MITCHELL, R.B. 1978. Fault-tolerant digital machine design. Robert Gordon's Institute of Technology, MPhil thesis.
Hosted on OpenAlIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1993246

Fault-tolerant digital machine design.

MITCHELL, R.B.

1978

The author of this thesis retains the right to be identified as such on any occasion in which content from this
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any
original images only — re-use of any third-party content must still be cleared with the original copyright holder.

mAl R This document was downloaded from @ @
https://openair.rgu.ac.uk

@RGU



https://doi.org/10.48526/rgu-wt-1993246

ROBERT GORDON'S INSTITUTE OF TECHNOLOGY, ABERDEEN

SCHOOL OF ELECTRONIC AND ELECTRICAL ENGINEERING

FAULT-TOLERANT DIGITAL MACHINE DESIGN

by

ROBERT B MITCHELL

This thesis is presented as a requirement for a C N A A

Master of Philosophy Degree.

ROBERT B MITCHELL
February 1978



DECLARATION

I hereby declare that this thesis, composed by myself,
is a record of work carried out by myself, has not been
accepted in any previous application for a degree, and
that all'sources of information have been acknowledged.

Robert B Mitchell




ACKNOWLEDGEMENTS

I am irndebted to my supervisor Dr. N. D. Deans for kis
invaluable assistance and encouragement throughout this study.

I would also like to express my gratitude to the technical
staff at ReGeI.T. for their constructive comments and Mrs. G.
Mitchell for her patience and co-operaticn in typing this

thesis.



CONTENTS Page No,

ABSTRACT (i)
CHAFTER 1 INTRODUCTICN 9
CHAPTER 2  FUNDAMENTALS of FATL-SAFE DIGITAL NMACHINE DESIGN 5
247 Preliminary Mathematical Definitions 5
2.2 Criteria for State Assignment 6
2.3 Spatial Representation of a Boolean Quantity 7
2.4 General State Diagram of a Fail-Safe Sequential
Machine 10
CHAPTER 3  FATL-SAFE DESIGN TECHNIQUES 13
301 Transition Table Technigue 465
3.2 Modified Karmaugh-Mapping Techniqﬁe 19
3.3 The Use of NAND Synthesis 26
3.4  Autonomous Circuit Design ‘ 28
3.5 Computational Methods of State Assignment Selection 29

CHAPTER 4  An INTRCEUCTICN to FAULT-TOLERANT DIGITAL SYSTEMS L2

4.1  Fault-Masking Technigues L2
4.2 Self-Checking Systems L&
CHAFPTER 5 PAULT-TCOLERANT DIGITAL CCUNTER DESIGN L9
5.1 Parity-Check Codes and their Uses L9
5,2 PFault-Tolerant Digital Counter 5l
5.3 Computer-Aided Design of Fault-Tolerant Counters 5
CHAPTER 6 FAULT-TOLERANT CELL-BLOCK DESIGN 61
561 Initial Cell-Block Development 62
6.2 Fault-Tolerant Cell-Block 65
6.3 Logic Simulation of Fault-Tolerant Cell-Block 72
6.4 Fault-Tolerant Cell-Block Circuit Design 75

6.5 Simplified Version of Fault-Tolersnt Cell-3lock B0



CONTENTS ( contd.) Page No.

CHAPTER 7 PAULT-TCLERANT DIGITAL DESIGN using PROMs 86
7o The Read-Only-Memory and its Structure 86
7.2  Two Reprogrammable Logic Systems a7
7.3 Hamming Decoder 93

CHAPTER 8 CONCLUSICNS 96
8+ Adms 96
8.2 Conclusions 96
8,3 PFurther YWork ~ 57

REFERENCES and BIBLICGRAFHY 98

APPENDICES A=
1. Computer Program A=
2 Computer Program A=2
s Computer Program A=3
b The Reynolds Logic Simulation Program A-12

D The Hamming Code A=14



ABSTRACT,

This thesis describes the work of the author towards an M.
Phil. degree in the field of Fault-Tolerant Digital Machine Design.

As a preview, fail-safe machine design is discussed in detail,
and varicus new design techniques are presented.

The fuédamentals of fault=tolerant digital machine design are
presented, élong with various design techniques.

Both hardware construction and computer simulation programs

have been used liberally throughout this study.

(L)



CHAPTER 1. INTRODUCTION

One of the prime regquirements of a computing system is the
ability to operate correctly over a sufficiently long period of
timeo. Therefore, certain measures must be taken, either in the
initial design or in the subsequent testing of the system, in
order to satisfy this requirement. In the past, computers
were used largely in an off-line, batch-processing mode, and the
consequences of undetected hardware malfunctions were relatively
minor. However, because of the increasing use of ccmputers in
on~line, real-time applications such as the contrcl of nuclear
reactors, spacecrafi tréjectories and military equipment, notably
missile—guidance systems, incorrect computer operation in any of
these applications can be potentially disastrouse. Furthermore, the
ircreasing size and complexity of digital computers have made it
more and more difficult to ensure correct machine cperation.

Thersare various failures which may occur within a digital
machine, although this study shzll be concerned only with logical
faults. These produce some changes in the logical behaviour of

the machine. Thus, component failures which affect voltages
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currents, shapes of pulses or delays, but do not alter the logical
function realised by a particular circuit, will not be considered.
Also included in this category are failures of power supply.
external input signzls, and clock signals.

A fault in a digital circuit is a physical defect of ‘one or
more components, which can cause the circuit to malfunction.

Ageing or manufacturing defects can cause a component to graduzlly
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ate, giving rise to marginal faults. Noise and overly

close tolerances can cause intermittent faults, which are time-




varying, being present in some intervals of time and absent in
others. Many faults that are originally intermittent eventually
become solid, which implies that the malfunction is permanent
until repairs are made.

Throughout this study, only solid logical faults will be

considered. The majofity of solid faults which occur in digital
circuits create either stuck-at=high or stuck-at-low conditions.
The basic T.T.L. logic gate is illustrated in Figure 1(a). A
simplified version, representing a NAND gate as shown in Figuré
1(b), illustrates some of the stuck-faults that can occur in
this type of gates

Mode 1 represents a permanently open base connection, while
mode 2 represents a permanently open collector connection. Under
these faults, the transistor output @ would appezr to be stuck-at-
higho On the other hand, mode 3 represents a short from collector
to emitter, therefore Q would appear to be permanently stuck-at=lows

Any of these failure modes can seriously upset ©the functional
capabilities of a digital circuit, hence the need for circuits which
can automatically detect a fault as soon as it occurs, or more
important in this study, circuits which cazn continue to operate
correctly even although a fault has occurred.

Improvements in the behaviour of digital circuitry under
fault conditions can be achieved bys

(a) Fail-Safe Design.

(b) Fault-Tolerant Design.

(¢c) @Easily-testable Circuit Design

Fail-safe and fault-tolerant design are similar in the respect
nostic

that they involve special design techniques, whereas dia
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testing involves the application of test sequences to
conventionally designed circuitry. There is an abundance of
literature on the subject of diagnostic testing, therefore it
will not be considered in this study. [1] However, the design
and operation of failesafe and fault-tolerant circuitry will be
investigated in detail.

Chapter 2 deals with the various mathematic definitions and
theorems necessary for theddesign of fail-safe digital circuitry,
while Chapter 3 puts forward several design techniques.

Chapter 4 presents some theoretical aspects on the subject
of fault=tolerant digital machirne design, while Chapter 5, 6 zand
7 are devoted entirely to several different design technigues.

Chapter 8 presents the overall conclusions and outlines
possible topics of future research. The various computer
programs used througheout this study are listed in the Appendices.

Note that, throughout this study, all design techniques
apply to synchrcnous, sequential circuits, unless otherwise stated,
since these provide most of the computational power in any modern

computer system.



2.1

CHAPTER 2. FUNDAMENTALS OF FAIL-SAFE DIGITAL MACHINE DESIGN

Fail-safe digital circuits are designed in such a way that, if a
logical fault occcurs within the system, the output values always adopt
a known "safe'" state. This means that the extent of damage is much
less than if the system fails with any other output state. Therefore,
a logical system is said to be "féil-safe" if, in the event of failures,
its output is either error-free or assumes a safe valueo

As a practical example, consider a traffic controller with two
light signals, red and green. The green signal denotes "safe state"
or "go" and the red signal denotes '"dangerous state" or "stop". Then
the controller should show the red signal when the traffic control system
fails, rega?dless of the actual situation on the road. If the faiied
traffic controller shows the green light, while the actual situation
on the road is in the dangerous state, a fatal accident could occur.

In order to understand fail-safe circuit design requirements, some
basic definitions and theorems are needed. These are listed below.

Preliminary Mathematical Definitions

Definition 1:¢ A Boolean function f of n-~variables is monotonic

jncreasing ify, and only if, x =2 ¥y impl%os f(x)=f(y), where

1Xpy eseeesX Ys =y 575 see,¥,)s and X3y means x>y, for
1:1 é,...,no Similarly, a monotonic decreasing function 18 defined
to be one for which x>y implies f(x)< f(y).

Definition 23 A Boolean function which is monotonic increasing with

respect to some variables and monotonic decreasing with respect to
the remaining wvariables is called a unate function. Lhus, f,= Xy+xz
is unate while f.= xy +xz is monotonic increasing and f_= Xy+Xz is
monotonic decreasing. 3

Definition 3: If in 2z system the loss caused by a faulty 1 output

is much greater than that caused by a fzulty O output, then the system
is gaid to be O=fail-safe. In a similar manner, a i1~fail=safe system
can be defined.

Definition 4: A logical component which, when it fails, always fails

with a O(or1) output is said to be SO— symmetric (or 1—asymmetric)o
Such components are called asymmetrical ccmponents.

Definition 5 A realisation of a sequential machine is said to be
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output = fail - safe, if, and only if, no failure can cause unsafe
errors at the output terminals.

Definition 63 If the realisation of a machine, in addition to being
output-fail-safe, goes on to a predetermined set F of states in the
event of a failure, then it is szid to be F-state fail-safe.

F-state fail=-safe machines are more desirable from an error indication
point of view since, in the event of a failure, the machine enters a
known state F and therefore, an error-detecting circuit can be easily
designed.

Criteria for State Assignment

In order to produce permissible state assignments for any type
of fail-safe digital machire, certain basic theorems must be upheld.
Formal propfs of these theorems may be found in the indicated referernces.
Theorem 13 A sequential circuit is output-fail-safe if, and only if,
its state functions as well as its output functions are monctonic

increasing with respect to the state variables, when all the logical
components used in the realisation fail asymmetrically. [3]

The following theorem gives the necessary and sufficient
condition for a state assignment to satisfy the requirements of
theorem 1o
Theorem 2: The next state and the output functions of any sequential
machine beccme monotonic with respect to the state variables if, and

only if, the binary vectors used for the state assignment are no%
pairwise comparable, under the ordering relation of Definition 1. 2]

Theorem 3: A state assignment which uses a set of unordered cecde
vectors will result in an F-gtate fail-safe sequential circuit if
the state functions are all realised either in sum-of-precducts or in
product~of-sums form. [3]

From the above three theorems, it can be seen that only ceftain
code vectors can be chosen as the state assignments of a particular
sequential machine, if the system is to become fail-safe. The
vectors in any assignment must be pairwise incomparable; this simply

means that a Hamming distance>/2 must exist between all the vectors.

