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ABSTRACT

This thesis is motivated by a desire to understand better
the complex flow of drilling fluids in oil wells,

After an initial discussion of the flow and its complexities,
mathematical models are considered, and a 'helical flow' model
adopted as being a reasonable approximation to the flow which may
be solved in practice, Rheological models for the fluids are
discussed, and it is shown that, with helical flow, a shear rate
dependent viscosity model is of considerable generality,

Numerical methods for obtaining velocity profiles from these
models are explored and it is suggested thét an iterative finite
difference procedure is the most suitable to the purpose of under-
standing better the flow of drilling fluids,

The iterative finite difference procedure is implemented in
a computer program 'MUDFLO' which can be operated using either a
consistent dimensioned system of units, or using the dimensionless
variables defined in the text,

It is shown that three dimensionless parameter groups are
sufficient to describe completely the helical flow of a power law
fluid, A set of velocity profile graphs is presented, covering
typical values of these three parameter groups, From this set of
graphs, the velocity profiles for most practically occurring flows
of power law fluids may be interpolated,

Some computational difficulties are however reported in
calculations using the Bingham plastic fluid model, and using the
power law fluid model with very low fluid index,

The results of the computer program withe the power law fluid
model are supported by comparison with existing experimental data,
and by discussion of the general characteristics of the set of

dimensionless velocity profile graphs,
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CHAPTER 1
INTRODUCTION AND BACKGROUND

1,1 Introduction

Drilling fluid is used in oil wells to transport rock chips

up the annular space between the rotating drill string and the casing
during drilling, (See 1.2) Since the drilling fluid or ' mud ' must
perform several functions under many, often conflicting, constraints
it is useful to have accurate information on tte interdependence of the
various flow parameters involved,Prediction of the characteristics
of drilling fluid flow is however made difficult by complex geometry
and by the fluid's non-Newtonian properties, Present day drilling
technology uses empirical calculations based on past experience to
overcome the problems of integrating the conflicting functions of
drilling fluid, but there is some concern over the economic efficiency
of these methods, (Sifferman et al, 74)

Whilst the present work gives a general discussion of drilling
fluid flow and the associated problems in this section, it's main
aim is to tackle the specific problem of estimating velocity profiles
for the flow,

A mathematical model for the flow consisting of a coupled
pair of non-linear ordinary differential equations is constructed
(in chapter 2) and solution is performed using an iterative finite
difference procedure (in chapter 3), The results of this work are
presented (in chapter 4) in the form of velocity profile charts for
the ranges of parameters that occur in o0il well drilling, with a
dimensionless formulation being used to reduce the number of charts
involved, Discussion of the results and recommendations for further
work ‘are made in chapter 5, The computer programme developed for this

thesis has been archived by RGIT Computer Services Section, and full

instructions for accessing and running it are included in the text,
1,2 Baekground

Before discussing the helical flow of drilling fluid, we
give a brief description of o0il well drilling and the part that
drilling fluid plays in this operation,

0il and gas can be produced in several special geological



formations the important features of which are:
1) That the reservoir is bounded on its upper surface by
an impermeable rock layer,
2) That the oil and gas are held in a permeable rock layer
with the lower bound of the reservoir being formed by a

water-table, also held in the permeable layer,

0il well drilling is performed using a ' drill bit ' rotated and
supported by the 'drill string', The drill string is made up from
several components of different diameters, and may be thought of as
cylindrical, but with stepwise changes in diameter, To drill a well
or ' hole' a large diameter hole is first drilled, and is then lined
with steel 'casing', Progressively smaller holes are then drilled,
each one being cased from the surface before the next is commenced,
0il wells are not drilled straight, but are usually ' deviated ' ,
having several changes in direction, As a result of such deviations,
the drill string will rarely be concentric with the casing, and it's
eccentricity will probably vary with time as well as with depth, In
order to remove the rock chips produced when drilling a well, drilling
fluid is pumped down through the drill string and rises up the
' annular gap ' between casing and drill string carrying the chips
with it, The drilling fluid consists of a complex mixture of
_ chemicals and also performs many other functions whilst subject
to several conflicting constraints, Baroid (76) lists the functions
of drilling fluid in a general way as follows:
" 1) Cool and lubricate the bit and drill pipe,

2) Clean the bottom of the hole,

3) Remove cuttings from the hole,

4) Settle cuttings in the surface pits,

5) Wall off permeable formationms,

6) Overcome formation fluid pressures,

7) Prevent caving of the formation,

8) Avoid damage to productivity,

9) Allow interpretable electric logging,

10) Reduce casing costs,

11) Prevent drill pipe corrosion fatigue,

12) Perform above functions without hazard to the drilling

]
crews .



Regarding conflicting constraints, the reference continues :
"  The individual functions in the preceding list are

straight-forward and self explanatory, but combinations

of functions that affect the efficiency of the drilling

operation directly are of special importance, "

The drilling muds are non-Newtonian and exhibit the properties

of shear-rate dependent viscosity, thixotropy and viscoelasticity,
(Murphy 75, Wilson 76). As a result of the shear-rate dependent
viscosity, the fluids will have an'apparent' viscosity' which varies
across the annular gap and its velocity components will be inter-
dependent,

A complete analysis of drilling fluid thus seems, at very
least, impractical, and we approach the problem using the following
philosophy, Firstly, we attempt to gain more insight into drilling
fluid flow by studying simplified cases of particular aspects of
the subject, and secondly, using such insight, the empirical
approaches used in practice may be improved, The ultimate aim of
this approach is to increase the profitability of oil well drilling
operations,

The particular aspect studied by the present work is that
of predicting the velocity profiles in the annulus with a view to
gaining insight into the particle transport function of drilling
fluids,

We note that there are two main components of flow:

a) The axial velocity‘component as the fluid is being

pumped up the annulus, This component will be zero
at both walls,

b) The'angular velocity component caused by the rotation
of the drill string, This will be zero at the casing
and will reach a maximum value ( equal to the angular
velocity of the drill string ) at the drill string,

It is clear that, neglecting flow into or out of the rock formation,
any radial component of velocity will have a zero time-average

value,



Several studies have already been carried out on these
velocity profiles, and they are summarised in table 1,1,
We observe:

1) They have all considered the simplified case of steady-
state non-recirculating laminar flow of a non time-
dependent fluid through a uniform annulus,

2) Most studies have considered only one velocity component,

3) Only one study has taken annular eccentricity into
account,

These studies are discussed in detail in chapter 3 , and the
conclusion is drawn that it would be valuable to attempt solution
for the case of a concentric annulus with two non zero components
of velocity using finite difference methods, It is solution of

this problem that forms the central aim of the present thesis,

1.3 Numerical values

For reference we list ranges of ' typical values ' for the
parameters of drilling fluid flow, The values are approximate and,
as with any list of typical values, there will be some inevitable
omissions from this list, but it will serve to orient the reader to
the scale of the problem, Input parameter ranges for the results
presented in chapter 4 were taken from this section, Values are

given in the oil industry's working units,

1,3,1 Annular dimensions

The annulus is bounded by the drill string and either by the
outer casing, or by the ' hole wall ' in uncased sections of the
well, The drill string diameter is usually 3% or 5 inches, though
other sizes are ocasionally used, (Sivalingham 77), Hole and casing
sizes are listed below along with estimates of the depths to which
they are used, (STEC 76),



