated in Figure 3*1S, while 

the program itself is shown in Appendix 2. The program is
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constructed in such a way that, once a reference vector has been 

chosen, it is compared with all other possible vectors and the 

ones which are incomparable are printed in the first group.

Each of the vectors in the first group is then compared with all the 

other vectors in the first group and those v/hich are incomparable 

are printed in the second group, and so on. The format of the 

program results is illustrated in Figure 3*19 Tor The case of Berger 

codeo Three examples of actual computer printout are shown in 

Figure 3*20. Note that the vectors are printed in decimal form 

for speed and convenience.

Obviously this program may be extended to deal with much 

larger binary vectors by simply adding more 'groups" to the program. 

However, the program shown is sufficient to illustrate the techniquec 

After extensive program runs, the following conclusions 
were made:

(a) There are only four legal Berger vectors for 

four variables, namely;
1001
1100
1010
0111

(b) However, a larger group of vectors is possible 

when the reference 1001 is chosen, namely:

1001
0011
0101
1010
1100
0110

(c) The last three bits of the vectors in the above

group follow a binary progression. If these are 

classed as information bits, then the first check 

bit is chosen to be a 1 if the number of ones in
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the information bits is odd» The check bit is a 0 

if the number of ones in the information bits is eveno 

Thus, a very useful type of code, known as a 2-out-of-4 
parit7/--check code, is produced.

(d) Various other codes may be produced in the same way 

by careful study of the program results.

(e) Every feasible group of pairwise incomparable binary 

vectors may be produced using this computer program»

This computer analysis concludes the study of fail-safe 

digital machine design. Fundamental definitions are theorems 

have been presented along v/ith various design techniques and 

illustrated by specific design examples» Throughout the study, 

relevant conclusions have been drawn and compared.

The following chapters are devoted to fault-tolerant 

digital machine design.
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4o1

CHAPTER 4. AH INTRODUCTION TO FAULT-TOLERANT DIGITAL SYSTEMS

Pail-safe digital systems are quite acceptable from an error- 

detection point of view, since it is assumed that the system can be shut

down for a certain length of time for maintenance purposes. It 

is also assumed that maintenance is possible. However, in 

applications where continuous operation is essential for a specified 

length of time, fault-tolerant design techniques become very importanto 

Without exception, fault-tolerant design techniques involve a certain 

amount of circuit redundancy, the specific techniques to be used 

depending upon whether or not repair is possible and also on the 

required duration of reliable operation.

Fault-tolerant design techniq_ues can be divided into two 

classes. In the first, called fault-masking, the effects of any 

fault are masked by additional circuitryo This circuitry is an 

integral part of the system and no switching is involved, thus 

error-correction is instantaneous.

In the second class are schemes which detect and locate 

any fault in the system and replace the faulty unit by switching 

in a spare unit. These systems are called self-checking systems. 
Fault-Masking Techniques

Fault-masking techniques are useful when the system is 

required to operate reliably over a relatively short period of 

time and repair is impossible. Over the past few years, this has 

been the basis for various fault-tolerant design techniques. These 

include triple-modular-redundancy, quadded logic, radial logic and the 

use of error-correcting codes.

(a) Triple-Modular-Redundancy (TMR)

This is perhaps the oldest form of fault- 

masking, in which a complete system is produced

42



(b)

(c)

in triplicate. The three system outputs, 

which in fault-free operation are identical, 

are fed into a majority-logic gate as shown in 

Figure 4»1o This type of gate produces an 

output corresponding to the majority of the 

inputs. Therefore, if a perfect majority gate 

is assumed, the system illustrated in Figure 4=1 

will never fail unless two or more units fail.

It can be shown that the mean time before 
failure (MTBF} of this redundant system is less 

than that of the irredundant system [6]

However, for small values of t, the time 

period, the probability of survival of the 

redundant system is greater than that of the 

irredundant system. Such systems are useful 

when a high reliability is required over a 

short period of time.

Multiplexing [?]
The method of multiplexing is similar to 

the above method except that the original system 

is divided into subsystems and each subsystem is 

triplicated as illustrated in Figure 4-2. A 

fault in any element in a subsystem, includa,ng 

the majority gates, will be masked by this 

system. At the output, it is necessary to 

select the proper output from among the three 

outputs either by a fault-free circuit or an 

observer.

Quadded Logic |̂8j
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Figure 4«1 TriPie-Modular-Redundancy

Figure d,2 Multiplexing
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As the name of this technique implies, logic 

elements appear in quadruplicate. Any fault which 

appears is corrected at the next level. Thus all 

single faults, except in the last two stages, are 

maskedo Most multiple faults are also masked unless 

they appear in circuit elements which are close 

together» Any circuit containing AND, OR and NOT 

logic gates can he quadded. Similarly, quadded 

circuits can be designed using NAND and NOR gates 

(Jensen, 1963)* Sequential circuits can be 

synthesised also, since flip-flops can be realised 

by treating them as circuits formed by interconnecting 

simple logic gates, but containing feedback.
(d) Radial Logic

Radial logic makes use of the fault-masking 

properties of the NOR (or NAMD) gate with duplicated 

inputs and is capable of correcting most single errors. 

I f l any particular realisation, radial logic requires . 

only half the number of logic gates required for 

quadded logic, but the former does not correct a 

certain class of errors which the latter does. Radial 

logic may be desirable when the type of technology 

used makes this class of faults unlikely to occur. 
Radial logic using AND and OR gates can be obtained 

as a simple extension of the NOR realisation, but 
certain classes of faults still cannot be masked.

(e) Error-Correcting Codes [l0]

A method, whereby error-correcting codes are used 

to obtain reliable digital systems, was proposed by
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Armstrong in 1961. The method is actually a 

generalisation of the triplication and voting 

procedure discussed earlier^ The technique is 

applicable to both combination and sequential 

circuits. Since this technique forms the basis 

for the fault-tolerant digital counter presented 

in the next chapter, it is discussed later in some 

detailo

4.2 Self-Checking Systems

So far, digital systems operating under two different 

sets of conditions have been discussed.

Jn the first, the fail-safe system, interruptions 

are tolerable and repair is possible, since only error- 

detection takes place and an P-state is reachedo In 

this case, a system which is relatively easy to test is 

desirable so as to minimise the time required for 

maintenance.

In the second class, repair is impossible but the 

system is required to operate with high reliability for 

a relatively short period of time. The fault-masking 

techniques discussed in the preceding section are ideally 

suited for this application.

A third type of environment is one in which 

interruptions in the operation are intolerable but repair 

is possible. In order to operate under these conditions, 

the system should be self-checking. It should be able to 

detect any fault within itself, identify the faulty 

subsystem and switch it out of the system. This should 

be done in such a manner that the system can continue to
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operate with the remaining units, v/hile the faulty unit is 

repaired.

(a) Electronic Switching System (ESS) [1'1J

The lioo 1 Electronic Switching System (SSS) used 

in the Bell System for telephone switching is a highly 

reliable system, one of whose reliability objectives 

is that the system operation should not be interrupted 

for more than two hours over its 40-year lifeo In 

addition to the use of long-life components and 

conservative circuit design, this high degree of 

reliability is attained by duplicating the vital 

parts of the system so as to retain an operational 

system in the presence of component failures. Circuits 

and programs are provided to determine the faulty 

unit and switch it out of operationo Diagnostic 

programs and maintenance dictionaries are provided to 

locate the faulty package in the failed unit, leading 
to rapid repair.'

(b) Self-Testing and Repair (STAR) Computer [12]

This is an experimental computer which v;as 

designed and constructed primarily for research 

and evaluation of self-repair techniques» Its 

performance characteristics are meant to be suitable 
for the guidance and control of unmamed interplanetary 

spacecraft. The computer is reopuired to operate 

reliably over a period of several years. 'Temporary 

malfunctions may be tolerated provided they are 

detected and the computations repeatedo Time is
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also available for switching out faulty units and 

switching in spares« The STAR computer has a fixed 

configuration of subsj'‘stems, with spares provided for 

each subsystem. Spares are permanently connected to 

the system through information buses, but are left 

unpowered. Replacement of a faulty subsystem by a 

spare is effected by turning off the power to the former 

and powering the latter.

This concludes the introduction and background to fault-tolerant 

digital systems. The following chapters deal v/ith various apphoaches 

and techniques in the design of these systems. As mentioned earlier, 

the next chapter deals with a specific type of fault-masking technique, 

namely, the use of error-correcting codes, and its application to the 

design of a fault-tolerant digital counter.
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CHAPTER FAULT-TOLBRAilT I)IGITi>X COUHTBR PESIGH

In this chapter, the use of error-correcting codes, or, 

more specifically, parity-checking codes, is discussed in 

detailo The design of a single-fault-tolerant digital 

counter using this technique is illustrated by a particular 

example using a modified first-order Eeed-Muller parity- 

check matrix^' The chapter is concluded by a computer-aided 

design studj'- of fault-tolerant counters.

5.1 Parit.y-Check Codes and their Uses

Consider an m-input, n-output combinational circuit 

which can be designed so that it produces the correct outputs 

even in the. presence of a single fault. If there is no shared 

logic between the shared outputs, then K check bits could be 

added and an error-correcting code used. If shared logic 

is allowed, then a single fault may affect several outputs 

and the cods should be capable of correcting all errors that 

may result from a single fault.

A more.efficient technique, suggested by Armstrong is 
to break the given m-input, n-output circuit into r sub-unitso 

There may be shared logic between outputs within the same sub

unit, but no shared logic between sub-units. Errors produced by a 

single faulty sub-unit can be corrected by adding q p-output

sub-urhts as shown in Figure 5“1* The outputs Z, ., i»r+1,_,.^^, ̂3
r+q serve as check bits for Z, k«1.„..r, and p, in a

single-error-correcting code.

In applying error-correcting technio^ues to sequential 

circuits, it is necessary to perform error-correction on the 

outputs as v;sll as the state variables, otherwise a fault in 

a sub-unit, whose outputs are state variables, may be fed back
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resulting in errors in more than one sub-unit at a later time.

A parity-check code is characterised by its parity-check 

matrix. A parity-check matrix H of n columns and n-k rows 

for any binary error-correcting code can be expressed in general 

in a reduced-echelon form as shown in Figure 5*2 [13]

^ is an n-k identity matrix and Q is an n-k by k matrix 

with binary element

The corresponding code space V consists of all elements 
T TV such that vH = 0, where H is the transpose of matrix H.

More specifically, if v = ,,...B^_^),

then V is a code word if and only if

A,q,, e   ̂® A,q^ , ® - 0

or

1 1 i1 2^12 3 i3 K^ik
for i=1,2,...., n-k, where ® denotes the modulo -2 sum.