The term "monotonic increasing' has been used frequently in
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this discussion. Since this is a rather abstract concept, it is
worthwhile investigating further, Definition 1 gives a strict
mathematical explanation; however, it is much simpler to deal in
graphical terms.

Spatial Representation of a Boolean Quantity

Consider the diagram shown in Figure 2.1, Let X be an n-

dimensional vector, Each of the n components can take two values
0O or 1, so that X has 2n distinct possibilities. Now consider, in
n—-dimensional space, the points whose coordinate values are O or 1.
To each possible X there corresponds one and only one of these points.
The points form the vertices of a hypercubes

The concept of monotonic increasing functions may be depicted
quite easily using the hypercube. Two examples of Boolean expressions
are shown in Figure 2.2,

The black circles represent points which satisfy their respective
+X X, = 1

=23

but CO1 does not. FPigure 2,2(a) is an example of g monotonic

functions; for example, in Figure 202(a), 101 satisfies =x

increasing function because as one moves up the hypercube (following
the interconnecting lines from the point 000), once a function point
has been reached, all the coordinate points above this point are all
function pointse. Since, in Figure 2.2(b) the point 000 satisfies the
function, this is not the case.  Therefore, x1+§1§2§3 = 1 is not a

monotonic increasing function.

The hypercube can also be used to represent pairwise incomparable

binary vectors as shown in Figure 2.3.. It can be seen that groups
of pairwise incomparable vectors lie on the same level of a hypercube
as shown by the dashed liness Investigation of four-dimensional
and five~dimensional hypercubes produced the same results. This

led to the formulation of a theorem.
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Theorems The fact that a group of binary vectors lies on the
same level of a hypercube implies that the vectors are pairwise
incomparable with each other.

It would seen reasonable to assume, therefore, that all state
assigmnments used in the design of fail-safe circuitry consist of
binary vectors which lie on the same level of a hypercubeo However,
the theorem above is peculiar in the respect that its converse is not
true. The example of Berger coding, which will be investigated
later, will clearly illustrate thiso.

Figure 2.4 illustrates a four-dimensional hypercube. The
increasing Somplexity of hypercubes beyond four variables and the
anomaly of the above theorem, led to the construction of a series
of computer programs which would produce legal grcups of birary
vectors. This will be discussed in the next chapter.

For the moment, however, it is essential to consider the
state diagram of a general fail-safe machine in order to justify
the above definitions and theorems.

General State Diagram of a Fsil-Safe Sequential Machine

A sequential machine can be represented by a state diagram,
which shows the various states thelmachine adopts under certain
externzl-input conditionse.

Figure 2.5 shows the state diagram of a general sequential
machine, In this case it is an autonocmous machine, such as a
counter, for the sake of simplicity. The network has six legal
states 1 - 6, but it alsc has the possibility of entering an
erroneous state.if a single logical fault occurse. This stafe
is outwith the derived state assignment and, since this machine has
no built=-in fail-safe facility, the machine may leave this stats at
any point znd ccntinue to operate incorrsctly.

The state diagram of a fail-safe machine may bhe represented

10
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in a similar fashion, as shown in Figure 2.6. This machine also
has six legal states, but, of course, the individual states may
be different, since they must satisfy the conditions laid down
earlier, The error-free operation of this machine is identical
to the machine of Figure 2.5, exzcept that, instead of entering a
purely random erroneous state when a logical fault occurs, the
machine enters a fail-safe state, the F-state, which is usually
the all-zeroes or all-ones state, depending on the type of fault
and the combinational logic structure of the machine.

The important factor is that the machine cannot leave the

F-state until the fault has been repaired, hence this system never
functions incorrectly.
How this type of state diagram is implemented to produce a

fail-safe digital machine will be dealt with in the next chapter.

12



3.1

CHAPTER 3. FAIT~-SAFE DESIGN TECHNIQUES.

Several fail-safe design techniques are investigated in
detail in this chapter.  The first is a straight forward method
using the transition table of the desired machine and is also
outlined in reference [2]. The second is a technique which was
constructed after thorough investigation of the Karnaugh liap
minimisation method used in conventional digital machine design.
The application of these techniques to the design of autonomous sequential

ircuits is also presented, along with the use and advantages of
NAND synthesis in fail-safe design. Finally, computational
methods of state assignment selection are outlined and

presented in flow chart form along with selected program
results.

Transition Table Technigue

)

This technique is best illustrated by example. The tarse
binary veétors
0117
101
o
are known to be pairwise incomparable (Figure 2.3), so these may
be chosen as the state assignment of a simple synchronous, sequential
machineo The actual design requirement was chosen to be a circuit
which retains its state when an external O is applied and cycles con-
tinuously tanrough the thrse states on the application of an external
1« The state transition table is shown in Figure 3.1.
D-type flip~flops are used as memory elsments, the control
data being derived from the standard characteristic equation. The
control functions can be derived by any minimisation technigue, or

intuitively from the table. They are:



///P present state next state controls
X 7 Y  Yg i MWy X Dy Dp Dy
c,01 10 1t 1,0 1 1
0|1 0110 1/101
o1 1t 0}j1 1 011 1 0
110 1 1,17 0 11 0 1
1417 0 131 1 01 1 0O
1191 1 0,0 1 110 1 1
Figure 3.1 Conventional State Transition Table
. &
D £

R)—
; B
o & e
B

=) % ¢
pp— ) S -
2

Figure 3.2 Circuit Represantation
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D1 = 'J-c.y1 + XaJq
D2 - Eoy2 + x-y1
D3 - i.y3 + XoY,

The circuit is realised using AND and OR logic gates as
illustrated in Figure 3.2. DNote that, in practice, the
complemented external input signals would be obtained via simple
inverter gates, but are shown already complemented for the sake
of clarity.

This is the conventional design approach for most types
of sequential circuits. However, to produce a fail-safe
version of the above design, a slightly different technique is
employedo

Consider the column D1 in the transition tabie of Figure 3.1.
It contains four ones corresponding to the minterms of the furnction.
These minterms ares
Eoy1.§2.y3 3 E.y1.y2°§3 s xo§1.y20y3 3 Xoy1o§20y3
However, let Di(q,Ip) denote the control data in the transition table
where q represents the row and IP the column of the table, and (y1,,°l,yh)
denote the binary vectors in the assignment. Now, according to the

proof of Theorem 2 in Chapter 2, each minterm in each D, for which

i
Di (q,Ip) = 1 will have only those state variables for which ¥y = 1o
Therefore, only uncomplemented state variables can appear in the
expression of all Di°s, and so they are all monotonic increasing
with respect to the state variables.
Under this criterion, the minterms above are reduced to

the product terms:

Eoy1.y3 3 Eoy1oy2 s Xo¥pe¥y 5 Xo Jyo y3

The other product terms are produced in a similar fashion, so that

15



the control functions of the now fail-safe circuit become:

Dy = (ype7y * Ty )% + (yye7y + Yyo¥,) X

D3 - (y2oy3 - y1.y3)§ + (yz.y3 + y1oy2) X

This circuit was constructed using AND and OR logic gates

as shown in Figure 3.3. The circuit was tested for fail-safe

operation and the results tabulated as illustrated in Figure 3.4,

Certain conclusions may be drawn from the operation table

of this circuit.

(a)

(b)

(c)

The most important point is the fact that fail-safe
operation has been achisved, since the machine enters
the F-state (000) when a single stuck-at-0 fault occurs.
However, the machine may continue to operats correctly
under a stuck-at-Q fault, depending on whether or not

the particular failed gate is required to generate a

"control function. This occurs because the circuit

is constructed in such a way that a network of logic
gates may be enabled or disenabled depending on the
value of the external input X. For example, if gate
2 in Figure 3.3 has its output stuck-at-C, and X has
the value O, then gate 2 is never used, in this
condition, to generate the control function DQ, therefore
the circuit continues to operate correctly. Only
when X becomes 1 will the cireuit enter a fail-safe
state.

When this circuit was tested, all the logic gates were,
in turn, given a simulated stick=at-C fault by
disconnecting the cutput and grounding the input of

the following gate. However, since the combinational

16
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. present state next state
input .
X /s 5HooK Yy L% comments
0 0 7 1 0 7 1 .
C 7 0 7 7 0 1
o 7 ! 0 7 7 0 L normal
! 0 ! ! 7 0 1 operation
7 1 0 ) 7 1 0
1 7 7 o g 7 7
g:| @ -3 7 g 1 1 ]
0 7 0 7 J ] 7 ,
o | o om0 0} p geted s-d=l
g (Le_g . opte o . @i fail-safe
1 0] 7 7 1 0 7 B
1 1 0 7 1 1 0 - i
Py e gEage @0 4 I g:;rma/ Bl
1 0 1 1 1 0 7 _ operation
Pool Bl P B B X
1 1 7 0 0 7 - gate2 s-a-0
1 0 0 7 110 0 0 | fail-safe
] 0] 1 1 0 7 5]
1 1 0 7 7 7 0 L gate3 s-a-0
! ! 1 g 0 7 1 _ normal operation
0 0 1 7 0 7 0 N
= gated s-a-0
g ¢ . o K2 0] . fail-safe
R S R I ¢ S 1 ]
0 7 0 1 7 0 1 - gate5 s-a-0
0 ! 1 0 7 7 0 normal operation
1 B
g : f g 2 ! J- gate5 s-a-0
1 0 0 1. |Le 9 0 | fail-safe
0 g ! ! 0 0 ! _h gate 6 s-a-0
0 9 0 1oL 9 0] = fail-safe
) 0 1 7 7 0 1 ] e
! 1 0 U 7 0 0 ;
7 1 0 g |1 9] g2l . fail-safe

Figure 3.4

Table of Operation
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30 26

logic networks feeding the flip-flops are identical, it is
sufficient to test only a few selected gates as shown in
Figure 3.3,

(d) To produce a fail-safe representation of Figure 3.2, a 200%
increase in the number of gates used is required in this
particular cases,

This transition table technique has proved satisfactory in
the design of fail-safe sequential circuitrye. The modified Karnaugh-
Mapping technique will now be investigated in details

Modified Karnaugh~Mapping Technique

A Karnaugh-map is a graphical method of minimising Boolean
functions.. The minterms (or maxterms) of a function are arranged
in such a way that adjacent terms may be combined in grouvs of two,
four, eight or sixteen, thereby reducing the number of final terms
which describe the function'{4] e

FPigure 3.5 shows the general form of the Karnaugh-map
applied to the transition table of Figure 3.1. Thé minterms and
maxterms are entered in the appropriate place on the map, while
the remainder of the positions are denoted by a slash, indicating
a "don't-care" state. These permit a minimal set of control
functions.

In a similar fashion, the Karnaugh-map may be utilised in
a specific way to produce the control functions for a fail-safe
sequential machine. In this case, however, only certain groupings
of adjacent terms may be chosen to ensure that the functions
obtained are 21l monotonic increasing. There is also a restriction
on the number of 'don't=care" states permitted in the Karnaugh-map

3 + £ st s . . PRy . - 3.
itself, {As will be zeen in Section 3.4, this restriction applies

19



00 01 77 10

s |l —a
|
o|—-

ol =t=111 -

7%
X1 00 01 171 10

160 e 47 110

1
77_0_

0| = | = 1 Lz

= Xy,
- » =
Plgure 3.5 KXarnaugh-Map dinimisation
20




only to sequential circuits with external inputs, and not to
autonomous circuits.) For a four-variable Karnaugh-map,
the legal '"don't care" states are:
(a) the all-ones position (1111)
(b) the X111 position, where X represents the external
input with value O Note that the external
input X may take up any position, (for example
1X11, 11X1, 111X),

These "don't~care" positions and the permitted term groupings
for fail-safe design are illustrated in Figure 3.6. Note that
two and three variable maps may be constructed in a similar
manners

As an example of this technique, consider Figure 3.7, which
illustrates a modified Karnaugh-map minimisation of the original
transition table of Figure 3.1.

