
MITCHELL, R.B. 1978. Fault-tolerant digital machine design. Robert Gordon's Institute of Technology, MPhil thesis.
Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1993246

The author of this thesis retains the right to be identified as such on any occasion in which content from this
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any
original images only – re-use of any third-party content must still be cleared with the original copyright holder.

This document was downloaded from
https://openair.rgu.ac.uk

Fault-tolerant digital machine design.

MITCHELL, R.B.

1978

https://doi.org/10.48526/rgu-wt-1993246

ROBERT GORDON'S INSTITUTE OF TECHNOLOGY, ABERDEEN

SCHOOL OF ELECTRONIC AND ELECTRICAL ENGINEERING

FAULT-TOLERANT DIGITAL MACHINE DESIGN
by

ROBERT B MITCHELL

This thesis is presented as a requirement for a C N A A
Master of Philosophy Degree.

ROBERT B MITCHELL
February 1978

DECLARATION

I hereby declare that this thesis, composed by myself,
is a record of work carried out by myself, has not been
accepted in any previous application for a degree, and
that all sources of information have been acknowledged.

Robert 3 Mitchell

ACKI'TOYiLEDGEaiSNTS

I am indebted to my supervisor Dr. U. D, Deans for his

invaluable assistance and encouragement throughout this study.

I would also like to express my gratitude to the technical
staff at R.G.I.T. for their constructive comments and Mrs. G.

Mitchell for her patience and co-operation in typing this
thesis.

GOÎ TENTS

ABSTEACT

GHAPTBE 1 D^TRODUCTIOM

GiiAPTER 2 FUimAMENTALS of FAIL-SAFE DIGITAL l^GKQjB DESIGN

2.1 Preliminary Mathematical Definitions
2.2 Griteria for State Assignment

2.3 Spatial Representation of a Boolean Quantity
2.4 General. State Diagram of a Pail-Safe Sequential

Machine
GHAPTER 3 PAIL-SAFE DESIGN TECENIQUES

3.1 Transition Table Technique
3.2 Modified Kamaugh-Mapping Technique

3»3 The Use of NilKD Synthesis

3.4 Autono.mous Gircuit Design
3.5 Gomputational Methods of State Assigrunent Selection

Page Po.

(i)
1

5

5

6
7

10

13

13
19
26

28

29
GHi\PTER 4 An INTRODUCTION to PALTL.T-TOLERANT DIGIT.AL SYSTSIviS 42

4.1 Fault -iilas king T e chni que s
4.2 Self-Checking Systems

CHAPTER 5 FAULT-TOLERANT DIGIT;P COUNTER DESIGN

5.1 Parity-Check Codes and their Uses
5.2 Fault-Tolerant Digital Counter
5 .3 Computer-Aided Design of Fault-Tolerant Counters

GPDAFTER 6 FAULT-TOLEILIliT CELL-BLOCK DESIGN

6.1 Initial Cell-Block Development

6.2 Fault-Tolerant Cell-Block
6.3 Logic Simulation of Fault-Tolerant Cell-Block

6.4 Fault-Tolerant Cell-Block Circuit Design
6.5 Simplified Version of Fault-Tolerant Cell-Block

42

4b

49

A-9
54

57

61

62

66

72

75

80

COI^TSKTS (contd.) Page Mo.
CHAPTER 7 PAULT-TOLHRART DIGITAL DESIGH using PROMs 86

7.1 The Read-Only-Memoiy and its Structure 86

7.2 I\vo Reprogrammable Logic Systems 87

7.3 Hamming Decoder 93
CHAPTER 8 CCLCLUSIOKS 96

8.1 Aims 96

8.2 Conclusions 96

8.3 Further 'Aork 97
REFERENCES and BIBLIOGRAPHY 98

APPENDICES A- 1

1. Computer Program A - 1

2. Computer Program A-2

3. Computer Program A -3

if. The Reynolds Logic Simulation Program A-12

5. The Hamming Cods A-14

ABSTRACT.

This thesis descrihes the work of the author tov/ards an M.
Phil, degree in the field of Fault-Tolerant Digital Machine Design.

As a previev/, fail-safe machine design is discussed in detail,

and various new design techniques are presented.
The fundamentals of fault-tolerant digital machine design are

presented, along with various design techniques.
Both hardv/are construction and computer simulation programs

have Been used liberally throughout this study.

(i)

CHAPTER INTRODUCTION

One of the prime requirements of a computing system is the

ability to operate correctly over a sufficiently long period of

time. Therefore, certain measures must be taken, either in the

initial design or in the subsequent testing of the system, in

order to satisfy this requirement. In the past, computers

were used largely in an off-line, batch-processing mode, and the

consequences of undetected hardware malfunctions were relatively

minor. However, because of the increasing use of computers in

on-line, real-time applications such as the control of nuclear

reactors, spacecraft trajectories and military equipment, notably

missile-guidance systems, incorrect computer operation in any of

these applications can be potentially disastrouso Furthermore, the

increasing size and complexity of digital computers have made it

more and more difficult to ensure correct machine operation.

There are various failures which may occur within a digital

machine, although this study shall be concerned only with logical

faults. These produce soma changes in the logical behaviour of

the machine. Thus, component failures which affect voltages,

currents, shapes of pulses or delays, but do not alter the logical

function realised by a particular circuit, will not be consideredo

Also included in this category are failures of power supply,
external input signals, and clock signals.

A fault in a digital circuit is a physical defect of one or

more components, which can cause the circuit to malfunction.

Ageing or manufacturing defects can cause a component to gradually

deteriorate, giving rise to marginal faults. Noise and overly

close tolerances can cause intermittent faults, which are time—

varying, being present in some intervals of time and absent in

others» Many faults that are originally intermittent eventually

become solid, which implies that the malfunction is permanent

until repairs are made»

Throughout this study, only solid logical faults will be

considered. The majority of solid faults which occur in digital

circuits create either stuck-at~high or stuck-at-low conditions.

The basic T.T.L. logic gate is illustrated in Figure 1(a). A

simplified version, representing a UAIíD gate as shown in Figure

1(b), illustrates some of the stuck-faults that can occur in

this type of gate.

Mode 1 represents a permanently open base connection, while

mode 2 represents a permanently open collector connection. Under

these faults, the transistor output Q would appear to be stuck-at-

higho On the other hand, mods 3 represents a short from collector

to emitter, therefore Q would appear to be permanently stuck-at-lov/»

Any of these failure modes can seriouslj' upset the functional

capabilities of a digital circuit, hence the need for circuits v/hich

can automatically detect a fault as soon as it occurs, or more

important in this study, circuits which can continue to operate

correctly even although a fault has occurred.

Improvements in the behaviour of digital circuitry under

fault conditions can be achieved by:

(a) Fail-Safe Design.

(b) Fault-Tolerant Design.

(c) Easily-testable Circuit Design

Fail-safe and fault-tolerant design are similar in the respect

that they involve srecial design tech.nd.oues, whereas diagnostic

(a) b a s i c T. T. L, g a t e

(b) s i m p l i f i e d version showing fai lu re modes

Pitture 1

© b a s e o p e n

c o ! l e c t o r o p e n

c o l l e c t o r - e mi t t e r shor t

3

testing involves the application of test sequences to
conventionally designed circuitry. There is an abundance of

literature on the subject of diagnostic testing, therefore it
will not be considered in this study. [”l] Hov/ever, the design

and operation of fail-safe and fault-tolerant circuitry will be

investigated in detail.

Chapter 2 deals with the various mathematic definitions and

theorems necessary for theidesign of fail-safe digital circuitry,

while Chapter 3 puts forward several design techniques.

Chapter 4 presents some theoretical aspects on the subject

of fault-tolerant digital machine design, while Chapter 5» ̂s^d

7 are devoted entirely to several different design techniques.

Chapter 8 presents the overall conclusions and outlines

possible topics of future research. The various computer

programs used throughout this study are listed in the Appendices.

Note that, throughout this study, all design techniques

apply to synchronous, sequential circuits, unless otherwise stated,

since these provide most of the computational power in any modern
computer system.

2c 1.

CHAPTER 2. FUNBAMERTALS OF FAIL-SAFE DIGITjiJ. MACHIR^ DESIGN

Fail-safe digital circuits are designed in such a v/ay that, if a

logical fault occurs within the system, the output values always adopt

a knovvn "safe" state. This means that the extent of damage is much

less than if the system fails v/ith any other output state. Therefore,

a logical system is said to be "fail-safe" if, in the event of failures,

its output is either error-free or assumes a safe valueo

As a practical example, consider a traffic controller v/ith two

light signals, red and green» The green signal denotes "safe state"

or "go" and the red signal denotes "dangerous state" or "stop". Then

the controller should show the red.signal when the traffic control system

fails, regardless of the actual situation on the road» If the failed

traffic controller shows the green light, while the actual situation

on the road is in the dangerous state, a fatal accident could occur.

In order to understand fail-safe circuit design requirements, some

basic definitions and theorems are needed. These are listed below.

Preliminary Mathematical Definitions
Definition 1; A Boolean function f of n-variables is monotonie
increasing if, and only if, x y implies f(x)3;f(y), where
x=(x. ,x ,”.... ,x^), ♦...,y^), and x>y means ^^7^
ia=1,2,... ,no Similarly, a monotonie* decreasing function is defined
to be one for which x^y implies f(x)^f(y).

Definition 2; A Boolean function which is monotonie increasing with
respect to sonre variables and monotonie decreasing with respect to
the remàining variables is called a unate function. Thus^ f_̂ * ^+X3
is unate while xy +xz is monotonie increasing and f^* xy+xz is
monotonie decreasing»

Definition 3? If in a system the loss caused by a faulty 1 output
is much greater than that caused by a faulty 0 output, then the system
is said to be 0-fail-safe. In a similar manner, a 1-fail-safe system
can be defined.
Definition 4 ̂ A logical component which, when it fails, always fails
with a O(orl) output is said to be S^-asymmetric (or S^-asymmetric)»
Such components are called asymmetrical components.
Definition 5? A realisation of a sequential machine is said to be

output - fail safe, if, and only if, no failure can cause unsafe
errors at the output terminals.
Definition 6; If the realisation of a machine, in addition to "being
output-fail-safe, goes on to a predetermined set F of states in the
event of a failure, then it is said to be F-state fail-safe.

F-state fail-safe machines are more desirable from an error indication

point of view since, in the event of a failure, the machine enters a

known state F and therefore, an error-detecting circuit can be easily

designedo

2o 2 Criteria for State Assignment

In order to produce permissible state assignments for any type

of fail-safe digital machine, certain basic theorems must be upheldo

Formal proofs of these theorems may be found in the indicated references.

Theorem 1 ; A sequential circuit is output-fail-safe if, and only if,
its state functions as well as its output functions are monotonie
increasing with respect to the state variables, when all the logical
components used in the realisation fail as^mametrically. [s]

The follov/ing theorem gives the necessary and sufficient

condition for a state assignment to satisfy the requirements of

theorem 1o
Theorem 2: The next state and the output functions of any sequential
machine become monotonie with respect to the state variables if, and
only if, the binary vectors used for the state assignment are not
paiCTise comparable, under the ordering relation of Definition 1. [2j

Theorem 3t A state assignment which uses a set of unordered code
vectors will result in an F-state fail-safe sequential circuit if
the state functions are all realised either in sum-of-products or in
product-of-sums form» [3]

From the above three theorems, it can be seen that only certain

code vectors can be chosen as the state assignments of a particular

sequential machine, if the system is to become fail-safe. The

vectors in any assignment must be pairwise incomparable; this simply

means that a Hamming distance^ 2 must exist between all the vectors.

The term "monotonie increasing" has been used frequently in

this discussiono Since this is a rather abstract concept, it is

v/orthwhile investigating furthero Definition 1 gives a strict

mathematical explanation; however, it is much simpler to deal in

graphical terms»

2o3 Spatial Representation of a Boolean Quantity

Consider the diagram shown in Figure 2»1» Let X be an n~

dimensional vector» Each of the n components can take two values

0 or 1, so that X has 2^ distinct possibilities» Nov/ consider, in

n-dimensional space, the points whose coordinate values are 0 or 1.
To each possible X there corresponds one and only one of these points»

The points form the vertices of a hypercube»

The cbncept of monotonie increasing functions may be depicted

quite easily using the hypercube» Two examples of Boolean expressions

are shown in Figure 2=2»
The black circles represent points which satisfy their respective

functions; for example, in Figure 2»2(a), 101 satisfies - 1

but 001 does not» Figure 2»2(a) is an example of g monotonie

increasing function because as one moves up the hypercube (following

the interconnecting lines from the point 000), once a function point

has been reached, all the coordinate points above this point are all

function points» Since, in Figure 2»2(b) the point 000 satisfies the

function, this is not the case» Therefore, x^+x^x^x^ » 1 is not a

monotonie increasing function»

The hypercube can also be used to represent pairwise incomparable

binary vectors as shown in Figure 2.3*• Tt can be seen that groups

of pairwise incomparable vectors lie on the same level of a hyr^ercube

as shown by the dashed lines» Investigation of four-dimensional

and five-dimensional hj’percubes produced the same results» This

led to the formulation of a theorem»

111

000

Fifflire 2.1 H^n^ercubs

oil

001

777 777

ia) (b)

f . 7

m o n o to n ie i n c r e a s i n g

f X^X^ ̂7

NOT monoton ie increasing

Figure 2.2 ■ Black Circle Representation of Boolean Functions

n i

1 1 0
1 01
01 1

1 00
010
o o i _

Figure 2.3 Pairwise Incomparable Binary Vectors

0

2o4

Theorem; The fact that a group of "binary vectors lies on the
same level of a hypercube implies that the vectors are pairwise
incomparable with each other.

It would seen reasonable to assume, therefore, that all state

assignments used in the design of fail-safe circuitry consist of

binary vectors which lie on the same level of a hypercube« However,

the theorem above is peculiar in the respect that its converse is not

trueo The example of Berger coding, which will be investigated

later, will clearly illustrate thiso

Figure 2o4 illustrates a four-dimensional hyparcube. The

increasing bomplexity of hypercubes beyond four variables and the

anomaly of the above theorem, led to the construction of a series

of computer programs which would produce legal groups of binary

vectors» This will be discussed in the next chapter.

For the moment, however, it is essential to consider the

state diagram of a general fail-safe machine in order to justify

the above definitions and theorems.

General State Diagram of a Fail-Safe Sequential Machine

A sequential machine can be represented by a stats diagram,

which shov/s the various states the machine adopts under certain

external-input conditions.

Figure 2.5 shows the state diagram of a general sequential

machine. In this case it is an autonomous machine, such as a

counter, for the sake of simplicity. The network has six legal

states 1 — 6, but it also has the possibility of entering an

erroneous state if a single logical fault occurs. This state
is outwith the derived state assignment and, since this machine has

no built-in fail-safe facility, the machine may leave this state at

any point and continue to operate incorrectly.

The state diagram of a fail-safe machine may be represented

10

Figure 2.5 General State Dia,s:ran]

11

in a similar fashion, as shown in Figure 2.6. This machine also

has six legal states, but, of course, the individual states may

be different, since they must satisfy the conditions laid dovm

earlier. The error-free operation of this machine is identical

to the machine of Figure 2.5> except that, instead of entering a

purely random erroneous stats v/hen a logical fault occurs, the

machine enters a fail-safe state, the F-state. which is usually

the all-zeroes or all-ones state, depending on the type of fault

and the combinational logic structure of the machineo

The important factor is that the machine cannot leave the

F-state until the fault has been repaired, hence this system never

functions incorrectlyo

How this type of state diagram is implemented to produce a

fail-safe digital machine will be dealt v/ith in the next chapter.

12

CHAPTER 3o FAIL-SAFE DBSIGH TSCHHIQUES.

Several fail-safe design techniques are investigated in

detail in this chapter. The first is a straight forward method

using the transition table of the desired machine and is also

outlined in reference [p] . The second is a technique v/hich was

constructed after thorough investigation of the Karnaugh Map

minimisation method used in conventional digital machine design»

The application of these techniques to the design of autonomous sequential

circuits is also presented, along with the use and advantages of

NANL synthesis in fail-safe design. Finally, computational

methods of state assignment selection are outlined and

presented in flow chart form along with selected program

results»

3.1 Transition Table Technique
This technique is best illustrated by example. The three

binary vectors

'0 1 1'
101
110_

are known to be pairwise incomparable (Figure 2.3)> so these may
be chosen as the state assignment of a simple synchronous, sequential

machine» The actual design requirement was chosen to be a circuit

which retains its state when an external 0 is applied and cycles con
tinuously through the three states on the application of an external

1. The state transition table is shown in Figure 3»1*
D-type flip-flops are used as memory elements, the control

data being derived from the standard characteristic equation» The

control functions can be derived by any minimisation technique, or

intuitively from the table. They are:

13

l / p

X

p r e s e n t state n e x t s t a t e c o n t r o t s

yi >̂ 2 ^2 >'7 >̂2 2̂ Dl D2 03

0 0 1 1 0 1 1 0 1 1
0 1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 0 1 1 0
1 0 1 1 1 0 1 1 0 1

1 1 0 1 1 1 0 1 1 0
1 1 1 0 0 1 1 0 1 1

Figure 3»1 Conventional State Transition Table

>̂5

(D-

X

X
yi

[D-

X

X

2̂

tL> Dj

miià

Figure 3»2 Circuit Representation
14

D3 - + xoy^
The circuit is realised using AM) and OR logic gates as

illustrated in Figure 3°2. Rote that, in practice, the

complenented external input signals would he obtained via simple

inverter gates, but are shown already complemented for the sake

of clarityo

This is the conventional design approach for most types

of sequential circuitso Hov/ever, to produce a fail-safe

version of the above design, a slightly different technique is

employedo '

Consider the column in the transition table of Figure 3»1*

It contains four ones corresponding to the minterms of the function.