This code is called an (n,k) code, where n denotes the block 

length and k the bit length for the information symbols. The 

bit length for the check symbols is given by n-k.

The class of code used in this design technique is a 

modified first-order Reed-Muller code whose parity-check 

matrix has exactly three 1's in each row ¡14] • This code is 

a low-density code in the sense that its parity-check matrix 

contains mostly O ’s and relatively few 1's. A 2-out-of-3 

majority element is used for the purpose of error correction.

A 3 by 6 parity-check matrix H for this code is illustrated 
in Figure 5»3*

Let V = (a A- A, B B B ) be a code word, where

A k are information bits and B. B 3 are check bits. Then I > 2, 3 1, 2, 3
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H =

% '^12 ^ 1 3 ...... “̂ I k
1 0 0 . • ■ 0

^21 Q 2 2 ^ 2 3 ....- ^ 2 k
0 1 0  .. . 0

^31 *^32 “̂ 33 '^3k
0 0 1 . . . 0

n Q q q 0 0 0Vk1 n-k2̂n.k3 n̂.kk

= [Q,In~k
Figure 5«2 General Form of Parity-Check Matrix

H= -
1 1 0 1 1 0 0
0 1 1 ! 0 1 1 0
1 0 1 1 0 0 1

Figure 5»3 Heed-Muller Code Parity-Check Matrix
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TvH * 0 and from the given matrix H, a set of parity-check 

equations can be derived, thus;

- A2 ® A^
B3 . A^ ® Ai ( 1)

or A^ - A^ ®
® Bi » A3 ®  B^

A3 - A^ ® B3 - A^ ® B^ (2)
Note that each A^, for i * 1»2,3 in the set of (2), can be 

determined by exactly three independent relationships. 

Therefore;-

. A ^(k) -  Mâ .j  ̂(A^, A^ ® B^, A3 ® B3)

A ^(k) -  Ma^^ (A^, A  ̂ ® B ^, A3 ® B^)

A3(k) . Ma^^ (A3, A^ ® B3, A^ ® B^) (3)

where the subscript k  denotes the k^^ physical realisation of

the particular majority element. These majority elements of 

(3) give the correct output if, at most, one of the terms 

A^,A2>A3, B^,B^,B3 has a component faulto

Prom the set of (l);
A ^ S B ,

Ai ® B , A3 O B J

therefore;
A3 . Â  ® B3 . A2 ® B2

A^(k) - Ma^^ (Î  , A^ ® B^, 3 3 ® B3) 

A^ik) - Ma^^ (A^, 3^ ®  B^, I3 © B^) 

A3(k) - Ma^^ (3^, A^ ® B3, 3^ ® B^)

(4)

e5)
These results can be applied to the design of a single-fault- 

tclerant three-stage counter.,
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5*2 Fault~ToIerant Di|S:ital Counter

As an illustration, consider the design of an ordinary 

three-stage binary counter with information bits A^, A^ and 

A^ as shown in Figure 5»4» In order to produce a fault-tolerant 

version of this counter, three auxiliary check stages are required. 

These check bits B^, and B_̂ are produced using the equations 

of (l). The control functions are now required in order to 

realise the circuit. T-type flip-flops (or J-K flip-flops with 

J and K tied together) are used as memory elements for reasons 

discussed later<> The characteristic equation of a T-Type flip- 

flop:

AQ(t) = Q(t) Q  Q(t+"I)

is used to produce the control functions as illustrated in 

Figure 5*4° Minimisation produces the final control equations 

as shown» It can be seen from these equations that the variable 

A^ is required three times, is required twice, A^ once and A^ 

twicso Therefore, eight majority elements are needed to prevent 

any "bottleneck" probiems» The final circuit diagram is 

illustrated in Figure 5*5* Note that these majority elements 

contain not only a 3-input majority logic gate, but also two 

exclusive - GH gates in order to satisfy the conditions given 

in equations (3) and (5)= This circuit was built and tested 
and found to be completely fault-tolerant to single logic 

faults, irrespective of the type of fault or where it occurred.

Throughout this study, it has been stressed that, in order 

to produce a reliable machine, it is desirable to use the 

mir*imum of components» Therefore, T-type flip-flops were 

employed in the fault-tolerant counter to ensure a minimal 

circuit. Obviously, the use of J-K flip-flops would have
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s ta te
information bits check b i ts change opera to r form

A3 A2 Al B3 B2 B l A3 A2 At B3 B2 Bl

% 0 0 0 0 0 0 0 0 7 7 0 7

7̂ 0 0 1 7 0 7 0 7 7 7 1 0

^2 0 1 0 0 7 7 0 0 7 7 0 1

% 0 7 1 7 7 0 7 7 1 0 0 0

1 0 0 7 7 0 0 0 1 1 0 1

% 1 0 7 0 7 7 0 1 1 1 1 0

%■ 1 1 0 7 0 1 0 0 1 1 0 1

S7 1 1 1 0 0 0 1 1 1 0 0 0

<̂9 0 0 0 0 0 0 0 0 1 1 0 1

A'j = 1, B-j = Af

A2  -  A ,̂ ^2 ~ '*̂‘7 ̂ 2

^3 ^ Aj A b , %  ■ A-;->-A2

Fiigure 5«4 State Table and Control Functions
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Figure 5«'? Three-Stage Single-Fault-Tolerant Counter
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required much more combinational logic, and if D-type had been 

used, the control equations would have beens

Ai -

A2 » Ai 4» Ag

B - Â 1 2

^2  *  ^ ^ 1^3 “^ 2^3 ■ ^ 1̂ 2‘̂ 3

B3 ” Â^Ï3 + A^^3 + Â 2̂-̂ 3
These would have produced a much more complicated and, therefore, 

a much less reliable circuit.

5o 3 Gomcuter-Aided Design of Fault-Tolerant Counters

A series of computer programs was written to simulate the 

design procedure outlined above. The operation of the final 

program is illustrated in the simplified flowchart of Figure 

5.6; the actual program v/hich, for technical reasons is written 

in FORTRAli, is shown in Appendix 3°. -

Although at first sight, the program looks rather long 

and complex, it is g_uite straightforward and can be divided 

into two main parts.

The first part of the program computes the state table 

of the required machine in a format similar to that shown in 

Figure 5*4• Naturally, this table is governed by certain 

initial design constraints, including the type of flip-flop 

required, the correct Reed-Muller matrix and the state 

assignment of the required m.achine. These are inputed at 

the start of the program in decimal form. The format of the 

Reed-îiuller matrix is inputed as a string of digits, indicating 

the positions of the 1’s in the matrix. For example, the
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matrix'in Figuré is represented as 122313= Parity-check 

matrices may he constructed for four and five variables as 

shown below.

1100
I
I 1000

0110 0100

1001 0010

0011 0001

10100

01010

00101

10010

10000

01000

00100

00010

12231434

01001 I 00001

1324351425
The second part of the program stores the binary numbers 

in each "change operator" column of the state table. These 

are then fed, in turn, to a subroutine which performs a 

Quine-McCluskey minimisation. Hence, minimal control functions 

are produced and printed. An example of the final program 

printout, illustrating the design of the fault-tolerant 

counter discussed above, is shown in Figure 5=7.

Since this program is designed to cope with three, four 

and five-stage counters, using variations of the Reed-Muller 

parity-check matrix, and can also handle any conceivable state 

assignment, it is an invaluable and versatile tool in fault- 

tolerant counter design.

The following chapters deal v/ith two alternative approaches 

to fault-tolerant digital design. The first involves the 

construction of an interactive fault-tolerant cell-block, whilst 

the second technique utilises read-only memories in digital design. 

Although very different techniques they are both versatile and are 
not restricted to autonomous machine design.

Chapter 6 deals with the fault-tolerant call-block.
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INFO B IT S CH ECK B IT S CHAl'j G E 0 ? FOR.I
. D£LTA A ' s DEL TA 3 '

0 3 0 0 0 0
0 0 1 1 0 1 ■3 0 1 1 0 1
0 1 3 0 1 1 0 1 1 1 1 0
0 1 1 1 1 0 0 0 1 1 0 1
1 0 0 1 1 0 1 1 1 0 9 0
1 0 .1 0 1 1 0 0 1 1 0 1
1 1 0 1 0 1 0 1 1 1 1 0
1 1 1 0 0 0 0 0 1 1 0 1
3 0 0 0 0 0 1 1 1 0 0 0

DELTA A 3= A 2A 1+ A 2A 1+
DELTA A 2=A 1+A 1+A 1+A 1+ 
DELTA A l = l
DELTA 3 3 = A 2 '+ A 2 ' + A 1 '+ A 1 '+  
DELTA 3 2 = A 2 'A 1 + A 2 'A 1 +  
DELTA 31 = A1 '+A1 '+A 1 '-t-Al ’ +

END

Figure 5»7 Results
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CHAPTER 6. FAULT-TOLERAHT CELL-BLOCK DESIGN

Throughout this study, classical methods have been primarily 

used in the design of both fail-safe and fault-tolerant sequential 

circuitry. Classical design generally involves a verbal 

description of the system function, followed by the construction 

of a state graph illustrating the various states and transitions 

required to perform this functiono This is usually a straight

forward task. However, the subsequent steps in the design 

procedure are not quite so simple and it generally requires 

the expertise of the design engineer to produce a reliable system 

with the minimum of components.

On the other hand, with the advent of microcircuits using 

large-scale-integration, electronics is rapidly becoming a 

'*black-box" technology in the sense that very complicated circuits 

are now becoming commercially available in single packages. The 

piecing-together of these individual units to produce complex 

systems is now the primary role of the engineer.

It seems good sense, therefore, to design a logic element 

which, when incorporated in a system of identical elements, is 

as close as possible to the exact analogue of the state graph, 

setting and resetting according to the various transitions 

required by the system. The desirable properties of such an 

element are that it represents a state on the state graph, connected 

to other states in one-to-one correspondence with the state graph 

arrows, and it indicates or "remembers" the state of the system 

at any time. A circuit built of these elements would also have 

the advantages that it is already designed once the state graph 

is designed, and the circuit could be easily understood by anyone
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who understood its function. [15]

Moreover, if this logic element could he made fault-tolerant, 

the result would be simplified design coupled with increased 
reliahilityo The design of such a fault-tolerant cell-block 

is discussed in detail in this chapter,

6.1 Initial Cell-Block Development

During the development of a suitable cell-block, several 

designs were built and tested. These will be investigated in 

turn,

(i) An initial design is illustrated in Figure 6.1(a). If

Q is a logical 1 and X is a logical 0, the internal feedback 

loop and associated combinational logic ensures that the cell 

remains in a high state. In this condition, the cell is 

effectively isolated from all other cells in the system. If, 

however, X becomes a logical 1, the D input becomes a 0, resetting 

the cell on the following clock pulse, while the Q output 

enables the following cell-block, A typical state graph, 

representing a simple ring-counter, is illustrated in Figure 6.1(b) 

and the circuit implementation is shown in Figure 6.1(c).