The control functions now become:

D1 = y1-y3 +* i.y1.y2 + Xoy2.y3
D2 = ¥y¥5 + E.yg.y3 + xoy1.y3
D3 = Yp0¥3 + X. y1.y3+ xoy1.y2

The circuit is shown in Figure 3.8 while a table of operation
under logic failures is illustrated in Figure 3.9.

Certain conclusions may be drawn from this table.

(a) The circuit is fail-safe to stuck-at-0 logic
faultse.

(b) As before, the circuit may continue to operats
correctly, even although a logic fault has occurred.

(c) Using this technique, an increase in the number
of logic gates of only 133.3% is required, compared

with 200% for the previous technique.

21
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present state | next state

X 77 }’2 ) y3 )’7 yz }:9 vomments
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The main advantage of this modified Kernaugh-map technique
over the transition table method is the fact that, in most
cases, fewer logic gates are needed to produce a fail-safe
version of a particular sequential machine,

The use of NAND synthesis in fail-safe design will now
be discussed. |

The Use of NAND Svynthesis

This is a technique whereby circuits, using conventional
AND and OR logic gates,‘may be translated into equivalent circuits
using only NAND gates [5]. This is probably of greatest
importance in the manufactﬁre of microcircuits using large
scale integration (L.S.I.).

This technique is illustrated purely by example.

The circuit shown in Figure 3.8 may be translated quite
easily into a NAND logic circuit as shown in Figure 3.10. The
most important point to note in this procedure is the fact that
3-input NAND gates are readily available in TTL package form
whereas AND and OR gates are usually produced only in 2-input
éersions. Therefore the two-level AND and CR networks shown in
Figure 3.8 may be replaced by a one-level NAND gate as shown in

Figure 3.10. The table of operation shown in Figure 3,11

illustrates that:

(a) the circuit may continue to operate correctly
under a stuck-at-0 fault,.

(b)  the circuit is fail-safe to stuck-at-0 logic

ct

faultse. However, it is clearly seen tha

Lz 23
omeiimes 1T

[ )

%

sometimes the F-state iz 000 an

is 111, This was found to be characteristic of
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fail-safe circuits constructed using NAND logic;
if a stuck-at~0 fault occurs in an "odd" level (see
Figure 3.10), the F-state is 000; if the fault occurs
in an "even" level, the F-state is 111, This is
obviously an advantage when repairing a fault in a
more complex ciréuit since attention can be restricted
to either even or odd levels. An error-detecting
circuit for a 111 F-state can easily be incorpocrated
as before.
(c) using this technique, the number of logic gates
required is increased by only 33%.
In general, this NAND synthesis technique can usually
be applied to produce an overall minimal circuit.
The design of autonomous sequential circuits using the
Karnaugh-map method will now be discussed.

Autonomous Circuit Design

An autonomous circuit is a sequential machine with no
externally-applied input signals. The circuit is controlled
solely by the sequence of clock pulses applied to the memory
elements in the circuite. Fail=safe autonomous circuitry can be
designed using the transition table technique, exactly as before.
However, the Karnaugh-map method is slightly different when
applied to autonomous circuits, since there is no restriction on
the number of "don't-care" states appearing in the Karnaugh-map;
however, there is a restriction on the number of term groupings,

since 3ll the variables in the Karnaugh-map are state variables.

(Beforehand, the map contained the input variable x, which is

a state variable and may appear in complemented

-y ok Vs
10T classed a J

6}

n

form in the final control functions, without violating the
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condition that all the functions must be monotonic increasing).

The legal term groupings are illustrated in Figure 3.12.

An example will demonstrate this techniques Figure 3.13
illustrates the transition table, conventional control functions
and circuit diagram of an autonomous sequential machine which simply
cycles through four states continuously. Note that, for the
purpose of comparison, the state assignment vectors are pairwise
incomparable with each other. However, when the modified Karnaugh-
map minimisation technique is used, as shown in Figure 3.14, a
fail=safe circuit is obtained. This is clearly shown by the table
of operation illustrated in Figure 3.15.

This technigue is quite a simple one to use. Indeed,
beginning with a known state assignment, any of the above design
procedures is a relatively straightforward taske. However, problems
can arise when choosing a particular state assignment. The state
vectors must, first of all, satisfy the original design requirement;
but they must also satisfy a specific ordering relation, as seen
earlier, More often than not, these requirements are contradictory,
and producing a state assignment which satisfies both conditions can
be a very tedious task indeed. Therefore, a computer program was
constructed to alleviate this problem.

Computational Methods of State Assignment Sslection

 As mentioned earler in Section 2.3, it seemed reasonable
to assume that all feasible groups of pairwise incomparabls binary
vectors lie on the same level of a hypercube, whether this cube be
of 3, 4 or even 10 variables.

Therefore, a computer program was written in BASIC 1o
sz groups cf vectors. The flowchart is shown in Figure

3016, while the actual program is illustrated in Appendix 1.
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Figure 3.15
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BEGIN

[INPUTC
No. of variables

for K=0,1,2,-+"
.P=0
N= 2K_4

convert N to binary
A (J)

4

B(J)

convert P to binary

X=1

L

Y

i‘
NO

PRINT B(J)

=0;Y=
YES
YES

)
YES

p=P+1]

YES

Flowchart
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The results for 3, 4 and 5 variables are shown in Figure 3,17,
the vector groups asterisked being those used in the earlier
sections on fail-safe design.
The operation of the program is straightforward:
A reference binary vector is chosen from each level of
a hypercube and all other vectors compared with them. If a
vector is found to be pairwise incomparable with the reference
vector, then it is printed.
The reference vector is chosen to be the least decimal
equivalent in each level; ' for example, in the 3-variable
casey, the reference vectors correspond to decimal 0,1,3 and T
a progression of 2k—1 where k¥ = 0,1,2,3. Although this program
performs well, it produces only a sub-set of the total possible
groups of pairwise incomparable vectors.
A code, known as the Berger code, produces the binary vectors
shown below{?,]
1100
1010
1001
0111
By inspection, it can be seen that these vectors are pairwise
incomparable with each'other, but, more important, with reference
to Figure 2.4, three of the vectors lie on the same level of a
hypercube, while one of them lies on a level above. However,
this important group of vectors would be missed using the above
computer program, since there is an underlying assumption that
incomparable vectors lie on the same level of a hypercube.
To overcome this problem, a new program was written. The
flowchart for this program is illustrated in Figure 3.18, while

the program itself is shown in Appendix 2. The program is
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1st GROUP

INPUT C,D
Var. and Ref.No.

convert Pto binary B(J)

[ L{J)=8(J)

for M=1 to ZC-1

P=M
B (J)

convert P to binary

[ K=k+1;A(K)=M l

I PMNTAM), :

2 ndGROUP

y

for F=1 to K
P=A(F)

-—-

<§;;GROUP

ditto

|

Figure 3.18

New Flowchart
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constructed in such a way that, once a reference vector has been
chosen, it is compared with all other possible vectors and the
ones which are incomparable are printed in the first group.
BEach of the vectors in the first group is then compared with all the
other vectors in the first group and those which are incomparable
are printed in the second group, and so on. The format of the
program results is illustrated in Figure 3.19 for the case of Berger
codeo Three examples of actual computer printout are shown in
Figure 3.20. Note that the vectors are printed in decimal form
for speed and conveniences

Obviously this program may be extended to deal with much
larger binary vectors by simply adding more 'sroups™ to the program.
However, the program shown is sufficient tc illustrate the techniqus,

After extensive program runs, the following conclusions
were mades

(a) There are only four legal Berger vectors for
four variables, namelys

1001
1100
1010

0111
(b) However, a larger group of vectors is possible

when the reference 1001 is chosen, namely:
1001
0011
0101
| 1010
1100
| 0110 |

(c) The last three bits of the vectors in the above
group follow a binary progression. If these are
classed as information bits, then the first check

bit is chosen to be a 1 if the number of ones in
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the information bits is odde The check bit is a O
if the number of ones in the information bits is even,
Thus, a very useful type of code, known as a 2-out=of-4

parity-check code, is produced.

(d) Various other codes may be produced in the same way
by careful study of the program results.

(e) Every feasible group of pairwise incomparable binary
vectors may be produced using this computer program.

This computer analysis concludes the study of fail-safe
digital machine design. Fundamental definitions are theorems
have been presented along with various design techniques and
illustrated by specific design examples, Throughout the study,
relevant conclusions have been drawn and compared.

The following chapters are devoted to fault-tolerant

digital machine design.
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CHAPTER 4. AN - INTRODUCTION TO FAULT-TOLERANT DIGITAL SYSTEMS

Fail-safe digital systems are ouite acceptable from an error-
detection point of view, since it is assumed that the system can be shut-
down for a certain length of time for maintenance purposes. It
is also assumed that maintenance is possible. However, in
applications where continuous operation is essential for a specified

length of time, fault-tolerant design techniques become very important.

Without exception, fault-tolerant design techniques involve a certain
amount of circuit redundancy, the specific techniques to be used
depending upon whether or not repair is possible and also on the
required duration of reliable operation.

Fault~tolerant design techniques can be divided into two

classes. In the first, called fault-masking, the effects of any

fault are masked by additional circuitry. This circuitry is an
integral part of the system and no switching is involved, thus
error-correction is instantaneous.

In the second class are schemes which detect and locate
any fault in the system and replace the faulty unit by switching

in a spare unit. These systems are called self-checking systems.

Fault-~Masking Technicues

Fault-masking techniques are useful when the system is
required to operate reliably over a relatively short period of
time and repair is impossible. Over the past few years, this has
been the basis for various fault-tolerant design techniques. These
include triple-modular~-radundancy, quadded logic, radial logic and the
use of error-correcting codes.

{a) Triplse-Modular-Redundancy (TuR)

This is perhaps the oldest form of fault-

masking, in which a complete system is produced
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in triplicate. The three system outputs,
which in fault-free operation are identical,
are fed into a majority-logic gate as shown in
Figure 4.1, This type of gate produces an
output corresponding to the majority of the
inputss, Therefore, if a perfect majority gate
is assumed, the system illustrated in Figure 4.1
will never fail unless two or more units fail,
It can be shown that the mean time before
failure (MTBF) of this redundant system is less
than that of the irredundant system [6]

However, for small values of t, the time
period, the probability of survival of the
redundant system is greater than that of the
irredundant system. Such systems are useful
when a high reliability is required over a
short period of time.

Multiplexing Yﬂ

The method of multiplexing is similar to
the above method except that the original system
is divided into subsystems and each subsystem is
triplicated as illustrated in Figure 4.2. A
fault in any element in a subsystem, including
the majority gates, will be masked by this
system, At the output, it is nscessary to
select the proper output from among the three
outputs sither by a fault-free circuit or an
observer.