These minterms ares

•72*^3 5 ^•yi*y2°y3 ’ =̂>y-i*y2“y3 ’ ^"y-i°y2°^3
However, let D.(q,I) denote the control data in the transition table

where q represents the row and the column of the table, and (ŷ ,, „».»yĵ)
denote the binary vectors in the assignments Row, according to the

proof of Theorem 2 in Chapter 2, each minterm in each for which

D. (q,I) * 1 will have only those state variables for which y, * 1°1 X
Therefore, only uncomplemented state variables can appear in the

expression of all R^*s, and so they are all monotonic increasing

with respect to the state variableso

Under this criterion, the minterms above are reduced to
the product terms:

x^y^^y^ j ^oy^°y2 > ^ “^2*^3 ’ ^ 1 ° ^3

The other product terms are produced in a similar fashion, so that

+ X o y ^

15

the control functions of the now fail-safe circuit become:

- (7 ^ *7 3 (7 2 * ^ 3 ^ ^

^2 " (72*73 + ^1 *^2^^ ■*■ (^1 *^3 ^

î 3 - (72=73 + 7^*73)^ + (72*73 + 7^°72) X
This circuit was constructed using AND and OR logic gates

as shown in Figure 3»3* The circuit was tested for fail-safe

operation and the results tabulated as illustrated in Figure 3*4=

Certain conclusions may be drawn from the operation table

of this circuito

(a) The most important point is the fact that fail-safe

operation has been achieved, since the machine enters

the F-state (OOO) when a single stuck-at-0 fault occurs.

(b) However, the machine may continue to operate correctly

under a stuck-at-0 fault, depending on whether or not

the particular failed gate is required to generate a

control function. This occurs because the circuit

is constructed in such a way that a network of logic

gates may be enabled or disenabled depending on the

value of the external input Xo For example, if gate

2 in Figure 3°3 has its output stuck-at-0, and X has

the value 0, then gate 2 is never used, in this

condition, to generate the control function Il̂ j therefore
the circuit continues to operate correctly. Only

when X becomes 1 will the circuit enter a fail-safe
state.

(c) When this circuit was tested, all the logic gates were,

in turn, given a simulated stdck-at-0 fault by

disconnecting the output and grounding the input of

the following gate. However, since the combinational

16

y?
Y3

yi

yi
y j
yi

yy

>2-
>'2-
yi -
y s-

y2-yj-
y y
yy

i&>

&
l>

O

ïï>

ÍD

O
Figure 3*3

Circuit Realisation using Transition Table Technique

inpu t
present state nex t state

2̂ >2 c o m m e n t s

0
C
0
i
1
7

0
7
7
0
7
7

7
0
1
1
0
1

7
7
0
1
7
0

0
7
7
7
7
a

7
0
7
0
7
7

7
7
0
7
0
7

n o rm a l
operation

0
0
0
0

0
7
0

7
0
0

m

0
0

0

7
0
0
a

0
T

gate 1 s - a -0

fai l -safe

0 1
1 0
7 7
0 7

7
7
0
7

7
7
0
7

£?
7
7
0

1
0
7
7

gate 1 s - a -0
normal
operation

1
1
0

0
7
0

1
0

7
0

0
1
0

gate 2 s - a - 0

fa i l -safe

0
1
1

1
0
7

/
7
0

7 0 7
7 7 0
0 7 7

0 7 0
0 0 0

gate 3 s - a - 0

normal operation

0
0

0
0

7
0

gate/* s - a - 0
fa i l -safe

0
0
0

0
7
7

7
0
1

7
7
0

0 1 7
7 0 7
7 7 0

0 7
0 0 0

g a t e s s - a - 0
normal operation

0
0

7
0

g a te s s - a - 0
fa i l -safe

0
0

0
0

7
0

0 '0 1

!o 0

7 0 7
7 0 0
0 0 0

gate 6 s - a - 0
f d i I-safe

0 7 -T!
7 0 1
7 0 0

gate 6 s - a - 0

fai I-safe

Pi sure 3»4 Table of Operation

18

logic networks feeding the flip-flops are identical, it is

sufficient to test only a few selected gates as shown in

Figure 3°3o
(d) To produce a fail-safe representation of Figure 3*2, a 200%

increase in the number of gates used is required in this

particular case»

This transition table technique has proved satisfactory in

the design of fail-safe sequential circuitryo The modified Karnaugh-

Mapping technique will now be investigated in detailo

3.2. Modified Karnaugh-Mapping Technique

A Karnaugh-map is a graphical method of minimising Boolean

functionso. The minterms (or maxterms) of a function are arranged

in such a way that adjacent terms may be combined in groups of two,

four, eight or sixteen, thereby reducing the number of final terms

wbàch describe the function' [̂4] •

Figure 3«5 shows the general form of the Karnaugh-map

applied to the transition table of Figure 3<>1. Thè ininterms and

maxterms are entered in the appropriate place on the map, while

the remainder of the positions are denoted by a slash, indicating

a "don’t-care" stateo These permit a minimal set of control

functionso

In a similar fashion, the Karnaugh-map may be utilised in

a specific way to produce the control functions for a fail-safe

sequential machineo In this case, hov/ever, only certain groupings

of adjacent terms may be chosen to ensure that the functions

obtained are all monotonie increasing» There is also a restriction

on the number of "don't-care" states permitted in the Karnaugh-map

itselfo (As will be seen in Section 3*4, this restriction applies

19

D-¡ = xy^ + x y j

0^ - XYj

Figure 3.5 Karnaugh-Map Minimisation
20

(b)

only to sequential circuits with external inputs, and not to

autonomous circuits.) For a four-variable Karnaugh-map,

the legal "don't care" states are:

(a) the all-ones position (1111)

the X111 position, where X represents the external

input with value 0. Note that the external

input X may take up any position, (for example

1X11, 11X1, 111X)o

These "don't-care" positions and the permitted term groupings

for fail-safe design are illustrated in Figure 3*6. Note that

two and three variable maps may be constructed in a similar

manner.

As an example of this technique, consider Figure 3°7> which

illustrates a modified Karnaugh-raap minimisation of the original

transition table of Figure 3*1*
The control functions now become:

1 y^.y^ + x.y^.y^ + Soy^.y^
y^.y^ + x.y^.y^ + Xoy^.y^

The circuit is shovm in Figure 3.8 v/hile a table of operation

under logic failures is illustrated in Figure 3*9.

Certain conclusions may be drawn from this table.

(a) The circuit is fail-safe to stuck-at-0 logic

faults.

(b) As before, the circuit may continue to operate

correctly, even although a logic fault has occurred.

(c) Using this technique, an increase in the number

of logic gates of onl2/ 133*3/^ is required, compared

with 200;;̂ for the previous technique.

21

Fiis;ure 3«6 Term Groüüin¿<s fer Fail-Safe I>esig:n

o

§

- O

o 1 1

T- --

<N

X O

+

t--
—̂

IX
4-
: í^

r—
o

í T

II CD
o

sT>

- -

-- 1 1 O

O T-

o

is
X

IX

ii

O

O

8

o -

1 1 T-

T— O

is
X

9o o

T-^
is
X+
C

IX
H-

i^
II

cT

P.
cnr'̂
Î
tîCZS03s:lU03W
•■d
(D•HCi-i•H'■CO

c—
(3)Udtli•H

mCM

yi
y j

y2

y j
X

yi
yy

ro Yr>

>2
X

bX

yy
y j

y i
Yo

yi
>'o

0
il> E>

iT>
O -

iD- ©

Figure 3.8 Fail-Safe Representation using Karnaugh-Map Technique

/■ nput present state next state

0
0

1
1
1
1

0
0

yi

7
0

0
7
7
0

0
0

y j

0
0

7
0
7
0

7
7
1
7
0
1

y i y j

0 0 7
0 0 0

7 0 7
7 1 0
0 0 1
0 0 0

aomments

gate 1 s - a - 0

fa il - sa fe

gate 2 s - a - 0

f a i I - safe

0 1 1 7 0 7
7 0 7 7 7 0 gateO s - a - 0

1 1 0 0 7 7 normal
0 1 7 7 0 7 operation

1
0 0

0
~0

gate L s - a - 0
f a i t - sa f e

1 0 1 7 1 0
7 1 0 0 7 0
0 1 0 l o _ 0 0

gateL s - a - 0

f a i l - s a f e

Figure 3»9 Table of Operation

25

The main advantage of this modified Kernaugh-map technique

over the transition table method is the fact that, in most

cases, fewer logic gates are needed to produce a fail-safe

version of a particular sequential machineo

The use of UAND synthesis in fail-safe design will now
be discussed.

3o3 The Use of HAND S:/nthesis

This is a technique whereby circuits, using conventional

M D and 0H logic gates, may be translated into equivalent circuits

using only NAM'D gates This is probably of greatest

importance in the manufacture of microcircuits using large

scale integration (L.S.I.),

This technique is illustrated purely by example»

The circuit shown in Figure 3=8 may be translated quite

easily into a NAND logic circuit as shown in Figure 3°10* The

most important point to note in this procedure is the fact that

3-input NAND gates are readily available in TTL package form

whereas AN'D and OR gates are usually produced only in 2-input

versions. Therefore the two-level AND and OR networks shown in

Figure 3o8 may be replaced by a one-level NAND gate as shown in

Figure 3»10. The table of operation shown in Figure 3=11

illustrates that:

(a) the circuit may continue to operate correctly

under a stuck-at-0 fault.

(b) the circuit is fail-safe to stuck-at-0 logic

faults. However, it is clearly seen that

sometimes the F-state is 000 and sometimes it

is 111. This was found to be characteristic of

26

l e v e ! 2 l e v e l 1

■
Va-

ŷ :h
X _

ŷ :

- j y

ii>
h-
V2-

&

yrV3-
Y2-
yy

X .
•/Tya- &

yi-
yi- E>

k*---------------

 ̂©
0-----

__L
&

© I
Figure 3« 10 ITMD Gate Representation

Figure 3»11 Table of Operation

in p u t present sfate nex t stateX >'3 K, >̂2 3̂ comm ents
0 7 0 7 0 0 7

- goè> 7 s - a - 0
0 0 0 7 0 0 0 ! f ai l - safe

7 1 7 0 0 7 7 -

1 0 7 7 0 0 7 ■ gate 1 s - a - 0
f a i l - safe

'T 0 0 7 0 0 0
0 1 1 0 1 7 0

■ gat e2 s - a - 0
0 1 7 0 1 1 0 nor ma l operation

0 7 0 1 7 1 7 -]
- gate 2 s - a - 0

0 'J 1 7 7 1 ”T1
—

fa il-sa fe

1 1 1 0 0 1 7 -
gat e2 s- a- 0

1 0 1 1 1 7 1 7
_

fail-safe

1 0 1 1 7 0 7 n 1
gateO s - a - 0 |

1 1 0 1 1 ̂ 7 ~ n fail-safe jj
27

fail-safe circuits constructed using N M D logic;

if a stuck-at-0 fault occurs in an "odd" level (see

Figure 3»10)j the F-state is 000; if the fault occurs

in an "even" level, the F-state is 111o This is

obviously an advantage when repairing a fault in a

more complex circuit since attention can be restricted

to either even or odd levels. An error-detecting

circuit for a 111 F-state can easily be incorporated

as beforeo
(c) using this technique, the number of logic gates

required is increased by only 33^°
In general, this NAND synthesis technique can usually

be applied to produce an overall minimal circuit.

The design of autonomous sequential circuits using the

Karnaugh-map method will now be discussed.

3o4 Autonomous Circuit Design
An autonomous circuit is a sequential machine with no

externally-applied input signals. The circuit is controlled

solely by the sequence of clock pulses applied to the memory

elements in the circuit» Fail-safe autonomous circuitry can be

designed using the transition table technique, exactly as before»

However, the Karnaugh-map method is slightly different when

applied to autonomous circuits, since there is no restriction on

the number of "don't-care" states appearing in the Karnaugh-map;

however, there is a restriction on the number of term groupings,

since all the variables in the Karnaugh-map are state variables»

(Beforehand, the map contained the input variable x, which is

not classed as a state variable and may appear in complemented

form in the final control functions, without violating the

28

condition that ail the functions must he monotonic increasing).

The legal term groupings are illustrated in Figure 3<>12.

An example will demonstrate this techniqueo Figure 3*13

illustrates the transition table, conventional control functions

and circuit diagram of an autonomous sequential machine which simply

cycles through four states continuously. Note that, for the

purpose of comparison, the state assignment vectors are pairwise

incomparable with each other. However, when the modified Karnaugh-

map minimisation technique is used, as shown in Figure 3«14, a
fail-safe circuit is obtained. This is clearly shewn by the table

of operation illustrated in Figure 3*15*
This technique is quite a simple one to use. Indeed,

beginning with a known state assignment, any of the above design

procedures is a relatively straightforv/ard task. However, problems

can arise when choosing a particular state assigrjnento The stats

vectors must, first of all, satisfy the original design requirement;

but they must also satisfy a specific ordering relation, as seen

earlisTo More often than not, these requirements are contradictory,

and producing a state assignment which satisfies both conditions can

be a very tedious task indeed. Therefore, a computer program was

constructed to alleviate this problem.

3o5 Computational Methods of State Assignment Selection

As mentioned earler in Section 2.3? it seemed reasonable

to assume that all feasible groups of pairwise incomparable binary

vectors lie on the same level of a hypercube, whether this cube be

of 3, 4 om even 10 variables.
Therefore, a computer program was written in BASIC to

compute these groups cf vectors. The flowchart is shown in Figure

3ol6, while the actual program is illustrated in Appendix 1.

29

Figure 3«12 Term Groupings for Autonomous Design

30

pr esent 5 tate n e x t s ta te c 0 n t r 0 I s

yi >̂2 yj ^4 2̂ 2̂ >4 ^2 ^4

1 0 0 1 0 0 1 1 0 0 1 1

0 0 1 1 0 1 0 1 0 1 0 1

0 1 0 1 1 0 1 0 1 0 1 0

1 0 1 0 1 0 0 1 1 0 0 1

D.1

t r a n s i t i o n t a b l e

>2 ̂ >4

^2 - yd - y^

% = h

4̂ = ^2

c o n t r o l e q u a t i o n s

y2 CE>

2̂
>2

>2 Ì\X

>2

2̂
a

c i r c u i t

Figure 3*13 Conventional Autonomous Design
31

>2

77

70

«
^1^2 \ 00 01 11 10

00

01

— - 1 —

-- 0 — —

— — — —

— 0 — 0
^2^ V l

00 01 11 10

y i — | Y V
[D^

00

01

11

10

— — 1 —

— 0 — —

— — — —

— 1 — 1

L̂ = y r y j

y j
y¿

>'2
yi

yi

>3
Fiamre ~̂j.14 Fail-Safe Autonomous Design

32

Figure 3 » Operation Table

p r e s e n t s t a t e n e x t s t a t e

' 1̂ >2 yf.

0 0 1 1

0 7 0 7

1 0 7 0

0 0 0 1

y; /3 c 0 m m e n t s

7 0 0 1

0 0 7 7

0 7 0 7
1 0 7 0

0 0 0 1 0 0 0 o \

0 0 0 7
0 0 0

g a t e 1 s - a - 0

f a i /- saf e

7 0 0 1

0 0 0 1

0 0 1 1

0 1 0 1

0 0 1 0

0 0 0 1

1u g a t e 2 s - a - 0

f a i l - s a f e

0 7 0 1

0 0 7 0

0 0 0 7

0 0 0

g a t e s s - a - 0

f a i ¡ - s a f e

0 7 0 7
1 0 7 0

7 0 0 1

0 0 1 7

0 0 0 7
0 0 7 7
0 7 0 7
7 0 0 0

0 0 0 7
0 1 0 '1

7 0 1 0

7 0 0 0

0 0 0 7

7 0 7 0

7 0 0 7
0 0 1 /

0 0 0 7

0 0 0 0

g a t e f* s - a - 0

f a i ¡ - saf e

0 1 0 1 ■

7 0 0 0

0 0 0 1

0 0 0 0 I
1 0 -1 0

1 0 0 0

0 0 0 7

0 0 0 0

g a t e 5 s - a - 0

f a i l - s a f e

ga te 6 s- a-O

f a i l - s a f e

33

Fi fjure 3 ♦ 16 FIov< chart

34

The results for 3> 4 and 5 variables are shown in Figure 3o17,

the vector groups asterisked being those used in the earlier

sections on fail-safe designo

The operation of the program is straightforward:

A reference binary vector is chosen from each level of

a hypercube and all other vectors compared with themo If a

vector is found to be pairwise incomparable with the reference

vector, then it is printed.