DEPTH HOLE SIZE CASING SIZE
(feet) (inches) (inches)
2-300 36 30
1500 26 20
3000 17% 13%
10-20000 12% 9%
(totaldepth)

1.3.2 Drill string rotation

Drill string rotation speed is varied according to drill bit
size and rock hardness, It is usually of the order 100 RPM, but can
be as low as 60 RPM or as high as 250 RPM,

1,3.3 Flow rate
In the oil industry, axial flow rates through the annulus

are usually specified as ' minimum annular velocities ' defined as
the discharge rate (ft3/m1n) per unit cross sectional area (ft2)
of the annular gap, Typical values are given below, (Baroid 76),

OUTER DIAMETER OF MINIMUM ANNULAR VELOCITY
ANNULUS (inches) . (feet / minute)
15 80
- 12% 90
10% 110
8% 120
7% 130




1,3.4 TFluid parameters

Two fluid models are in common use : the Bingham plastic
and the power law fluid, (Baroid 76 , Martin 68),
The Bingham plastic is defined by

- ) ¢
e (et )
when é( E) >

= Q

and

>

when i (‘E : 'E) & T:'

Where I is the shear stress tensor, Q is the shear rate tensor
whilst M, and Y, are constants, referred to as the plastic viscosity
and the yield stress for a particular fluid, Typical values for the
plastic viscosity and yield stress of drilling muds are (5ivalingham
77)

0 to 250 1bs/100 ft° for Vo
and

10 to 135 centipoise for Mg

The power law fluid model is defined by

2, - ml%@'n-l A

Typical values for the constant m and the ' index of consistency n

for bentonite drilling muds are :

.7 to ,9 forn
and

.1 to 2,0 form, A
though n can be mucﬁ lower for different types of mud, (Martin 68),
Here n is a dimensionless index whilst m is given in the units of

dyne-sech /emZ,



TABLE 1,1 PREVIOUS STUDIES OF VELOCITY PROFILES

IN DRILLING FLUID FLOW,

SIMPLIFICATIONS AUTHORS
1 2 3 4 5 6
Non-recirculating
es es es
laminar flow yes yes yes y y y
Uniform annulus yes yes yes yes yes yes
Viscosity not ) )
es es es
time dependent yes yes yes y y y
Concentric
es es NO es es
annulus yes y y y y
Viscosity dependent o e ves v NO NO
on only one component
Computer required for NO NO NO - s s

solution

1)
2)
3)
4)
5)
6)

AUTHORS

Fredrickson & Bird, 1958,
Parslay & Slibar, 1967,

Slawomirski, 1974,
Guickes, 1975,
Zeinkiewicz, 1974,

Savins & Wallick, 1966,

(Semi-analytic solution)
(Semi-analytic solution)
(Semi-analytic solution)
(Finite difference solution)
(Finite element solution)

(Trial and error solution)




CHAPTER 2
THEORETICAL DESCRIPTION OF DRILLING FLUID FLOW
This chapter is concerned with the theoretical description
of the problem, In 2,1 mathematical models for the flow are disc-
ussed, and the governing equations for the helical flow model intro-
duced, In 2,2 rheological models for drilling fluids are discussed,
particularly in the context of helical flow, Finally, in 2,3 ,

systems of dimensionless variables are introduced and discussed,

2.1 Governing equations

Whilst the previous studies (Table 1,1) on drilling fluid

flow have all made many simplifying assumptions to reduce the gover-
ning equations to a soluble form, none have presented the full
equations, Itis however instructive both in terms of understanding
the nature of the simplifications, and of understanding the full
complexity of mud flow, to derive the governing equations for
helical flow of non-Newtonian fluids from the equations of conser-
vation of mass and linear momentum,

To do this, we must first model the physical flow, as
described Below. The mud is considered to flow through an annular
gap defined by two vertical cylindrical surfaces: the casing, and
the drill string which is allowed to undergo step-wise changes in
diameter, The drill string need not be concentric with the casing
‘but its eccentricity is considered constant, The flow is taken as
laminar, but will have recirculation zones in the wider section of
the annulus due to the eccentricity of the drill string, and at the
stepwise changes of drill string diameter, The assumption of no
fluid slippage at the boundaries is made, and the fluid is consid-
ered incompressible,

We define a polar coordinate system (r,e,z) with the positive
z-axls being taken as the axis of the casing in the vertical direc-
tion, Such a flow is governed by the equations of conservation of

mass and linear momentum given below, (Bird et al, 65),

Continuity

-:_--aa? (r vr)+ %ba—;(ve)'*- %vz = 0



" r-momentum

Py o4 Ny 4 Bd¥ 3§ + v ¥
ot or ° ree T 29z
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e-momentum
Ve v, Ve Ma Ve VeVe + V2 2%

—-—¢2£-("‘-L(f1%) ¢ L0k + 2le )
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= )0

z-momentum

V. V. Ve DV aV}
svaig V. L2 -2 Y3 V, 9%
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o (rar(r?’*) YT +—£&) s

with the boundary conditions:
v, = v, = 0 at both walls
ve = O at casing
and v, = lel at drill string,
Where g is the gravitational acceleration
(Ve 4V »Ve) is the fluid velocity
P is the fluid pressure
t is time
¥ is the fluid density
R1 is the diameter of the drill string
2 is the angular velocity of the drill string

o —
" A
Ler Tro tey

and T = ’f

A
i - 7;9 ¢2 |1s the stress tensor,

(
T T G



For Newtonian fluids, solution of the above system effec-
tively involves solution of the full Navier Stokes system ; and
thus, clearly, for the more complex non-Newtonian fliuds much
simplification is required before solution may be attempted,

One such simplification is the assumption of non-recircul-
ating flow which, whilst still retaining the axial and rotational
components of velocity, necessitates constraining the drill string
to be concentric and of constant diameter, As the fluid is incom-
pressible, the radial component of velocity will then necessarily
be zero, Further, with the drill string concentric, all derivatives
with respect to : @ _ will become zero, The governing equations

of continuity of mass and momentum will thus become:

continuity

( a tautology)

r-momentum

Va 1) - Yoo, 2T,
"TTQ = - ’(rar(rTrr) —E}+ Fe
?Ir

e-momentum
| 2 (A~ -2 or
s cwdef= o(GEl) 5
z-momentum

R
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The governing equation system has now been reduced to a
much simpler form, but velocity profile analysis would still involve
solution of three simultaneous partial differential equations with
-3. independent variables, We may further simplify the problem by
considering that the flow is steady state, with end effects being
negligible, Thus all derivatives (except pressure) with respect to
z and t will become zero, and the resulting system will involve the

following three momentum conservation equations,

r-momentum

| T N

%) - e =-gF + P2
e-momentum

’:’*%»(r“ffe) = 0 2

z-momentum

S
o

L(ry,) = M3~

A
v

1
r

We note that some progress may now be made towards integrat-
ing the latter two equations of this system,