Although this cell-block functions correctly it has certain 

di sadvantages:-
(a) The circuit relies on an incoming logical 0 

for resetting.

(b) The cell is limited to single-input, single

output operation,

(c) The state-graph analogy is broken, since there

is no external feedback loop from output to input 

representing the ’same-state® condition.
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(a) S imple  cel I - b l o c k

(b) S im p le  state  d iag ram

(c) C i r c u i t  im plem enta t ion
Piigiire 6.1
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After this design attempt, it became elear that the 

required combinational logic would be more usefully employed 

at the output of the memory elemento This led to a new design,

(ii) The design shown in Figure 6o2(a) uses a J-K-flip-flop as

the memory element, since this proves more versatile for 

resetting purposes. If Q is a logical 1 and both the external 

inputs are logical 0, the cell remains in the high state, since 

a logical 0 is fed back to the K-input of the flip-flopo If, 

however, one of the external inputs is high, the corresponding 

AND gate is enabled and a logical 1 is fed back to the K-inputo 

On the occurrence of a clock-pulse, the cell is reset and the 

following cell enabled» This means, therefore, that the cell 

is effectively self-resetting, since it does not depend on the 

logic signal applied at the J-input, but only on the external 

inputs» Another advantage of this design is that it can be 

easily developed for multiple input-output operation.

However, this cell-block still has disadvantages

(a) Two external inputs are required to control two 

output signals»

(b) The state-graph analogy is still broken for the 

reason outlined in (c) above»

In order to overcome these drawbacks, a third cell-block 

was designed.

(iii) The cell-block shown in Figure 6»2(b) operates in a similar

manner to the previous design, except that the outputs are 

controlled by a single external input X» Although only two 

outputs are used throughout this discussion, cbviously any number 

of reo^uired outputs could be provided by a simple extension of
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(a) 2 - input/output ce ll-b lock

Figure 6 , 2

( b) Improved version
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this techniqueo The state graph of Figure 6o3(a) is realised 

via the circuit shown in Figure 6.3(h)o Note, in this case, 

that the circuit is directly analogous to the graph and the 

ultimate aim has been achieved^

However, close inspection and testing of this system revealed 

that, subject to certain input conditions, the circuit operates 

erroneously.

When the external input X is a logical 0 and the output of q^ is 

fed back to its own input J, the required response is that q^ will 

remain in the high state. However, the K-input line is also a 

logical 1 and, therefore, the cell-block will reset» The AND gates 

can no longer be enabled and the system ceases to operate» The 

circuit, therefore, must be amended if this situation is to be 

avoided.

(iv) This is done quite simply by insertion of an inverter and

AND gate on the reset line as shown in Figure 6.4. The K-input 

■ is now controlled by the state input to the cell-block, so that, 

the inverter ensures that the K-input is a logical 0 and the 

flip-flop remains in the 'set' position. The added logic does 

not impair the various other operations of the cell-block.

With a suitable cell-block developed, the next step was 
to produce a more reliable version using the method of fault- 

tolerance.
60 2 Fault-Tolerant Cell-Block

Various fault-tolerant design techniques are,available, 

as outlined in Chapters 4 and 5> in order to produce a more 

reliable system. Hov/ever, since the cell-block is of a 

sequential nature, many of these techniques cannot be applied.

The choice, therefore, is betv/een the method of parity-check
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(a )  S t a t e  d iagram  example

(b) c i r c u i t  implementation
Figure 6.3
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ext. I/P

O/P

Final cell-block design

Figure 6»4
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codes and triple-modular-redundancyp The former technique presents 

immediate problems as far as the cell-block is concerned for the 

following reasonss-

(a) This method is aimed primarily at autonomous 

systemso Although it is not altogether 

impossible to adapt the technique for sequential 

circuits, it is no simple matter to incorporate 

external inputs to produce a satisfactory design®

(b) This method requires at least three memory elements 

to produce a sufficient number of binary digits for 

checking purposes. Since the cell-block contains 

only one flip-flop, some additional redundancy 

would have to be introduced from the outset, even 

before the method was applied. This is not only- 

very uneconomical, but also tends to reduce the

initial level of reliabilityc.

On the other hand, the cell-block offers no restrictions 

to the use of triple-modular-redundancy, and a fault-tolerant cell- 

block is simply implemented as illustrated in Figure 6®5° This 

is composed of three identical cell-block sub-units feeding six 

majority-logic gates. In normal operation, the signals applied 

to each majority gate are identical with the result that, depending 

on the value of the external input, three versions of the same signal 

are obtained at the outputs of the majority-logic gates. This 

means that the fault-tolerant cell-block continues to function 
correctly in the event of a single logical fault occurring in any of 

the circuit elements, including the majority logic® However, when 

this csll-block is used in conjunction with others to produce a required
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design, under certain conditions reliable operation may be achieved in 

the presence of various simultaneous faults»

(a) Two majority gates may fail within the same cell- 

block, provided that they receive different input 

signals. For example, in Figure 6.5, gates M 1̂  and M2  ̂

may fail simultaneously without disrupting normal 

operation.

(b) In an N-state system, using N fault-tolerant cell- 

blocks, 1 -• N majority gates may fail without 

producing erroneous operation, provided that the 

failures occur in the same position in each cell- 

block»

(c) A complete sub-unit, comprising of eight logic 

elements, may fail without disrupting the 

operation»

(dj In an N-state system, 1 -* N complete sub-units may 

fail simultaneously, provided that only one sub

unit fails in each cell-block.

From the above it can be seen that a complete system, comprised of 

interconnected fault-tolerant cell-blocks, can tolerate a minimum 

of one logical fault, but, in exceptional circumstances, may 

tolerate a maximum of 8II logical faults.

In order to fully test the operation of the fault-tolerant 

cell-block under fault conditions would mean constructing a 

few logic circuits and manually simulating various logical faults. 

However, when one considers that a single fault-tolerant cell-block 

requires 10 I.C. packages, it is not surprising that it was deemed 

both unwieldy and time-consuming to build a system with more than
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three states using these discrete components.

It was decided, therefore, to simulate various logic systems 

on the computer using the Reynolds Logic Simulator =.
6o3 Logic Simulation of Fault-Tolerant Cell-Block

The Reynolds Logic Simulation program is described in 

detail in Appendix 4*

A data file, entitled TMR, DAT, which describes the fault- 

tolerant cell-block, is shown in Figure 606. Rote that every 

data file commences with - 1 , which indicates a new data file, 

and ends with - 1S, which returns control to the terminal keyboard. 

Rote also that, since there is no facility in the program for 

majority-logic gates, these are replaced by equivalent logic 

networks whose function is given by:-

„ f* + y.s + Xp-a

The program is first run under fault-free conditions to assess 

the normal operation of the fault-tol-erant cell-blocko The 

resulting computer printout is shown in Figure 6.7* Rote that 

various comments and guidelines have been added for the sake of 

clarity. The circuit functions correctly under all possible 

input conditions, therefore various logical faults can now be 

simulated in order to test the fault-tolerant aspect of the system.

Logical faults are simulated quickly and simply using the 

Reynolds programo The command -2 allows any specified connections 

to be updated, so that any node may be assigned either a logical 

zero or a logical one using the system functions 14 or I5 

respectivelyo

Using this teciinique, faults were induced in various circuit 

elements of the cell-block and the resulting annotated orintout
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-1
1 16 0
2 2 3 4 5 0
3 1 0
4 1 0
5 1 0
6 1 0 1 2 1 1 0
7 4 6 13 0
3 4 6 9 0
9 3 13 0
10 2 7 3 0
1 1 4 10 12 0
12 3 2 3
1 3 1 0
14 2 15 16 1 7 0
15 1 0
16 1 0
1 7 1 0
13 13 1 14 23 0
19 4 13 25 0
20 4 13 2 1 0
2 1 3 25  0
22 2 19 20 3
23 4 22  24 0
24 3 14 0
25 1 0
26 2 27  23 29 0
27 1 0
23 1 0
29 1 0
30 1 0 1 26 35 0
3 1 4 30  37 0
32 4 30 33 0
33 3 37  0
34 2 31 32 0
35 4 3 4  36 0
35 3 26  0
37 1 0
33 p 39 40 4 1 0
39 4 7 19 0
40 4 19 3 1 0
4 1 4 7 31 0
42 2 4 3  44 4 5 0
43 4 7 19 0
44 4 19 3 1 0
45 4 7 31 0
46 2 4 7 43 49 0
4 7 4 7 19 0
43 4 19 3 1 r f.

o

49 /. 7 3 1 •pj4
5 0 2 5 1 5 2 5 3 <7'«6/

5 1 4 3 20 r?.LJ

52 4 2 0  32 7 )

5 3 4 3 32 '¿ j

54 p 5 5 56 r z 7
5 5 4 3 2 0 0
56 4 20  32 0
57 4 3 3 2 0
5 3 2 59 6 0 6 1 3
59 4 3 20 a

■o

60 4 2 0 32
6 1 4 3 3 2 3
-  1 3 73

Figure 6.6 Data File



:om:i a :-jd  e 'c p e c t e d
- 4 13 7 3 19 20 3 1 32 33 42; 46 50 54 53
- 9 O
1 3 7 3 19 2 0 3 1 32 33 42 46 50 54 58
+ --- -  H----- + --- + --- H----- +■ -

3 3 0 i i l
i7 . 0 2 0 0 0 0 0 0

3 3 0 3 3 0 7
a 0 0 3 0 .7

x j 0
3 3 3 o 3 0 0 3 0 0 0 ■d a

Ca.<!MA:jD ZX? tr ̂  T* ' iLu : —D
-  6 13 25 37
- 9 3
1 3 7 3 19 20 31 32 33 4 2 46 5 0 54 53
+ --- -  H----- H----- H----- -h--- + --- -h -

1 0 0 0 0 0 0 0 0 0 0 0 0
1 3 0 3 kl; 0 3. 0 0 0 0 0 0
1 3 3 0 3 3 0 0 3 0 a O'

O 3

CO--IMAUD EXP ECTE D
- 6 3 1 5 27
- 9 4
1 3 7 3 •19 2 3 31 32 33 4 2 45 50 54 53
H----- H-----+ - -  +■ - -  -i---- -1----- -r -  - + --- H----- + --- -i- — -i---- +• -