The reference vector is chosen to be the least decimal

equivalent in each level; for example, in the 3-variable

case, the reference vectors correspond to decimal 0,1,3 and 7
Ica progression of 2 -1 where k = 0,1,2,3* Although this program

performs well, it produces only a sub-set of the total possible

groups of pairwise incomparable vectorso

A code, known as the Berger code, produces the binary vectors

shown below£33
llOO*

1010
1001
0l1i_

By inspection, it can be seen that these vectors are pairwise

incomparable with each other, but, more important, with reference

to Figure 2o4, three of the vectors lie on the same level of a

hypercube, while one of them lies on a level above. However,

this important group of vectors would be missed using the above

computer program, since there is an underlying assumption that

incomparable vectors lie on the same level of a hypercube.
To overcome this problem, a new program was written. The

flowchart for this program is illustrated in Figure 3*1S, while

the program itself is shown in Appendix 2. The program is

35

PAIRW ISE IxJCOMPARABLE 31 MARY MUMBER

KOI.F 'lAeJY Vi-

0 0 0

0 3 1
0 1 3
1 3 3

0 1 1
1 3 1
1 1 0

1 1 1

MOU MAMY VARIABLES? 5

0 0 2 0 0

L
0
0
0
1

0
0
0
0
0
0
1
1
1

0
0
1
0
0
0
0
1
1
1
0
3
0

'«L»
0
1

3
1
1
0
0
1
0
0
1

0
1
0
3
0
1
0
1
0
1
3
3
1
3

1
0
0
3
3
1
1
0
1
0
0
1
0

;iOU :1AMY VARIABLES? 4 1 1 iO' 3 3

3 0 0 3 3 0 1 1 1
3 1 0 1 1

3 0 0 1 0 1 1 3 1
3 ■0 1 0 0 1 1 1 3
0 1 0 0 1 3 0 1 1
1 0 3 0 1 0 1 0 1

1 0 1 I 0
3 0 1 1 1 1 0 3 1.7«o 1 3 1 1 1 0 1 3
0 1 1 0 ^ 1 1 1 3 3
1 0 0 1
1 3 1 0 0 1 1 1 1
1 1 3 3 1 C7, 1 i 1

1 1 3 1 1
0 1 1 1 1 1 1 3 1
1 3 1 1 1 1 1 1 0
1 1 3 1
1 1 1 0 1 1 1 1 1

1 1 1 1

F i g u r e 3»17 R e s u l t s

36

3rd CROUP
ditto

(e n d}
Fip;ure 3»18 Nev/ Flowchart

37

constructed in such a way that, once a reference vector has been

chosen, it is compared with all other possible vectors and the

ones which are incomparable are printed in the first group.

Each of the vectors in the first group is then compared with all the

other vectors in the first group and those v/hich are incomparable

are printed in the second group, and so on. The format of the

program results is illustrated in Figure 3*19 Tor The case of Berger

codeo Three examples of actual computer printout are shown in

Figure 3*20. Note that the vectors are printed in decimal form

for speed and convenience.

Obviously this program may be extended to deal with much

larger binary vectors by simply adding more 'groups" to the program.

However, the program shown is sufficient to illustrate the techniquec

After extensive program runs, the following conclusions
were made:

(a) There are only four legal Berger vectors for

four variables, namely;
1001
1100
1010
0111

(b) However, a larger group of vectors is possible

when the reference 1001 is chosen, namely:

1001
0011
0101
1010
1100
0110

(c) The last three bits of the vectors in the above

group follow a binary progression. If these are

classed as information bits, then the first check

bit is chosen to be a 1 if the number of ones in

38

0 1 1 1

' - __ » ____I '
1 0 0 0 1 7 0 0 7 1 1 0 1 0

-?-- !-- :-
1 0 1 1
-7-- 1-- N-

1 7 7 0 0 1 1 1 0 1 — ,---1---^

llJVO

Y

e tc.

7 7 7 0
/ . V/ \

e tc.

1 0 0 1 1 0 1 1

1 0 1 0 N O N E 1 7 0 7 0 1 1 0 0 1 N O N E

Figure 3» 19 Format of Computer PrO|g:ram Results

|VAR A;JD REF NO.? ¿ijl

¿i VARIABLES REFERENCE== 7

F I R S T GROUP

3 \ 9 \ 1 2 \ 11 \ 1 2 \ 1 3 \ M \

SECOND GROUP

NONE\ 10 12 1 4 \ 9 12 1 3 \ 1 2 13 14 \ 9 10 1 1 \
10 11 1 4 \ 9 11 1 3 \

THIRD GROUP

12 \ 10 \ N O N E \ 12 \ 9 \ N O N E \ N O N £ \ 14 \ 13 \ 10 \ 9 \ NO N E \ NO N E \
14 \ 11 \ NO N E \ 13 \ 11 \

VAR AND REF N O . ? 4^ 1

4 VARIABLES REFERENCE= 1

F I R S T GROUP

2 \ 4 \ 5 \ 3 \ 13 \ 12 \ 14 \

SECOND GROUP

4 3 1 2 \ 2 3 1 3 \ 8 1 0 1 2 X 2 4 6 X 4 6 1 2 X 2 6 1 0 X
NON EX

THIRD GROUP

3 X 4 XNONEX 3 X 2 XNONEXNONEX 12 X 10 X 4 X 2 sNONEXNONEX 12 X
6 XNONEX 10 X 6 XNONEX

VAR AND REF NO . ? 3 ^ 2

3 VARIABLES

F I R S T GROUP

1 X 4 X 5 X

SECOND GROUP

4 X 1 XNONEX

THIRD GROUP

NOijZXNO.JEXNONEX

■FERENCE= 2

FiiSiure 3.20 Program Results

40

the information bits is odd» The check bit is a 0

if the number of ones in the information bits is eveno

Thus, a very useful type of code, known as a 2-out-of-4
parit7/--check code, is produced.

(d) Various other codes may be produced in the same way

by careful study of the program results.

(e) Every feasible group of pairwise incomparable binary

vectors may be produced using this computer program»

This computer analysis concludes the study of fail-safe

digital machine design. Fundamental definitions are theorems

have been presented along v/ith various design techniques and

illustrated by specific design examples» Throughout the study,

relevant conclusions have been drawn and compared.

The following chapters are devoted to fault-tolerant

digital machine design.

41

4o1

CHAPTER 4. AH INTRODUCTION TO FAULT-TOLERANT DIGITAL SYSTEMS

Pail-safe digital systems are quite acceptable from an error-

detection point of view, since it is assumed that the system can be shut

down for a certain length of time for maintenance purposes. It

is also assumed that maintenance is possible. However, in

applications where continuous operation is essential for a specified

length of time, fault-tolerant design techniques become very importanto

Without exception, fault-tolerant design techniques involve a certain

amount of circuit redundancy, the specific techniques to be used

depending upon whether or not repair is possible and also on the

required duration of reliable operation.

Fault-tolerant design techniq_ues can be divided into two

classes. In the first, called fault-masking, the effects of any

fault are masked by additional circuitryo This circuitry is an

integral part of the system and no switching is involved, thus

error-correction is instantaneous.

In the second class are schemes which detect and locate

any fault in the system and replace the faulty unit by switching

in a spare unit. These systems are called self-checking systems.
Fault-Masking Techniques

Fault-masking techniques are useful when the system is

required to operate reliably over a relatively short period of

time and repair is impossible. Over the past few years, this has

been the basis for various fault-tolerant design techniques. These

include triple-modular-redundancy, quadded logic, radial logic and the

use of error-correcting codes.

(a) Triple-Modular-Redundancy (TMR)

This is perhaps the oldest form of fault-

masking, in which a complete system is produced

42

(b)

(c)

in triplicate. The three system outputs,

which in fault-free operation are identical,

are fed into a majority-logic gate as shown in

Figure 4»1o This type of gate produces an

output corresponding to the majority of the

inputs. Therefore, if a perfect majority gate

is assumed, the system illustrated in Figure 4=1

will never fail unless two or more units fail.

It can be shown that the mean time before
failure (MTBF} of this redundant system is less

than that of the irredundant system [6]

However, for small values of t, the time

period, the probability of survival of the

redundant system is greater than that of the

irredundant system. Such systems are useful

when a high reliability is required over a

short period of time.

Multiplexing [?]
The method of multiplexing is similar to

the above method except that the original system

is divided into subsystems and each subsystem is

triplicated as illustrated in Figure 4-2. A

fault in any element in a subsystem, includa,ng

the majority gates, will be masked by this

system. At the output, it is necessary to

select the proper output from among the three

outputs either by a fault-free circuit or an

observer.

Quadded Logic |̂8j

43

Figure 4«1 TriPie-Modular-Redundancy

Figure d,2 Multiplexing

44

As the name of this technique implies, logic

elements appear in quadruplicate. Any fault which

appears is corrected at the next level. Thus all

single faults, except in the last two stages, are

maskedo Most multiple faults are also masked unless

they appear in circuit elements which are close

together» Any circuit containing AND, OR and NOT

logic gates can he quadded. Similarly, quadded

circuits can be designed using NAND and NOR gates

(Jensen, 1963)* Sequential circuits can be

synthesised also, since flip-flops can be realised

by treating them as circuits formed by interconnecting

simple logic gates, but containing feedback.
(d) Radial Logic

Radial logic makes use of the fault-masking

properties of the NOR (or NAMD) gate with duplicated

inputs and is capable of correcting most single errors.

I f l any particular realisation, radial logic requires .

only half the number of logic gates required for

quadded logic, but the former does not correct a

certain class of errors which the latter does. Radial

logic may be desirable when the type of technology

used makes this class of faults unlikely to occur.
Radial logic using AND and OR gates can be obtained

as a simple extension of the NOR realisation, but
certain classes of faults still cannot be masked.

(e) Error-Correcting Codes [l0]

A method, whereby error-correcting codes are used

to obtain reliable digital systems, was proposed by

45

Armstrong in 1961. The method is actually a

generalisation of the triplication and voting

procedure discussed earlier^ The technique is

applicable to both combination and sequential

circuits. Since this technique forms the basis

for the fault-tolerant digital counter presented

in the next chapter, it is discussed later in some

detailo

4.2 Self-Checking Systems

So far, digital systems operating under two different

sets of conditions have been discussed.

Jn the first, the fail-safe system, interruptions

are tolerable and repair is possible, since only error-

detection takes place and an P-state is reachedo In

this case, a system which is relatively easy to test is

desirable so as to minimise the time required for

maintenance.

In the second class, repair is impossible but the

system is required to operate with high reliability for

a relatively short period of time. The fault-masking

techniques discussed in the preceding section are ideally

suited for this application.

A third type of environment is one in which

interruptions in the operation are intolerable but repair

is possible. In order to operate under these conditions,

the system should be self-checking. It should be able to

detect any fault within itself, identify the faulty

subsystem and switch it out of the system. This should

be done in such a manner that the system can continue to

46

operate with the remaining units, v/hile the faulty unit is

repaired.

(a) Electronic Switching System (ESS) [1'1J

The lioo 1 Electronic Switching System (SSS) used

in the Bell System for telephone switching is a highly

reliable system, one of whose reliability objectives

is that the system operation should not be interrupted

for more than two hours over its 40-year lifeo In

addition to the use of long-life components and

conservative circuit design, this high degree of

reliability is attained by duplicating the vital

parts of the system so as to retain an operational

system in the presence of component failures. Circuits

and programs are provided to determine the faulty

unit and switch it out of operationo Diagnostic

programs and maintenance dictionaries are provided to

locate the faulty package in the failed unit, leading
to rapid repair.'

(b) Self-Testing and Repair (STAR) Computer [12]

This is an experimental computer which v;as

designed and constructed primarily for research

and evaluation of self-repair techniques» Its

performance characteristics are meant to be suitable
for the guidance and control of unmamed interplanetary

spacecraft. The computer is reopuired to operate

reliably over a period of several years. 'Temporary

malfunctions may be tolerated provided they are

detected and the computations repeatedo Time is

47

also available for switching out faulty units and

switching in spares« The STAR computer has a fixed

configuration of subsj'‘stems, with spares provided for

each subsystem. Spares are permanently connected to

the system through information buses, but are left

unpowered. Replacement of a faulty subsystem by a

spare is effected by turning off the power to the former

and powering the latter.

This concludes the introduction and background to fault-tolerant

digital systems. The following chapters deal v/ith various apphoaches

and techniques in the design of these systems. As mentioned earlier,

the next chapter deals with a specific type of fault-masking technique,

namely, the use of error-correcting codes, and its application to the

design of a fault-tolerant digital counter.

48

CHAPTER FAULT-TOLBRAilT I)IGITi>X COUHTBR PESIGH

In this chapter, the use of error-correcting codes, or,

more specifically, parity-checking codes, is discussed in

detailo The design of a single-fault-tolerant digital

counter using this technique is illustrated by a particular

example using a modified first-order Eeed-Muller parity-

check matrix^' The chapter is concluded by a computer-aided

design studj'- of fault-tolerant counters.

5.1 Parit.y-Check Codes and their Uses

Consider an m-input, n-output combinational circuit

which can be designed so that it produces the correct outputs

even in the. presence of a single fault. If there is no shared

logic between the shared outputs, then K check bits could be

added and an error-correcting code used. If shared logic

is allowed, then a single fault may affect several outputs

and the cods should be capable of correcting all errors that

may result from a single fault.

A more.efficient technique, suggested by Armstrong is
to break the given m-input, n-output circuit into r sub-unitso

There may be shared logic between outputs within the same sub

unit, but no shared logic between sub-units. Errors produced by a

single faulty sub-unit can be corrected by adding q p-output

sub-urhts as shown in Figure 5“1* The outputs Z, ., i»r+1,_,.^^, ̂3
r+q serve as check bits for Z, k«1.„..r, and p, in a

single-error-correcting code.

In applying error-correcting technio^ues to sequential

circuits, it is necessary to perform error-correction on the

outputs as v;sll as the state variables, otherwise a fault in

a sub-unit, whose outputs are state variables, may be fed back

49

50

resulting in errors in more than one sub-unit at a later time.

A parity-check code is characterised by its parity-check

matrix. A parity-check matrix H of n columns and n-k rows

for any binary error-correcting code can be expressed in general

in a reduced-echelon form as shown in Figure 5*2 [13]

^ is an n-k identity matrix and Q is an n-k by k matrix

with binary element

The corresponding code space V consists of all elements
T TV such that vH = 0, where H is the transpose of matrix H.

More specifically, if v = ,,...B^_^),

then V is a code word if and only if

A,q,, e ̂® A,q^ , ® - 0

or

1 1 i1 2^12 3 i3 K^ik
for i=1,2,...., n-k, where ® denotes the modulo -2 sum.

This code is called an (n,k) code, where n denotes the block

length and k the bit length for the information symbols. The

bit length for the check symbols is given by n-k.

The class of code used in this design technique is a

modified first-order Reed-Muller code whose parity-check

matrix has exactly three 1's in each row ¡14] • This code is

a low-density code in the sense that its parity-check matrix

contains mostly O ’s and relatively few 1's. A 2-out-of-3

majority element is used for the purpose of error correction.

A 3 by 6 parity-check matrix H for this code is illustrated
in Figure 5»3*

Let V = (a A- A, B B B) be a code word, where

A k are information bits and B. B 3 are check bits. Then I > 2, 3 1, 2, 3

51

H =

% '^12 ^ 1 3 “̂ I k
1 0 0 . • ■ 0

^21 Q 2 2 ^ 2 3- ^ 2 k
0 1 0 .. . 0

^31 *^32 “̂ 33 '^3k
0 0 1 . . . 0

n Q q q 0 0 0Vk1 n-k2̂n.k3 n̂.kk

= [Q,In~k
Figure 5«2 General Form of Parity-Check Matrix

H= -
1 1 0 1 1 0 0
0 1 1 ! 0 1 1 0
1 0 1 1 0 0 1

Figure 5»3 Heed-Muller Code Parity-Check Matrix

52

TvH * 0 and from the given matrix H, a set of parity-check

equations can be derived, thus;

- A2 ® A^
B3 . A^ ® Ai (1)

or A^ - A^ ®
® Bi » A3 ® B^

A3 - A^ ® B3 - A^ ® B^ (2)
Note that each A^, for i * 1»2,3 in the set of (2), can be

determined by exactly three independent relationships.

Therefore;-

. A ^(k) - Mâ .j ̂(A^, A^ ® B^, A3 ® B3)

A ^(k) - Ma^^ (A^, A ̂ ® B ^, A3 ® B^)

A3(k) . Ma^^ (A3, A^ ® B3, A^ ® B^) (3)

where the subscript k denotes the k^^ physical realisation of

the particular majority element. These majority elements of

(3) give the correct output if, at most, one of the terms

A^,A2>A3, B^,B^,B3 has a component faulto

Prom the set of (l);
A ^ S B ,

Ai ® B , A3 O B J

therefore;
A3 . Â ® B3 . A2 ® B2

A^(k) - Ma^^ (Î , A^ ® B^, 3 3 ® B3)

A^ik) - Ma^^ (A^, 3^ ® B^, I3 © B^)

A3(k) - Ma^^ (3^, A^ ® B3, 3^ ® B^)

(4)

e5)
These results can be applied to the design of a single-fault-

tclerant three-stage counter.,

53

5*2 Fault~ToIerant Di|S:ital Counter

As an illustration, consider the design of an ordinary

three-stage binary counter with information bits A^, A^ and

A^ as shown in Figure 5»4» In order to produce a fault-tolerant

version of this counter, three auxiliary check stages are required.

These check bits B^, and B_̂ are produced using the equations

of (l). The control functions are now required in order to

realise the circuit. T-type flip-flops (or J-K flip-flops with

J and K tied together) are used as memory elements for reasons

discussed later<> The characteristic equation of a T-Type flip-

flop:

AQ(t) = Q(t) Q Q(t+"I)

is used to produce the control functions as illustrated in

Figure 5*4° Minimisation produces the final control equations

as shown» It can be seen from these equations that the variable

A^ is required three times, is required twice, A^ once and A^

twicso Therefore, eight majority elements are needed to prevent

any "bottleneck" probiems» The final circuit diagram is

illustrated in Figure 5*5* Note that these majority elements

contain not only a 3-input majority logic gate, but also two

exclusive - GH gates in order to satisfy the conditions given

in equations (3) and (5)= This circuit was built and tested
and found to be completely fault-tolerant to single logic

faults, irrespective of the type of fault or where it occurred.