Integrating with respect to r we obtain:

e~momentum

T = %

-

z-momentum

L= L(r-4£) + B

where A and B are constants of integration,(Rivlin,56 and others),
This approach has formed the basis for much previous work on helical

flow, and on axial flow,in annuli, (See section 3,1),
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2.2 Fluid models

For the solution approach adopted by the present work, it is
now necessary to introduce some ' fluid model ' relating the compon-

ents of the shear stress tensor

Yr Yo %
l - or e ‘oz
Er e %z

to the shear rate or ' deformation rate ' tensor

Yr Are AI'Z
— r Do 4o
= VNN

The components of the deformation rate tensor 4 in polar coordin-
ates are (Bird et al, 65)

A= 2( ) —3EY
Boo™ (% s X) -2V
Azz‘= Q/(M-) —%_(Y\“]')

z
Are =Aor - r?ar(l:?)

A-A73

-+ oo
- Ve oV,
Aez = Aze a_{ + 29
rz ;Azt or + ot

where (Y"'\.{) - % .g_r(rv,.) + ,’l: 6_‘49 4 %\_/:

It may be shown (see appendix A) that for the steady state
laminar helical flow discussed in 2,1 the shear rate tensor takes

the form @

12
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ﬁk(
+
3l
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_ Vs 8V
A = r tor . 0 (E2)
FAY 0 0
or

Once a relationship between the stress tensor and the shear
rate tensor is known, it may be inserted into the helical flow
system (E1l) to produce a new system in which the dependent variables
are velocity components instead of stress components, As‘noted in
chapter 1, drilling fluids exhibit shear rate dependent viscosity,
viscoelasticity and time dependence, and we look in turn at stress/
shear rate relationships or ' fluid models ' describing these
properties, First, however, we consider the case of a Newtonian
fluid model and show that use of this model leads to an equation

system with a simple analytical solution,

2,2,1 Newtonian fluid model
In this model, the elements of the shear stress tensor are

linearly proportional to those of the shear rate tensor, That is
T--24

where M is a constant, referred to as the ' viscosity ' of the

fluid, Insertion of this relationship into the system (E1l) gives

r-momentum

2
M .. 1 4P
r ¥ dr
e-momentum
Seks e 2) = o
dr r or
z-momentum

-;i“:r(r%) — ﬁ(?ﬂ‘ftg)
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In this system the r-momentum equation only relates angular
velocity to the resulting radial pressure gradient, whilst the
e and z component equations are independent, Thus, in helical flow
of Newtonian fluids, there will be no interaction between the axial
and angular components of velocity, A simple analytical solution of
the momentum conservation equations fer velocity profiles is avail-

able (Langlois, 64),

2.2.2 Shear rate dependent fluid models,

This type of model has a shear stress, shear rate relation-
ship of the form

T=40) 4

where f(g) is a scaler function of the shear rate tensor, This type
of fluid has been referred to as a " generalised Newtonian fluid "
(MCEachern, 66, and others), Many non-Newtonian fluids may adequ-
ately be described by this type of model, and indeed most engineer.
ing calculations for practical applications use such a modelz (Bird
et al, 65),

Since f(g ) is a scaler function of Q it must remain
unchanged by transformations of the coordinate system, Consequently
it must depend only on the three invariants of the tensor é -

That is on

I, = 2; ;i

I, := Zi ZJ' Az 450

13 = DETERMINANT OF é

The firét invariant I1 can eaéily be shown to be Z(Yi.x{) which
is zero for incompressible fluids, and for many simple flows
including helical flow the third invariant is also zero, The third
invariant is often assumed to be unimportant for practical engineer-
ing calculations even when it is non-zero, (Bird et al, 65),

Thus, for practical calculations, we may take the constitut-
ive equation for shear rate dependent fluid as

T = f(4:0) 4 (E3)

Inserting this relationship into the governing equations (El),

using the values for é} given by equation (E2), we obtain:

14



r-momentum

2
v

e . 4P
\f T dr

e-momentum

413 cqiay 2 -
—d—r{r f(g.g) dr 0

z-momentum

3 JLECRITIE

where w = ve/r

vV =Eyv
z

0= yg- 5

It is sufficient to solve only the e and z momentum equations to
obtain the velocity profiles, as the r-momentum equation merely
relates the angular velocity to the resulting radial pressure
distribution, The two equations must however be solved simultan-
eously sinceithey are coupled through the term f(g;:g).

For the present research a computer program ' MUDFLO " was
developed to solve these e and z momentum equations simultaneously,
The equations are solved in the above form, with the fluid model
Being introduced numerically during solution, rather than analytic-
ally before solution is attempted, MUDFLO can thus attempt solution
for any fluid model of the form (E3), and with only minor modificat-
ions could attempt solution using tabular fluid behaviour data
instead of a mathematically defined model,

Many empirical models of the type (E3) have been used in

practice and we list the more common ones below,

BINGHAM PLASTIC

Used by the oil industry to describe the behaviour of drilling
muds, this model has the property of a ‘'yield stresd.,The model is

defined as follows

T
T[4 sle e sap pu

15



A = 0 when %(g:g) L’QZ

where the constants A and T, are the ' plastic viscosity ' and the

[

' yield stress respectively, T, has the units of stress and A,

has the units of viscosity,

POWER LAW MODEL
This is another model used by the o0il industry to describe
the behaviour of drilling fluids, It takes the form

T "-{“{J%(Q:Q) |n-1}9«:

where the constant m has the units of viscosity and n is a dimension-

less index,

ROBERTSON AND STIFF MODEL

Robertson and Stiff (76) proposed a model for drilling fluids incorp-
orating the yield stress property of the Bingham model and the stress
shear rate characteristic of the power law model, The proposed model

is actually a generalisation of these two models and takes the form

T={s(Viggr + ©)° /%<é=é>} 8

where A,B and C are constants,

Robertson and Stiff found that, using this model, they were
able to predict actual drilling mud behaviour with consistently
greater accuracy than with using either the Bingham or power law

models,

BRIANT MODEL

Another generalisation of both the Bingham plastic and power
law models is the '"'systeme de Briant" described by Martin (68),
It is defined as follows

’Z’={+ Lo A
~ Y m‘/gré—?zgy =

16



where 7”,’t;and m are constants,

Many other models of the form (E3) have been proposed, but those
mentioned above are the most commonly used, (Coulson,71; Skelland,