1 0 3 3 0 0 0 0 0 a 0 0 0
1 1 3 1 a 1 1 1 1 0 0 2
1 1 0 1 0 1 3 1 1 1 0 0 0
1 1 3 1 3 1 0 1 1 1 - y. 

o 3 0

o O.'l .lAUD EC? T ii.T'̂
-  5 3 15 27
- 9 4
1 3 7 3 19 20 31 32 33 42 46 O i j 54 53
+ --- -i----+ - -  - f -  - H----- H----- -h--- + — + — + --- + -

3 3 0 ■3 3 g 0 0 0 0 0 0 0
0 0 1 3 1 '0 1 ' 0 0 1 1 1

■3 1 3 1 3 1 0 •X!6‘ 0 1 1 1
a 3 1 3 1 a 1 n

t j 0 3 1 1 1

Coiiments 
M o n i to r  p o i n t :

S r t e m a l  i n p u t  ]{=0

1^=0

X=1

1^=0

X=1

1^=1

x=o

l1=1

Figure 6.7 Results
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is illustrated in Figures 608 and 6o9* Without exception, all 
logical faults, irrespective of type or position, are masked by the

majority-logic gates. However, in some cases, the fault does 

not affect the operation of the cell-block. This is identical 

to the situation encountered earlier when dealing v/ith fail-safe 

logic designo With the fault-tolerant cell-block fully tested, 

the next step was to simulate a complete circuit using these blocks 

in order to induce and observe fault conditions in a practical 

situationo

6o4o Fault-Tolerant Cell-Block Circuit Design

A data file consisting of three separate fault-tolerant 

cell-blocks was first drawn upo To avoid confusion, the modes 

of the second cell-block were numbered in the range 1CX) - 199 and 

the third cell-block in the range 200 ~ 299o That is, since the 

original flip-flops were numbered 6, 18 and 30, the flip-flops in 

the second cell-block ?rere numbered 106, II8 and I3O and so ono 

The connections were then updated so that a circuit was formed, 

and the data file was named CIRCo DAT» The state graph is 

identical to that sho\vn in Figure 6.3(b) while the circuit 

representation using fault-tolerant cell-blocks is illustrated 

in Figure 6.IO0

Normal operation of the circuit was first checked using the 

simulation program and the results are shown in Figure 6011.

This is satisfactory since the circuit reacts in accordance with 

the state grapho Using the same technique as before, various 
faults were simulated. Since it has already been shown that 

logical faults within the cell-block itself are always masked, the 

faults, in this case, are restricted to the majority-logic gates.
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Fault-tolerant representation of state diagram Fig.6-3(a)
Figure 6«10
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6o5

The results of these tests are presented in Figure 6.12o The 

results show that, despite a faulty majority-logic gate, the correct 

information is still passed on to the following cell-blocks.

This occurs since, although the faulty cell-block produces only 

two correct signals, the majority gate network in the following 

cell-block masks the fault by producing three correct signals, and 

so on. As before, the system may function correctly in the presence 

of a faulty majority-logic gate.

In order to simulate larger systems, the obvious requirement 

is a data file comprised of many separate fault-tolerant cell- 

blocks which may be interconnected according to a specified state 

graph. However, problems arise when more than three cell-blocks 

are required, due to the storage allocated to the simulator program.

Up to 300 modes may be specified, in order, but the total number of 

list items, excluding the terminating zeroes, must not exceed 8OO.

Hoviever, now that the fault-masking process is fully understood, 

the original fault-tolerant cell-block may be replaced by a simpler 

system for simulation purposes.

Simplified Version of Fault-Tolerant Cell-Block

The circuit illustrated in Figure 6.13 performs exactly the 

same function as the original cell-block but requires only 5̂ /̂  oi" "tîe 

logic. Although this new configuration would not operate in practice 

since all the majority-logic has been omitted, it is sufficient 

for simulation purposes.

A circuit which simply cycles through 7 states on the 

application of an external logical 1 signal and retains the same state 

when a logical 0 is applied vras simulated using the nevi configuration 

and the results, showing normal operation, are presented in Figure 6.14^
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Under fault conditions, the system reacts as expected and the results 

obtained are shovm in Figure 6.15» In this case, a fault is not 

confined to the cell-block in v/hich it occurs but is passed on 

after each clock pulse. This is because the majority-logic has 

been omitted and the fault is never masked. Nevertheless, this 

simplified version of the fault-tolerant cell-block is useful when 

simulation of larger systems is required.

This concludes the study of the fault-tolerant cell-block 

and its applications. Once a suitable self-resetting logic element 

was developed, triple-modular-redundancy was used to produce the 

final fault-tolerant cell-block. Although it is not viable to 

construct the cell-block using discrete components, it could be 

incorporated quite easily into a single chip using either MSI or LSIo 

In this way, fault-tolerant logic systems could be implemented almost 

as economically and compactly as ordinary digital systems.

The Reynolds Logic Simulation program was used extensively 

in this chapter and proved invaluable in the construction and 

testing of the fault-tolerant cell-block.

Finally, a simplified version of the cell-block was produced 

which proved useful in the analysis of larger logic systems.

The next chapter deals with the use of the programmable 

read only memory in both digital and fault-tolerant digital designo
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7o1

CHAPTER 7. FAULT-TOLERANT DIGITAL DESIGN USING PROMS

Although many different design techniques have "been used 

throughout this study, they have all been linked by a common 

factor» Every system has been designed and built to perform 

a certain function, as specified by a state graph» In this 

respect, these systems can be considered 'static’, since the 

hard-^W.ired logic involved can perform one function and one 

function only. To perform a different function using the same 

logic elements would require a complete re-design, resulting in a 

totally different hard-wired logic system.

However, consider a system whereby the state assignment is 

stored within some memory device» By using suitable interfacing and 

addressing techniques, it is possible for this system to operate in 

a fashion identical to a conventional logic system. Moreover, this 

system can be considered ’dynamic', since it can perform an 

unlimited number of different functions by simply reprogramming the 

memory, whilst still retaining the original hardware. If the 

system could then be made fault-tolerant, the result would be 

a very reliable and versatile digital system using very little 

hard-wired logic» Such a system, using a reprogrammable read

only-memory, is discussed in detail in this chapter»

The Read-Only-Memory and its Structure

A read-only-memory (ROM) consists of a matrix of transistors 

(either bipolar or MOS), which act as memory cells» This matrix 

is preceded by a decoder which effectively addresses each row of 

memory cells» As an example, consider a 256 bit ROM arranged in.

32 'Words of 8-bit each» The decoder input is a 5 6it binary select 

code, and its outputs are the 32 word lines. The matrix consists

of 32 bipolar transistors, with each base tied to a different line,
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(i)

and with. 8 emitters on each transistore This type of fixed 

ROM is programmed once and once only either at manufacture, 

or by the user. Usually, the customer compiles the truth 

table he wishes the ROM to satisfy, and a metallisation mask 

is then to connect one emmitter of each transistor to the

proper output line, or alternatively to leave the emitter floatingo 

Field programmable ROMS are bipolar structures which the user 

programs by selectively 'blowing’ fusable links in memory cells. 

Both these types have the disadvantage of being non-reprogrammable.

Three types of reprogrammable ROMS are commercially 

availableo The first type is electrically programmed and erased 

by exposure to ultraviolet (U.V.) light through a window in the 

package. The U.V. light causes holes and electrons to recombine, 

clearing the stored charge. The other types are electrically 

alterable i.e. they may be erased by applying a pulse, usually 

of 30-40Vamplitude to the programming pins. Some devices may be 

selectively erased, and this type offers significant advantages 

over the U.V. type in that erasing may be done in circuit in 

a comparatively shorter time.

T'wo Reprogrammable Logic Systems

The general state graph shov/n in Figure 7=>1 is synthesised 

using two totally different reprogrammable logic systems, and 
these are discussed it turn.

The first system is illustrated in Figure 7*2(a), while the 

organisation of the memory information is shown in Figure 7*2(b)

The operation of this system is relatively straightforv/ard.

The initial address, corresponding to the first state of the 

graph, is set up in the address buffer, which simply consists of
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e n a b l e

( b)
yigrure 7»1 System 1
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four D-type flip-flops. This address is decoded in the PHOM 

and used to access one of sixteen word lines, which, in this 

case, is composed of eight data bits and two output bits» It 

is evident from Figure 7*2 that these ten bits actually represent 

two different states on the graph, depending on the value of the 

external input X» Therefore, this information is fed into a 

‘bit-select' circuit, shown in Figure 7»3, which outputs the 

correct address to the address buffer. When the system is 

clocked, this next address appears at the buffer output and 

accesses a new word line in the PROM, and so on. In this way, 

operation, similar to a conventional logic system is achievedo 

Hov/ever, -this system is unnecessarily complex, and improvements 

are discussed below.

(ii) An improved system is illustrated in Figure 7<>4(a)>

while the memory organisation is shown in Figure 7*4(b)o This 

system uses very little external logic and requires a much 

smaller memory than the system outlined above. The initial 

address is set up in the buffer, and depending on the value of 

the external input X, one of tvro word lines is accessed in the 

PROM. When the system is clocked, this data, representing the 

next state, appears at the output of the address buffer, and 
so on.

Now that a practical system has been developed, the next 

step is to produce a more reliable version using some method of 

fault-tolerance. An obvious solution is to use triplication 
and majority-voting on the system as it stands« In this case, 

however, this requires the use of three separate memories, each 

of -which has to be reprogrammed every time the complete system
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is reprogrammedo This is both clumsy and time-consuming. A 

much better solution is to check and correct the contents of a 

single memory using some form of error-correcting coding scheme, and 

triplicate the required hardware. This may be done using the 

Hamming code, a full description of which is given in Appendix 5*

7=3 Hamming Decoder

A logic circuit, capable of performing this correction 

procedure, is illustrated in Figure 7*5* if no fault occurs 

within the memory, the outputs of gates 1 , 2 and 3 are logical 0, 

therefore gate 4 is not enabled. The correct information simply 

passes directly through to the address buffer under these conditions. 

If, howeverj a fault occurs in an information bit, the circuit 

rectifies the situation by changing the logical value of the 

offending bit. For example, if bit six is incorrect, the outputs of 

gates 1 , 2 and 3 become 1 1 0, therefore gates 4 and 8 are enabled, 

thus providing a logical 1 to gats 14= Now, if the original 

incorrect bit is a logical 1 , the output of gate 14 becomes a 

logical 0, and vice versa. However, if a fault occurs in a 

check bit, gate 4 is not enabled and the correct information is 

again passed on. If the output bit, bit seven, is incorrect, the 

outputs of gates 1 , 2 and 3 become 1 1 1 , therefore gate 5 is enabled 

and a similar inversion operation takes place, thus correcting the 
output information.