Throughout this study, it has been stressed that, in order

to produce a reliable machine, it is desirable to use the

mir*imum of components» Therefore, T-type flip-flops were

employed in the fault-tolerant counter to ensure a minimal

circuit. Obviously, the use of J-K flip-flops would have

54

s ta te
information bits check b i ts change opera to r form

A3 A2 Al B3 B2 B l A3 A2 At B3 B2 Bl

% 0 0 0 0 0 0 0 0 7 7 0 7

7̂ 0 0 1 7 0 7 0 7 7 7 1 0

^2 0 1 0 0 7 7 0 0 7 7 0 1

% 0 7 1 7 7 0 7 7 1 0 0 0

1 0 0 7 7 0 0 0 1 1 0 1

% 1 0 7 0 7 7 0 1 1 1 1 0

%■ 1 1 0 7 0 1 0 0 1 1 0 1

S7 1 1 1 0 0 0 1 1 1 0 0 0

<̂9 0 0 0 0 0 0 0 0 1 1 0 1

A'j = 1, B-j = Af

A2 - A ,̂ ^2 ~ '*̂‘7 ̂ 2

^3 ^ Aj A b , % ■ A-;->-A2

Fiigure 5«4 State Table and Control Functions

!?5

Figure 5«'? Three-Stage Single-Fault-Tolerant Counter

56

required much more combinational logic, and if D-type had been

used, the control equations would have beens

Ai -

A2 » Ai 4» Ag

B - Â 1 2

^2 * ^ ^ 1^3 “^ 2^3 ■ ^ 1̂ 2‘̂ 3

B3 ” Â^Ï3 + A^^3 + Â 2̂-̂ 3
These would have produced a much more complicated and, therefore,

a much less reliable circuit.

5o 3 Gomcuter-Aided Design of Fault-Tolerant Counters

A series of computer programs was written to simulate the

design procedure outlined above. The operation of the final

program is illustrated in the simplified flowchart of Figure

5.6; the actual program v/hich, for technical reasons is written

in FORTRAli, is shown in Appendix 3°. -

Although at first sight, the program looks rather long

and complex, it is g_uite straightforward and can be divided

into two main parts.

The first part of the program computes the state table

of the required machine in a format similar to that shown in

Figure 5*4• Naturally, this table is governed by certain

initial design constraints, including the type of flip-flop

required, the correct Reed-Muller matrix and the state

assignment of the required m.achine. These are inputed at

the start of the program in decimal form. The format of the

Reed-îiuller matrix is inputed as a string of digits, indicating

the positions of the 1’s in the matrix. For example, the

57

58

matrix'in Figuré is represented as 122313= Parity-check

matrices may he constructed for four and five variables as

shown below.

1100
I
I 1000

0110 0100

1001 0010

0011 0001

10100

01010

00101

10010

10000

01000

00100

00010

12231434

01001 I 00001

1324351425
The second part of the program stores the binary numbers

in each "change operator" column of the state table. These

are then fed, in turn, to a subroutine which performs a

Quine-McCluskey minimisation. Hence, minimal control functions

are produced and printed. An example of the final program

printout, illustrating the design of the fault-tolerant

counter discussed above, is shown in Figure 5=7.

Since this program is designed to cope with three, four

and five-stage counters, using variations of the Reed-Muller

parity-check matrix, and can also handle any conceivable state

assignment, it is an invaluable and versatile tool in fault-

tolerant counter design.

The following chapters deal v/ith two alternative approaches

to fault-tolerant digital design. The first involves the

construction of an interactive fault-tolerant cell-block, whilst

the second technique utilises read-only memories in digital design.

Although very different techniques they are both versatile and are
not restricted to autonomous machine design.

Chapter 6 deals with the fault-tolerant call-block.

59

INFO B IT S CH ECK B IT S CHAl'j G E 0 ? FOR.I
. D£LTA A ' s DEL TA 3 '

0 3 0 0 0 0
0 0 1 1 0 1 ■3 0 1 1 0 1
0 1 3 0 1 1 0 1 1 1 1 0
0 1 1 1 1 0 0 0 1 1 0 1
1 0 0 1 1 0 1 1 1 0 9 0
1 0 .1 0 1 1 0 0 1 1 0 1
1 1 0 1 0 1 0 1 1 1 1 0
1 1 1 0 0 0 0 0 1 1 0 1
3 0 0 0 0 0 1 1 1 0 0 0

DELTA A 3= A 2A 1+ A 2A 1+
DELTA A 2=A 1+A 1+A 1+A 1+
DELTA A l = l
DELTA 3 3 = A 2 '+ A 2 ' + A 1 '+ A 1 '+
DELTA 3 2 = A 2 'A 1 + A 2 'A 1 +
DELTA 31 = A1 '+A1 '+A 1 '-t-Al ’ +

END

Figure 5»7 Results

60

CHAPTER 6. FAULT-TOLERAHT CELL-BLOCK DESIGN

Throughout this study, classical methods have been primarily

used in the design of both fail-safe and fault-tolerant sequential

circuitry. Classical design generally involves a verbal

description of the system function, followed by the construction

of a state graph illustrating the various states and transitions

required to perform this functiono This is usually a straight

forward task. However, the subsequent steps in the design

procedure are not quite so simple and it generally requires

the expertise of the design engineer to produce a reliable system

with the minimum of components.

On the other hand, with the advent of microcircuits using

large-scale-integration, electronics is rapidly becoming a

'*black-box" technology in the sense that very complicated circuits

are now becoming commercially available in single packages. The

piecing-together of these individual units to produce complex

systems is now the primary role of the engineer.

It seems good sense, therefore, to design a logic element

which, when incorporated in a system of identical elements, is

as close as possible to the exact analogue of the state graph,

setting and resetting according to the various transitions

required by the system. The desirable properties of such an

element are that it represents a state on the state graph, connected

to other states in one-to-one correspondence with the state graph

arrows, and it indicates or "remembers" the state of the system

at any time. A circuit built of these elements would also have

the advantages that it is already designed once the state graph

is designed, and the circuit could be easily understood by anyone

61

who understood its function. [15]

Moreover, if this logic element could he made fault-tolerant,

the result would be simplified design coupled with increased
reliahilityo The design of such a fault-tolerant cell-block

is discussed in detail in this chapter,

6.1 Initial Cell-Block Development

During the development of a suitable cell-block, several

designs were built and tested. These will be investigated in

turn,

(i) An initial design is illustrated in Figure 6.1(a). If

Q is a logical 1 and X is a logical 0, the internal feedback

loop and associated combinational logic ensures that the cell

remains in a high state. In this condition, the cell is

effectively isolated from all other cells in the system. If,

however, X becomes a logical 1, the D input becomes a 0, resetting

the cell on the following clock pulse, while the Q output

enables the following cell-block, A typical state graph,

representing a simple ring-counter, is illustrated in Figure 6.1(b)

and the circuit implementation is shown in Figure 6.1(c).

Although this cell-block functions correctly it has certain

di sadvantages:-
(a) The circuit relies on an incoming logical 0

for resetting.

(b) The cell is limited to single-input, single

output operation,

(c) The state-graph analogy is broken, since there

is no external feedback loop from output to input

representing the ’same-state® condition.

62

D Q

Q

O / P

(a) S imple cel I - b l o c k

(b) S im p le state d iag ram

(c) C i r c u i t im plem enta t ion
Piigiire 6.1

63

After this design attempt, it became elear that the

required combinational logic would be more usefully employed

at the output of the memory elemento This led to a new design,

(ii) The design shown in Figure 6o2(a) uses a J-K-flip-flop as

the memory element, since this proves more versatile for

resetting purposes. If Q is a logical 1 and both the external

inputs are logical 0, the cell remains in the high state, since

a logical 0 is fed back to the K-input of the flip-flopo If,

however, one of the external inputs is high, the corresponding

AND gate is enabled and a logical 1 is fed back to the K-inputo

On the occurrence of a clock-pulse, the cell is reset and the

following cell enabled» This means, therefore, that the cell

is effectively self-resetting, since it does not depend on the

logic signal applied at the J-input, but only on the external

inputs» Another advantage of this design is that it can be

easily developed for multiple input-output operation.

However, this cell-block still has disadvantages

(a) Two external inputs are required to control two

output signals»

(b) The state-graph analogy is still broken for the

reason outlined in (c) above»

In order to overcome these drawbacks, a third cell-block

was designed.

(iii) The cell-block shown in Figure 6»2(b) operates in a similar

manner to the previous design, except that the outputs are

controlled by a single external input X» Although only two

outputs are used throughout this discussion, cbviously any number

of reo^uired outputs could be provided by a simple extension of

64

(a) 2 - input/output ce ll-b lock

Figure 6 , 2

(b) Improved version
ext. I / P

this techniqueo The state graph of Figure 6o3(a) is realised

via the circuit shown in Figure 6.3(h)o Note, in this case,

that the circuit is directly analogous to the graph and the

ultimate aim has been achieved^

However, close inspection and testing of this system revealed

that, subject to certain input conditions, the circuit operates

erroneously.

When the external input X is a logical 0 and the output of q^ is

fed back to its own input J, the required response is that q^ will

remain in the high state. However, the K-input line is also a

logical 1 and, therefore, the cell-block will reset» The AND gates

can no longer be enabled and the system ceases to operate» The

circuit, therefore, must be amended if this situation is to be

avoided.

(iv) This is done quite simply by insertion of an inverter and

AND gate on the reset line as shown in Figure 6.4. The K-input

■ is now controlled by the state input to the cell-block, so that,

the inverter ensures that the K-input is a logical 0 and the

flip-flop remains in the 'set' position. The added logic does

not impair the various other operations of the cell-block.

With a suitable cell-block developed, the next step was
to produce a more reliable version using the method of fault-

tolerance.
60 2 Fault-Tolerant Cell-Block

Various fault-tolerant design techniques are,available,

as outlined in Chapters 4 and 5> in order to produce a more

reliable system. Hov/ever, since the cell-block is of a

sequential nature, many of these techniques cannot be applied.

The choice, therefore, is betv/een the method of parity-check

66

0/0

(a) S t a t e d iagram example

(b) c i r c u i t implementation
Figure 6.3

57

ext. I/P

O/P

Final cell-block design

Figure 6»4

68

codes and triple-modular-redundancyp The former technique presents

immediate problems as far as the cell-block is concerned for the

following reasonss-

(a) This method is aimed primarily at autonomous

systemso Although it is not altogether

impossible to adapt the technique for sequential

circuits, it is no simple matter to incorporate

external inputs to produce a satisfactory design®

(b) This method requires at least three memory elements

to produce a sufficient number of binary digits for

checking purposes. Since the cell-block contains

only one flip-flop, some additional redundancy

would have to be introduced from the outset, even

before the method was applied. This is not only-

very uneconomical, but also tends to reduce the

initial level of reliabilityc.

On the other hand, the cell-block offers no restrictions

to the use of triple-modular-redundancy, and a fault-tolerant cell-

block is simply implemented as illustrated in Figure 6®5° This

is composed of three identical cell-block sub-units feeding six

majority-logic gates. In normal operation, the signals applied

to each majority gate are identical with the result that, depending

on the value of the external input, three versions of the same signal

are obtained at the outputs of the majority-logic gates. This

means that the fault-tolerant cell-block continues to function
correctly in the event of a single logical fault occurring in any of

the circuit elements, including the majority logic® However, when

this csll-block is used in conjunction with others to produce a required

69

X o-

3o-
L O-
5 0 -

5tat<?
l / P ' 5

Xo-
75o-
/ 6 0 -
?7 O-

State
I/P's

]3

’^ L r ^ 77

0
6

-J

cC

-K 0

25

74

24
23

-J U 7fl -<

dc
-K Q

-J O r f

CC

-K 0

Fault-tolerant cel I-block
Figure 6.5

70

design, under certain conditions reliable operation may be achieved in

the presence of various simultaneous faults»

(a) Two majority gates may fail within the same cell-

block, provided that they receive different input

signals. For example, in Figure 6.5, gates M 1̂ and M2 ̂

may fail simultaneously without disrupting normal

operation.

(b) In an N-state system, using N fault-tolerant cell-

blocks, 1 -• N majority gates may fail without

producing erroneous operation, provided that the

failures occur in the same position in each cell-

block»

(c) A complete sub-unit, comprising of eight logic

elements, may fail without disrupting the

operation»

(dj In an N-state system, 1 -* N complete sub-units may

fail simultaneously, provided that only one sub

unit fails in each cell-block.

From the above it can be seen that a complete system, comprised of

interconnected fault-tolerant cell-blocks, can tolerate a minimum

of one logical fault, but, in exceptional circumstances, may

tolerate a maximum of 8II logical faults.

In order to fully test the operation of the fault-tolerant

cell-block under fault conditions would mean constructing a

few logic circuits and manually simulating various logical faults.

However, when one considers that a single fault-tolerant cell-block

requires 10 I.C. packages, it is not surprising that it was deemed

both unwieldy and time-consuming to build a system with more than

71

three states using these discrete components.

It was decided, therefore, to simulate various logic systems

on the computer using the Reynolds Logic Simulator =.
6o3 Logic Simulation of Fault-Tolerant Cell-Block

The Reynolds Logic Simulation program is described in

detail in Appendix 4*

A data file, entitled TMR, DAT, which describes the fault-

tolerant cell-block, is shown in Figure 606. Rote that every

data file commences with - 1 , which indicates a new data file,

and ends with - 1S, which returns control to the terminal keyboard.

Rote also that, since there is no facility in the program for

majority-logic gates, these are replaced by equivalent logic

networks whose function is given by:-

„ f* + y.s + Xp-a

The program is first run under fault-free conditions to assess

the normal operation of the fault-tol-erant cell-blocko The

resulting computer printout is shown in Figure 6.7* Rote that

various comments and guidelines have been added for the sake of

clarity. The circuit functions correctly under all possible

input conditions, therefore various logical faults can now be

simulated in order to test the fault-tolerant aspect of the system.

Logical faults are simulated quickly and simply using the

Reynolds programo The command -2 allows any specified connections

to be updated, so that any node may be assigned either a logical

zero or a logical one using the system functions 14 or I5

respectivelyo

Using this teciinique, faults were induced in various circuit

elements of the cell-block and the resulting annotated orintout

72

-1
1 16 0
2 2 3 4 5 0
3 1 0
4 1 0
5 1 0
6 1 0 1 2 1 1 0
7 4 6 13 0
3 4 6 9 0
9 3 13 0
10 2 7 3 0
1 1 4 10 12 0
12 3 2 3
1 3 1 0
14 2 15 16 1 7 0
15 1 0
16 1 0
1 7 1 0
13 13 1 14 23 0
19 4 13 25 0
20 4 13 2 1 0
2 1 3 25 0
22 2 19 20 3
23 4 22 24 0
24 3 14 0
25 1 0
26 2 27 23 29 0
27 1 0
23 1 0
29 1 0
30 1 0 1 26 35 0
3 1 4 30 37 0
32 4 30 33 0
33 3 37 0
34 2 31 32 0
35 4 3 4 36 0
35 3 26 0
37 1 0
33 p 39 40 4 1 0
39 4 7 19 0
40 4 19 3 1 0
4 1 4 7 31 0
42 2 4 3 44 4 5 0
43 4 7 19 0
44 4 19 3 1 0
45 4 7 31 0
46 2 4 7 43 49 0
4 7 4 7 19 0
43 4 19 3 1 r f.

o

49 /. 7 3 1 •pj4
5 0 2 5 1 5 2 5 3 <7'«6/

5 1 4 3 20 r?.LJ

52 4 2 0 32 7)

5 3 4 3 32 '¿ j

54 p 5 5 56 r z 7
5 5 4 3 2 0 0
56 4 20 32 0
57 4 3 3 2 0
5 3 2 59 6 0 6 1 3
59 4 3 20 a

■o

60 4 2 0 32
6 1 4 3 3 2 3
- 1 3 73

Figure 6.6 Data File

:om:i a :-jd e 'c p e c t e d
- 4 13 7 3 19 20 3 1 32 33 42; 46 50 54 53
- 9 O
1 3 7 3 19 2 0 3 1 32 33 42 46 50 54 58
+ --- - H----- + --- + --- H----- +■ -

3 3 0 i i l
i7 . 0 2 0 0 0 0 0 0

3 3 0 3 3 0 7
a 0 0 3 0 .7

x j 0
3 3 3 o 3 0 0 3 0 0 0 ■d a

Ca.<!MA:jD ZX? tr ̂ T* ' iLu : —D
- 6 13 25 37
- 9 3
1 3 7 3 19 20 31 32 33 4 2 46 5 0 54 53
+ --- - H----- H----- H----- -h--- + --- -h -

1 0 0 0 0 0 0 0 0 0 0 0 0
1 3 0 3 kl; 0 3. 0 0 0 0 0 0
1 3 3 0 3 3 0 0 3 0 a O'

O 3

CO--IMAUD EXP ECTE D
- 6 3 1 5 27
- 9 4
1 3 7 3 •19 2 3 31 32 33 4 2 45 50 54 53
H----- H-----+ - - +■ - - -i---- -1----- -r - - + --- H----- + --- -i- — -i---- +• -

1 0 3 3 0 0 0 0 0 a 0 0 0
1 1 3 1 a 1 1 1 1 0 0 2
1 1 0 1 0 1 3 1 1 1 0 0 0
1 1 3 1 3 1 0 1 1 1 - y.

o 3 0

o O.'l .lAUD EC? T ii.T'̂
- 5 3 15 27
- 9 4
1 3 7 3 19 20 31 32 33 42 46 O i j 54 53
+ --- -i----+ - - - f - - H----- H----- -h--- + — + — + --- + -

3 3 0 ■3 3 g 0 0 0 0 0 0 0
0 0 1 3 1 '0 1 ' 0 0 1 1 1

■3 1 3 1 3 1 0 •X!6‘ 0 1 1 1
a 3 1 3 1 a 1 n

t j 0 3 1 1 1

Coiiments
M o n i to r p o i n t :

S r t e m a l i n p u t]{=0

1^=0

X=1

1^=0

X=1

1^=1

x=o

l1=1

Figure 6.7 Results

74

is illustrated in Figures 608 and 6o9* Without exception, all
logical faults, irrespective of type or position, are masked by the

majority-logic gates. However, in some cases, the fault does

not affect the operation of the cell-block. This is identical

to the situation encountered earlier when dealing v/ith fail-safe

logic designo With the fault-tolerant cell-block fully tested,

the next step was to simulate a complete circuit using these blocks

in order to induce and observe fault conditions in a practical

situationo

6o4o Fault-Tolerant Cell-Block Circuit Design

A data file consisting of three separate fault-tolerant

cell-blocks was first drawn upo To avoid confusion, the modes

of the second cell-block were numbered in the range 1CX) - 199 and

the third cell-block in the range 200 ~ 299o That is, since the

original flip-flops were numbered 6, 18 and 30, the flip-flops in

the second cell-block ?rere numbered 106, II8 and I3O and so ono

The connections were then updated so that a circuit was formed,

and the data file was named CIRCo DAT» The state graph is

identical to that sho\vn in Figure 6.3(b) while the circuit

representation using fault-tolerant cell-blocks is illustrated

in Figure 6.IO0

Normal operation of the circuit was first checked using the

simulation program and the results are shown in Figure 6011.