67; Slawomirski,75 ; Bird,65),

2.2,.3 Viscoelastic Fluid models

We next consider fluid models which take into account the
more complex fluid properties of viscoelasticity as well as shear-
rate dependent viscosity, Whilst many papers exist discussing this
type of fluid model, few practical applications have been made,

Nevertheless, we show that as might be expected, in steady
helical flow of viscoelastic fluids, the elastic characteristics
will exert an influence only at the inlet and outlet of the flow,
Consequently, an analysis based on the constitutive equations of
purely viscous liquids should be adequate for engineering design
purposes where the inlet and outlet conditions are of less import-
ance, That is, in many cases we may use the constitutive equation
(E3) to describe with reasonable accuracy steady helical flow of

viscoelastic fluids,

OLDROYD and MAXWELL MODELS
The Oldroyd fluid model is a simple model incorporating

viscoelastic characteristics, It is defined by:
1)+, &)
Z-F?ldt(z) Ae+2, E'Eé)

where/?is a constant term with the units of viscosity, and 2,
and ), are known as relaxation times for the fluid,

The Maxwell model is a special case with A, =0, (Skelland
67).

Clearly, with steady state flow, all derivatives with
respecf to time will be zero and hence the constitutive equation

for these fluids will reduce to that of a Newtonian fluid:

-8
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Thus with this model, in steady state flow, the viscoelastic
properties will have no effect, and the viscosity could be taken

as shear rate independent,

GENERAL VISCOELASTIC FLUID MODELS

Several papers have been written by theoretical rheologists
on the helical flow of more complex viscoelastic fluids, Such
fluids include provision for the stresses that arise in viscoelastic
fluids normal to the direction of flow, known as the Weissenberg

effect, (Fredrickson 64),

Both Fredrickson (59) and Rivlin (56) used the ™ model
for fluids of the differential type ' developed by Rivlin (55).
In this model, the stress tensor is expressed as a polynomial in

the Rivlin/Erickson tensors A 3""'én‘ The coefficients of

2,
this polynomial are scaler invariants of these tensors and are
expressable as polynomials in the traces (I,E, sums of diagonal
elements) of products formed from them,

The Rivlin/Erickson tensors are defined recursively as:

A
ir - [ ij] for r=1,.,,.,n

where
’ Vi, %
4 Xr X
and ) 3 () 3 (r)
r4) ) Air ELﬁkI { av% + A7)
Ky= S+ 2 * mZ m oy

for r.® 2,...50,
where (%;,% ,%3) = (r,e,z) 5 (v;,vy,v3) = (Vv,v5,v,) and the
indices i,j,1,m run from 1 to 3,

Rivlin shows that in helical flow of incompressible fluids

A_= 0 for all r greater than 2, and so the stress tensor may be

=Y

written @
= _P 2
L+ '(121 + °<2’3t ‘(_ﬁél + °<‘l:‘, + ds(éléz + Qzél) +
2 2 2 2 2.2 2.2
eyl T ) T (A + 8)) + QAN + 454D

18



whereo(l,o(z,,,,,o(s are polynomials in the ten scaler invariant

traces of the non zero products of —él and 52 3 and Iis the identity

tensor,

Rivlin further shows that for helical flow,

== dw dv |
0 ra—{_- -d—r‘
dw
é 1 b o —& 0 0
dv
ar 0 0

Hence as indicated by Fredrickson (59), the non zero traces

of products of A and A are:

1 2
tr(aly =« tr(a,) =< tral) =’
3 2
tr(a)) =< tr(aiay) = ¥ er(agpl) = ¥

where « = 2{(%)2 + (%)21

Thus, all the polynomials above are functions ofel , We notice also

that A A and X = (Q :4) , and hence substituting the values

=
g
=l &

for él and &2 into the above expression for E , we see that the

components of U may be writtenas follows,

T, = -P + N
Pow -P + ')\Z(oC) {rw'}z
Yo = P+ R0 {vi}?

'7&3( o) rw'

~
"
®
n
'_e
n

er
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]

'tzr . 7\3(0(,) v

rz

'tez - %ze - 3‘2(‘() e
where 7\1(*’(), ?\2(() and 7\3(06) are polynomials in o« and '
denotes differentiation with respect to r,

Comparing these expressions for the components of the stress
tensor with those obtained earlier for shear rate dependent fluids,
we see that since only the ftre and ’trz stress terms are of import-
ance for velocity profile calculations, we may consider viscoelastic
fluids of the differential type as being simply shear rate dependent
fluids. That is, for the purpose of velocity profile calculations,
we may once again use the model (E3) with f(4 : Q) being a polynomial,

Coleman and Noll (59) perform a similar analysis for the
" general fluid model " (fully described by Noll(58)) in which the
state of stress at a time t is determined not only by the state of
motion at that time, but by the kinematic history of the fluid up to

the time t, The general fluid model includes the model for fluids of
the differential kind as a special case and according to Coleman and
Noll is " believed to cover almost all real fluids (whenever thermal
and other non mechanical effects can be disregarded) and in particular
includes fluids which exhibit long range hereditary effects such as
stress relaxation,"

The results from this analysis are virtually identical, and
the conclusions regarding the present work remain the same, That is
that the model (E3)

T = £A:a) A
is sufficient for the calculation of velocity profiles for general

fluids in steady state helical flow,

2.2,4 Conclusion

The extreme importance of the fluid model (E3) in steady
state helical flow is evident from the above discussion, Accordingly
the computer model developed in this work was designed to handle any
model of this type, though calculations were only performed for the
models currently in use by the oil industry : that is the Bingham
plastic and the power law fluid,

20



2.3 Non dimensional systems

2.3.1 Introduction

At this stage it is appropriate to consider the introduction
of dimensionless variables to the governing equations for helical
flow, Using these dimensionless variables, we may collect the various
normalising constants into a small number of dimensionless groups
with each representing one degree of freedom of the flow system,

In this way, the number of parameters required to specify a particular
flow situation is reduced from the number of physical variables to the
number of independent degrees of freedom for the flow, For power law

fluids and Bingham plastics this number turns out to be three,

2.3.2 General dimensionless system

We note that since the viscosity function f(Q:,%) depends on
the shear rate (4:2) = 2( (rw')2 + (v')2 ) whicg,clearly depends
on both velocity components, and since the two governing ODE's are
coupled by the viscosity term, we cannot use an axial velocity refer-
ence value as well as a rotational velocity reference value,but must
normalise both flow components with respect to the same reference

value, Since W. is the (known) drill rotetion’ speed, we take this as

1
the reference and dafine dimensionless vaviables as follows
*
r = r
/RZ
*
w = w/W1

*

v = v7w1R2
where R2 is the outer radius of the annulus,

It is uvsual to normalise body force terms against the value
P8 , but since the only body force term is the constant term P , this
seems a pointless exercise,