By utilising three Hamming decoders, three address buffers and 

the neoessary majority logic, a single-fault-tolerant reprogrammable 

logic system may be produced in a manner sirndlar to the fault- 

tolerant cell-block discussed earlier. These systems were 

constructed and rigourously tested. Without exception, these
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circuits performed satisfactorily according to design 

requirements»

This concludes the study of digital design using prograramahle 

read-only-memorieso The next chapter presents some overall 

conclusions and indicates some topics of future research.
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CIi.\FTER 8. CQHGLUSIOMS

The design of fail-safe and fault-tolerant digital circuitiy has 

been investigated in detail throughout this study. This chapter 

presents some overall conclusions and indicates topics for future 

Yv'ork in this field. First of all, it is '.vorth considering the aims 
of this study,

8.1. Aims
The aims can be categorised as outlined beloi.7

(a) To investigate various existing methods of fail-safe and 
fault-tolerant design vd.th a view to adapting and 

improAdng these techniques.

(b) To establish ne-w methods of fail-safe and fault-tolerant 
digitail machine design,

(c) To generally simplify design techniques by the use of 
original hard>ware design and v/ith the aid of appropriate 

sof t’ware.

These aims have now been achieved.

8.2, Conclusions

A full investigation into the properties and requirements of 
fail-safe digital circuitry resulted in the development of tv/o nê Y 

design techniques. In general, both of these techniques required 

less hard’Arare th*an existing methods, resulting in increased 
reliability, ’while the latter technique produced improved error 

indication, A coiiputer program was written to aid state assignment 
selection.

First of all, various existing methods of fault-tolerant digital 
design -were reviewed. The application of error-correcting codes in 
digital, design resulted in the construction of a versatile computer 

program, capable of producing the design eo^uations of any tj/pe of
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autonomous coimter, A practical fault-tolerant cell-block was then 

developed. This greatly simplified design procedures and, at the 

same time, introduced a high degree of reliability. Finadly, digital 

systems, utilising reprogrammable read-only-memories, were 

investigated, again with a viev/- to simpli-f¡.̂ 4 design, versatility and 
reliability.

8.3. Further ?.''ork

Due to its limited properties, fail-safe digital circuitry is 

unlikely to be of any benefit to the design engineer in the years 

ahead. In this respect, it hardly merits further consideration.

In contrast, fault-tolerant design is a very povrerful technique, 

for reasons outlined earlier. In addition, it has becomie a 
viable concern, even in large systems, since the advent of 

integrated electronics. It is obvious, therefore, that further 

work should be directed towards the design of fault-tolerant 

circuitr>". It was sho\wi earlier that, v/here applicable, the use of 

error-correcting codes can produce a reliable system with very •PtW' 
components. By developing new and more versatile codes, it 

may be possible to sjarthesise circuits using a minimal nimiber of 

conpionents, thus improving the reliability, regardless of the size 

or classification of the s\^stem involved. This is a possible topic 
for future research.
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2 3 5 .1=’/
2 9 0 ^ E'T'UP-J
3 3 0 i = c \ s =:t!
3 3 5 .1= 2T C I -  1 )
3 1 0 I F . I<=P T P 32 0 \ GOTO
3 2 3 3c n  = 1
32  5 ■̂ = ̂ -.I
3 3 3 1 = 1 - 1
3 3 5 I l’ X  ~ T.i E.1 3 6 5 \ G 0 T 0
34 5 3C i ) - : j
3 o J 1= I - i
3 5 5 ÍF i< = ¿; T.i £-1 3 6 5
36 0 ■JÎ j  T 3 3 J ^
36 5 p=: C
O ^u ! Yi il» 1 -J . i. - J

il.viAR':" J’J .1SERS' ’\ P R I \ P R I

l)o*i T.'Ü 125

4 5

A-1



Appendix 2. Computer Program

1 3 
i i l  
53 
3 5 
9 3  

1 23 
1 5 3 
133 
1 6 5
1 73 
193 
2 0 3  
2 2 3
2 73
2 75 
2 3 3  
2 3 3
3 14 
3 2 3  
33 3 
4 0 3
4 1 0 
4 2 3  
4 3 3  
4 4  3 
4 50
4 6 0- 
4 7 3  
4 9 0  
5 4 0  
54  1
5 4 2
5 4 3  
5 5 3
5 5 5

5 53 
56 3 
5 3 3
6 3 5 
6 13
6 3 5 
6 7 3  
7 3 3
7 1 0 
7 2 3  
74 0 
7 5 3  
76 0 
73 3 
3 4 3 
3 4 1 
3 42  
3 4 3 
3 6 3 
9 36

P R I \ P R I " V A R  A.JD REP wO.  \ I J P  D\ E= 3 \ F R I  \  PRI  \  P= D\  a (  . O = D 
GOSUB 1 0 0 3
FOR J = C TO 1 STEP -  1 \  L C J  ) = 3< J  ) \ . J  EX J
PRI  T A B C 2 7 ) ;  " REFEREBCE= P \  PRI  \  PRI  " F I  HST GR 0 U P " \ P R I  
FOR 1 TO 2 t G - l \ P = . i \ G O S U B  1 0 3 0
X = 3 \ Y = 3 \ F 0 R  I = C TO 1 STEP - I M F  B C I X ^ ^ L C I )  THE.J 163 
X= 1
I’i EX I
FOR I = C TO 1 STEP - I M F  L C I X  = B ( I )  T-iE-i 190 
Y= 1 
U £■< I
I F  X+Y=2 THEU 2 2 0 \ GOT O 2 7 0  
X=X+ 1 \ A ( X )  = M\ P RI  AC X) ; " \ " ;

OT) X \  Pp  I
PRI " SECO; J D GR0U? ” \ P R  I \ - J =  Z \ 0 X  0 \ F O R  F= 1 TO X \ P =  AC F) \  Z 7= 0 
GOSUB 1 3 0 3
FOR X C  TO ' 1 STEP -  1 \  RC I )  = BC I ) MJEX I 
FOR G= 1 TO X\ P=AC G ) \ G 0 S U 3  1 0 0 0  
S = 0 \ T = 3 \ F j R I =C to  1 STEP - 1  
I F  RC I X  = 3C I )  THEIJ 4 2 0  
S= 1

FOR I ^ C  TO 1 STEP - 1  
I F  B C i X ^ R C I )  THE.J 46  0 
T= 1 
WEX I
I F  S + T=2  TREE 49 3 \ GOTO 5 4 0
X=; j+ 1 \ G 1= 3 1+ 1\ VC. J)  = AC G) \  PRI  P;  \ Z  7= 1
BEX G
I F  Z 7 < > !  THSB 5 4 2 XG0 T0  5 4 3  
PRI  "MOBE";
PRI  \ A1  C F ) = M\ BE C F
Z5= 0 \ P R I
"’ P. I \ B= 1 \ Q X  0 \ Z  l--= 3 \ X X  0 \ P R I  " T HI RD GROUP" \ PRI  \ U= 3 \ F O R  F^ 1 TO 
Y 1 = 0
Z 5= Z 5 + 1 M F Z 5 > = 2  TH E. J 53 3
I F A 1 C I X  1 THEB F+ 1
FOR B=B TO AlC F ) \ Y X Y 1 + 1\ T3;: VC B) \ GO 5U3 10 3 3
Z X Z 1 + 1 \  Z 3 = '■¿J
FOR X C  TO 1 STEP -  1 \ U C I ) = 3 C I ) \ J ' I
Q X XI XFOR Q X  3 1 -M TO Al  C F ) \ D z : VC 1) \  GO SU3 1300
C X 3 \ C 2 = 3 \ F OR X C TO 1 ST £P - 1\ T r UC I ) < = 3C I )
C X 1
B EX I
FOR X C  TO 1 STEP -  1\ I F 3 C I ) < ( I ) TH E-j 1  O '¿J

C2= 1
B EX I
I F C1 + C2 = 2 THEB 73 3\ GOTO 3 4 3
T.T—  TR + i \ y 1c u) = C 3 1) \ n o  T p ;  \ Z 3 ^ 1
-■JSX ■3 1
I F Z 3 < > 1 TH EB 3 4 2 \ G 0 T 0 3 4 3
P'^.I " . JOBE";
n^X " \ " ;  \  3 i  c B) ==U\BEX B
'C X X  1 -i-Y XBUC 
PR I \  E-J D

1 0 0 0 J==C\ Z=^
10 20 3 = 2 t  c J  -  1 ) M p 3< = ?  t h e .0 1 O5 0 \ GOT3  1 1 0 0
13 50 3C J )  = i \ : ^ = p - 3 \  J= J -  1 M  F J < = 0  THEB 1 1 4 3 \ G J
113  0 3 C J )  = 3 \ J - 1
1 1 20 I F  J < = 0  THEB' 1 1 4 0 \ G O T 0 1 0 2 3
1 1 40 P= Z
1 1 53 RETURB A-2



Appendix 3» Computer Program

DIME. ' JSI O.J I CC 2 3 )   ̂ I DC 2 0 )   ̂ I PC 2 0 )  2 0 )   ̂ I OiJEC 2 0 )   ̂ I TWQC 2 0 )  ^
^ I T. i PC 2 3 )   ̂ I F3UC 2 0 )   ̂ I FI  VC 2 0 )   ̂ I SI X C 2 0 )   ̂ I S£VC 2 3 )   ̂ I El  GC 2 3 )   ̂
^f-I.JIrJC 2 0 )   ̂ ITEXC 2 3 )  > JGC 2 3 )   ̂ J.-JC 2 0 )   ̂JEC 2 0 )   ̂JAC 20^ 2 0 )  ^
*JSAC 23^ 2 0 )   ̂ JRC 2 0 )   ̂ .JYC 1 0)

DATA X A 5 / 2 i I A 5 / ^  .1A ^ / 2 H A 4 /  • X A 3 / 2 d A 3 / ^  X A 2 / 2 A A 2 / ^  XA 1 /  2 d A 1 
Da t a  XA5 P / 3 AA5  V ^ X A 4 P / 3 X A 4  ' / ^ X A 3 P / 3 H A 3  ' / ^ X A 2 P / 3 . i A 2  ’ / ^  
DATA X A 1 P / 3 A A 1 ’ /  
y P I T E C 5^ 3 0 0  1)