This is satisfactory since the circuit reacts in accordance with

the state grapho Using the same technique as before, various
faults were simulated. Since it has already been shown that

logical faults within the cell-block itself are always masked, the

faults, in this case, are restricted to the majority-logic gates.

75

_ o .. i . il. L/ '£D

7 1 4 3

- 6 1 5 27 13 25 37
-9 3
1 3 7 3 19 20 3 1 32 33 42 46 53 o4 53
-h -

1 0 3 1 0 1 0 1 1 1 3 3 0
1 3 3 1 3 1 0 1 1 1 3 3 0
1 ¿1 0 1 0 1 0 1 1 1 3 0 3

Gonments
U pda te

liode 7 s - a - 0

F a u l t m asked b y
m a j o r i t y - l o g i c
g a t e s

COM.'IA.JD e:':p e c t i d
-2
7 d 6 13 3
3 14 3
- 9 3

U p d a te

Node 8 s - a - 0

1 3 7 3 19 20 3 1 n oo ¿z, 33 4 2 4 6 30 54 53
4- - - 4- - - 4- - - • 4- -

1 1 0 1 0 11 3 1 i 1 0 2 0 F o rm a l
1 1 3 1 3 1 0 1 1 1 0 0 0 o p e r a t i o n
1 1 3 1 0 • 1 'C . 1 1 1 0 0 o

CO IMA. ID EX? ECT ED
- 2 U p d a te
3 1 5 ■3 Rode 8 s - a - 1
- 9 3
1 3 7 3 19 20 3 1 32 3 3 4 2 4 6 5 0 54 53
+ - - -f ■ 4- - -■4---- • 4- -

1 1 1 1 3 1 0 1 1 1 G 0 F a u l t m asked
1 1 1 1 'A 1 0 1 1 1 3 0 .y.

■u

1 1 1 1 0 1 i) 1 1 1 0 0 0

o Oi i.'l Ail u
- 2
3 4 6 9

u r n '7' -CTED
U p d a te

13 1 4 0 Node -l8 s - a - 0
- 9 3
1 3 7 3 19 23 3 1 32 33 42 46 5 0 04
4-------- H------- . 4- -

1 1 3 0 3 1 0 1 1 1 3 0 3 F a u l t m asked
1 1 3 3 3 1 3 1 1 1 ¿J '6 •"■'i'a
1 1 3 0 , 0 1 3 1 1 1 0 0

F ig u re 6 .8 R e su lts

76

EXPilG'

1'.3 1 14 23
14 0

- 2

13
2 3
- 9

Goraments
U pda te

Node 2 3 3 -a -O

13 7 3 19 20 3 1 32 33 4 2 46 0 3 o4 o3
+ ---+ ----+ - ~ + -4----4- - -4---- 4- - 4- — 4- — ■4- — —f -

1 1 0 1 0 1 3 1 1 1 3 0 0 Noroial
1 1 0 1 0 1 0 1 1 1 3 a o p e r a t i o n
1 1 0 1 0 1 3 1 1 1 .r tii; 0 0

COXXAiJD EXP ECTED
- 2 U p d a te
2 3 1 5 0 Node 23 s - a - 1
- 9 4
13 7 3 19 20 31 32 33 4 2 46 53 54 5d
+ - - + --- - f - - + - 4- - - 4- - - 4- - - 4- - - 4- - - + - - H----- 4- - - 4- -

1 1 0 01
/J

r x0 1 3 1 1 1 y 0 3 O s c i l l a t i n g
1 1 0 1 r s 1 3 1 1 1 3 3 0 f a u l t m asked
1 1 3 0 0 1 ic/ 1 1 1 0 3 0
1 1 3 ± '3 1 0 1 1 1 3 3 u

0 U-'■ii'li-i-'J Lj j1.XP 3T r* <T '7wU i A-.
- 2 U pda te
2 3 4 22 24 •91
36 14 0 Node 3 6 s - a - 0
- 9 3
13 7 3 19 . 2 3 31 3 2 35 4 2 4 6 5 3 54 53
+ - - 4 - - - + “ - 4*- -4----4- - - + - - 4- - - + - - 4---- H----- 4----- 4- -

1 1 0 1 0 1 3 1 1 1 a 0 3 N onna l
1 1 3 1 0 1 0 1 1 1 3 0 ¿ J o p e r a t i o n
1 1 0 1 0 1 0 1 1 1 a 3 0

COMMAND 0 —» ̂ ~ A1 I L u

- 2 U p d a te
36 15 3 Node 3 6 s - a - 1
-9 4
13 7 3 19 20 31 3 2 3d 4 2 45 50 54 53
-f* — — -i*— — + —— -}-- - H-----4* - -4---- -H - _ + _ _ 4* “ —4* — —4----- 4- -

1 1 3 1 '/5 1 0 1 1 1 Of
y j O s c i l l a t i n g

1 1 3 1 '6 0 0 . 1 1 1 0 3 3 f a u l t m asked
1 1 3 1 0 1 1 1 1 0 0 0
1 1 0 1 '0

■>
■'J 3 1 1 1 '¿) ¿} 0

F igu re 6.9 R esu lts

77

Fault-tolerant representation of state diagram Fig.6-3(a)
Figure 6«10

78

■C'iA.JD ¿'"C P OCT CD Comments
- 4 6 13 3 0 1 36 1 13 1 36 2 0 6 2 13 2 3 3 M o n i to r p o i n t s
- 6 6 13 30 S e t f i r s t
- 9 O c e l l - b l o c k
6 13 3 3 1 06 1 13 130 2 0 6 2 13 2 3 0
H----------- -r - - + - -h - — 4- — —4- - 4- - -4* --------- 4*---4-
] 1 1 0 0 0 >u 3 0
1 1 1 0 0 3 0 0 0 X=0
1 1 1 0 / 7O 0 0 0 ■ 0

s j . 1 A. J u i - . - i ECT £D
- 6 1 3 2 3 3 7 1 13 1 2 5 137 2 13 22 5 2 3 7 ifc1
- 9 4
6 13 3 2‘ 1 06 1 13 133 2 0 6 2 13 2 30
H----------- + - - + — ^ - - 4- - 4 - - 4- - 4 - -------- 4 -

1 1 1 3 3 •71
• / j 0

y?3 3 0 I 1 1 "1 0 0
3 3 ¿ j 0 0 3 1 1 1
0 3 ¿ j 3 0 1 1 1

CO- 1:1 A. ID E’'C ^ £CT E D
- 5 2 06 213 2 3 0 Set third
- 9 3 cell-block
6 13 33 1 36 1 13 1 3 0 2 3 6 2 13 2 3 0
+ - -- - h ---------+ - 4 - - 4- -------- 4 - - - 4- - 4------------^

■~7
•J

r?.
O

-"7
i j

' 7:J 3 ■0 1 1 1
1 I I 0 3 0 3 0 0 X=0
1 I 1 ¿J 0 3 0 0 D

CO:'KIA.ID E'v P ECT ZD
- 5 1 36 1 13 133 Set second
- 9 3 cell-block
6 1 3 3 0 1 36 1 13 1 30 2 3 6 2 13 c:. sj c
+ - . ----j- - 4-- - + - - 4- - 4“— 4-
■j 3 '6 1 1 1 .'¿i 0 0
1 1 1 3 0 ry, 3 0 0 X=0
1 1 1 3 3 3 0 0 (7u

Piffure 6.11 Results

79

6o5

The results of these tests are presented in Figure 6.12o The

results show that, despite a faulty majority-logic gate, the correct

information is still passed on to the following cell-blocks.

This occurs since, although the faulty cell-block produces only

two correct signals, the majority gate network in the following

cell-block masks the fault by producing three correct signals, and

so on. As before, the system may function correctly in the presence

of a faulty majority-logic gate.

In order to simulate larger systems, the obvious requirement

is a data file comprised of many separate fault-tolerant cell-

blocks which may be interconnected according to a specified state

graph. However, problems arise when more than three cell-blocks

are required, due to the storage allocated to the simulator program.

Up to 300 modes may be specified, in order, but the total number of

list items, excluding the terminating zeroes, must not exceed 8OO.

Hoviever, now that the fault-masking process is fully understood,

the original fault-tolerant cell-block may be replaced by a simpler

system for simulation purposes.

Simplified Version of Fault-Tolerant Cell-Block

The circuit illustrated in Figure 6.13 performs exactly the

same function as the original cell-block but requires only 5̂ /̂ oi" "tîe

logic. Although this new configuration would not operate in practice

since all the majority-logic has been omitted, it is sufficient

for simulation purposes.

A circuit which simply cycles through 7 states on the

application of an external logical 1 signal and retains the same state

when a logical 0 is applied vras simulated using the nevi configuration

and the results, showing normal operation, are presented in Figure 6.14^

80

GO 'i .‘i i-i-’J D TT' ■'*̂ EC TED
- 6 3 13 3 0 1 3 2 5 3 7 113 125 1 37 2 1 3
- 2
33 14 0
- 9 4
6 13 3 ■J .1 0 ̂3 113 130 2 0 6 2 1 3 2 0 0.
-H - + ---------+ -------- 4 -

1
0
3

1
0
3

1
3
0

3
1
0

3
1
0

0 3
1 3
0 1

0
r r
0

1

0
0
1

■kJ
i'X 0 0 3 0 1 1 1

CO- 'IMAND PEG' r 1" r^,
1 i_ j i J

- 2
33 15 0
- 9 4
6 13 3 0 106 113 133 2 3 6 2 13 2 3 3
+ - - -f------------ i- “ - + + -------- + - - +
1 1 1 3 0 3 0 0
0 0 0ej 1 1 1 3 0 0

, 7 0. 1 0 0 1 1 1
3 0 0 1 0 0 1 1 1

CO i ; i A . - J D EX PEG TEC

CoiTiinents

Update
Uode 38 s-a-0

Fault condition

Update
Node 38 s-a-i

Fault condition

Update
33 2 3 9 /1 '.A•4 tJ 4 1 3
53 14 0 Nods 58 s - a - 0
- 9 3
6 13 33 1 06 1 13 1 30 2 0 6 2 1 d 2 3 kJ
4- - 4- ---4- -4-----4“ - 4- - -4-----4-
1 1 1 3 ryyj y 9 0 0 N o n a a l
0 0 3 1 1 1 0 0 3 o p e r a t i o n
3 0 3 0 0 0 1 1 1

CO, 'I .' I i-1-JD 11. VPECT ED
- 2 U p d a te
5 3 1 5 a Node 5 0 s - a - 1

? 4
6 1 3 3 0 1 36 1 13 1 3 3 2 0 6 2 1 3 ^

+ - 'f - - 4- -4---- 4* --- ̂4- -- - 4----
•1 1 1 3 0 0 3 r/ ¿J

1 7 ¿J 1 1 1 0 3
ry F a u l t c o n d i t i o n

1 3 0 7 3 0 1 1 1
1 3 0 3 r*'•¿J 7 1 1 1

Fig;ure 6» 12 R esu lts

81

c lock

mproved simulation
Figure

82 _

s
T
A
T
E
OU
T
PU
T
5

Cü.'1.4a;JD expected
- 4 3 9 IC 36 39 4 3 Ó3 69 70 93 99 1 0 3 123 129 133 156 159

160 133 139 19 3
-ó 11 12 13
- 9 3
8 9 1033 39 4 0 6 3 6 9 7 0 9 3 99 100 1 23 129 1 30 153 1 59 150 13 3 139.19 0
+ - — 4* — — - - + - - + - - -H - - 4* -h - H----- 4----- 4----- H-----H----- H----- H----- + -
1 1 1 9 (7, n> "/«J U kJ 0 9 0 0 3 3 0 2 0 0 0 0 3
1 1 1 3 0 0 0 9 0 9 0 0 0 0 o 0 0 0 0 0 0
1 1 1 9 0 0 9 3 3 0 0 0 O'■o 3 .-9(

s j 0 9 8 0 0 0

COEMADD
- 6 23
- 9 9

•ECT¡

3 9 1 0 33 3 9 4 ■'A 63 6 9 7 0 9 3 9 9 1001 2o 1 2 9 1 3 0 1 53 I 59 ló 0 133 139 19
+ ---4- ---+ --- 4- - - + - - 4- + - - + ----- -f. -1--------+ _ - + - - 4 ---- 4- - - + - - 4* *” “•4- -
1 1 1 0 VJ 0 0 3 0 0 0 0 0 0 0 0 r~t

■ü
r x
•a

f?-
'íJ 0 n

'Ù

u 0 0 1 1 1 r xO r x
■O 3 0 0 0 3 0 3 3 'Ó '<19 'Ù 0

3 n
kJ 0 0 0 0 1 1X 1 0 'X

¿J O 0 3 3 0 0 ,7íu 0 3
0 3 3 3 3 0 3 0 Oí

<J 1 1 1 Z 3 3 0 ¿J 0 0 0 .-TI

3 0 3 0 . 0 0 0 3 0 0 1 1 1 3 0 ■3 0 3
0 9 0 0 3 0 0 'é 3 0 <3 0 3 3 1 1 i <9 0 0
9 9 0 3 3 m

O 0 0 0 3 0 0 0 0 0 0 -71O' 0 1 . 1 1
1 1 1 0 0 0 ■3 0 0 0 0 0 3 0 O

o 0 3 0 Ici

0 0 0 1 1 1 0 ''7
O -a 0 0 0 0 0 0 0 ¿i 0 0 0

Fi^ggre 6.14 Results

83

Under fault conditions, the system reacts as expected and the results

obtained are shovm in Figure 6.15» In this case, a fault is not

confined to the cell-block in v/hich it occurs but is passed on

after each clock pulse. This is because the majority-logic has

been omitted and the fault is never masked. Nevertheless, this

simplified version of the fault-tolerant cell-block is useful when

simulation of larger systems is required.

This concludes the study of the fault-tolerant cell-block

and its applications. Once a suitable self-resetting logic element

was developed, triple-modular-redundancy was used to produce the

final fault-tolerant cell-block. Although it is not viable to

construct the cell-block using discrete components, it could be

incorporated quite easily into a single chip using either MSI or LSIo

In this way, fault-tolerant logic systems could be implemented almost

as economically and compactly as ordinary digital systems.

The Reynolds Logic Simulation program was used extensively

in this chapter and proved invaluable in the construction and

testing of the fault-tolerant cell-block.

Finally, a simplified version of the cell-block was produced

which proved useful in the analysis of larger logic systems.