The dimensionless groups involved will clearly depend on the
particular fluid model being considered, but we may define a general

non dimensional viscosity as

* %
ey = 2 £)
where F has the units of (mass)(1eng>,t:h)"1(time)-1
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Inserting these dimensionless parameters into the governing equation

gsystem for helical flow, we obtain the dimensionless system:

L o srury v § =0
(E4)
1 d . _ BRr

Where o* is defined in the following way

&
i

2{? + 92}

2w {@wn? 4+ (]
= \J:'gc *

The above system is dimensionless and applies to any fluid model, In
2.3.3 and 2,3,4, we develop a more detailed system for the particular

models of power law fluids and Bingham plastics,

2,3.3 Dimensionless systems for particular fluid models

For power law fluids, we have
-1
fl) = ml%Faln
= mwrl"l‘sf]:@" n-l

and so we take

pr(ry = ||l

o]
Thus the RHS of the second equation of (E4) becomes .

m WI

It is now clear that for power law fluids, there are only three degrees

of freedom for the velocity profile solution, These are:

1) The radius ratio of the annulus k = R1/R2
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2) The fluid parameter n

By

3) A global'system parameter' which may be

n
m w1

considered as a nondimensional number relating the
axial driving force to the speed of rotation of the

inner cylinder,

For Bingham plastics, we have

| T
f =
(<) Mo+ 7_;__*,0_

which covers all cases, provided the convention

f(x) = o2 = A= 0

_—

is accepted,
Now, £y = f11 + —-j 1 }
¢ W o /Y,
and thus, we take
F = Ho

NE l
and fr(*) = 1 +-{ ——3——~}
( ) /L(DM Jl’;z

Im this case the RHS of the second equation in (E4) becomes

P *
AV
_and again we have the three degrees of freedom :

' 1) The radius ratio k

2) The fluid parameter Lo

Mo,

3) The global 'system parameter'

P Ry
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In both Bingham plastics and power law fluids, then the inter-
dependence of parameters is such that only three degrees of freedom are
possible, For power law fluids these are split conveniently into geom-.
etric, fluid and system parameters, It can be seen from the definition
of these parameters that for power law fluids, increasing the scale of
the annulus (I,E, increasing R2) is equivalent to increasing the axial
pressure gradient, increasing the consistency index of the fluid, or
decreasing the rotation speed by a suitable amount,

Clearly there is a similar inter dependence between parameters
for Bingham plastics, though the second dimensionless parameter is not

purely a fluid parameter, but also depends on rotation speed,

2.3.4 Derived parameters

Any dimensionless parameter (e,g, volumetric flow rate) which
may be defined in terms of the above dimensicnless variables will also
be dependent only on these three degrees of freedom, and thus if
solutions are calculated for ranges of the degrees of freedom, then
they will be applicable to any particular real system simply by scaling
up,

Because of this, the computer program MUDFLO was used to produce
velocity profile graphs for the ranges of the degree of freedom param-

eters that occur in o0il well drilling,
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CHAPTER 3
WORK ON DRILLING FLUID FLOW

In this chapter we discuss work relevant to the helical flow
of drilling flow that has been carried out, 3,1 is concerned with
previous work whilst 3,2 covers the work of the present thesis and its

relation to the previous work,

3.1 Previous work

Much work on subjects related to the helical flow of non-
Newtonian fluids has been carried out, with most of the papers being
directly concerned with obtaining a better understanding of drilling
fluid flow,

Previous studies may be classified acéording to the solution
method used and also according to the number of velocity components
considered, The earlier work on the subject, and more recent work
on developing velocity profiles have concentrated on one flow component
only; usually the axial one, This may be thought of as an approximation
to helical flow or as a particular case of helical flow when the rotat-
ional component is zero,

Solution methods may be divided into those which use the
integral form of the momentum equations and those which use the diff-
erential statement of the equations, Most literature uses the integral
equation formulation, but the paperé which tackle the more complex
flow fields generally resort to the differential formulation as does
the present work,

We start in 3,1,1 and 3,1,2 by giving a description of the
integral and differential formulations and the solution methods
employed in each case, This is followed by the discussion of previous

work,

3.1.1 The integral formulation
Recall from chapter 2 that the equations of
momentum conservation may be written in terms of the shear stress

tensor Y as follows:
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T 27 - . 0
= t T r =
(E5)
Jrrz l't
dr + r re = m

with 0) a constant,
Rivlin(56) and others showed that integration of this system

leads to the 'integral formulation' of

2
g d = B/r
re (E6)

Yy, = ¥Pr + A/r

where A and B are constants of integration,

Fredrickson (60 & 64) and Coleman & Noll (59) showed that
knowledge of A and B and the viscosity profile leads to knowledge of
the velocity profiles through the integral equation system

e
1
Ml Bjr TR

R

2 2
XPr“4A
V= J PR

r
which can be obtained by substituting the fluid model T = £(¢)A4
into (E6) and integrating with respect tor, -

Fredrickson(60) and Savins & Wallick(66) showed also that
knowledge of A and B leads to knowledge of the viscosity profile,
Fredrickson's relation between A&B and the viscosity profile was based
on a trial and error calculation method ; whilst Savins and Wallick

developed a more practical method based on the equation
£(oL) ol 2{"(2 e &
re rz
= @O o+ am? o+ Y

Finally, the integral formulation solution metheod hinges on the

calculation of A and B by trial and error method,
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For o6me velocity component only, the procedure is much the
same, though simpler since A will be zero for rotational flows and B

will be zero for axial flows,

3,1.2 The differential formulation method
This method is based on the direct substitution of the fluid
model T = f(%)é into the equation system (E5) resulting (after

rearangement) in the system

R S T
(E7)

" 1 f'("() 1 = @
v+ {'r’f (<) B M £

Solution of this system is usually (see Zienkiewicz(74) and Guickes?75))
performed numerically by the following algorithm,

Firstly a discretized form of system (E7) is set up, and
separately, a fluid model relating velocity estimates to an estimated
viscosity distribution is constructed,

Solution proceeds as follows:
i) An initial guess is made for the viscosity distribution,
ii) The discretised system .is solved using the viscosity distri-
bution to give estimated velocity profiles,
111) The fluid model is used to construct a new estimated Sl
viscosity distribution,
iv) Convergence of the calculation is tested,
.. If convergence has been achieved, then stop ; if not, return
to (ii) and continue,

This algorithm is further discussed later and forms the basis of MUDFLO,
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3,1.3 Integral solution method for one flow component only,
In this section we discuss papers which have used the integral
formulation for one component only flows, Of these only one (Slawomirski

(74))considered rotational flow, and its discussion is left till last,
The rest concern the axial flow of non-Newtonian fluids in an annulus

which may be considered as an approximation to helical flow,

The integral solution method is essentially the same whichever
fluid model is used, and first appeared in a paper by Laird(57) referring
to Bingham plastic flow, Fredrickson and Bird (58) extended the method
to power law fluids of index n=1/s for s integral, and presented tabular
results of global flow parameters such as flow rate, radius of zero
shear stress and ratio of maximum to average velocity for both Bingham
plastics and power law fluids,

These tabular results have been referred to by many of the
later authors, and were substantiated by experimental work discussed
below, (McEachern (66), Tiu & Bhattach (74).