3 3 3 1  FOPIIATCIH  ̂ 33H.-J0 . OF VAF.I ABLES^ AO • OF TERMS AMD TYPE)  
P.EADC 5^ 1 0 3 1 ) 1  P4^ I Y3^  I Z 1 

1031 FORMATCI 1^ I  2^ I 1 )
I V A R = I P 4 - 2  
UP. ITSC 5^ 3 0 3 3 )

3 0 0 3  FORMAT( IH  ̂ 33HI MPUT REED- MULLER MATRIX REQUI RED)
GO TOC 1 ^ 2 ^ 3 )  ̂ I VAR

1 READC 5^ 1 0 0 2 ) J X  1  ̂ J X2^  J X3 ^  J X4 ^  J X5^  J X6
1 3 3 2  FORMATC5 1 1 )

GO TO 4
2 ^EADCS^ 1 3 0 3 ) J X 1 ^  J X2 ^  J X3 ^  J X4 ^  J X5 ^  J X6 ^  J X7 ^  JX3

1 3 3 3  FORMAT! 3 1 1 )
GO TO 4

3 READC 5^ 1 0 0 4 )  J X 1  ̂J X2 ^  J X3 ^  J X4 ^  J X5 ^  J X6^  J X 7^ J X3  ̂ JX9  ̂J X 1 0 
1 0 3 4  FORMAT! 1 0 1 1 )

4 J S = -  1 
J  C 1 = 3
W R I T E ! 5^ 3 0 0 2 )

3 0 0 2  FORMAT! I H ^ 1 7 HS T AT E  ASSIGMMEMT?)
READC 5^ 1 0 3 5 ) C I C C J ) ^ J =  1 ^ I Y3 )

1 0 0 5  FORMAT! 3 1 1 1 )
W R I T E ! 5 ^ 1 0 0 6 )

1 0 3 6  FORMAT! IH > 9 HI MF0  31 TS^ 6X^ 1 OMC.IECX 3 I T S ^ 6 X >  14HCHAMGE 
=t=OP FORM)

WRI TE!  5^ 1 0 0 7 )
1 3 3 7  FORMAT! IM > 31X>9HDELTA A ' 6X^9HDELTA 3 ’ $)

I L = -  1
DO 133 J = 1 ^ I Y 3  
I P 1 = I C! J  )
I L ^ I L + 1
CALL BI NARY! I  P I ^  I P4^ I P)
I F ! I L . E Q . 0 ) GO TO 5 
I F!  IZ 1 . £ 3 . 2 )  GO TO 6 
DO 9 X 1 = U I P 4
I F !  I DC X l )  . E Q .  I P C X l )  ) GO TO 3 
M ! X 1 ) = 1 
GOTO 9 

3 M ! X 1) = 3 
9 CONTINUE 

GOTO 5
5 DO 11 X 1 = 1 ^ I P 4  

;-i! X 1 ) = I P ! .! 1 )
11 CONTINUE

D GO i J  1 2 -i 1 vj i 4 )  ̂ I 7i-T,
12 J S = J S + 1

I ONE! J 3 )  = M! I P4 )
I T WO ! J S ) = M ! I P4- 1)
ITMR!  J 3 ) = . 1 !  I P / 4 - 2 )
GO TO 15

13 J 3 = J S + 1
l ONE!  J ^ )  = X! 1*^4)
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t?-v

or
CO

01

1 + ior = i
C9 Cl

(C-Ì7CÌI )r’f = ( I o ro r i f i  
(S-Ì7CÌI )rr = ( I o d d  III 
( 1 -̂ -dl )rT=( I C D /lis I

(f7di )fT=( i o d ::is i
1 + 1 0 r = 10 r
09 Cl CD 

(S-î7dI )FP= ( I O D D  II I 
( 1 -t'di )f’r = ( lOD/iis I 

(Î7dl )f.T=( lO D X I S  I
1 + 10 r = 10 r

dV'/i I D  gt7 Df>-‘•9Í-/) 01 CD 
ICNIiriCO 

n>')or = ( ly )NP 
î7din=iy if7 OG 

St7 Cl CD
inKiirco 
e=(ly)rr 
sc 01 CD 
I=(iy)KP 

C D ((1 y )DP‘C i •cI y )GP)dI
f7di ''I =iy sc ca

0 p 01 C D (3*53•I2I)d I 
09 Cl CD(0-C3*II)dI 

0z:(Î7-f7dI )DP 
3 C Cl CD 

I =<Î7-Î7dI )DP 
Cl CD ( (01 yp)dI-Cl * ( 6>;p)di )d I 

ZC Cl CD (t7-53-Id I )d I 
0=(C-Pdl)DP 

C3 01 CD 
I =(C-î7dI )DP 

33 Cl C D ((gyp)dI*D3•C¿yp)dl)3I 
0C Cl CD (C *03-î7dUd I 

0 = (3-î7d D o p 
es Cl CD 

T =C3-í7dI )DP 
13 01 C D ((9yp)dl*03•(Syp)dl)dl

0 = ( I -Î7dl )DP
61 01 CD

1 =( 1 -f7dl )0P 
ei 01 CD ( (î7xp)dI-Cl • (cyp)dDd I

0 = (t7dl )DP 
91 Cl CD

1 =Cî7dI )DP
¿1 01 CD c (syp)d I-C3 • ( 1 yp)d D d  I 

(f7-t7d I )K=(SP)ñId I 
(C-Î7dl )K=(SP)fiCdI 
(3-T7dI )Iv = (SP)dHlI 
( 1 -f/dl )y=(SP)CalI 

(?7dl )K=( solfici 
1 + SP=SP 

SI 01 CD 
(C-í7di )y = csp)ri0d i 
(3-PdI )I']=(SOdKlI 
( 1 -î7dl )K=(SOC/ilI

Pt?

S3

¿P

9Î7 
SI 
1 1

01

SC
3C

ec
S3

C3
S3

03 
1 3

61
91

91 
L 1

S 1

II



I SIXC J C 1 )=J.vIC I P 4 )
I SEVC J C l  )=J . JC I P 4 -  1 )
I E l G ( J C 1 ) = J J C I P 4 - 2 )
I NI NC J C 1 ) =J i J (  I P 4 -  3)
I TE.'JC JC  1 ) = Ji'JC I P 4 - 4 )

6 3 DO 6 1 K 1 = 1 ^ I P 4
I D ( K 1 )  = I P ( K 1 )
J L C K 1 ) = J G C K 1 )

Ó1 C O J T I J U E
I F C I L / E 3 / 0 ) G O  TO 65  
GO TOC12j 74^ 7 5 ) ^ 1  VAR

7 3 yP.I TEC 5^ 2 0 3 0 )  I PC 3)   ̂ I PC 2)   ̂ I PC 1 )  ̂J  GC 3)   ̂J  GC 2)   ̂ J  GC 1) ^
C 3 )  ̂M C 2 )  ̂;i C 1 )  ̂ J N C 3 )  ̂J J  C 2 )  ̂ J  J  C 1)

2 0 0 0  FORMATC IH ^ 3 1 2^ I 0 X ^ 3 1 2 ^ ÓX^ 3 1 2 ^ 3 X > 3 1 2)
GO TO 100

74  VRITEC 5^ 2 0 0 1 ) IPC 4 ) ^ I  PC 3 )  ̂ IPC 2 ) ^ I  PC 1 )  ̂JGC 4 )  ̂JGC 3 )  ̂
*JGC 2)   ̂ JGC 1 ) ^MC 4)   ̂MC 3)  ^MC 2)   ̂XC 1 )  ̂J.'-JC 4)   ̂J J C  3)   ̂JVC 2)   ̂
* J N C 1)

2 3 0  1 FORMATC IH ^ 4 1 2 ^ 1 0 X ^ 4 1 2 ^ 6 X ^ 4 1 2 ^ 3 X ^ 4 1 2 )
GO TO 103

7 5 URI  TEC 5^ 2 3 3 2 ) I PC 5 )  ̂ I PC 4 ) ^ I  PC 3 ) ^ I  PC 2 )  ̂ I PC 1 )  ̂ JGC 5 ) ^

2002
Q 5 
70

1012 

7 1

 ̂J  G C 2 )  ̂J  G C 1 ) 
 ̂ JMC 3 )  ̂JMC 2)  

5 1 2 ^  10Xj c; I 2 j

 ̂M C 5 )  ̂
 ̂ JMC 1 ) 

6X^ 5 1 2

^ 7 2 ) ^  I VAR

3X^ 5 1 2 )

1 00 
3 3 0  
3 10

FORMATCIM 
GO TO 100 
GO TOC7 0 ^ '
URI TEC 5^ 1 0 1 2 ) I PC 3 )  ̂ I PC 2 ) ^ I  PC 1 )  ̂JGC 3 ) ^JGC 2 )  ̂J  GC 1 ) 
FORMATC IH ^ 3 1 2 ^ 1 0 X ^ 3 1 2 )
GO TO 100
U R I T E C 5 W 0 1 3 ) I P C 4 ) ^ I P C 3 ) ^ I P C 2 ) ^ I P C 1 ) ^ J G C 4 ) ^ J G C 3 ) ^  

x=JGC 2)   ̂JGC 1 )
13 13 FORMATC IH ^ 4 1 2 ^ 5 X ^ 4 1 2 )

GO TO 100
72 URI TECS^  1 0 1 4 ) I P C 5 ) ^ I P C 4 ) ^ I P C 3 ) ^ I P C 2 ) ^ I ? C  D ^ J G C S ) ^  

*JGC 4)   ̂JGC 3)   ̂JGC 2)   ̂ JGC 1 )
13 14 f o r m a t  C I.H ^ 5 1 2 ^ 1 3 X ^ 5 1 2 )

C 0 M i I M J  Zj
GO TOC 313^  3 2 3 ^  3 3 3 ) ^ I VAR 
MYC1 ) =XA3 
;JYC 2)  = XA2 
MYC 3) =XA1 
MYC 4 ) =XA3P 
MYC 5 ) =XA2P 
MYC 6 ) =XA1P 
GO TO 9 0 0  
MYC1 ) =XA4 
MYC 2 ) =XA3 
MYC 3 ) =XA2  
MYC 4 ) =XA1 
MYC 5 ) =XA4?
MYC6) =XA3?
MYC 7 ) =XA2P 
MYC S ) =XA1P 
GO TO 9 3 3  
MYC1 ) ^XA5 
MYC 2 ) =XA4

3 2 3

3 3 3



9 3 0
4 0 3

390Ó

-JYC 3 ) =KA3  
WY(4 ) =XA2 
NYC 5) =XA1 
NYC 6 ) =XA5P 
iJYC 7 ) = KA4 P  
NYC 3 ) =KA3?  
NYC9) =XA2P 
NY C 13)  = KA 1P 
NCQ= 1 
N=0
WP.ITEC 5^ 3 0 9 6 )  
FORMATCIH )
L3=3
I R 5 = I Y 8 -  1
DO 1 33  M 5 = 1RS
M L 5 = I P 4
GO TOC 131^ 102^ 1 0 3 ) I VAR