Quadded ioeic [8}
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(e)

As the name of this technique implies, logic
elements appear in quadruplicate. Any fault which
appears is corrected at the next level. Thus all
single faults, except in the last two stages, are
maskedo Most multiple faults are also masked unless
they appear in circuit elements which are close
together. Any circuit containing AND, OR and NOT
logic gates can be quadded. Similarly, quadded
circuits can be designed using NAND and NOR gates
(Jensen, 1963). Sequential circuits can be
synthesised also, since flip-flops can be realised
by treating them as circuits formed by interconnecting
simple logic gates, but containing feedback.

Radial Logic [9]

Radial logic makes use of the fault-masking
properties of the NOR (or NAND) gate with duplicated
inputs and is capable of correcting most single errors.
If} any particular realisation, radial logic reguires .
only half the number of logic gates required for
quadded logic, but the former does not correct a
certain class of errors which the latter does. Radial
logic may be desirable when the type of technology
used makes this class of faults unlikely to occur.
Radial logic using AND and OR gates can be obtainsd
as a simple extension of the NOR realisation, but
certain classes of faults still cannot be masked.

Error-Correcting Codes [ﬂO]

A method, whereby error-correcting codes are used

to obtain reliable digital svstems, was prcposed by

S



4.2

Armstrong in 1961. The method is actually a
generalisation of the triplication and voting
procedure discussed earlier, The technique is
applicable to both combination and sequential
circuits. Since this technique forms the basis
for the fault-tolerant digital counter presented
in the next chapter, it is discussed later in some
detail,

Self-Checking Systems

So far, digital systems operating under two different
sets of conditions have been discussed.

In the first, the fail-safe system, interruptions
are tolerable and repair is possible, since only error-
detection tzkes place and an F-state is reached. In
this case, a system which is relatively easy to test is
desirable so as to minimise the time required for
maintenance.

In the second class, repair is impossible but the
system is required to operate with high relizbility for
a relatively short period of time. The fault-masking
techniques discussed in the preceding section are ideally
suited for this application.

A third type of environment is one in which
interruptions in the operation are intolerable but repair
is possible. In order to operate under these conditions,
the system should be self-checking. It should be able to
detect any fault within itself, identify the faulty
subsystem and switch it out of the system. This should

be done in such a manner that the system can continue to
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operate with the remaining units, while the faulty unit is

repaired.

(a)

(b)

Electronic Switching System (ESS) [+1]

The No. 1 Electronic Switching System (BSS) used
in the Bell System for telephone switching is a highly
reliable system, one of whose reliability objectives
is that the system operation should not be interrupted
for more than two hours over its 40-year lifeo In
addition to the use of long-life components and
conservative circuit design, this high degree of
reliability is attained by duplicating the vital
parts of the system so as to retain an operational
system in the presence of component failures. Circuits
and programs are provided to determine the faulty
unit and switch it out of operation. Diagnostic
programs and maintenance dictionaries are provided to
locate the faulty package in the failed unit, leading
to rapicd repair.

Self-Testing and Repair (STAR) Computer [&2]

This is an experimental computer which was

designed zand construcied orimarily

e

performance characteristics are meant tc be suitzeble
for the guidance and contrcl of unmanned interplanetary

spacecraft. The computer is required to operzte

[©]

reliably over a period of severzl years. Temporary

malfunctions may be tolerated providesd they are

«
o

detect

(4]

d and the cemputations repeated. Time is
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also available for switching out faulty units and
switching in spares. The STAR computer has a fixed
configuration of subsystems, with spares provided for
each subsystem. Spares are permanently connected to
the system through information buses, but are left
unpowered. Replacement of a faulty subsystem by a
spare is effected by turning off the power to the former
and powering the latter.

This concludes the introduction and background to fault-tolerant
digital systems. The following chapters deal with various approaches
and techniques in the design of these systems. As mentioned earlier,
the next chapter deals with a specific type of fault-masking technique,
namely, the use of error-correcting codes, and its application to the

design of a fault-tolerant digital counter.



5.1

CHAPTER 5. FAULT-TOLERANT DIGITAL COUNTER DESIGN

In this chapter, the use of error-cerrecting codes, or,
more specifically, parity-checking codes, is discussed in
details. The design of a single~fault-tolerant digitel
counter using this technique is illustrated by a particular
example using a modified first-order Reed=Muller parity-
check matrixss The chapter is concluded by a computer-aided
design study of fault=tolerant counters.

Parity-Check Codes and their Uses

Consider an m-input, n-output combinational circuit
which can be designed so that it produces the correct outputs
even in the. presence of a single fault. If there is no shared
logic between the shared outputs, then XK check bits could be
added and an error=correcting code used. If shared logic
is allowed,-then a gingle fault may affect several outputs
and the code should be capable of correcting all errors that
may result from a single fault.

A more efficient technique, suggested by Armstrong is
to break the given m=input, n-output circuit into r sub-units.
There may be shared logic between outputs within the same sub~
unit, but no shared logic between sub~units. Errors produced by a
single faulty sub-unit can be corrected by adding g p-ocutput
T4 e.aal

sub-units as shown in Figure 5.1. The outputs Zij’ imred]

in a

oo al?

r+q serve as check bits for ij, k=1, .,y and j=1 )
single-error-correcting code.

In applying error-ccrrecting techniques to sequential
circuits, it is necessary to perform error~ccrrection on the

as well

output

[0}
o

¢ the state veriables, otherwise a fault in

a sub=-unit, whose outputs are state variables, may be fed back
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resulting in errors in more than one sub-unit at a later time.

A parity-check code is characterised by its parity-check
matrixe. A parity-check matrix H of n columns and n-k rows
for any binary error-correcting code can be expressed in general
in a reduced-echelon form as shown in Figure 5.2 [53]

Inpk is an n~k identity matrix and Q is an n-k by k matrix
with binary element qij'

The corresponding code space V consists of 211 elements
v 'such that vHT = O, where HT is the transpose of matrix H.
lMore specifically, if v = A1,A2,....,Ak, B1’B2""'Bnpk)’
then v is a code word if and only if

A959 @ A0, ® 430553 @ Ky, @5, =0
or

Bi = A1qi1 @ Azin ® A3qi3 D eooe & Akqik
for i=1425e00ey n=k, Wwhere ® denotes the modulo -2 sum.,
This code is called an (n,k) code, where n denotes the block
length and k the bit length for the information symbols. The
bit length for the check symbols is given by n-k.

The class of code used in this design technique is a
modified first-order Reed-~Muller code whose parity-check
matrix has exactly three 1's in each row @4] « This code is
a low-density code in the sense that its parity-check matrix
contains mostly O's and relatively few 1's. A 2-out-of-3
majority element is used for the purpose of error correction.

A 3 by 6 parity-check matrix H for this code is illustrated
in Figure 5.3,
Let v = (A, A, A ’B ,B2,33> be a code word, where

1
A, A_ A are information bits and B, B_ B. are check bits. Then

1, 2, 3
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Figure 5.2 General Form of Parity-Check Matrix
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VHT = 0 and from the given matrix H, a set of parity=check
equations can be derived, thuss

By =4y @4,

B2 = A2 ® A3

By = 4,84, (1)
or A1-A2@B1-A3@B3

A2 - A1 () B1 = A3 @ B2

A3-A1©B3-A2®B2 (2)

Note that each Ai, for i = 1,2,3 in the set of (2), can be

determined by exactly three independent relationships.

Therefores=

.A(k).Ma. (A1,A @B, A @B)

2
A (k) - Ma (Ag, A4, ®B,, A

3

3@ Bp)
A(k)-Ma . (A 4, @35, A,08)  (3)

where the subscript k denotes the k b physical realisafion of

the particular majority element. These majority elements of

(3) give the correct output if, at most, one of the terms

,A2,A3, 1,B 3 has a component fault.

From the set of (1):

LA B
by=h ®3, = 3932
A3-A1G;B3-A2932 (4)

therefore:
e Y " - e
A1(k; = hajk (A1, i,®3, 13 ® }33)

Kz(k) = Ma (A2, A @3 ® B )

i 3

1@133,A ® B,) )

These results can be applied to the design of a single-faulte

33(1;) - Ma (Al, A
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5.2

Fault=Tolerant Digital Counter

As an illustration, consider the design of an ordinary
three~stage binary counter with information bits A3, A2 and

A1 as shown in Figure 5.4. In order to produce a fault-tclerant

version of this counter, three auxiliary check stages are required.

These check bits B3, B2 and B, are produced using the equations

1
of (1). The control functions are now required in order to
realise the circuit. - T-type flip~flops (or J=K flip-flops with
J and X fied together) are used as memory elements for reasons
discussed later, The characteristic equation of a T-Type flip-
flop:

Aa(t) = a(t) @ a(t+7)
is used to produce the control functions as illustrated in
Figure 5.4, Minimisation produces the final contrcl equations
as shown. It can be seen from these equations that the variable
A, is ?equired three times, 11 .

twice, Therefore, eight majority elements are needed to prasvent

is required twice, A2 cnce and A

any "bottleneck" problems. The final circuit diagram is
illustrated in Figure 5.5. Note that these majority elements
contain not only a 3=input majority logic gate, but also two
exclusive -~ OR gates in order to satisfy the conditions given
in equations (3) and {(5). This circuit was built and tested
and found to be completely fault-tolerant to single logic
faults, irrespective of the type of fault or where it occurred.
Throughout this study, it has been stressed that, in order
te produce a reliable machine, it is desirable to use the
minimum of components. Therefore, T=type flip=-flops were
employed in the fault-tolerant counter to ensure a mirimal

eircuit. Qbviously, the use of JeX flip-flops would have



slate information bits check bits change operator form
A3 A2 A B3 B2 B1| A3 A2 A Bz B> Bg
So 0] 0 0 0] 0] 0 0 0 7 7 0] 7
S7 0 0 7 7 0 7 0 1 7 1 7 0
52 0 7 0 0 y; 1 0 0 7 7 o) 7
S3 0 7 1 1 I 0 7 7 1 0 0 0
A 7 o 0 1 1 0 0 0 7 7 o 7
Ss 7 0 7 0] 1 l 0 7 1 7 7 0
S5 7 7 o) 7 0 1 0 o 7 1 0 7
Sz 7 l 1 0 0 a 1 7 l 0 0 0
Sg 0 0 0 0 0 0 0 0 1 i 0 7
A7 = T 87 = A1
AZ = A7’ 32 = ,47 AZ
e g o By = Apds
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required much more combinational logic, and if D-type had been

used, the control equations would have been:

3 13 23 17273

o
H

A1I3 ¥ A213 & A112A3

= A X i
B A113 + AR+ AR A,
These would have produced a much more complicated and, therefore,

a much less reliable circuit.

Computer-Aided Design of Fault=Tolerant Counters

A sefies of computer programs was written to simulate the
design procedure outlined above. The operation of the final
program is illustrated in the simplified flowchart of Figure
5.6; the actual program which, for technical reasons is written
in FORTRAN, is shown in Appendix 3. .

Although a2t first sight, the program looks rather long
and complex, it is quite sitraightforward and can be divided
into two main parts.

The first part of the program computes the state table
of the required machine in a format similar to that shown in
Figure 5.4. Naturally, this table is governed by certain
initial design constraints, including the type of fliﬁ-flop
required, the correct Reed~Muller matrix and the state
assignment of the required machine. These are inputed at
the start of the program in decimal form. The format of the
Reed-Muller matrix is inputed as a string of digits, indicating

the positions of the 1's in the matrix. o

H

example, the
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matrix in Flguré 5.3 is represented as 122313, Parity—-check
matrices may be constructed for four and five variables as

shown belows.