It was considered that these results might also form a basis
for testing any computer model for helical flow developed for the present
thesis,

Parslay & Slibar (57) also produced a paper concerning the flow
of Bingham plastics, The paper was described as dealing with helical
flow, but the assumption that the angular velocity had little influence
on viscosity was made, and the very complex expressions obtained for
velocities and volumetric flow rates really concern axial flow only,

.No numerical results were presented by Parslay & Slibar,

In a paper by McEachern(66) the integral formulation method was
used to calculate pressure drops, flow rates and radii of zero axial
shear stress for Ellistfluid models which are a generalisation of the
power law fluids, Some experimental measurement of flow rates and
pressure drops was carried out and the results compared with theoretical - .
predictions made using three fluid model approximations to measured
viscometric data,

The models used were:

i) Generalised - Newtonian fluid represented by direct

interpolation of tabular viscometric data,
ii) Ellis fluid model,
iii) Power law fluid model,

TNote: The E1llis fluid model is not widely used, and accordingly was
not defined in 2.2 . We are however interested in M®Eachern's
work, since it applies to power law fluids also. '
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The conclusions were that the generalised Newtonian and Ellis fluid
models produced good results in all cases fnvestigated, whilst the power
law model produced good results only if great care was exercised

in applying the model to the viscometric data, That is,with the power law
model, " particular attention must be paid to the range of shear stress
over which the power law parameters are evaluated,"

Tiu & Bhattach (73) extend Fredrickson & Bird's work on fully
developed velocity profiles for power law fluids to developing flows by
introducing a boundary layer calculatio&t Photographic measurement of the
velocity profiles by the same authors (74) was found to support this work
and " not only establish the measurement technique for velocity profiles
in an annulus,but also substantiated the theoretical work of Fredrickson
& Bird (58) which had never been compared with velocity profile data
before!

Mishra & Mishra (76) used the integral formulation method as a
basis for developing a simple approximation to Fredrickson and Bird's
solution for use in boundary layer calculations, Mishra & Mishra provide
a useful summary of some of the previous work, but otherwise, the paper
is of littlg relevance to the present study,

Slawomi;ski (74) discusses the helical flow of drilling fluid
flow quite generally, and gives a clear statement of the assumptions that
must be made to approximate drilling fluid flow by a helical flow model,
In order to obtain a simple analytical solution however, the author makes
the further approximation that the axial veloéity gradients have little
effect on viscosity (C,F, opposite assumption by Parslay & Slibar above),
Because of the simpler nature of the rotational governing ODE, this leads
to an analytical solution of the integral formulation,

The paper serves as a useful link between the solution oriented
papers discussed above and the theoretical rheology-based papers of the

next section,

Note: This work concerned axial flow only.
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3.1.4 1Integral solution method with two velocity components

As mentioned previously, work falling into the scope of this
section may be neatly divided into papers that theoretically discuss
rheological concepts using helical flow as an example, and those
concerned with obtaining solutions, We separate our discussion accord-
ingly and treat the theoretical papers in subsection A and the solution

oriented papers in subsection B,

3.1,4A Theoretical work

Much of the following discussion was presented in 2,2 and 3,1.,1
but is repeated here for completeness,

The integral formulation of the governing equations was first
introduced by Riv1lin(56) who discussed helical flow of fluids of the
differential type as a superposition of axial and rotational flows,
Solution of the integral formulation was not discussed and Rivlin
proceeded to derive explicit expressions for the components of the shear
stress tensor in terms of the fluid parameters and the velocity profiles.

Using the same fluid model, Fredrickson(60) developed expressions
for velocity profiles, volumetric flow rate and torque in terms of
pressure gradient, relative rotational speed and rheological parameters,
Fredrickson proposed a feasable though impractical method for the "%}
solution of these expressions by trial and error,

The work of Coleman and Noll (59), though using a slightly
different approach, produced expressions similar to those of Fredrickson
for the velocity profiles, flow rate and applied torque with a fluid of
the general type,

A short review of these three papers is given by Fredrickson(64),

3.1.4B Solution oriented papers,

The work discussed in this section was all directly concerned
with the problems of drilling fluid flow, and much of it was directly
supported by oil companies,

Savins and Wallick(66) developed a practical solution method
for the equations of Fredrickson(60) based on the numerical evaluation
of the constants of integration A and B,as defined in 3,1,1, The utility
of this work was considerably reduced by its restriction to fluid models

having a finite positive apparent viscosity f(e¢) for all values of o
in the range zero to infinity,
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This requirement is not met by the commonly used power law and
Bingham plastic models,
Computations were carried out by Savins and Wallick for the

Oldroyd 2 model which may be defined as follows

2
~ 14 T, (o)
e %[‘}’Zﬂ
i

where 30 » I, , and T, are constants with %0 having the units of viscosity
and V] & (,having the units of time,
It is clear that this model satisfies the restrictions imposed by
the computation method,
Numerical investigations were carried out with fluid parameter
values fixed as
7, = .06 seconds
T, = ,02 seconds
10,0 g(cm)"l(sec)-1
for radius ratios of ,95, ,8 and ,5,

—~
o
n

Results were presented graphically, demonstrating the variation of
viscosity profiles, flow rate and torque with axial pressure gradient and
relative rotation speed, Velocity profile results were not presented,

Between 1970 and 1974, Walker, in conjunction with personnel
directly employed by the o0il industry, developed a computer program
suitable for the ' in field ' evaluation of drilling mud flow parameters,
The computer calculation was bagsed on a mathematical model similar to
that of Savins and Wallick, and was first described in Walker(70),
Walker (71,73 & 74) describe the development of this basic calculation into
a sophisticated tool designed to assist those responsible for the control
of drilling mud flow parameters, The outputs from this computer calculat-
ion (as described by Walker (74)) were in the form of empirical indices
giving information on predicted annular velocity, annular pressure loss
due to circulation and laminar/turbulent flow transition,

Walker(70) describes experimental verification of the basic
model for helical flow which relies on the work of Fredrickson(60) and
Coleman & Nol1(58), The author states that " the method of calculation
has been shown experimentally to be correct for a polymer liquid in .
helical flow (Ref, Rea & Showalter 67) and was used by Savins and
Wallick to predict velocity profiles and pressure drops in the annulus
of a drilling well assuming that the liquid followed a 3-constant Oldroyd
model, " Whilst the theory outlined in the paper does seem in line
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with the work of Fredrickson, Coleman & Noll, and Savins & Wallick,
this statement is contradictory since the calculation method used by
Rea & Showalter was that described in the thesis of Dierckes(65) and
was very different (see 3,1,5),