1 3 1 GO TOC 1 10^ 1 12^ 1 1 4 ^ 1 2 0 ^ 122^
1 32 GO TOC 1 10^ 1 12^ 1 14^ 1 16 j 129^
103 GO TOC 110^ 1 12^ 1 1 4 ^ 1 1 6 ^ 1 l o^
1 1 3 I FCl ONECMS)  . EQ 

GO TO 130
• 1 ) 0 0 TO 1 29

1 1 2 IFC-ITUOCMS) -EG 
GO TO 130

• 1 ) GO TO 129

1 1 4 I F C I T H R C M S ) . EQ 
GO TO 130

. 1 ) GO TO 129

1 16 I FC IFOUCMS)  . EQ 
GO TO 130

. 1 ) GO TO 1 29

1 13 1 FC I FU/ CMS)  . EQ 
GO TO 139

. 1 ) GO TO 1 29

1 2:3 I F C I  SI X CMS) . EQ 
GO TO 130

. 1 ) GO TO 1 29

1 22 I F C I S E V C M S ) . EQ 
GO TO 130

• 1 ) GO TO 129

1 24 I FC I El  GCMS) . EQ 
GO TO 130

. 1 ) GO TO 1 29

1 2Ó I F C I N I N C M S ) . EQ 
GO TO 133

. 1 ) GO TO 1 29

1 23 I FC I TEN CMS) . EQ 
GO TO 130

. 1 ) GO TO 1 29

1 29 N=N+ 1
I ?  1 = I C C M S )
L 3 = L 3 + 1
CALL 3INARYC I P l ^  I P 4 ^  I P )  
DO 132  J C1 =  1^ I P 4  
J A C N ^ J C 1 ) = I P C M L 5 )
JSACNM J C 1 ) =J ACN^  J C  1 ) 
:1L5=ML5- 1
JRC N) =J RC N) +J AC N^ J C 1)

1 32 CONTINUE
1 33 CONTINUE

GO TOC 140^ 1 42
1 4 0 GO TO C 153^ 1 O vjj
142 GO TO C 147^ 1 50
t n i 't O GO TOC 144^ 1 -47
1 44 I FC - j . GT . 3) T T

165^ 163^ 1 7 2 )  ̂MC 2 
50^ 162^ 163^ 1 72 )  ^.1C3I

15 3̂  1
I 0 2 3 )

> 2 j 1 1 lüJ^ 1 Ì  ̂  ̂ j  A >.

A-6



1 2 2 2  F0?..'-1ATC l;i j 9 H D 1
I FC I'J. EQ.  I Y 3 - 1 ) GO TO 18 0 
GO TO 2 0 0

14 7 I F C ;M . GT . 0 ) UR I T EC 5  ̂ 10 30 )
1 0 3 0  FORMAT( IH ^ 9HD£LTA A 4 = ^ $ )

I F C M . E Q . I Y 3 - 1 ) GO TO 133 
GO TO 2 0 0

150 I F C N . G T . 0 ) U R I T E ( 5 ^ 1 0 4 0 )
1 0 4 3  FORMATCIH ^ 9HDELTA A 3 = ^ $ )

I F C M .  £ 3 . I Y 3 - 1 ) GO TO 130 
GO TO 2 0 0

1 53 I FC-'-J. GT . 0 ) U R I  TEC 5^ 1 0 5 3 )
1 3 5 3  FORMATCIH ^ 9HDELTA A 2 = ^ S )

I F C N .  £ Q . I Y 3 - 1 ) GO TO 130 
GO TO 2 3 0

15Ó I F C ; ' j . G T . 0 ) U R I T E C 5 ^  1 0 6 0 )
1 0 6 0  FORMATCIM ^ 9HDELTA A 1 = ^ S )

I FC CJ. EQ.  I Y 3 - 1 ) GO TO 18 3 
GO TO 2 0 0

1 59 I FCM. GT.  0 ) UR I  TEC 5^ 1 0 7.3)
1 0 7 0  FOR.IATC IH A9riDZLTA 3 5 = ^ $ )

. I FC ;0. EQ.  I Y 3 - 1 ) GO TO 133  
GO TO 2 0 0

162 I FC-''J. GT . 0 ) U R I  TEC 5 W  33 3)
1 0 3 3  FORMATCIH ^9HDELTA 3 4 = ^ S)

I FCM.  EQ.  I Y 3 - 1 ) GO TO 130  
GO TO 2 0 3

155 I F C M . G T . 3 ) URI TEC 5^ 129 0)
1 3 9 3  FORMATCIH ^9HDELTA 3 3 = ^ 0 )

I F C M . E O . I Y 3 - 1 ) GO TO 130 
GO TO 2i33

163^ I FCM.  G T . 0 ) U R I T E C  5.» 1 100 )
1 1 3 3  FORMATC IH ^ 9 HDELT a 32=., £)

I F C M. £ Q . I Y 3 - 1 ) GO TO 130 
GO TO 2 3 2

1 72 I FC.'l . GT.  3)  URI TEC 5 , 1 1 1  0)
1 1 1 3  FOHMATCIH , 9 H D £ L T A  3 1 = , 5 )

I F C M . £ 0 . I Y 3 - 1 ) GO TO 133 
GO TO 2 3 3  

130 URI TEC 5 ,  1 122 )
1 1 2 3  FORMATC’ 1 ' )

2 0 0  I F C M . E O . I T 3 - 1 ) GO TO 2 5 3  
. 3 ) CALL MI 

MCO=MCa+1
I FCMCQ.  EQ.  2̂ ;<I P 4 + 1 ) GO TO 26 3 
G 0 T 0 4 0 0 
STOP 
EM D
SUB^OUT IME MIMIMC I P 4 ,  L 3 ,  J R ,  J A ,  J  SA,  I Û, MY)
DIMEMSIÛM I DC 2 3 ) ,  IBC 2 0 ,  2 0 ) ,  IUC 2 3 ) , JRC 2 3 ) , JAC 2 3 ,  2 3 ) ,  

^KILC 2 3 ) ,  ITC 2 0 ) ,  I EC 2 0 ,  2 3 ) ,  JSAC 2 0 ,  23  ) ,  I U C 2 0 )  , J H C 20 ) ,
J I  F C 2 0 ) ,  MY C 2 0 )
JV= 1 
JD= I P4  
J. 'C1=L3 
■J G= J . 11
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/423
4 2 5

4 3 3

431

DO 4 1 3  o = i  ̂ j :í i  
I DC I'D = 3 
CO;xlTI.-JUD 
DO 42  3 J =  D  1 3 
DO 4 2 3  I C 1= D  1 0 
I 3 C J ^ I C 1 ) = 3  
CONTINUE 
J -  1
DO 4 3 0  D  13 
J  I F C J  ) = 3 
CONTINUE 
DO 50 3 M = D J K 1  
DO 4 5 9  I P 1 = D J : ' C 1
I FC JRC I P l  ) . EQ.  JRC ;J) + 1 ) GO TO 431-  
GO TO 4 5 0  
J Q 3 = 0  
DO 4 3 4  I C 1 = D J D
I FC JAC.OD I C 1 ) . EQ.  JAC I ?  D  I C 1) ) GO TO 4 34 
J 2 3 = J Q 3 + 1 

4 3 4  CONTI. ' JUE
IFC J Q3  .-'nJE. 1 ) GO TO 4 5 3  
DO 44  0 I C 1= D  JD
I FCJACED I C 1 ) . EQ.  JAC I ?  D  I C 1) ) GO TO 4 3 3  
I3C I C 1 )  = 2
I FC JA C :D  I C 1 ) . :\1E. JAC I ?  D  I C 1 ) ) GO TO 4 4 0  
IBC I C 1 ) = J A ( . D  I C I )
COBTIiOUE
I L C I P 1 ) = 1
I L  c : j ) = 1
J = J + 1 
CO.'JTIBUE
I FC I LC' J )  . G T - 3)  GO TO 5 0 0  
I FCi-J. EG. 1 ) GO TO 4 73 

1
DO 4Ó3 JF= l^ ;v l.J  
.'IS=0
DO 46  5 I G 1 = D J D
I F(  JAC J F ^  I C 1 ) . ; JE.  JAC ED I G 1 ) ) GO TO 46 5 
; iS=MS+ 1 
COETI EUE 
DO 43 0 I C1= D  J D 
I EC I C l . )= J AC: D I C I )
GOETI EUE 
J V = J V + 1 
COETI EUE 
1 = 3
DO 5 2 0  I P 3 = D J  
I T C I P 3 ) = 0  
DO 5 1 3  I C1= D  J D 
I T C I P 3 ) = I T C I ? 3  ) + I 3 C I P3  ̂ I C 1 )
GOETI EUE 
I = I + I T C I P 3 )
CONTI EUE
I F C I . E £ . 0 ) G O  TO 521 
GO TO 5 5 0  
DO 52 2 4 =1 ^  J

4 3 3

4 4 3

4 5 3

46  5 
4 7 3

4 3 3

5 00

5 1 3

52 3

52 1

A~8



DO I  G 1 = U  J  D

5 2 2

5 2 3

5 2 4

55:

5 o 5

559 
56 9

5 7 0

57  1

JACN^ I C 1 ) = I 3C I C 1 )
I3C.'J^ IC 1 ) = 0
COiJTIOUE
DO 52 3 0= J K 1
ILC3>==2
c o :j t i 3 u e
JJ=J- 1 
DO 5 2 4  
J R ( N ) = 9
DO 5 2 4  I C 1 = 1 ^ J D  
JRC1I)=JRC: \ I )  +JAC:>J^ I C I )  
CONTINUE 
j : a = j -  1 
GO TO 4 2 5  
j y = j v - i  
DO 5 6 0  M =

53 0 
1 1 40

53 3 
1 1 53

53 ó 
1 160 

5 9 0

1 1 7'„
6 9 :