_ 1 . 10100 | 10000
1100 |, 1000 |
; 01010 | 01000
0110 | 0100 1
; 00101 | 00100
1001 , 0010 !
1 10010 ! 00010
0011 ! 0001 { ,
- & 01001 , 00001 |
12231434 1324351425

The second part of the program stores the binary numbers
in each ''change operator" column of the state table. These
are then fed, in turn, to a subroutine which performs a
Quine=McCluskey minimisation. Hence, minimal control functions
are produced and printed. An example of the final program
printogt, illustrating the design of the fault-tolerant
counter discussed above, is shown in Figure 5.7.

Since this program is designed to cope with three, four
and five-stage counters, using variations of the Reed-Muller
parity-check matrix, and can also handle any conceivable state
assignment, it is an invaluable and versatile tool in faulte
tolerant counter design.

The following chapters deal with two alternative approaches
to fault-tolerant digital design. The first involves the
construction of an interactive fault-tolerant cell-block, whilst
the second technique utilises read-only memories in digital design.
Although very different techniques they are both versatile and are

not restricted to autonomous machine design.
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CHAPTER 6. FAULT-TOLTRANT CELL-BLOCK DESIGN

Throughout this study, classical methods have been primarily
used in the design of both fail-safe and fault-tolerant sequential
ircuitry. Classical design generally involves a verbal
description of the system function, followed by the construction
of a state graph illustrating the various states and transitions
required to perform this function. This is usually a straight-
forward task. However, the subsequent steps in the design
procedure are not guite so simple and it generally requires
the expertise of the design engineer to produce a reliable system
with the minimum of componentse.

On the other hand, with the advent of microcircuits using
large-scale~integration, electronics is rapidly becoming a
"black-box" technology in the sense that very complicated circuits
are now becoming commercially available in single packages. The
piecing-together of these individual units to produce complex
systems is now the primary role of the engineer.

It seems good sense, therefore, to design a logic element
which, when incorporated in a system of identical elements, is
as close as possible to the exact analogue of the state graph,
setting and resetting according to the various transitions
raquired by the system. The desirable propertiss of such an
element are that it represents a state on the state graph, connected
to other states in one-to-one correspondence with the state graph
arrows, and it indicates or '"remembers" the state of the system
at any time. A circuit built of these elements would also have
the advantages that it is already designed once the state graph

Gt ; s At ST 5 =
is desigred, and the circuit could be easily undersiocd by anyone
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6.1

(i)

who understood its function. [ﬁﬂ
Moreover, if this logic element could be made fauli-tolerant,
the result would be simplified design coupled with increased

reliability. The design of such a fault-tolerant cell=block

is discussed in detail in this chapter,

Initial Cell-Block Development

During the development of a suitable cell-block, several
designs were built and testedo These will be investigated in
turn.

An initial design is illustrated in Figure 6.1(a). If
Q is a logical 1 and X is a logical O, the internal feedback
loop and associated combinational logic ensures that the cell
remains in a high state. In this condition, the cell is
effectively isolated from all other cells in the system. If,
however, X becomes a logical 1, the D input becomes a O, resetting
the cell on the following clock pulse, while the Q output
enables the following cell=block. A typical state granh,
representing a simple ring-counter, is illustrated in Figure 6.1(v)
and the circuit implementaticn is shown in Figure 6.1(c).

Although this cell=block functiomns correctly it has certain
disadvantagess-

(a) The circuit relies on an incoming logical O

[

or resetting.

(b) The cell is limited to single-input, single-
output operation.

(¢c) The state-graph analogy is broken, since there
is no external feedback loop from output ito input

?

representing the 'same-state® condition.
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(ii)

(141)

After this design attempt, it became elear that the
required combinational logic would be more usefully employed
at the output of the memory element. This led to a new designe.

The design shown in Figure 6.2(a) uses a J=K-flip-flop as
the memory element, since this proves more versatile for
resetting purposes. If Q is a logical 1 and both the external
inputs are logical O, the cell remains in the high state, since
a logical O is fed back to the K=input of the flip-flop. If,
however, one of the external inputs is high, the corresponding
AND gzate is enabled and a logical 1 is fed back to the X-input.
On the occurrence of a clock-pulse, the cell is reset and the
following cell enabled. This means, therefore, that the cell
is effectively self-resetting, since it does not depend on the
logic signal applied at the J=input, but only on the external
inputse. Another advantage of this design is that it can be
easily developed for multiple input-output operation.

However, this cell-block still has disadvantagess-

(a) Two external inputs are required to control two
output signals.

(b) The state-graph analogy is still broken for the
reason outlined in (c) above.,

In order to overcome these drawbacks, a third cell-block
was designed.

The cell~-block shown in Figure 6.2(b) operates in a similar
manner to the previous design, except that the outputs are
controlled by a single external input X. Although only two
outputs are used throughout this discussion, dviously any number

of required outputs could be provided by a simple extension of
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this technique. The state graph of Figure 6.3(a) is realised
via the circuit shown in Figure 6.3(b)o Note, in this case,
that the circuit is directly analogous to the gravh and the
ultimate aim has been achieved.

However, close inspection and testing of this system revealed
that, subject to certain input conditions, the circuit operates
erroneously.

When the external input X is a logical O and the output of q, is
fed back to its own input J, the required response is that 9 will
remain in the high state. However, the K~-input line is also a
logical 1 and, therefore, the cell=-block will reset. The AND gates
can no longer be enabled and the system ceases to operates | The
circuit, therefore, must be amended if this situation is to be
avoided.

This is done quite simply by insertion of an inverter and
AND gate on the reset line as shown in Figure 6.4. The K-input
is now controlled by the state input to the cell-block, so that,
the inverter ensures that the K-input is a logical O and the -
flip~-flop remains in the 'set' position. The added logic does
not impair the various other operations of the cell-block.

With a suitable cell-block developed, the next step was
to produce a more reliable version using the method of fault-
tolerance.

Fault~Tolerant Cell-Block

Various fault-tolerant design techniques are available,
as outlined in Chapters 4 and 5, in ordsr to produce a more
reliable system. However, since the cell-block is of a
ssquential nature, many of these techniques cannot be applied.

The choice, therefore, is between the method of paritv-check
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codes and triple-modular-redundancys, The former technique presents

immediate problems as far as the cell=block is concernsd for the
following reasonsi-
(a) This method is aimed primarily at autonomous

systems., Although it is not altogether

impossible to adapt the technique for sequential

circuits, it is no simple matter to incorporate

external inputs to produce a satisfactory design.

(b) This method requires at least three memory elements

to produce a sufficient number of binary digits for

checking purposes. Since the cell-block contains

only one flip-flop, some additional redundancy

would have to be introduced from the outset, even

before the method was applied. This is not only

very uneconomical, but alsc tends to reduce the

initial level of reliability,
On the other hand, the cell-block offers no restrictions

to the use of triple-modular-redundancy, and a fault-tolerant cell-
block is simply implemented as illustrated in Figure 6.5. This
is composed of three identical cell-block sub-units feeding six
majority-logic gates. In normal operation, the signals applied
to each majority gate are identical with the result that, depending
on the value of the external input, three versions of the same signal
are obtained at the outputs of the majority-logic gates. This
means that the fault-tolerant cell-block continues to function
correctly in the event of a single logical fault occurring in any of

the circuit elements, including the majority logic. However, when
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design, under certain conditions reliable operation may be achieved in
the presence of various simultaneous faults.
(a) Two majority gates may fail within the same cell-
block, provided that they receive different input
signalse. For example, in Figure 6.5, gates Mﬁ and M21
may fail simultaneously without disrupting normal
operation.
(b) In an N-state system, using N fault-tolerant cell-
blocks, 1 - N majority gates may fail without
producing erroneocus operation, provided that the
failures occur in the same position in esach cell-
blocks
(¢) A complete sub-unit, comprising of eight logic
elements, may fail without disrupting the
operation.
(a) In an N-state system, 1 -» N complete sub-units may
fail simultaneously, provided that only one sub-
unit fails in sach cell-block.
From the above it can be seen that a complete system, comprised of
interconnected fault-tolerant cell-blocks, can tolerate a minimum
of one logical fault, but, in exceptional circumstances, may
tolerate a maximum of 8N logical faults.
In order to fully test the operation of the fault-tolerant
cell=block under fault conditions would mean constructing a
few logic circuits and manually simulating various logical faults.
However, when cne considers that a single fault-tolerant cell-block
requires 10 I.C. packages, it is not surprising that it was deemed

both unwieldy and time-consuming to build a system with more than
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three states using these discrete components.
It was decided, therefore, to simulate various logic systems
on the computer using the Reynolds Logic Simulator.

Logic Simulation of Fault-Tolerant Cell-Block

The Reynolds Logic Simulation program is described in
detail in Appendix 4.

A data file, entitled TMR. DAT, which describes the fault-
tolerant cell=block, is shown in Figure 6.6. Note that every
data file commences with -1, which indicates a new data file,
and ends with =18, which returns control to the terminal keyboard.
Note also that, since there is no facility in the program for
majority-logic gates, these are reéiaced by equivalent logic
networks whose function is givén bys=

= X + Jo8 + XoB

The program is first run under fault-free conditions to assess
the normal operation of the fauli=tolerant cell-block. The
resulting coﬁputer printout is shown in Figure 6.7. Note that
various comments and guidelines have been added for the sake of
clarity. The circuit functions correctly under all possible
input conditions, therefore various logical faults can now be
simulated in order to test the fault-tolerant aspect of the system.

Logical faults are simulated quickly and simply using the
Reynolds program. The command -2 allows any specified connections
to be updated, so that any node may be assigned either a logical
Zero of a logical oﬁe using the system functions 14 or 15
respectively,

Using this technique, faults were induced in various circuit

elements of the cell-block and the resulting annotated printout
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is illustrated in Figures 6.8 and 6.9. Without exception, all

logical faults, irrespective of type or position, are masked by the
majority~logic gates. However, in some cases, the fault does

not affect the operation of the cell-block. This is identical

to the situation encountered earlier when dealing with failwsafe
logic designo With the fault-tolerant cell-block fully tested,
the next step was to simulate a complete circuit using these blocks
in order to induce and ébserve fault conditions in a practical
situation,

Fault-Tolerant Cell-Block Circuit Design

A data file consisting of three separate fault-tolerant
cell=-blocks was first drawn upo. To avoid confusion, the modes
of the second cell=block were numbered in the range 160 = 199 and
the third cell-=-block in the range 200 = 299, That is, since the
original flip~flops were numbered 6, 18 and 30, the flip-flops in
the second cell~block were numbered 106, 118 and 130 and so on.
The connections were then updated so that a circuit was formed,
and the data file was named CIRC., DAT, The state graph is
identical to that shown in Figure 6.3(b) while the circuit
representation using fault-~tolerant cell-blocks is illustrated
in Figure 6.10,

Normal operation of the circuit was first checked using the
simulation program and the results are shown in Figure 6.11.

This is satisfactory since the circuit reacts in accordance with
the state graph. Using the same technique as befors, various
faults were simulated. Since it has already been shown that
logical faults within the cell-block itself are always masked, the

faults, in this case, ars rastricted to the majority-logic gates.
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6.5

The results of these tests are presented in Figure 6.12, The
results show that, despite a faulty majority-logic gate, the correct
information is still passed on to the following cell-blocks.
This occurs since, although the faulty cell-block produces only
two correct signals, the majority gate network in the following
cell-block masks the fault by producing three correct signals, and
SO ONo As before, the system may function correctly in the presence
of a faulty majority-logic gate.
In order to simulate larger systems, the obvious requirement
is a data file comprised of many separate fault-tolerant cell-
blocks which may be interconnected according to a specified siate
grapho However, problems arise when more than three cell-blocks
are required, due to the storage allccated to the simulator program.
Up to 300 modes may be specified, in order, but the total number of
list items, excluding the terminating zeroes, must not exceed 800.
However, now that the fault-masking process is fully understood,
the original fault=tolerant cell-block may be replaced bty a simpler
system for simulation purposes.