The next chapter deals with the use of the programmable

read only memory in both digital and fault-tolerant digital designo

84

C0.1MAWD EXPECT2D
-2
14 14 g
- 9 1 2
3 9 1 3 3 3 3 9 4 3 6 3 6 9 7 3 9 3 9 9 1 0 0 1 23 129 1301 53 1 5 9 1 6 3 1 3 8 1 3 9 190
+ - - -H . + - - + — + - •“ 4" - - + - - -h---+ -4---- 4----- 4" — —4---- 4*--- 4----- 4*--- H-----
3 ,~r'¿J 0 3 3 8 1 1 1 3 g 3 0 '0 0 0 0 0 0 0 0
0 3 3 0 3 0 0 3 0 1 1 1 ■O 0 0 0 3 0 0 0 0
3 0 0 3 3 0 3 0 3 0 0 0 1 1 1 0 0 0 0 0 8
0 0 0 0 0 0 0 g 3 0 3 0 0 0 3 1 1 1 0 0 0
0 0 3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 1 1
1 1 1 •iC' 0 3 0 3 0 3 0 0 0 3 8 0 0 0 0 g 0
0 0 0 [l 1 1 0 0 3 0 0 0 0 0 0 0 0 0 8 0 0
0 0 3 0 3 3 H 1 1 0 8 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 ■3 0 0 0 1 1 3 0 0 0 0 0 0 3 0
0 3 3 0 3 0 0 O 0 0 <•/! 0 ■3 1 1 0 0 0 g 0
0 g 3 3 3 3 0 0 O 0 0 0 '(1/ 0 Z LçJ 1 1 0 0 0
3 0 0 3 3 3 1'̂O 0 8 3 8 2! 0 8 0 g 3 [t] 1 1

COi-LMx-i. iû £'/C CT ED
-2
1 4
18
- 5
- 9
3 9
H--
1 1
0 0
0 0
3 g

4 3 23 g .
14 0
11 12 13 23
4
1 3 3 3 3 9 4 3 0 3 6 9 7 0 9 3 9 9 Î 0 0 1 2 3 1 2 9 1 3 0 1 5 3 1 5 9 1 0 3 1 3 3 1
+ --H--- -I----H----H----H-----I-----i----i----+ ---H----H----H----+ -- +

39 19 0

1 0 0 0 3 3 0 3 0 0
0 1 1 [H 3 0 3 0 0 0
8 3 0 3 1 l [l] 0 3 0
0 0 0 0 3 0 0 1 1

0
0
0
0

0
3
0
0

'■¿J
3

4
0
0

0
0
0

a
0 0

0
8
0

a
0
g

Fi|gure 6.15 Results

85

7o1

CHAPTER 7. FAULT-TOLERANT DIGITAL DESIGN USING PROMS

Although many different design techniques have "been used

throughout this study, they have all been linked by a common

factor» Every system has been designed and built to perform

a certain function, as specified by a state graph» In this

respect, these systems can be considered 'static’, since the

hard-^W.ired logic involved can perform one function and one

function only. To perform a different function using the same

logic elements would require a complete re-design, resulting in a

totally different hard-wired logic system.

However, consider a system whereby the state assignment is

stored within some memory device» By using suitable interfacing and

addressing techniques, it is possible for this system to operate in

a fashion identical to a conventional logic system. Moreover, this

system can be considered ’dynamic', since it can perform an

unlimited number of different functions by simply reprogramming the

memory, whilst still retaining the original hardware. If the

system could then be made fault-tolerant, the result would be

a very reliable and versatile digital system using very little

hard-wired logic» Such a system, using a reprogrammable read

only-memory, is discussed in detail in this chapter»

The Read-Only-Memory and its Structure

A read-only-memory (ROM) consists of a matrix of transistors

(either bipolar or MOS), which act as memory cells» This matrix

is preceded by a decoder which effectively addresses each row of

memory cells» As an example, consider a 256 bit ROM arranged in.

32 'Words of 8-bit each» The decoder input is a 5 6it binary select

code, and its outputs are the 32 word lines. The matrix consists

of 32 bipolar transistors, with each base tied to a different line,

86

(i)

and with. 8 emitters on each transistore This type of fixed

ROM is programmed once and once only either at manufacture,

or by the user. Usually, the customer compiles the truth

table he wishes the ROM to satisfy, and a metallisation mask

is then to connect one emmitter of each transistor to the

proper output line, or alternatively to leave the emitter floatingo

Field programmable ROMS are bipolar structures which the user

programs by selectively 'blowing’ fusable links in memory cells.

Both these types have the disadvantage of being non-reprogrammable.

Three types of reprogrammable ROMS are commercially

availableo The first type is electrically programmed and erased

by exposure to ultraviolet (U.V.) light through a window in the

package. The U.V. light causes holes and electrons to recombine,

clearing the stored charge. The other types are electrically

alterable i.e. they may be erased by applying a pulse, usually

of 30-40Vamplitude to the programming pins. Some devices may be

selectively erased, and this type offers significant advantages

over the U.V. type in that erasing may be done in circuit in

a comparatively shorter time.

T'wo Reprogrammable Logic Systems

The general state graph shov/n in Figure 7=>1 is synthesised

using two totally different reprogrammable logic systems, and
these are discussed it turn.

The first system is illustrated in Figure 7*2(a), while the

organisation of the memory information is shown in Figure 7*2(b)

The operation of this system is relatively straightforv/ard.

The initial address, corresponding to the first state of the

graph, is set up in the address buffer, which simply consists of

87

F i g u r e 7»i S t a t e Gr aph

88

e n a b l e

(b)
yigrure 7»1 System 1

89

four D-type flip-flops. This address is decoded in the PHOM

and used to access one of sixteen word lines, which, in this

case, is composed of eight data bits and two output bits» It

is evident from Figure 7*2 that these ten bits actually represent

two different states on the graph, depending on the value of the

external input X» Therefore, this information is fed into a

‘bit-select' circuit, shown in Figure 7»3, which outputs the

correct address to the address buffer. When the system is

clocked, this next address appears at the buffer output and

accesses a new word line in the PROM, and so on. In this way,

operation, similar to a conventional logic system is achievedo

Hov/ever, -this system is unnecessarily complex, and improvements

are discussed below.

(ii) An improved system is illustrated in Figure 7<>4(a)>

while the memory organisation is shown in Figure 7*4(b)o This

system uses very little external logic and requires a much

smaller memory than the system outlined above. The initial

address is set up in the buffer, and depending on the value of

the external input X, one of tvro word lines is accessed in the

PROM. When the system is clocked, this data, representing the

next state, appears at the output of the address buffer, and
so on.

Now that a practical system has been developed, the next

step is to produce a more reliable version using some method of

fault-tolerance. An obvious solution is to use triplication
and majority-voting on the system as it stands« In this case,

however, this requires the use of three separate memories, each

of -which has to be reprogrammed every time the complete system

90

F i g u r e 7»3 B i t - S e l e c t C i r c u i t

O e n a b l e

PROM

A B
D U
D F
R EE E
5 R

6 <?xt. I / P X

1.̂
D 1

E 1
C 1

O t

D
E 1

R j

'16

(a)

memory
m a t r i x

output

cu r rent
address X next

add ress output

O O O O O I 1 O
O O O 1 0 0 1 o
o o i o OOO o
O O 1 1 0 1 0 o
O I O o OOO o
O I 0 1 OI 1 1
O I 1 o 01 1 o
O I 1 1 iO O 1
1 0 0 o lOO o
1 0 0 1 OOO 1

(b)

j'ifOire 1 ,h b/stem 2

92

is reprogrammedo This is both clumsy and time-consuming. A

much better solution is to check and correct the contents of a

single memory using some form of error-correcting coding scheme, and

triplicate the required hardware. This may be done using the

Hamming code, a full description of which is given in Appendix 5*

7=3 Hamming Decoder

A logic circuit, capable of performing this correction

procedure, is illustrated in Figure 7*5* if no fault occurs

within the memory, the outputs of gates 1 , 2 and 3 are logical 0,

therefore gate 4 is not enabled. The correct information simply

passes directly through to the address buffer under these conditions.

If, howeverj a fault occurs in an information bit, the circuit

rectifies the situation by changing the logical value of the

offending bit. For example, if bit six is incorrect, the outputs of

gates 1 , 2 and 3 become 1 1 0, therefore gates 4 and 8 are enabled,

thus providing a logical 1 to gats 14= Now, if the original

incorrect bit is a logical 1 , the output of gate 14 becomes a

logical 0, and vice versa. However, if a fault occurs in a

check bit, gate 4 is not enabled and the correct information is

again passed on. If the output bit, bit seven, is incorrect, the

outputs of gates 1 , 2 and 3 become 1 1 1 , therefore gate 5 is enabled

and a similar inversion operation takes place, thus correcting the
output information.

By utilising three Hamming decoders, three address buffers and

the neoessary majority logic, a single-fault-tolerant reprogrammable

logic system may be produced in a manner sirndlar to the fault-

tolerant cell-block discussed earlier. These systems were

constructed and rigourously tested. Without exception, these

93

to dddr(?ss buffer

/ T

' \ o —
1

1

\

i
1
1■o—
1

10

11

< }

< }

momory
information bits
check bits

2 4

0

7«5 Hammine: De c o d e r ou tpu t

94

circuits performed satisfactorily according to design

requirements»

This concludes the study of digital design using prograramahle

read-only-memorieso The next chapter presents some overall

conclusions and indicates some topics of future research.

95

CIi.\FTER 8. CQHGLUSIOMS

The design of fail-safe and fault-tolerant digital circuitiy has

been investigated in detail throughout this study. This chapter

presents some overall conclusions and indicates topics for future

Yv'ork in this field. First of all, it is '.vorth considering the aims
of this study,

8.1. Aims
The aims can be categorised as outlined beloi.7

(a) To investigate various existing methods of fail-safe and
fault-tolerant design vd.th a view to adapting and

improAdng these techniques.

(b) To establish ne-w methods of fail-safe and fault-tolerant
digitail machine design,

(c) To generally simplify design techniques by the use of
original hard>ware design and v/ith the aid of appropriate

sof t’ware.

These aims have now been achieved.

8.2, Conclusions

A full investigation into the properties and requirements of
fail-safe digital circuitry resulted in the development of tv/o nê Y

design techniques. In general, both of these techniques required

less hard’Arare th*an existing methods, resulting in increased
reliability, ’while the latter technique produced improved error

indication, A coiiputer program was written to aid state assignment
selection.

First of all, various existing methods of fault-tolerant digital
design -were reviewed. The application of error-correcting codes in
digital, design resulted in the construction of a versatile computer

program, capable of producing the design eo^uations of any tj/pe of

96

autonomous coimter, A practical fault-tolerant cell-block was then

developed. This greatly simplified design procedures and, at the

same time, introduced a high degree of reliability. Finadly, digital

systems, utilising reprogrammable read-only-memories, were

investigated, again with a viev/- to simpli-f¡.̂ 4 design, versatility and
reliability.

8.3. Further ?.''ork

Due to its limited properties, fail-safe digital circuitry is

unlikely to be of any benefit to the design engineer in the years

ahead. In this respect, it hardly merits further consideration.

In contrast, fault-tolerant design is a very povrerful technique,

for reasons outlined earlier. In addition, it has becomie a
viable concern, even in large systems, since the advent of

integrated electronics. It is obvious, therefore, that further

work should be directed towards the design of fault-tolerant

circuitr>". It was sho\wi earlier that, v/here applicable, the use of

error-correcting codes can produce a reliable system with very •PtW'
components. By developing new and more versatile codes, it

may be possible to sjarthesise circuits using a minimal nimiber of

conpionents, thus improving the reliability, regardless of the size

or classification of the s\^stem involved. This is a possible topic
for future research.

97

RSFiSREr'lCES and BIBLIOGRmrf

1 R.G-.3ennet, R.V.Scott, "Recent Developments in the Theory and

Practice of Testable Logic Design."

IEE3 Radio and Electronic Engineer; Vol, 45> Wo, 11, Kov, 1975,

pp. 667-669.
2 S.Das, H,Y.H.Chuang, "A Unified Approach to the Realization of

Pail-Safe Sequential Machines."

International Symposium on Pault-Tolerant Computing, Illinois

(U.S.A.), 19-21 June 1974.
3 S.Das, "Pault-Tolerant Digital Systems using Pail-Safe Logic."

D.Sc, Dissertation, Department of Electrical Engineering,

V/ashington University, St. Louis; August 1973*
1+ I.Aleksander, "Introduction to Logic Circuit Theoiy."

Engineering Science Monographs; Chapter 3«
5 I.Aleksander, "Introduction to Logic Circuit Theory."

Engineering Science Monographs; Chapter 7.

6 A.D,Priecknan, P.R.Menon, "Fault Detection in Digital Circuits."

Prentice-Hall Electrical Engineering Series; Chapter 6,

7 J.Von Keiamarn, "Probabilistic Logics and the Synthesis of

Reliable Organisms from Unreliable Components,"

Automata Studies; No, 34, Princeton University, Princeton,

43-98, 1956.
8 J.G.Tyron, "Quadded Logic."

Redundancy Techniques for Computing Systems, '(Vilcox and Mann,

Spartan Books; pp. 205-226, 19o2,
9 T.P.IQaschka, "Fvo Contributions to Redundancy Theory."

Froc. 'Eigth Rmual Symposium on Boitciiing and Automata Th.eory;

pp. 175-1 8 3, 19&7.
1C L.3.Armstrong, "A lener^l iLethcd of Applying Era-cr Correction

:_n o’c ic iiro n cuIIS D- -- +r.1 oyooems.'

„.-J 40; pp. 577-553, I5'6l.

98

11 V;.Keister, R.T;.Keteliledge, H.E.Vaughan, ''r:o. 1 S33; Systein
Organisation and Cbjective.”

B3TJ 4 3 ; p p . 1o31-lS i4 ;-, 1964 .

12 A.A-'/izienis et al, "The ST/Jl Computer; /ui Investigation of the

Theory,’’ and Practice of Fault-Tolerant Digital Machines."

IShS Trans, on Comp.; Voi. C-20, Ko. 11, pp. 1337-1352, 1971.

13 V.A.Peterson, "Error-Correcting Codes."

Cambridge Mass. M.I.T. Press, Ciiapter 3»

14 I.S.Seed, "A Class of Multiple-Srror-Correcting Codes and the

Decoding Scheme."

lEE Trans. Ir^form. Theory; Voi. IT-4, pp. 38-49, 1954.

15 E.S.Aalker, "The Design of Sequential Logic Circuits."
ISRE Pvadio and Electronic Engineer; Voi. 2)A, No. 1, Jan. 1974,

pp. 45-49
16 J.S.Reynolds, "A Conversational Logic Simulator for Use v/ith a

Time-Sharing Computer."
GSC-AEl(Slectronics)Ltd., Applied Electronics Laboratories,
Portsmouth.

99

Appendix 1 » Computer Pro,s:ram

1 I '' T’ AI Pi l i S
5 P?. I " d 0 \ : M A.IY PAPI A3I.

1 5 TO no STEP 1
2 0 2 t 2 - 1\ o= 3
25 G3 S 3 3 2 0 0
30 n r* T T Q CI xi

3 5 -:= 3 \ Y= 3
4 3 FDP I =C T3 1 S T £'’ - 1
45 I F ri C I) < - 3 (I) T.IE.i 5 5
5 3 1
5 5 J E ' ' I
5 3 FO--’ 1=3 T3 1 q 'T £13 _ J
6 5 I F 3 C I)< - A(I) T.IE.J 7 5
73 Y= 1
75 :iEY I
¿ 3 I F : i +Y=2 'VA Eil 1 0 0
3 5 I F P = 2 t C- 1 TA Z. J 1 4 5

• 9 3
9 5 GOTO 33

1 03 I F 2 C 9) + 3C 3) + 3 (7) + 3 (5
105 FOP I =C TO 1 STEl’ - 1
1 1 0 PP I 3 C I) J

1 1 5 .1EY I
1 23 P '7 I
1 2 5 I F P= 2 t C- 1 T -ÎE.l 1 4 0
1 3 3 P=P+ 1 \ G3 TO o a
1 4 PP I
1 4 5 T T“ ' ^

153 Eil D
20 3 1= C\Y=. ' J\ '7 p I
2 2 5 ;i= 2T c I - 1)
2 1 3 I F .1< = .1 T.i Z.-1 2 2 3
2 1 5 GOTO 2 4 5
2 2 3 -h C I) = 1
22 5 .l=.l-.-l
^ 3 1 1 = 1 - 1
23 5 I F I < = 0 T-i Eil 25 5
2 4 0 GOTO 2 3 5
24 5 FiC I) = 3
2 50 1 = 1 - 1
2 5 5 I F I < = 3 T.i E-J 26 5
26 3 GOTO 2 3 5
25 5 FOP J =C TO 1 STEP -1
2 7 0 P P I ACJ) J

2 7 5 -JEY J
23 3 PTT’.I
2 3 5 .1=’/
2 9 0 ^ E'T'UP-J
3 3 0 i = c \ s =:t!
3 3 5 .1= 2T C I - 1)
3 1 0 I F . I<=P T P 32 0 \ GOTO
3 2 3 3c n = 1
32 5 ■̂ = ̂ -.I
3 3 3 1 = 1 - 1
3 3 5 I l’ X ~ T.i E.1 3 6 5 \ G 0 T 0
34 5 3C i) - : j
3 o J 1= I - i
3 5 5 ÍF i< = ¿; T.i £-1 3 6 5
36 0 ■JÎ j T 3 3 J ^
36 5 p=: C
O ^u ! Yi il» 1 -J . i. - J

il.viAR':" J’J .1SERS' ’\ P R I \ P R I

l)o*i T.'Ü 125

4 5

A-1

Appendix 2. Computer Program

1 3
i i l
53
3 5
9 3

1 23
1 5 3
133
1 6 5
1 73
193
2 0 3
2 2 3
2 73
2 75
2 3 3
2 3 3
3 14
3 2 3
33 3
4 0 3
4 1 0
4 2 3
4 3 3
4 4 3
4 50
4 6 0-
4 7 3
4 9 0
5 4 0
54 1
5 4 2
5 4 3
5 5 3
5 5 5

5 53
56 3
5 3 3
6 3 5
6 13
6 3 5
6 7 3
7 3 3
7 1 0
7 2 3
74 0
7 5 3
76 0
73 3
3 4 3
3 4 1
3 42
3 4 3
3 6 3
9 36