It therefore seems reasonable to suppose that, despite the
applicability of Rea & Schowalter's computer program to power law
fluids, the work of Walker in this paper suffers the same restrictions
on fluid models as the work of Savins & Wallick and can not be applied
to power law fluids,

Walker (70) appears to have used direct interpolation of visco-
metric data in his computer program rather than introducing a specific
fluid model,

Experimental measurements of the variation of pressure drop
with volumetric flow rate and rotation speed for four different benton-
ite solutions in a helical flow test rig were carried out by Walker
and the results, when compared with predictions, were found to be
within 25%in most cases, In two cases, however, differences of up to
45% were found, A comprehensive discussion of the errors and possible
causes is presented, and the conclusion is drawn that:

" The method of laminar helical flow calculation proposed by
Coleman & Noll and also by Fredrickson is valid for bentonite systems
and is recommended for calculating annular pressure drops with
rotating drill pipe.,"

Sufficient data is presented in this paper to allow comparisons
with the MUDFLO predictions either by:

i) Using a power law model approximation to the viscometric

data given by Walker,
or ii) Modifying MUDFLO so that it can run using interpolation

of viscometric data instead of a specific fluid model,

It is recommended that this be carried out in conjunction with an
experimental test program in order to obtain a more meaningful analysis
of any comparisons made,

Walker(71) describes the extension of the basic mathematical
model with the calculation of empirical indices to describe predicted
drilling rate, hole cleaning efficiency,and possible erosion of the
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hole for any given flow conditions with a given fluid, The rheological
model used for the computer calculations described in this paper was
" mathematically simulated by a series of power and 3-constant models'",

Examples of considerable cost savings made through the use of
this computer program are given in the paper,

Walker(73 & 74) describe the same work, but with Walker(73)
being presented at the Society of Petroleum Engineers conference in
London, April 1973, and walker(74) being published subsequently in
the Journal of Petroleum Technology,

These papers describe the further development of the computer
calculation, and the solution of difficulties associated with its field
operation, A turbulent/laminar transition prediction index is introd-
uced in the form of a " z-stability parameter'" based on the work of
Ryan & Johnstone(59) on the laminar/turbulent flow transition of
non-Newtonian liquid flow in straight tubes, This z-value is a function

of radius and may be defined as

n|~6
<
L~
~
N
Q.
<

z(r) = 0,2078 (Rz - Rl)

and may be approximated by
z(r) = g?; ) -0 eor power law fluids

where
Tw is the shear stress at the tube wall (1bf sec / 100ft2)
and v 1is the average annular velocity (ft/min) ,
The criterion is accepted by Walker(73) in that laminar flow is
assumed if the maximum value of z(r) is less than 808, Charts of
z(r) values for various flow conditions and fluid parameters are
presented in both papers,

The fluid model used in this version of Walker's computer
program consisted of two power law models: one to be used at low shear
rates and the other at high shear rates, It thus appears that the
problem of rheological restrictions on Savins & Wallick's calculation
method were overcome by Walker, but no indication of how this was done

is given in either of the papers,
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3.1.5 Differential solution methods,

A basic outline of the differential formulation was given
in 3.1.1, and we now discuss papers that have used the method,
Zienkiewicz(74)discusses the steady flow of non-Newtonian
fluids in parallel sided conduits such as flow through parallel plates
or an annular gap, The flow is considered to be in one direction (z say)
with all derivatives except pressure being zero in that direction,

The governing flow equation is thus the ' Poisson equation ':

a_iu} e_{_f:a . 0P
Ox{ gox + oY 8oy * fg Y 0

Transformation into polar coordinates, and constraining derivatives
with respect to e leads to the equation for axial flow through an
annulus (as a particular case),

Zienkiewicz discretizes this equation directly using the
Galerkin finite element method, Application of the boundary conditions
allows the resulting nonlinear algebraic system to be solved using the
iterative algorithm outlined in 3,1,2,

Examples of solutions are given for flow of Bingham plastics
through circular pipes, through an annulus, and between parallel plates,
and for power law fluids in conduits of square cross-section, '

Guickes(75) considered the case of axial flow of non-Newtonian
fluids in an eccentric annulus, Solution was performed using a bipolar
coordinate system to describe the annular space,

Once again, the governing equatiocn was a nonlinear partial
differential equation, The flow eiuation was discretised using finite
difference methods, and the resulting system solved using the algorithm
of 3,1,2, Results are presented for Bingham plastics and for power law
fluids and show the interdependence of volumetric flow réte, pressure
gradient, relative displacement of the cylinders and fluid propertise,
Comparison of results for the particular case of concentric annulus with
the results of Fredrickson & Bird showed good agreement (within 1%)

for po 1
power law fluids with fuder nj ¥, Computational difficulties were

encountered, however, for n<% . and for Bingham plastics,
Guickes attributed this to the existance of very small velocity gradients

over a large section of the annular space, and suggested that the use

of an unevenly spaced grid might be of some assistance in overcoming this

problem,
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Two papers co-authored by Schowalter (66 & 67) concerned the
experimental verification of some experimental concepts using helical
flow of a polymer solution, The work program involved the experimental
verification of computed flow rate and, later, velocity profiles, but
only covered one set of flow conditions, Schowalter & Dierckes (66)
describe the experimental flow rig and the ilow rate measurements whilst
Schowalter & Rea (67) describe the optical technique used for measuring
velocity profiles, Schowalter & Dierckes discuss integral formulations for
the solution of the governing equations for helical flow but conclude
that " it was found more convenient to form differential equations for
the two components of velocity," This was done by substituting the power
law fluid model directly into the governing equations (E7) and resulted
in the following pair of equations which apply specifically to the flow

of power law fluids,

w o, W { (20-1) (v")° + (a-2) (zw")°
v nr V2T (v

" k(l-n) =
- ——"—-{ v L% 4 @en?] } 0

nr

- 1{ @)’ + GmGy’| v
n (v + (rw')é T

L P i[n(rw')z + (v } -

(vg)Z + (rw')z} ¥(n+1)

The complexity of this analysis arises from the inclusion of the specific

fluid model at this stage, In the algorithm of 3,1,2, the inclusion of

the fluid model is left till the computation, with the analysis being

left simpler and of more general applicability, Dierckes(65) developed

a novel solution method based on the transformation of the above two 2nd

order ODEs to a system of four first order ODEs, Solution of the trans-

formed system was performed by a trial and error application of the Runga-

Kutta-Gill procedure, Schowalter & Rea (67) present the computed and meas-
ured velocity profiles for the flow and conclude good agreement, The

results are compared with MUDFLO ‘calculations in chapter 4,
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3,1.,6 Summary and discussion,
In the above two methods of solving the governing equations of

helical flow have been presented:

i) The integral formulation in which the governing equations
are analytically integrated and solution is effected by

evaluation of the constants of integration,

ii) The differential formulation in which & numerical procedure
is directly applied to the governing equations to obtain a

solution,

It is significant that the more complex cases of flow in an eccentric
annulus (Guickes 75) and flow with two non zero velocity components
(Zienkiewicz 74) which involve partial differential equations have been
tackled using the differential formulation,