TO 5 6 0

2 ) G 0  TO 5 5 5  
J S A C M ^ I C 1 ) ) GO

JG
I F C I D C M ) . E Q . 1 ) GO 
DO 559  0 =1 ^  j y  
DO 5 5 5  I C 1 = U J D  
IFC lECrJ^ I C I  ) . EQ.
I F C I E C M ^ I C I ) . DE .
COETI OUE
I BC':\I  ̂M) = I
CONTI FiUE
CONTINUE
DO 6 00  : i =l ^- JG
IFC I DC:'I) . EQ.  1 ) GO TÛ 6 0 0
N3 3 = 0
DO 5 7 0  N = l ^ J y  
I FC IBCN^M)  .ÍJ'E. l ) GO TO 5 70  
MZ3 =MZ3 +1
I F C N Z 3 . G T . 1 ) GO TO 6 3 0  
J  F= M
CONTINUE 
I F CMZ3 . : i  
J  I FC J F )  = 1 
DO 59 0 I C 1 = 1 ^ J D  
I FC I EC J F ^  I C 1 ) . EQ 
FOHNATC IH ^ A 3 ^ S )  
i y A R = I P 4 - 2
GO TOC 5 3 3 ^  53 3^ 5 3 6 ) ^  IVAR 
IFC l E C J F ,  I C I )  - E Q . 0 ) U R I T  
FORMATC IH > A3 ^ S )
GO TO 5 9 3  
I FC lEC J F ^  I C 1 ) . EQ 
FORMATC IH  ̂A3^ S)
GO TO 5 9 3
I FC I EC J F ^  I C 1 ) . EQ.  3)  URI 
FORMATC IH ^ A 3 ^ $ )
CONTINUE
I FC lUC J F )  . ES .  J G)  GO TO 6 3 3  
URI TEC 5-. 1 1 7 9 )
FORMATC 1;í W H  + j S)
CONTINUE

TO 5 6 0

1 ) GO TO 571

1 ) URI  TEC 5> 1 1 3 0 ) NYC I C I )

EC 5^ 1 1 4 3 )  NYC I C 1 + 3)

0 ) URI TEC 5^ 1 1 5 3 ) NYC I C 1 + 4)

;C 5^ 1 163) NYC I C 1 + 5)

)0 N= 1 ̂ JV
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I FCJ I F ( W )  . EQ.  1 ) GO TO 6 3 0  
DO 6 2 0
I F ( I D C M ) . E Q . 1 ) GO TO 6 2 0  
I FC . EQ. 0)  GO TO 6 2 0
DO 6 10 110=1^07 
I F C J I F C I N ) . M E . 1 ) GO TO 6 1 0  
I F C I 3 C I M ^ M ) . E Q . 1 ) GO TO 6 2 0  

6 1 0  CONTINUE 
GO TO 6 3 0  

6 2 0  CONTINUE 
J I F C N ) = 1  

6 3 0  CONTINUE
DO 6 4  0 N= 1 ^ J V 
I F C J I F C N ) . N E . 1 ) GO TO 6 4 5  

6 4 3  CONTINUE 
GO TO 3 0 3  

6 4 5  DO 6 5 2  N= 1 ^ J V
I FC J I  FCN) . N E .  1) GO TO 6 5 2  
DO 6 5  1 N = 1 ^ J G  
I F C I D C M ) . E Q . 1 ) GO TO 6 4 7  
I F C I B C N ^ N ) . M E . 1 ) GO TO 651  

6 47  DO 6 50
I 3 C I N ^ N ) = 1

6 5 0  CONTINUE
6 5 1  CONTINUE
6 5 2  CONTINUE 

NZ4 =0
6 5 3  DO 6 6 0  N = l ^ j y  

J H C N ) = 3
I F C J I F C N ) . E Q . 1 ) GO TO 6 6 0  
DO 6 5 5  N = 1 ^ J G  
I FCI W C N ) . E Q. 1 ) GO TO 6 5 5 
J HCN) =J I i CN)  + I 3 CN^ M)

6 5 5  CONTINUE
I F C J H C N ) . L E . J H C N - 1 ) GO TO ÓÓ3 
J  F= N

6 6 0  CONTINUE
DO 6 6 5  N = 1 ^ J G  
I F C l U C M ) . E Q. 1 ) GO TO 6 6 4  
I F C I B C N ^ N ) . N E . 1 ) GO TO 6 6 4  
IUCM)= 1

6 6 4  l U C J F ) = I U C J F ) + I U C M )
6 6 5 CONTIN U £

IFC lUC J F )  . L T . N Z 4 )  GO TO 6 5 3  
DO 6 3 0  I C 1 = 1 ^ J D
I FC I EC J f N I C 1 ) . EQ.  1 ) URI TEC 5^ 1 2 0 0 )  NYC I C I )  

1 2 3 0  FORMATC IN ^ A 3 ^ S )
I U A R = I P 4 - 2
GO TOC 5 7.0 . 6 7 3

6 73 I F c I N C J  i* .. I C I )
1 2 2 3 FÛ MATC IH  ̂A3

GO T 0 63  3
6 73 I F c I EC J F ^ I C I )

1233 FO n MATC IN  ̂ A3
G 3 'T ' 0 6 3 3

6 7 6 I F c I EC J F^ I C I )

Q. 3 ) URI TEC 5^ 1 2 3 3 ) NYC I C 1 + 4)

:C 5^ 1240) NYC I C l  + 5)
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J A 3 j $)

■ Q . J O ’GO TO 6 8 2

1 2 4 0  FORMATCIH 
6 3 0  COHTIHUE 

IFC lUC J F )
VP.I TEC 5.. 12 5 0 )

1 2 5 0  FO PM AT C 1 H . , l H + . . $)
6 3 2  M Z 4 = I ü C J F )

IFC lUC J F )  . ME.  J G )  GO TO 6 5 3  
3 00  Dû 3 0  1 M= 1 ^ 1 0  

J P C M ) = 0  
3 0 1  CÛMTIMUE 

RETURN 
END
SUBROUTINE 31 NARY C I P 1.. I P4.. I P )  
DI MENSION I P C 2 0 )
I I = I P 4

3 4 0  M03=2*H<C I I -  1 )
I F C I I . EQ. 1 ) M 0 3 = 1 
I F C M 0 3 . L E .  I P I )  GO TO 3 5 0  
GO TO 3 6 0  

3 5 2  I P C I I ) =1
I P 1 = I P 1 - M Q 3  
I I==I I -  1
I FC I I . L E . 0 ) GO TO 3 70 
30 TO 3 4 3  

8 6 3  I P C I I ) = 0  
1 1 = 1 1 - 1
IFC I I . L E . 3)  GO TO 3 7 0  
GO TO 8 4 3  

3 7 0  RETURN 
END
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The Reynolds Logic Simulator is a FORTRAN program which allovis 

the simulation of logical systems on a time-sharing computer. Each 

circuit element and input terminal of the system to he simulated is 

called a node and is assigned a number. Each node is described by 

a list comprising node number, function, and usually a list of the 

nodes which are its inputs. The end of each list is marked by a 

zero. This information, which totally describes the circuit, is 

then fed into the computer as a data file. The program is started 

and controlled by means of program commands. These also take 

numerical form but are distinguished from other numerical data by 

being negative. A full description of the logic simulator is given 

in reference [l6] and a complete list of system commands and 

functions is presented in Figure A4.I

Appendix 4« The Reypolds L o ^ ic  S im u la tio n  Program
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CaftiAlTOS Airo FUI^CTIONS POH 'LOGSIM'

CaH-’lMDS:-
- 1 : - DISCOMHECT + READ IN NWf! COHMECTIONS 
-2:- UPDATE CCM-ÌECTIONS 
-3:- 
-4:--5;_
- 6 :  -  

-7;- 
-8:- 
-9:-

PRIDT OUT COUNECTIOKS 
READ IE MOEITOR POIETS
READ Il'JPUTS, FIRST SETTING ALL NODES TO ZERO 
READ INPUTS
FREE-RUN, NOB,IAL TD/ISBASE 
PRES-RUN, EXPANDED TIMEBASE 
FREE-RUN, NUf/IERIGAL OUTPUT

-10:- FREE-RUN, NO MONITOR 
- 1 1 : - 
-1 2 :- 
-13:- 
-14:- 
-15:- 
- 1 6: - 
-17:- 
-1 8:- 
-19:-

READ IN STORE NUIBERS 
PRINT OUT STORE NUIvfflERS 
SINGLE-D^PUT MODE 
SUPPPESS HEADINGS 
RESTORE HEADINGS 
TITLE
READ FILENI 
READ CONSOLE 
V/RITE PILE* 2

-20:- READ PILE*2 
-21 : - REWIND FILES 
-22:- RESTART PROGRUI 
-23:- QUIT PROGPAlvi

FUInICTIONS:- 
1 : INPUT TEEivMAL 
2: OR 
3: NOR 
4: Alffi 
5: N M D  
6: SQUIV 
7: HONEQUTV 
8: NOT

Figure A4»1

9; D-TYPE FLIP-FLOP (CLOCK, J)
1 0 : 
11 : 
1 2 : 
13: 
14: 
15: 
1 6: 
17: 
1 8: 
19: 
20: 
21 ;

J-K (CLOCK, J, K, S. R) 
TOGGLE (CLOCK, GAIE) 
STEERING CCT (CLOCK, j) 

R)BISTABLE (S,
LOGICAL ZERO 
LOGICAL ONE 
CLOCK GEN.
IvLYSTER-SLAVE (CLOCK, J, K, S, R, '.IKG.STORE) 
DELAY CANCELLOR 
NO-DELAY DUiaiY 
NO-DELAY MVERT
COUNTER (GIGCK, GATE, DEP.STORE, WKG.STORC) 

22: REGISTER (CLOCK, J, DEF.STORE, WKG.STORE)
23:
24:
25:
26:
27:
28:
29:

STORE
TRIP
CLICKED CGHPAvRATCR (CLOCK, INPUT STORE, INV.INPUT 
GATED OR (GATS, INPUTS)
GATED NOR (GATE, INPUTS)
GATED M'D (GATE, INPUTS)
GATED NAND (GATE, INPUTS)

:o p e)
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All error-correcting codes require the introduction of one or 

more 'check-bits', and the Hamming code is one of the most convenient. 

As shown in Figure 7.5? ii" "the bit positions are numbered in sequence 

from left to right, positions numbered as powers of two are reserved 

for parity check bits, while the remaining positions are information 

bits. If the three check bits are denoted and P^, then they

are determined as follows:-

P^ is selected to establish even parity over bits 1 ,3?5?7*

P^ is selected to establish even parity over bits 2,3?6,7*

P^.is selected to establish even parity over bits 4?5?6,7*
In this way, various 7-bit code words are produced as shown in

Figure A5.1.
If a fault occurs so that any bit in the code word is in error, 

then it can be detected and corrected simply by checking for odd 

parity over the same three combinations of bits for which even parity 

was initially established. For example, if the code word;-

0001111

becomes:-
0001011

then the three parity check combinations become:-

Appendix 5« The Hamming Code

0 © 1 © 1 = 1

P j . . O © 0 © 1 © 1 = 0

P = 0 1 © 0 © 0 ® 1 = 1

decimal five,, therefore
i five :in the cods word.
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