P R I \ P R I " V A R A.JD REP wO. \ I J P D\ E= 3 \ F R I \ PRI \ P= D\ a (. O = D
GOSUB 1 0 0 3
FOR J = C TO 1 STEP - 1 \ L C J) = 3< J) \ . J EX J
PRI T A B C 2 7) ; " REFEREBCE= P \ PRI \ PRI " F I HST GR 0 U P " \ P R I
FOR 1 TO 2 t G - l \ P = . i \ G O S U B 1 0 3 0
X = 3 \ Y = 3 \ F 0 R I = C TO 1 STEP - I M F B C I X ^ ^ L C I) THE.J 163
X= 1
I’i EX I
FOR I = C TO 1 STEP - I M F L C I X = B (I) T-iE-i 190
Y= 1
U £■< I
I F X+Y=2 THEU 2 2 0 \ GOT O 2 7 0
X=X+ 1 \ A (X) = M\ P RI AC X) ; " \ " ;

OT) X \ Pp I
PRI " SECO; J D GR0U? ” \ P R I \ - J = Z \ 0 X 0 \ F O R F= 1 TO X \ P = AC F) \ Z 7= 0
GOSUB 1 3 0 3
FOR X C TO ' 1 STEP - 1 \ RC I) = BC I) MJEX I
FOR G= 1 TO X\ P=AC G) \ G 0 S U 3 1 0 0 0
S = 0 \ T = 3 \ F j R I =C to 1 STEP - 1
I F RC I X = 3C I) THEIJ 4 2 0
S= 1

FOR I ^ C TO 1 STEP - 1
I F B C i X ^ R C I) THE.J 46 0
T= 1
WEX I
I F S + T=2 TREE 49 3 \ GOTO 5 4 0
X=; j+ 1 \ G 1= 3 1+ 1\ VC. J) = AC G) \ PRI P; \ Z 7= 1
BEX G
I F Z 7 < > ! THSB 5 4 2 XG0 T0 5 4 3
PRI "MOBE";
PRI \ A1 C F) = M\ BE C F
Z5= 0 \ P R I
"’ P. I \ B= 1 \ Q X 0 \ Z l--= 3 \ X X 0 \ P R I " T HI RD GROUP" \ PRI \ U= 3 \ F O R F^ 1 TO
Y 1 = 0
Z 5= Z 5 + 1 M F Z 5 > = 2 TH E. J 53 3
I F A 1 C I X 1 THEB F+ 1
FOR B=B TO AlC F) \ Y X Y 1 + 1\ T3;: VC B) \ GO 5U3 10 3 3
Z X Z 1 + 1 \ Z 3 = '■¿J
FOR X C TO 1 STEP - 1 \ U C I) = 3 C I) \ J ' I
Q X XI XFOR Q X 3 1 -M TO Al C F) \ D z : VC 1) \ GO SU3 1300
C X 3 \ C 2 = 3 \ F OR X C TO 1 ST £P - 1\ T r UC I) < = 3C I)
C X 1
B EX I
FOR X C TO 1 STEP - 1\ I F 3 C I) < (I) TH E-j 1 O '¿J

C2= 1
B EX I
I F C1 + C2 = 2 THEB 73 3\ GOTO 3 4 3
T.T— TR + i \ y 1c u) = C 3 1) \ n o T p ; \ Z 3 ^ 1
-■JSX ■3 1
I F Z 3 < > 1 TH EB 3 4 2 \ G 0 T 0 3 4 3
P'^.I " . JOBE";
n^X " \ " ; \ 3 i c B) ==U\BEX B
'C X X 1 -i-Y XBUC
PR I \ E-J D

1 0 0 0 J==C\ Z=^
10 20 3 = 2 t c J - 1) M p 3< = ? t h e .0 1 O5 0 \ GOT3 1 1 0 0
13 50 3C J) = i \ : ^ = p - 3 \ J= J - 1 M F J < = 0 THEB 1 1 4 3 \ G J
113 0 3 C J) = 3 \ J - 1
1 1 20 I F J < = 0 THEB' 1 1 4 0 \ G O T 0 1 0 2 3
1 1 40 P= Z
1 1 53 RETURB A-2

Appendix 3» Computer Program

DIME. ' JSI O.J I CC 2 3) ̂ I DC 2 0) ̂ I PC 2 0) 2 0) ̂ I OiJEC 2 0) ̂ I TWQC 2 0) ^
^ I T. i PC 2 3) ̂ I F3UC 2 0) ̂ I FI VC 2 0) ̂ I SI X C 2 0) ̂ I S£VC 2 3) ̂ I El GC 2 3) ̂
^f-I.JIrJC 2 0) ̂ ITEXC 2 3) > JGC 2 3) ̂ J.-JC 2 0) ̂JEC 2 0) ̂JAC 20^ 2 0) ^
*JSAC 23^ 2 0) ̂ JRC 2 0) ̂ .JYC 1 0)

DATA X A 5 / 2 i I A 5 / ^ .1A ^ / 2 H A 4 / • X A 3 / 2 d A 3 / ^ X A 2 / 2 A A 2 / ^ XA 1 / 2 d A 1
Da t a XA5 P / 3 AA5 V ^ X A 4 P / 3 X A 4 ' / ^ X A 3 P / 3 H A 3 ' / ^ X A 2 P / 3 . i A 2 ’ / ^
DATA X A 1 P / 3 A A 1 ’ /
y P I T E C 5^ 3 0 0 1)

3 3 3 1 FOPIIATCIH ̂ 33H.-J0 . OF VAF.I ABLES^ AO • OF TERMS AMD TYPE)
P.EADC 5^ 1 0 3 1) 1 P4^ I Y3^ I Z 1

1031 FORMATCI 1^ I 2^ I 1)
I V A R = I P 4 - 2
UP. ITSC 5^ 3 0 3 3)

3 0 0 3 FORMAT(IH ̂ 33HI MPUT REED- MULLER MATRIX REQUI RED)
GO TOC 1 ^ 2 ^ 3) ̂ I VAR

1 READC 5^ 1 0 0 2) J X 1 ̂ J X2^ J X3 ^ J X4 ^ J X5^ J X6
1 3 3 2 FORMATC5 1 1)

GO TO 4
2 ^EADCS^ 1 3 0 3) J X 1 ^ J X2 ^ J X3 ^ J X4 ^ J X5 ^ J X6 ^ J X7 ^ JX3

1 3 3 3 FORMAT! 3 1 1)
GO TO 4

3 READC 5^ 1 0 0 4) J X 1 ̂J X2 ^ J X3 ^ J X4 ^ J X5 ^ J X6^ J X 7^ J X3 ̂ JX9 ̂J X 1 0
1 0 3 4 FORMAT! 1 0 1 1)

4 J S = - 1
J C 1 = 3
W R I T E ! 5^ 3 0 0 2)

3 0 0 2 FORMAT! I H ^ 1 7 HS T AT E ASSIGMMEMT?)
READC 5^ 1 0 3 5) C I C C J) ^ J = 1 ^ I Y3)

1 0 0 5 FORMAT! 3 1 1 1)
W R I T E ! 5 ^ 1 0 0 6)

1 0 3 6 FORMAT! IH > 9 HI MF0 31 TS^ 6X^ 1 OMC.IECX 3 I T S ^ 6 X > 14HCHAMGE
=t=OP FORM)

WRI TE! 5^ 1 0 0 7)
1 3 3 7 FORMAT! IM > 31X>9HDELTA A ' 6X^9HDELTA 3 ’ $)

I L = - 1
DO 133 J = 1 ^ I Y 3
I P 1 = I C! J)
I L ^ I L + 1
CALL BI NARY! I P I ^ I P4^ I P)
I F ! I L . E Q . 0) GO TO 5
I F! IZ 1 . £ 3 . 2) GO TO 6
DO 9 X 1 = U I P 4
I F ! I DC X l) . E Q . I P C X l)) GO TO 3
M ! X 1) = 1
GOTO 9

3 M ! X 1) = 3
9 CONTINUE

GOTO 5
5 DO 11 X 1 = 1 ^ I P 4

;-i! X 1) = I P ! .! 1)
11 CONTINUE

D GO i J 1 2 -i 1 vj i 4) ̂ I 7i-T,
12 J S = J S + 1

I ONE! J 3) = M! I P4)
I T WO ! J S) = M ! I P4- 1)
ITMR! J 3) = . 1 ! I P / 4 - 2)
GO TO 15

13 J 3 = J S + 1
l ONE! J ^) = X! 1*^4)

A-3

t?-v

or
CO

01

1 + ior = i
C9 Cl

(C-Ì7CÌI)r’f = (I o ro r i f i
(S-Ì7CÌI)rr = (I o d d III
(1 -̂ -dl)rT=(I C D /lis I

(f7di)fT=(i o d ::is i
1 + 1 0 r = 10 r
09 Cl CD

(S-î7dI)FP= (I O D D II I
(1 -t'di)f’r = (lOD/iis I

(Î7dl)f.T=(lO D X I S I
1 + 10 r = 10 r

dV'/i I D gt7 Df>-‘•9Í-/) 01 CD
ICNIiriCO

n>')or = (ly)NP
î7din=iy if7 OG

St7 Cl CD
inKiirco
e=(ly)rr
sc 01 CD
I=(iy)KP

C D ((1 y)DP‘C i •cI y)GP)dI
f7di ''I =iy sc ca

0 p 01 C D (3*53•I2I)d I
09 Cl CD(0-C3*II)dI

0z:(Î7-f7dI)DP
3 C Cl CD

I =<Î7-Î7dI)DP
Cl CD ((01 yp)dI-Cl * (6>;p)di)d I

ZC Cl CD (t7-53-Id I)d I
0=(C-Pdl)DP

C3 01 CD
I =(C-î7dI)DP

33 Cl C D ((gyp)dI*D3•C¿yp)dl)3I
0C Cl CD (C *03-î7dUd I

0 = (3-î7d D o p
es Cl CD

T =C3-í7dI)DP
13 01 C D ((9yp)dl*03•(Syp)dl)dl

0 = (I -Î7dl)DP
61 01 CD

1 =(1 -f7dl)0P
ei 01 CD ((î7xp)dI-Cl • (cyp)dDd I

0 = (t7dl)DP
91 Cl CD

1 =Cî7dI)DP
¿1 01 CD c (syp)d I-C3 • (1 yp)d D d I

(f7-t7d I)K=(SP)ñId I
(C-Î7dl)K=(SP)fiCdI
(3-T7dI)Iv = (SP)dHlI
(1 -f/dl)y=(SP)CalI

(?7dl)K=(solfici
1 + SP=SP

SI 01 CD
(C-í7di)y = csp)ri0d i
(3-PdI)I']=(SOdKlI
(1 -î7dl)K=(SOC/ilI

Pt?

S3

¿P

9Î7
SI
1 1

01

SC
3C

ec
S3

C3
S3

03
1 3

61
91

91
L 1

S 1

II

I SIXC J C 1)=J.vIC I P 4)
I SEVC J C l)=J . JC I P 4 - 1)
I E l G (J C 1) = J J C I P 4 - 2)
I NI NC J C 1) =J i J (I P 4 - 3)
I TE.'JC JC 1) = Ji'JC I P 4 - 4)

6 3 DO 6 1 K 1 = 1 ^ I P 4
I D (K 1) = I P (K 1)
J L C K 1) = J G C K 1)

Ó1 C O J T I J U E
I F C I L / E 3 / 0) G O TO 65
GO TOC12j 74^ 7 5) ^ 1 VAR

7 3 yP.I TEC 5^ 2 0 3 0) I PC 3) ̂ I PC 2) ̂ I PC 1) ̂J GC 3) ̂J GC 2) ̂ J GC 1) ^
C 3) ̂M C 2) ̂;i C 1) ̂ J N C 3) ̂J J C 2) ̂ J J C 1)

2 0 0 0 FORMATC IH ^ 3 1 2^ I 0 X ^ 3 1 2 ^ ÓX^ 3 1 2 ^ 3 X > 3 1 2)
GO TO 100

74 VRITEC 5^ 2 0 0 1) IPC 4) ^ I PC 3) ̂ IPC 2) ^ I PC 1) ̂JGC 4) ̂JGC 3) ̂
*JGC 2) ̂ JGC 1) ^MC 4) ̂MC 3) ^MC 2) ̂XC 1) ̂J.'-JC 4) ̂J J C 3) ̂JVC 2) ̂
* J N C 1)

2 3 0 1 FORMATC IH ^ 4 1 2 ^ 1 0 X ^ 4 1 2 ^ 6 X ^ 4 1 2 ^ 3 X ^ 4 1 2)
GO TO 103

7 5 URI TEC 5^ 2 3 3 2) I PC 5) ̂ I PC 4) ^ I PC 3) ^ I PC 2) ̂ I PC 1) ̂ JGC 5) ^

2002
Q 5
70

1012

7 1

 ̂J G C 2) ̂J G C 1)
 ̂ JMC 3) ̂JMC 2)

5 1 2 ^ 10Xj c; I 2 j

 ̂M C 5) ̂
 ̂ JMC 1)

6X^ 5 1 2

^ 7 2) ^ I VAR

3X^ 5 1 2)

1 00
3 3 0
3 10

FORMATCIM
GO TO 100
GO TOC7 0 ^ '
URI TEC 5^ 1 0 1 2) I PC 3) ̂ I PC 2) ^ I PC 1) ̂JGC 3) ^JGC 2) ̂J GC 1)
FORMATC IH ^ 3 1 2 ^ 1 0 X ^ 3 1 2)
GO TO 100
U R I T E C 5 W 0 1 3) I P C 4) ^ I P C 3) ^ I P C 2) ^ I P C 1) ^ J G C 4) ^ J G C 3) ^

x=JGC 2) ̂JGC 1)
13 13 FORMATC IH ^ 4 1 2 ^ 5 X ^ 4 1 2)

GO TO 100
72 URI TECS^ 1 0 1 4) I P C 5) ^ I P C 4) ^ I P C 3) ^ I P C 2) ^ I ? C D ^ J G C S) ^

*JGC 4) ̂JGC 3) ̂JGC 2) ̂ JGC 1)
13 14 f o r m a t C I.H ^ 5 1 2 ^ 1 3 X ^ 5 1 2)

C 0 M i I M J Zj
GO TOC 313^ 3 2 3 ^ 3 3 3) ^ I VAR
MYC1) =XA3
;JYC 2) = XA2
MYC 3) =XA1
MYC 4) =XA3P
MYC 5) =XA2P
MYC 6) =XA1P
GO TO 9 0 0
MYC1) =XA4
MYC 2) =XA3
MYC 3) =XA2
MYC 4) =XA1
MYC 5) =XA4?
MYC6) =XA3?
MYC 7) =XA2P
MYC S) =XA1P
GO TO 9 3 3
MYC1) ^XA5
MYC 2) =XA4

3 2 3

3 3 3

9 3 0
4 0 3

390Ó

-JYC 3) =KA3
WY(4) =XA2
NYC 5) =XA1
NYC 6) =XA5P
iJYC 7) = KA4 P
NYC 3) =KA3?
NYC9) =XA2P
NY C 13) = KA 1P
NCQ= 1
N=0
WP.ITEC 5^ 3 0 9 6)
FORMATCIH)
L3=3
I R 5 = I Y 8 - 1
DO 1 33 M 5 = 1RS
M L 5 = I P 4
GO TOC 131^ 102^ 1 0 3) I VAR

1 3 1 GO TOC 1 10^ 1 12^ 1 1 4 ^ 1 2 0 ^ 122^
1 32 GO TOC 1 10^ 1 12^ 1 14^ 1 16 j 129^
103 GO TOC 110^ 1 12^ 1 1 4 ^ 1 1 6 ^ 1 l o^
1 1 3 I FCl ONECMS) . EQ

GO TO 130
• 1) 0 0 TO 1 29

1 1 2 IFC-ITUOCMS) -EG
GO TO 130

• 1) GO TO 129

1 1 4 I F C I T H R C M S) . EQ
GO TO 130

. 1) GO TO 129

1 16 I FC IFOUCMS) . EQ
GO TO 130

. 1) GO TO 1 29

1 13 1 FC I FU/ CMS) . EQ
GO TO 139

. 1) GO TO 1 29

1 2:3 I F C I SI X CMS) . EQ
GO TO 130

. 1) GO TO 1 29

1 22 I F C I S E V C M S) . EQ
GO TO 130

• 1) GO TO 129

1 24 I FC I El GCMS) . EQ
GO TO 130

. 1) GO TO 1 29

1 2Ó I F C I N I N C M S) . EQ
GO TO 133

. 1) GO TO 1 29

1 23 I FC I TEN CMS) . EQ
GO TO 130

. 1) GO TO 1 29

1 29 N=N+ 1
I ? 1 = I C C M S)
L 3 = L 3 + 1
CALL 3INARYC I P l ^ I P 4 ^ I P)
DO 132 J C1 = 1^ I P 4
J A C N ^ J C 1) = I P C M L 5)
JSACNM J C 1) =J ACN^ J C 1)
:1L5=ML5- 1
JRC N) =J RC N) +J AC N^ J C 1)

1 32 CONTINUE
1 33 CONTINUE

GO TOC 140^ 1 42
1 4 0 GO TO C 153^ 1 O vjj
142 GO TO C 147^ 1 50
t n i 't O GO TOC 144^ 1 -47
1 44 I FC - j . GT . 3) T T

165^ 163^ 1 7 2) ̂MC 2
50^ 162^ 163^ 1 72) ^.1C3I

15 3̂ 1
I 0 2 3)

> 2 j 1 1 lüJ^ 1 Ì ̂ ̂ j A >.