Simplified Versicn of Fault=Tolerant Cell-Block

The circuit illustrated in Figure 6.13 performs exactly the
same function as the original cell-block but requires only 50% of the
logicoe Although this new configuration would not operate in practic
since all the majority-logic has been omitted, it is sufficient
for simulation purposes.

A circuit which simply cycles through 7 states on the

e

application of an external logical 1 signal and retzins the same state
&

when a logical O is applied was simulated using the new configuration

s

~ + ~ e o~ -~ <17 ~ ~ ” - 1~ - — - 2 -
and the resulls, showing normal cperaticn, are presented in
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Under fault conditions, the system reacts as expected and the results
obtained are shown in Figure 6.15. In this case, a fault is not
confined to the cell-block in which it occurs but is passed on
after each clock pulse. This is because the majority-lcgic has
been omitted and the fault is never masked. Nevertheless, this
simplified version of the fault-tclerant cell=block is useful when
simulation of larger systems is reguired.

This concludes the study of the fault-tolerant cell-block
and its applications. Once a suitable self-resetting logic element
was developed, triple~modular-redundancy was used to produce the
final fault-tolerant cell-block. Although it is not viable to
construct the cell-blcck using discrete components, it could be
incorporated quite easily into a single chip using either MSI or LSI.
In this way, fault-tolerant logic systems could be implemented almost
as economically and compactly as ordinary digitzl systems.

The Reynolds Logic Simulation program was‘used extensively
in this chapter and proved invaluable in the construction and
testing-of the fault-tolerant cell-block.

Finally, a2 simplified version of the cell-block was produced
which proved useful in the analysis of larger logic systems.

The next chapter deals with the use of the programmable

read only memory in both digital and fault-tclerznt digital cesign.
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CHAPTER 7. FAULT-TOLERANT DIGITAL DESIGN USING PROMS

Although many different design techniques have been used
throughout this study, they have all been linked by a common
factor, Every system has been designed and built to perform
a certain function, as specified by a state graph. In this
respect, these systems can be considered 'static'!, since the
hard-wired logic involved can perform one function and one
function only. To perform a different function using the same
logic elements would require a complete re-design, resulting in a
totally different hard-wired logic system.

However, consider a system whereby the state assigrment is
stored within some memory device. By using suitable interfacing and
addressing techniques, it is possible for this system to operate in
a fashion identical to a conventional logic system. IMoreover, this
system can be considered ‘dynamic', since it can perform an
unlimited number of different functions by simply reprogramming the
memory, whilst still retaining the original hardware. If the
system could then be made fault-tolerant, the result would be
a very reliable and versatile digital system using very little
hard-wired logic. Such a system, using a reprogrammable read-
only-memory, is discussed in detail in this chapter,

The Read=Only~Memory and its Structure

A read-only-memory (ROM) consists of a mairix of transistors
(either bipolar or MOS), which act as memory cells. This matrix
is preceded by a decoder which effectively addresses each row of
memory cellso As an example, consider a 256 bit ROM arranged in.
32 words of 8-bit each. The decoder input is a 5 bit binary select
code, and its outputs are the 32 word lines. The matrix consists

of 32 bipolar transistors, with each base tied to a different line,
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and with 8 emitters on each transistor. This type of fixed

ROM is programmed once and once only either at manufacture,

or by the user. Usually, the customer compiles the truth

table he wishes the ROM to satisfy, and a metallisation mask

is then mdde: to connect one emmitter of each transistor to the

proper output line, or alternatively to leave the emitter floating.

Field programmable ROMS are bipolar structures which the user

programs by selectively 'blowing' fusable links in memory cells.

Both these types have the disadvantage of being non-reprogrammable.
Three types of reprogrammable ROMS are commercially

available, The first type is electrically programmed and erased

by exposure to ultraviolet (U.V.) light through a window in the

package. The U.V. light causes holes and electrons to recombine,

clearing the stored charge. The other types are electrically

alterable i.e. they may be erased by applying a pulse, usually

of 30-4CVamnlitude to the programming pins. Some devices may be

selectively erased, and this type offers significant advantages

over the U.V. type in that erasing may be done in circuit in

a comparatively shorter time.

Two Reprogrammable Logic Systems

The general state graph shown in Figure 7.1 is synthesised
using two totally different reprogrammable logic systems, and
these are discussed it turn.

The first system is illustrated in Figure 7.2(a), while the
organisation of the memory information is shown in Figure 7.2(b)
The operation of this system is relatively straightforward.

The initial address, corresponding to the first state of the

-
j)

graph, is set up in the address buffer, which simply consists of
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Figure 7.1 State Graph
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four D-type flip-flops. This address is decoded in the PRON
and used to access one of sixteen word lines, which, in this
case, 1s composed of eight data bits and two output bits. It
is evident from Figure 7.2 that these ten bits actually represent
two different states on the graph, depending on the value of the
external input X Therefore, this information is fed into a
Ybit-select' circuit, shown in Figure 7.3, which outputs the
correct address to the address buffer. When the system is
clocked, this next address appears at the buffer output and
accesses a new word line in the PROM, and so on. In this way,
operation: similar to a conventional logic system is achisved.
However, this system is unnecessarily complex, and improvements
are discussed below.

An improved system is illustrated in Figure T7.4(a),
while the memory organisation is shown in Figure 7.4(b). This
system uses very little external logic and requires a much
smaller memory than the system outlined abowve. The initial
address is set up in the buffer, and depending on the value of
the external input X, one of two word lines is accessed in the
PROM. When the system is clocked, this data, representing the
next state, appears at the output of the address buffer, and
SO On.

Now that a practical system has been developed, the next
step is to produce a more reliable version using soms method of
fault-tolesrance. An obvious solution is to use triplication
and majority-voting on the system as it stands. In this case,
however, this requires the use of three separate memories, sach

of which has to be reprogrammsd every time the complete system
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Figure 7.3 Bit-Select Circuit
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is reprogrammed, This is both clumsy and time-consuming. A

much better solution is to check and cerrect the contents of a
single memory using some form of error-correcting coding scheme, and
triplicate the required hardware. This may be done using the
Hamming code, a full description of which is given in Appendix 5.

Hamming Decoder

A logic circuit, capable of performing this correction
procedure, is illustrated in Figure T.5. If no fault occurs
within the memory, the outputs of gates 1,2 and 3 arelogical O,
therefore gate 4 is not enabled. The correct information simply
passes directly through to the address buffer under these conditions.
If, however, a fault occurs in an information bit, the circuit
rectifies the situation by changing the logical value of the
offending bit. For example, if bit six is incorrect, the outputs of
gates 1, 2 and 3 become 110, therefore gates 4 and 8 are enabled,
thus providing a logical 1 to gate 14. Now, if the original
incorrect bit is a logical 1, tke output of gate 14 becomes a
logical O, and vice versa. However, if a fault occurs in a
check bit, gate 4 is not enabled and the correct information is
again passed on. If the output bit, bit seven, is incorrect, the
outputs of gates 1, 2 and 3 become 111, therefore gate 5 is enabled
and a similar inversion operation takes place, thus correcting the
output information.

By utilising three Hamming decoders, three address buffers and
the necessary majority logic, a single-fault-tolerant reprogrammable
logic system may be produced in a manner similar to the fault-
tolerant cell~block discussed earlier. These systems were

constructed and rigourously tested. Without exception, these
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circuits performed satisfactorily according to design

requirementso.

This concludes the study of digital design using programmable

read-only-memories, The next chapter presents some overall

conclusions and indicates some topics of future research.
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CHAPTER 8. CONCLUSIONS

The design of fail-safe and fault-tolerant digital circuitry has
been investigated in detail throughout this study. This chapter
presents some overall conclusions and indicates topics for future
work in this field. TFirst of all, it is worth considering the aims
of this study.

8e1s Alms

The aims can be categorised as outlined below :-

(a) To investigate various existing methods of fail-safe and
fault-tolerant design with a view to adapting and
improving these techniques.

(b) ?o establish new methods of fail-safe and fault-tolerant
digital machine design,

(¢) To generally simplify design techniques by the use of
original hardware design and with the aid of appropriate
sof'tware,

These aims have now been achieved,
8.2, Conclusicns

A full investigation into the properties and requirements of
fail-safe digital circuitry resulted in the development of two new
design techniques. In general, both of these technigues required
less hardware than existing methods, resulting in increased
reliability, while the latter technique produced improved error
indication, A computer program was written to aid state assignment
selection,.

First of all, various existing methods of fault-tolerant digital
design were reviewed, The application of error-correcting cocdes in

digital design resulted in the construction of a versatile computer

program, capable of producing the design equations of any type of
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autonomous counter, A practical fault-tolerant cell-block was then
developed, This greatly simplified design procedures and, at the
same time, introduced a high degree of reliability. Finally, digital
systems, utilising reprogrammable read-only-memories, were
investigated, again with a view to simplificd design, versatility and
reliability,

Further Work

Due to its limited properties, fail-safe digital circuitry is
unlikely to be of any benefit to the design engineer in the years
anead, In this respect, it hardly merits further consideration.

In contrast, fault-tolerant design is a very powerful technique,
for reasons outlined earlier., In addition, it has become a
viable concern, even in large systems, since the advent of
integrated electronics., It is obvious, therefore, that further
work should be directed towards the design of fault-tolerant
circuitry. It was shown earlier that, where applicable, the use of
error-correcting codes can produce a reliasble system with very ﬁeyf

components, By developing new and more versatile codes, it
may be possible to synthesise circuits using a2 minimal number of
components, thus improving the reliability, regardless of the size
or classification of the system involved, This is a possible topic

for future research.
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Appendix 1.