A-6

1 2 2 2 F0?..'-1ATC l;i j 9 H D 1
I FC I'J. EQ. I Y 3 - 1) GO TO 18 0
GO TO 2 0 0

14 7 I F C ;M . GT . 0) UR I T EC 5 ̂ 10 30)
1 0 3 0 FORMAT(IH ^ 9HD£LTA A 4 = ^ $)

I F C M . E Q . I Y 3 - 1) GO TO 133
GO TO 2 0 0

150 I F C N . G T . 0) U R I T E (5 ^ 1 0 4 0)
1 0 4 3 FORMATCIH ^ 9HDELTA A 3 = ^ $)

I F C M . £ 3 . I Y 3 - 1) GO TO 130
GO TO 2 0 0

1 53 I FC-'-J. GT . 0) U R I TEC 5^ 1 0 5 3)
1 3 5 3 FORMATCIH ^ 9HDELTA A 2 = ^ S)

I F C N . £ Q . I Y 3 - 1) GO TO 130
GO TO 2 3 0

15Ó I F C ; ' j . G T . 0) U R I T E C 5 ^ 1 0 6 0)
1 0 6 0 FORMATCIM ^ 9HDELTA A 1 = ^ S)

I FC CJ. EQ. I Y 3 - 1) GO TO 18 3
GO TO 2 0 0

1 59 I FCM. GT. 0) UR I TEC 5^ 1 0 7.3)
1 0 7 0 FOR.IATC IH A9riDZLTA 3 5 = ^ $)

. I FC ;0. EQ. I Y 3 - 1) GO TO 133
GO TO 2 0 0

162 I FC-''J. GT . 0) U R I TEC 5 W 33 3)
1 0 3 3 FORMATCIH ^9HDELTA 3 4 = ^ S)

I FCM. EQ. I Y 3 - 1) GO TO 130
GO TO 2 0 3

155 I F C M . G T . 3) URI TEC 5^ 129 0)
1 3 9 3 FORMATCIH ^9HDELTA 3 3 = ^ 0)

I F C M . E O . I Y 3 - 1) GO TO 130
GO TO 2i33

163^ I FCM. G T . 0) U R I T E C 5.» 1 100)
1 1 3 3 FORMATC IH ^ 9 HDELT a 32=., £)

I F C M. £ Q . I Y 3 - 1) GO TO 130
GO TO 2 3 2

1 72 I FC.'l . GT. 3) URI TEC 5 , 1 1 1 0)
1 1 1 3 FOHMATCIH , 9 H D £ L T A 3 1 = , 5)

I F C M . £ 0 . I Y 3 - 1) GO TO 133
GO TO 2 3 3

130 URI TEC 5 , 1 122)
1 1 2 3 FORMATC’ 1 ')

2 0 0 I F C M . E O . I T 3 - 1) GO TO 2 5 3
. 3) CALL MI

MCO=MCa+1
I FCMCQ. EQ. 2̂ ;<I P 4 + 1) GO TO 26 3
G 0 T 0 4 0 0
STOP
EM D
SUB^OUT IME MIMIMC I P 4 , L 3 , J R , J A , J SA, I Û, MY)
DIMEMSIÛM I DC 2 3) , IBC 2 0 , 2 0) , IUC 2 3) , JRC 2 3) , JAC 2 3 , 2 3) ,

^KILC 2 3) , ITC 2 0) , I EC 2 0 , 2 3) , JSAC 2 0 , 23) , I U C 2 0) , J H C 20) ,
J I F C 2 0) , MY C 2 0)
JV= 1
JD= I P4
J. 'C1=L3
■J G= J . 11

A-7

/423
4 2 5

4 3 3

431

DO 4 1 3 o = i ̂ j :í i
I DC I'D = 3
CO;xlTI.-JUD
DO 42 3 J = D 1 3
DO 4 2 3 I C 1= D 1 0
I 3 C J ^ I C 1) = 3
CONTINUE
J - 1
DO 4 3 0 D 13
J I F C J) = 3
CONTINUE
DO 50 3 M = D J K 1
DO 4 5 9 I P 1 = D J : ' C 1
I FC JRC I P l) . EQ. JRC ;J) + 1) GO TO 431-
GO TO 4 5 0
J Q 3 = 0
DO 4 3 4 I C 1 = D J D
I FC JAC.OD I C 1) . EQ. JAC I ? D I C 1)) GO TO 4 34
J 2 3 = J Q 3 + 1

4 3 4 CONTI. ' JUE
IFC J Q3 .-'nJE. 1) GO TO 4 5 3
DO 44 0 I C 1= D JD
I FCJACED I C 1) . EQ. JAC I ? D I C 1)) GO TO 4 3 3
I3C I C 1) = 2
I FC JA C :D I C 1) . :\1E. JAC I ? D I C 1)) GO TO 4 4 0
IBC I C 1) = J A (. D I C I)
COBTIiOUE
I L C I P 1) = 1
I L c : j) = 1
J = J + 1
CO.'JTIBUE
I FC I LC' J) . G T - 3) GO TO 5 0 0
I FCi-J. EG. 1) GO TO 4 73

1
DO 4Ó3 JF= l^ ;v l.J
.'IS=0
DO 46 5 I G 1 = D J D
I F(JAC J F ^ I C 1) . ; JE. JAC ED I G 1)) GO TO 46 5
; iS=MS+ 1
COETI EUE
DO 43 0 I C1= D J D
I EC I C l .)= J AC: D I C I)
GOETI EUE
J V = J V + 1
COETI EUE
1 = 3
DO 5 2 0 I P 3 = D J
I T C I P 3) = 0
DO 5 1 3 I C1= D J D
I T C I P 3) = I T C I ? 3) + I 3 C I P3 ̂ I C 1)
GOETI EUE
I = I + I T C I P 3)
CONTI EUE
I F C I . E £ . 0) G O TO 521
GO TO 5 5 0
DO 52 2 4 =1 ^ J

4 3 3

4 4 3

4 5 3

46 5
4 7 3

4 3 3

5 00

5 1 3

52 3

52 1

A~8

DO I G 1 = U J D

5 2 2

5 2 3

5 2 4

55:

5 o 5

559
56 9

5 7 0

57 1

JACN^ I C 1) = I 3C I C 1)
I3C.'J^ IC 1) = 0
COiJTIOUE
DO 52 3 0= J K 1
ILC3>==2
c o :j t i 3 u e
JJ=J- 1
DO 5 2 4
J R (N) = 9
DO 5 2 4 I C 1 = 1 ^ J D
JRC1I)=JRC: \ I) +JAC:>J^ I C I)
CONTINUE
j : a = j - 1
GO TO 4 2 5
j y = j v - i
DO 5 6 0 M =

53 0
1 1 40

53 3
1 1 53

53 ó
1 160

5 9 0

1 1 7'„
6 9 :

TO 5 6 0

2) G 0 TO 5 5 5
J S A C M ^ I C 1)) GO

JG
I F C I D C M) . E Q . 1) GO
DO 559 0 =1 ^ j y
DO 5 5 5 I C 1 = U J D
IFC lECrJ^ I C I) . EQ.
I F C I E C M ^ I C I) . DE .
COETI OUE
I BC':\I ̂M) = I
CONTI FiUE
CONTINUE
DO 6 00 : i =l ^- JG
IFC I DC:'I) . EQ. 1) GO TÛ 6 0 0
N3 3 = 0
DO 5 7 0 N = l ^ J y
I FC IBCN^M) .ÍJ'E. l) GO TO 5 70
MZ3 =MZ3 +1
I F C N Z 3 . G T . 1) GO TO 6 3 0
J F= M
CONTINUE
I F CMZ3 . : i
J I FC J F) = 1
DO 59 0 I C 1 = 1 ^ J D
I FC I EC J F ^ I C 1) . EQ
FOHNATC IH ^ A 3 ^ S)
i y A R = I P 4 - 2
GO TOC 5 3 3 ^ 53 3^ 5 3 6) ^ IVAR
IFC l E C J F , I C I) - E Q . 0) U R I T
FORMATC IH > A3 ^ S)
GO TO 5 9 3
I FC lEC J F ^ I C 1) . EQ
FORMATC IH ̂A3^ S)
GO TO 5 9 3
I FC I EC J F ^ I C 1) . EQ. 3) URI
FORMATC IH ^ A 3 ^ $)
CONTINUE
I FC lUC J F) . ES . J G) GO TO 6 3 3
URI TEC 5-. 1 1 7 9)
FORMATC 1;í W H + j S)
CONTINUE

TO 5 6 0

1) GO TO 571

1) URI TEC 5> 1 1 3 0) NYC I C I)

EC 5^ 1 1 4 3) NYC I C 1 + 3)

0) URI TEC 5^ 1 1 5 3) NYC I C 1 + 4)

;C 5^ 1 163) NYC I C 1 + 5)

)0 N= 1 ̂ JV

A-9

I FCJ I F (W) . EQ. 1) GO TO 6 3 0
DO 6 2 0
I F (I D C M) . E Q . 1) GO TO 6 2 0
I FC . EQ. 0) GO TO 6 2 0
DO 6 10 110=1^07
I F C J I F C I N) . M E . 1) GO TO 6 1 0
I F C I 3 C I M ^ M) . E Q . 1) GO TO 6 2 0

6 1 0 CONTINUE
GO TO 6 3 0

6 2 0 CONTINUE
J I F C N) = 1

6 3 0 CONTINUE
DO 6 4 0 N= 1 ^ J V
I F C J I F C N) . N E . 1) GO TO 6 4 5

6 4 3 CONTINUE
GO TO 3 0 3

6 4 5 DO 6 5 2 N= 1 ^ J V
I FC J I FCN) . N E . 1) GO TO 6 5 2
DO 6 5 1 N = 1 ^ J G
I F C I D C M) . E Q . 1) GO TO 6 4 7
I F C I B C N ^ N) . M E . 1) GO TO 651

6 47 DO 6 50
I 3 C I N ^ N) = 1

6 5 0 CONTINUE
6 5 1 CONTINUE
6 5 2 CONTINUE

NZ4 =0
6 5 3 DO 6 6 0 N = l ^ j y

J H C N) = 3
I F C J I F C N) . E Q . 1) GO TO 6 6 0
DO 6 5 5 N = 1 ^ J G
I FCI W C N) . E Q. 1) GO TO 6 5 5
J HCN) =J I i CN) + I 3 CN^ M)

6 5 5 CONTINUE
I F C J H C N) . L E . J H C N - 1) GO TO ÓÓ3
J F= N

6 6 0 CONTINUE
DO 6 6 5 N = 1 ^ J G
I F C l U C M) . E Q. 1) GO TO 6 6 4
I F C I B C N ^ N) . N E . 1) GO TO 6 6 4
IUCM)= 1

6 6 4 l U C J F) = I U C J F) + I U C M)
6 6 5 CONTIN U £

IFC lUC J F) . L T . N Z 4) GO TO 6 5 3
DO 6 3 0 I C 1 = 1 ^ J D
I FC I EC J f N I C 1) . EQ. 1) URI TEC 5^ 1 2 0 0) NYC I C I)

1 2 3 0 FORMATC IN ^ A 3 ^ S)
I U A R = I P 4 - 2
GO TOC 5 7.0 . 6 7 3

6 73 I F c I N C J i* .. I C I)
1 2 2 3 FÛ MATC IH ̂A3

GO T 0 63 3
6 73 I F c I EC J F ^ I C I)

1233 FO n MATC IN ̂ A3
G 3 'T ' 0 6 3 3

6 7 6 I F c I EC J F^ I C I)

Q. 3) URI TEC 5^ 1 2 3 3) NYC I C 1 + 4)

:C 5^ 1240) NYC I C l + 5)

A-10

J A 3 j $)

■ Q . J O ’GO TO 6 8 2

1 2 4 0 FORMATCIH
6 3 0 COHTIHUE

IFC lUC J F)
VP.I TEC 5.. 12 5 0)

1 2 5 0 FO PM AT C 1 H . , l H + . . $)
6 3 2 M Z 4 = I ü C J F)

IFC lUC J F) . ME. J G) GO TO 6 5 3
3 00 Dû 3 0 1 M= 1 ^ 1 0

J P C M) = 0
3 0 1 CÛMTIMUE

RETURN
END
SUBROUTINE 31 NARY C I P 1.. I P4.. I P)
DI MENSION I P C 2 0)
I I = I P 4

3 4 0 M03=2*H<C I I - 1)
I F C I I . EQ. 1) M 0 3 = 1
I F C M 0 3 . L E . I P I) GO TO 3 5 0
GO TO 3 6 0

3 5 2 I P C I I) =1
I P 1 = I P 1 - M Q 3
I I==I I - 1
I FC I I . L E . 0) GO TO 3 70
30 TO 3 4 3

8 6 3 I P C I I) = 0
1 1 = 1 1 - 1
IFC I I . L E . 3) GO TO 3 7 0
GO TO 8 4 3

3 7 0 RETURN
END

A-11

The Reynolds Logic Simulator is a FORTRAN program which allovis

the simulation of logical systems on a time-sharing computer. Each

circuit element and input terminal of the system to he simulated is

called a node and is assigned a number. Each node is described by

a list comprising node number, function, and usually a list of the

nodes which are its inputs. The end of each list is marked by a

zero. This information, which totally describes the circuit, is

then fed into the computer as a data file. The program is started

and controlled by means of program commands. These also take

numerical form but are distinguished from other numerical data by

being negative. A full description of the logic simulator is given

in reference [l6] and a complete list of system commands and

functions is presented in Figure A4.I

Appendix 4« The Reypolds L o ^ ic S im u la tio n Program

A-12

CaftiAlTOS Airo FUI^CTIONS POH 'LOGSIM'

CaH-’lMDS:-
- 1 : - DISCOMHECT + READ IN NWf! COHMECTIONS
-2:- UPDATE CCM-ÌECTIONS
-3:-
-4:--5;_
- 6 : -

-7;-
-8:-
-9:-

PRIDT OUT COUNECTIOKS
READ IE MOEITOR POIETS
READ Il'JPUTS, FIRST SETTING ALL NODES TO ZERO
READ INPUTS
FREE-RUN, NOB,IAL TD/ISBASE
PRES-RUN, EXPANDED TIMEBASE
FREE-RUN, NUf/IERIGAL OUTPUT

-10:- FREE-RUN, NO MONITOR
- 1 1 : -
-1 2 :-
-13:-
-14:-
-15:-
- 1 6: -
-17:-
-1 8:-
-19:-

READ IN STORE NUIBERS
PRINT OUT STORE NUIvfflERS
SINGLE-D^PUT MODE
SUPPPESS HEADINGS
RESTORE HEADINGS
TITLE
READ FILENI
READ CONSOLE
V/RITE PILE* 2

-20:- READ PILE*2
-21 : - REWIND FILES
-22:- RESTART PROGRUI
-23:- QUIT PROGPAlvi

FUInICTIONS:-
1 : INPUT TEEivMAL
2: OR
3: NOR
4: Alffi
5: N M D
6: SQUIV
7: HONEQUTV
8: NOT

Figure A4»1

9; D-TYPE FLIP-FLOP (CLOCK, J)
1 0 :
11 :
1 2 :
13:
14:
15:
1 6:
17:
1 8:
19:
20:
21 ;

J-K (CLOCK, J, K, S. R)
TOGGLE (CLOCK, GAIE)
STEERING CCT (CLOCK, j)

R)BISTABLE (S,
LOGICAL ZERO
LOGICAL ONE
CLOCK GEN.
IvLYSTER-SLAVE (CLOCK, J, K, S, R, '.IKG.STORE)
DELAY CANCELLOR
NO-DELAY DUiaiY
NO-DELAY MVERT
COUNTER (GIGCK, GATE, DEP.STORE, WKG.STORC)

22: REGISTER (CLOCK, J, DEF.STORE, WKG.STORE)
23:
24:
25:
26:
27:
28:
29:

STORE
TRIP
CLICKED CGHPAvRATCR (CLOCK, INPUT STORE, INV.INPUT
GATED OR (GATS, INPUTS)
GATED NOR (GATE, INPUTS)
GATED M'D (GATE, INPUTS)
GATED NAND (GATE, INPUTS)

:o p e)

A-13

All error-correcting codes require the introduction of one or

more 'check-bits', and the Hamming code is one of the most convenient.

As shown in Figure 7.5? ii" "the bit positions are numbered in sequence

from left to right, positions numbered as powers of two are reserved

for parity check bits, while the remaining positions are information

bits. If the three check bits are denoted and P^, then they

are determined as follows:-

P^ is selected to establish even parity over bits 1 ,3?5?7*

P^ is selected to establish even parity over bits 2,3?6,7*

P^.is selected to establish even parity over bits 4?5?6,7*
In this way, various 7-bit code words are produced as shown in

Figure A5.1.
If a fault occurs so that any bit in the code word is in error,

then it can be detected and corrected simply by checking for odd

parity over the same three combinations of bits for which even parity

was initially established. For example, if the code word;-

0001111

becomes:-
0001011

then the three parity check combinations become:-

Appendix 5« The Hamming Code

0 © 1 © 1 = 1

P j . . O © 0 © 1 © 1 = 0

P = 0 1 © 0 © 0 ® 1 = 1

decimal five,, therefore
i five :in the cods word.

A-14

co
_Q
Co

E
• 2C

tr\
(D
81

lr̂
5

	coversheet_template_THESIS
	MITCHELL 1978 Fault-tolerant digital machine