Computer Program
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Appendix 2. Computer Program

12 PRINPRI"VAR AND REF J0.";NI.P C,DN\A=2\PRI\NPRI\P=D\aC.{)=D
47 GISU3B 1933

59 FOR J=C TO 1 STEP -I\NL(J)=B(JI\NJEL J

85 PRI TaAB(27)5 "REFEREWCE=";P\PRINPRI"FIRST GROUP"\PRI

99 roOR A= TO 2t C-I\NP=4\GOSUB 1820¢
129 =2\Y=0\FJR I=C TO 1 STEP =-INIF B(I)<=L(1) TAEN 16U
15¢ =1

1563 WEX I
165 FOR I
170 v=1

190 NEX I
200 IF X+Y=2 THEN 227\GITO 27%

i
(@}
._i
(@
!
-3
L“l
0
1
-
i
-
—

( =3C1) TAdZ4 190@

220 X=A+1NACKI=M\DPRLI ACL3"\";

273 NEZL A

275 PRI\PRI

283 PRI"SECOND GROUP"\PRI\NW=2Z\QAI=¢\FOR F=1 TO A\P=A(FI\Z27=7
233 GOSUB 1329

314 FOR I=C TO 1 STEP -I\RWIH)=BCIM\NZL I
322 FOR G=1 TO {\P=a(G)\GOSUB 1082

333 S=3\T=3\FJR I=C TO 1 STEP -1

439 IF R(IN<=3CI1) THEJ 423

419 S=1

429 NEL I

439 FOR I=C TO 1| STEP -1

447 LF B(I)<=R(I1) THEN 4569

459 T=1

463 WEX I
479 IF S+T=2 TAZN 492\GJTJ 548

493 N=N+I\NQ1=21+I\V(D=A(G)\PRI P3\Z27=1

543 JEX G

541 IF Z7<>1 THEN S42\G0TO 543

542 PRINONE';

S43 PRI\";\Al(F)=N\JE{ F

552 7Z5=3\PRI

555 PRINA=INQAI=2\Z1=2\X1=2\PRI"THAIRD GROUP"\PRI\U=J\FOR #=1 TO
'»)‘l_
7Z5=25+I\IF Z
IF AlCIy<l T
FOR {d=N TO A

INY 1I=Y 1+ INP=UVCII\NGISUB 1383

5 Z1=Z21+1\Z3=3

g FOR I=C TO ! ST=ZP -INUCII=BCIX\NEX I

5 A1=XI\NFJIR Q1=31l+1 TO AL(FI\P=V(QII\NGOSUS 1382

2 Cl=2\C2=2\FOR I=C TO 1 STZP -INIF UCI)<=8(1l) THdEN 71
J Cl=1

g NEX 1

D — &g =t &G WUl

FOR I=C TO 1 STEP =INIF BCI)<=U(l) THEN 754

4 C2=1
NEX 1
IF Cl+C2=2 -THEN 732\GOTO 343
U=W+INVICIND=Y(2DIN\NPRI P;\Z3=1

e g
IF-723<»1 THEN 842\CGOTO 343
PRIMHOIE
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Appendix 3. Computer Program

DIMZNSION ICC23),1D(22),1IP(2E),M(28),I3HEC22),ITWIC24),
*ITARCZZ) L IFIUC2P) L, IFIV(22),ISIX(28), ISEV(23),1EIG(28) .,
*ININC23), ITENC23),JGC28),J4C28),JLC28),JAC235,2D)
*JSA(23,23),JRC2D), AT C1Y)

DATA [LAS/2iIAS5/, 3 Aa4/24A4/7 - {A3/2dA37/,{A2/21A2/,XA1/724d417,

DATA KASP/34AS5'/,X4a4P/34d44' /5, {A3P/ 343"/, {A2P/ 31482/,

DATA KLAlP/3d4dal'/

WRITZ(5,30841)

3231 FORMATC(IH ,334ANO0. OF VARIABLES,NJO. OF TERMS AND TYPE)

READ(3, 1321)IP4,1Y¥Y3,121

1231 FORMAT(ILl,I2,11)

IVAR=IP4-2

WRITE(5,3233)

32333 FORMAT(1d ,33AINPUT REED-MULLER ¥MATRIX REQUIRED)

GO TOC(1,2,3),IVAR

1 READ(5,1002)JX1,J%2,J:1{3,J¥4,JE5,JK
1332 FORMAT(6I)
GJ TO 4
2 READ(S, 1893>J%1,JX2,JX3,JIX4,JK5,JK6,JXT7,JL38
1393 FORMAT(3I 1)
GO TO 4
3 READ(S5,1824)JX1,JX2,JK835,JK4,JX5,J76,JK75,J53,J9,JK10
1924 FORMAATCIBILD
4 JS=-1
JC1=3
WRITZ(5,3892)
3322 FORMATC(IH » 17TASTATE ASSIGNAENT?)
READCS5, 1385)CICCJ)»d=1,1Y3)
13¢5 FORAAT(31I1)

WRITE(S, 18886)

1236 FORMAT(ld ,9HINFO BITS,6¥X,10ACIECK BITS,6%, 144C4ANGE
*QP FORMD)
WRITE(S, 1867

1237 FORMATCLIA 5, 31%,9HDELTA A'S,8H,2HdDELTA B3'%)

IFCIL«EQ.33G60 TO 5
IFCLZ 1+ EQ+2) G0 TO 6
DO 9 (Kl=1,1P4
IFCIDC{1) « 2Q.IPCK1ID>)GED0 TO 3
AcLlr=1
G310 9
MG 1)=9
9: CONTINUE
GOTA. -5
6 DO L1 =itl= 151024
MICKID=TR(H 1)

(6N

L1 CONTIANUE

5 G3 T3C12,13,14),17AR

12 JS=d5+1
LIONE(JS)=11(IPa)
ITWOCJS)=1CIRP4-1)
[THR(JIS)=MCIP4-2)
GRS

13 JS5=JdiS+1
TONE G S MR

A=3
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1=(€-7d1)90
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U=(C-7dI1>XD

ge el 08

I1=(2-7<I)0r

CL CRC(OXPILTI DI *(SXrI4INdI
g=C1-741)D0

€l 0l GO

I=(1-7d1)HC
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ISIX(JC1Y)=JNCIP4)
ISEV(JC1)=JduCIPa-1)
IEIGCJC1)=JHN(IP4-2)
ININCJC1)=JHNCIP4-3)
ITENCJCI)=Ju(IP4-4)

69 DO Al HX1=1,1P4
IDCKLI)=IPC(X1)
JL(KX1)=JdG(K 1)

61 CONTINUE
IFCIL/Z7EQ/2YG0 TO 65
GO TOC73,74,75),LVAR

73 WRITZ(5,2%33)IPC3),IPC2),IPC1)L,JGC3),JGC2)5,JGCL)
*MC3),MC2)5, ML) L JINC3),JHNC2) o JdWNC 1)

20903 FORMATC(IHA ,312,10X,312,6X,312,8X,312)
GO TO 109 .

T4 WRITE(S,2001)IPC4)YLIP(3)L,IPC(2),IPC1),JGC4),JG(3),
*JGC2), JGC L)L MCA) L MC3),MC2) MO 1) 5 dNC4A) ,dJNC3)»JH(2),
*JNC1)

2301 FORMATC(LIA L4I12,108X,412,06%,412,3%,412)
GO TO 123

75 WRITE(S,2832)IP(5),IPC4A)LIPC3)LIP(2),IPCL),JGCS5),
*JGCAL),JG(3)H>JGC2) L JGC1)LMCS) L MCA) 5MC3),MC2),MCL),
RINCS) 5 JNCA) 5 JNC3) 5, JNC2),JHC LD

2202 FORMAT(1Hd ,5I12,13%X,512,6%,512,3%,512)
GO TO 123

65 GO TO(78,71,72),1YUAR
70 WRITZ(S5,10612)YIP(3),IPC(2),IP(1),JdG(3)sJG(2),JGC1)
1212 FORMATC(1d »,3I12,19%,312)

GO TO 143
71 WRITECSL,1Z13)IPC4)LIPC3)LIP(2)5IPCL1)LJGCA)JGC3)S
*JGC2),JGC1)
13 FORMATCLIH 5,412, 15K,412)
GO TO 133
72 WRITE(5,10814)IP(5)LIPCA)LIPI3ILIPC2),IPCL1)5JG(5),
*JGCA) L JEC3),JGC2),JGCLD
1314 FORAATCIH »512,18X,512)
133 CONTINUCZ
398 GO TOC(313,323,339),IVAF
319 NY(1)=XA3
NY(2)=LA2
NY(3)=XAl
AYC4)=K£A3P
NY (35)=£A27P
H7(5)=XAlP
GO TO 9248
32 WY C(1)=xX¢
NY(2)=XA
AY(3)=44A
NYC4) =X/
NY(5)=:
NY(8)=d
NY (7)) =K
NY(8)=:L

S
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NYC3)=KAS3
NY(4)=XA2
NY(3)=4£Al
NY (6)=.{A5P
NY (7)=KA4P
NY (3)=KA3P
NY(9)=XA2P
NYCl13)=XAlP

MON =
LTuu=

N=0
WRITE(5,30836)
FORMATCLIH )
L3=2
IR5=1Y8~-1
DO 132 M5=
ML5=1P4

GO TOC1@1,182,183),1VAR
GO TOCl18,112
GO TOC113,1125,114,116,5123

1, IRS5

> 114,128,122, 124),:4CQ
> 122,124,126).,i14CQ

GO TOC11B,112,1145116,113,128,122,124,126,123)5.,

IFCIONE(MS) «.EQ. 1080 TO 129
GO TO 134
IFCITWO(HMS) . EQ.1)GO0 TO 129
GO TO 139
IFCITAR(MS) «EQ-13GO TO 129
GO TO 139
IFCIFOU(MS) .EQ.1)G0 TO 129
GO TO 130
IFCIFIV(MSY .EQ.1)G0 TO 129
GO TO 1332
IFCISIX(MS)-EQ.1)GO0 TO 129
GO TO 139
IFCISEZV(MS) «EQ.1)G0 TO 129
GO TO 130
IFC(IEIG(MS) . EQ.10GD TO 129

GO 791308
IFCININCAS) «EQ.1)GI TO 129

GO TO 139

IFCITENC(MS) «EQ.1)GO TO 129
GO0 TO 134

N=N+L

IRPLI=IC(MS)

L3=L3+1

CALL BINARY(IPILIP4,IP)

DO 132 JCl=1,1IP4
JACNL,JC1)=1IPCILS)
JSACNLJCL)=JdJA(N,JC1)
AL5=ML5-
JRON)=JRCN)+JACN,JC 1)
CONTINUEL

CONTIWNUE

GO TOCl4d,142,143),17A%

GO TOC159,153,156,165, 163,
GO TOC 147,150, 1535 156,162,
GO T 144, 1475 1558,1535 1565
IFCH«QT«BXURITECS,1229)
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FORMATC(LIH »9HADELTA AS5=,9)
IF(N+EQ.IY3-12G0 TO 183
GO TO 229
IF(N«GT«OURITE(S, 1238)
FORMATC(LIHA L»9HDELTA Ad4=,%)
IF(J.EQ.IY3-12G0 TO 133
GO0 TO 248
IF(NGT«DWRITEC(S, 1 34E)
FORMAT(1d L9ADELTA A3=,8)
IF(N.EQ.IY3-1)G0 TO 139
GO TO 2908

IF(N«GT«@IWRITE(S, 1853)
FORMATC(L1IH »9dDELTA A2=535)
IF(N.EQ.IY3-1)G0 TO 130

GO TO 2929
IF(N«GTZ)WRITEC(S, 18568)
FORMATC(1H L9HDELTA Al=, %)
IF(N.2Q.1Y8-1>G0 TO 1849
GO0 TO 293
IF(N«GT«Z)WRITE(5,5, 1373
FORUATC(1d »94ADZLTA B5=,3)
IF(N.EQ.IY3-1)G0 TO 133
G TO 229
IF(N«GT«Z)WRITECS, 1883
FORMATC(1IHd L9HDELTA Bd=,3%)
IF(N.EQ.IY3-1)G0 TO 138
GO0 TO 243
IF(N«GT-3I)WRITE(S5, 1298
FORMATC(LlH »94ADELTA E3=,32)
IF(N«EQ.IY3-1>G0 TO 1849
G0 TO 232

IF(N«GT.@)URITE(S,1138)
FORMAT(1IA -,9HDELTA B2=, 3%
Ir(mouu-IY3—1>Go TO 133

GO0 TO 232
IF(N«GQT.BIURITE(S5,1113)
FORMATC(lA »,9HDELTA Bl=,3%)
IFC(H«EQeIY8-1)G0 TO LBY
GO TO 2%%

WRITE(S5,1122)

FJﬁ’KT(' 14D

LN
7w

P4, L3,JR,JA,JS5A,1D,NY)

«2xIP4+13G0 TO 256¢&

[AIACIP4,L3,JdRyJA )J\A’Iw)\},)
DC23),1IB8(22,28), IW(23),JR(2E)>,JAC2E,28),
3),12C23,2%),JSA (2,':"_3)) 1UC28),JAC28) .,

S o



DO 412 d=1,JX1
IDCNY=3
417 COWNTINUZ
DO 42% J=1,149
DO 427 IC1=1,19
IB(J,ICHY=3
42% CONTINUE
425 J=1
DO 43@ M=1,143
JIF(J)=3
433 CONTINUE
DO 509 N=1,JK1
DO 459 IPl=1,JX1
IF(JRCIPL) EQJRCII+1)GEI TO 431
GO TO 453
431 JQ3=¢
DO 434 IC1l=1,JD
IFCJACNLICL) «EQ.JACIPILICID>YGO TO 434
J2A3=JQ3+1
434 CONTIWUE
IF(JR3.NZ.1)G0 TO 458
DO 44@ I1ICl=1,JD
IFCJACNLICL) s EQ.JACIPLL,ICL))GO TO 433
IB(J,ICIY=2
433 IFCJACNLICL1) e NEJACIPLILICL))YGD TO 442
IB(JLICI)=JACILICL)
4472 COWTINUZ
ILCIPLY)=1
ILLLWY =1
J=J+1
4579 CONTINUE
IFCILCN) «GT.3)G0 TO 593
IF(H«ZG.1)G0 TO 473
HHN=8-1
DO 463 JF=1,04

15=3
DO 465 ICl=1,JD
IF(JACJF,IC1) «NE.JACN,IC1))>GD TO 465

MS=1S+]1
465 CONTINUE
479 DO 433 ICl=1,JD
IE(JY,IC1)=JACH,IC1)
433 COWNTINUE
JU=Jv+1
522 CONTINUE
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DO 522 ICl=1,JD
JA(N,IC1)=IBC(H,1CD)
IB(N,ICL)=1

CONTINUE

DO 3523 W=1,JA1
ILCHY=3

CONTINUE

JJ=J=1

DO 524 n=1,Jd

JROH) =Y

DO 524 ICl=1,JD

JRON) =JRCN) +JACNLIC 1)
CONTINUE

JXl=d-1

GO TO 425

JV=JdV-1

DO 563 M=1,JG
IFCID(M).EQ.1)G0 TO 560
DO 559 N=1,JV

DO 555 IC1=1,JD

IFC(IE(H,I1C1).20.2)G0 TO 55
IFCIE(N,ICL) «NE.JSACM,ICL)
CONTINUE
IB(N,M=1
CONTINUE

CONTINUE
DO 600 1M=1,JG
IFCIDCD -E2. 1060 T 659

DO 579 Hd=1,JV

IFCIBCHLM) «HEC1)GD TO 574
MZ 3=MZ 3+1

F(MZ3.GT.1)G0 TO 6283
JF=0

CONTINUE

IF(MZ3.8Z.1>2G0 TO 571
JIFCJF)=1

PO 5932 1C1=1,JD
IFCIECJF,IC1) «EQe IDVWRITE(
FORMATCLH » A3, %)
IVAR=1IP4-2

GO TO(532,3533,536),17AR

—

Ul

IFCIECJIF,ICL) »EQe@) WRITE(SS L 14FONYCIC L+ 3)

FORMATC1IH »A35, %)
GO TG 592

IFCIECIFLICL1) « EQe@)UWRITECS, LUSHINYC(ICTI+A)

FORMATCLIH ,A3,3%)
GO TO 359

IFCIECGJFLIC0D) « EQ«BIWRITE(S» L 163)NYCICL+S)

FORMATCLlH »A358%)

CONTINUE
IFCIUCIF) « ZR2.JG)GO TO 630
URITECS 1178

> L+, 8)

A=9
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IFCJIF(N) .EQ+1)GO TO 63%Z
DO 629 M=1,JG
IF(ID(MY . EQ.1)G0 TO 625
IFCIBCNLM) «EQ.J)G0 TO 623
DO 618 IN=1,JV

IFCJIFCINY «NE.13G0 TO 5619
IFCIBCINLM) «EQ-1)GO TO 624
CONTINUE

GO TO 630

CONTINUE

JIFCu)=1

CONTINUE

DO 649 N=1,dV
IF(JIFCA) «E. 1)G0 TO 645
COWTINUE

GO TO 8373

DO 652 N=1,JV
IFC(JIFCH) «8E. 1)G0 TO 652
DO 651 M=1,JG
IFCIDC(M).EQ.1)G0 TO 647
IFCIB(N,M) .NE.1)GO TO 651
DD 65@ IN=1,JV

IBCINLM)=1

CONTINUE

CONTINUE

CONTIHUE

MZ4u=0

DO 668 N=1,JV

JH(N)=7

IFCJIF(N) «EQ.1)GO TO 668
DO 655 M=1,JG

IFCIWCM) «EQ.1)G0 TO 655
JHON)=JHCN) +IBCH, 1)

CONTINUE
IFCJHCN) s LE.JH(N-1)G0 TO 60608
JF=0

CONTINULE

DO 665 1=1,JG

IFCIW(M) «EQ.1)G0 TO 664

IFCIB(NLM) «NE.1)GO TO 664

IudH)=1

IUCIE)=1T1(JF)+1W MDD

CONTINUE

IFCIUCJIF) LT MZ4)G0 TO 653

DO0'63% ICl=1,JD
IFCIECJF,IC1) ¢EQe IXWRITECS, 1208)NYCICL)
FORMATC1H ,A3,8%)

IVAR=IP4-2

GO TO(573,6T73,676),1TVAR

IFCIECJFL,ICL) «EQePIWRITEC(S, 1228)WYCICI+3)
FORMATCLIH »A3,3%)

BO Y 688
IFCIECJF,IC L) wEQe@ WRITE(Dy 1238)NYCICI+4)
FORMATCIH »A3,3%)

GO TO 6849
IFCIECIEICI) G EQe @) WRITEC S» 1 24@0)NYCLIETI+5)D
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1243 FORMAT(LIH A3, %)
589 CONTINUZ
IFCIUCIF) « ZQ.JGYGO TO 632
WRITE(S5,1252)
257 FORMATCLIH » 14+, 8D
532 MZ4a=1UCJE)
IFCIUCJF) e NE.JGYGO TO 653
3@¥¢ DO Sl Hd=1,149
JRON)=T
3231 CONTINUEZ
i RETURN
END
SUBROUTINE BINARY(IPLlLIP4,IP)
DIMENSION IPC2@)
I1I=1P4
347 MQ3=2%x(II-1>
IFCII.EQ.10MQ3=1
IF(MQ3.LE.IP1)YGO TO 3549
GO TO 8649
IPCIIDN=1
IPI=1IP1-MQ3
I1I=II-1
IFCII.LE.
GO TO 343

[6Y]
ul
o

2>G0 TO 879

@
(03}
[&N]
i
U
~
—
—
A
i
(&S}

II=1I-1
IFCII.LE.2)GO0 TO 879
GO TO 8482

372 RETURN

END
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Appendix 4. The Reynolds Logic Simulation Program

The Reynolds Logic Simulator is a FORTRAN program which allows
the simulation of logical systems on a time-sharing computer. Each
circuit element and input terminal of the system to be simulated is
called a node and is assigned a number. Each node is described by
a list comprising node number, function, and usually a list of the
nodes which are its inputs. The end of each list is marked by a
ZETO o This information, which totally describes the circuit, is
then fed into the computer as a data file. The program is started
and controlled by means of program commands. These also take
numerical form but are distinguished from other numerical data by
being negative. A full description of the logic simulator is given
in reference [16] and a complete list of system commands and

functions is presented in Figure A4.1
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CCOMMANDS AND FUNCTIONS FCOR ‘'LCGSIM'

CCMMANDS: -

=4 := DISCONNECT + RTAD IN NEW CCNNECTICNS
-2: - UPDATE CCNNECTICNS

-%s~ PRINT OUT CONNECTIONS

<lys - READ IN MONITOR POINTS

-5:= READ INFUTS, FIRST SETTING ALL NODES TCO ZERO
-6: - READ INFUTS

-7:~ FREE-RUN, NORMAL TIMEBASE
~8:~ FREE-RUN, EXPANDED TIMEBASE
-9: - FREE-RUN, NUMERICAL OUTHUT
=10: = FREE-RUN, NO MONITOR

-14:= READ IN STCRE NUMBERS

-12¢:~ PRINT OUT STORE NUMBERS
-1 3:= SINGLE-INFUT MODE

~{lL: - SUPPRESS HEADINGS

=15:~ RESTORE HEADINGS
-16:= TITLE
=1 7:= READ FILE*1
-18: -~ READ CONSOLE

-19: - WRITE FILE*2

-20: - READ FILE*2

~24 = REWIND FILES
-22:~ RESTAKT PROGRAM

-23%:~ QUIT PROGRAM

FUNCTICNS: = Figure A4.1
1: INPUT TERMINAL

2: OR

3: NOR

L: AND

5: NAND

6: EQUIV

7: NONEQUIV

8: NOT

9: D-TYPE FLIP-FLCP (CLOCK, J)
40: J-K (CLCCK, J, K, S, R)

11: TOGGLE (CLOCK, GAT‘ES
12: STEERING CCT ( CLOCK, J)

13: BISTABLE (S, R)

14.: LOGICAL ZERO

15: LOGICAL ONE

16: CLOCK GEN,

17: MASTER-SLAVE (CLOCK, J, XK, S, R, WKG.STORE)

18: DELAY CANCELLOR

19: NO-DELAY DUMMY

20: NO-DELAY INVERT

21: COUNTER (CLOCK, GATE, DEF,STORE, WKG,STORE)

22: REGISTER (CLOCK, J, DEF.STORE, WKG.STORE)

23: STCRE

2)4: TRIP

25: CLCCKED COMPARATCR (CLCCX, INFUT STORE, INV,INFUT STORE)
26: GATED OR (GATE, INFUTS)

27: GATED NCR (GATE, INPUTS)

28: GATED AND (GATE, INFUTS)

29: GATED NAND (GATE, INFUTS)
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Appendix 5. The Hamming Code

All error-correcting codes require the introduction of one or
more ‘check-bits', and the Hamming code is one of the most convenient.
As shown in Figure 7.5, if the bit positions are numbered in sequence
from left to right, positions numbered as powers of two are reserved
for parity check bits, while the remaining positions are information

bitse If the three check bits are denoted P1, P2 and P,, then they

4

are determined as follows:-
P1 is selected to establish even parity over bits 1,3,5,7.
P2 is selected to establish even parity over bits 2,3,6,7.
P4.is selected to establish even parity over bits 4,5,6,7.

In this way, various 7-bit code words are produced as shown in
Figure A5.1.

If a fault occurs so that any bit in fhe code word is in error,
then it can be detected and corrected simply by checking for odd
parity over the same three combinations of bits for which even parity
was initially established. For example, if the code word:-

CO001111
becomes:~
0001011

then the three parity check combinations become:-

P4 =101 1 = 1
P2 =0808®1®1 = O
P1 =00®0e@1 = 1

This corresponds to decimal five, therefore the error is correctly

assigned to position five in the code word.

A=14
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