Indeed it is difficult to imagine the successful! extension of
the integral formulation to these and other more complex cases such as
those discussed in chapter 2, On the other hand, the differential formulat~
ion with a finite element or finite difference procedure is of more general
applicability and could prove readily adaptable to such cases,

Savins & Wallick (69) compare the integral and differential
formulations as they apply to axial flow of power law fluids, Their
integral formulation is an extension of Fredrickson & Bird's (58) to real
power law index n, whilst their differential formulation was based:.on the

equation
2 % ( l'n)

¥ + g? (v") = 0

nv'" + .
which is obtained by substituting the power law fluid model directly into
the governing equation, Solution of this equation was performed using
conventional (non-iterative) finite difference methods,

Whilst Savins & Wallick conclude that the integral formulation
is more accurate for this problem, the flow rates predicted by the differ-
ential formulation were within 1% of those obtained from the integral
formulation, It is therefore reasonable to expect good results from the
differential formulation,

‘ It was thus decided that the present work should utilise the

differential formulation to investigate the helical flow of non-Newtonian
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fluids, and should consider the extension of this method to more complex
cases. A further advantage gained by using this formulation is that the
computer program developed in this work is applicable to any simple fluid
model and the restrictions of Savins & Wallick (66) for the integral

formulation are avoided,

3.2 Work of the present thesis,

The work undertaken for this thesis included the prcduction of a
set of dimensionless charts from which the velocity profiles of drilling
fluids in helical flow may be determined,

To do this a computer program 'MUDFLO' was developed using finite
difference techniques and the differential formulation described in 3.1.4
The program is described in 3,2,1 and 3,2,2, and is listed in the appen-
dices, 3,2,3 gives details of the calculations performed using MUDFLO,

whilst the results are presented in chapter 4,

3.2,1 Basis of the computer program,
We recall from chapter 3 (E7) that the governing equations for
helical flow may be written :

w" +{-§ + f;g:;} w' = 0

TR 0 SO A CO 1 N
v +{r+ f(%)}v 1)

where :E = f()A describes a fluid of the simple type,
The quantity f() is often referred to (Zeinkiewicz 74 , Guickes 75) as
the 'apparent viscosity', and its dependence on both v and w makes the
above system difficult to solve, As discussed in 3,1, it was decided to
attempt solution of the system using the differential formulation in
which the viscosity profile is first estimated by a constant distribu-
tion, Velocity distributions are calculated for this viscosity estimate
using finite difference methods, and a new viscosity profile calculated
using the fluid model,The process is continued in this way until the
changes in velocity between iterations is very small,

The basic structure of the calculation, and of the program, is

then as shown in figure 3,1,
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To aid interpretation and further development of the program,
the finite difference application in the algorithm was written to solve

any general ordinary differential equation of the form

y'"(r) + P(r) y'(r) + Q(r) y(r) = R(xr)

where P(r),Q(r) and R(r) are continuous functions, and the boundary condit-
ions are known, The notation used in the program was mnemonically based
on that of Greenspan(71) who adequately describes the finite difference
method, Greenspan(71) and Spalding(70) give central difference scheme
(CDS) and upwind difference scheme (UDS) formulae for the solution of the
above equation and discuss the relative merits of each scheme; the CDS
being generally more accurate, but the UDS guaranteeing a solution,
MUDFLO was initially written incorporating both schemes with the UDS
being used when the CDS failed to provide a solution, Whilst the increased
_inaccuracy of the UDS was found to be negligible with Newtonian fluids
where only one iteration is required, the inaccuracy was found to be
cumulative with errors of up to 30% occurring in iterative solutions for
non-Newtonian fluids, The UDS option was consequently disallowed in MUDFLO,
Solution of the finite difference matrices was performed using the direct
algorithm described by Greenspan(71),

Since experimental verification of results was outwith the scope
of this research project, a criterion for assessing the computer predic-
tions was developed, This criterion was based on the integral formulation

results that

f(«()r—g—i—_’ = T = B/r2

re (ES)
:f(x)%:—:’ - T, = ¥Pr + Alr |

where A and B are constants and:
1) the radius of zero shear stress in the rz plane is given by
r = J(2/P)
ii) the torque applied per unit length to maintain.the relative
rotation of the cylinders is 27B,
Since the MUDFLO calculation gives the velocity and viscosity distrib-

utions and their derivatives at a number of nodes across the annulus,
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an estimate for the constants A and B may be calculated at each node

from (E8), If the variation in estimates for either constant was greater
than %%, the results were assumed poor and were not included in the thesis,
In this way some measure of the progranls performance was obtained, and
values of the physically important parameters A and B were included in

the computer printout,

3,2.2 Description of the MUDFLO program
The MUDFLO computer program is fully self documenting and was
written using FORTRAN in a 'structured' style, with the various functions
of the program being performed by independent program 'modules', In this
way, generality and flexibility of the program were maximised and testing
and development made more simple, Three numerical procedures : 'MOVSET'
(to set up finite difference matrices), 'SOLVSR' (to solve matrices) and
'DIFF' (differentiator) were used in the program, They were developed
independently as subroutines and can be replaced without program editing,
References to the theory used for the numerical procedures are included
in the program listing given in the appendices, The block structures of
the whole program and of its modules were kept identical to those of the
respective algorithms used, and all the variable names were mnemonically
based either on physical meaning or on the notation of a reference text,
Full details of the program may be obtained by referring to the listing
in the appendix, Copies of the program and operating instructions have
been archived on magnetic tape by the RGIT Computer Services Unit and
can be accessed using the archive numbers quoted in the appendix, A list
of variable names is also included in the appendix,
The inner and outer.radius, speed of rotation of the inner cylin-
der, axial applied body force (#) and fluid model and parameters form
" the data input to the calculétion; whilst the output includes flow rate
average annular velocity, torque and drag 1ift per unit length on the
cylinders and the radius of zero rz shear stress, as well as values of
the radius, shear rate, viscosity, velocities and velocity derivatives
at various points across the annulus,
Graphical presentation of velocity and viscosity distributions
was possible using a semi-automatic sequence of data handling programs,

including a CALCOMP digital plotter control package written by W M®Ombie
of RGIT,
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3.2.3 Calculations performed using MUDFLO

As an initial check on the performance of the program, some
finite difference calculations were performed for Newtonian fluids
and the results compared with the exact solution described by Langlois
(64). Results were found to be in excellent agreement, with CDS
predictions being within ,05% of the exact solution,

The only experimentally measured velocity profiles for helical
flow of non-Newtonian fluids available are those presented by Rea and
Schowalter (67) for power law fluids, A detailed comparison of MUDFLO
predictions with this experimental data is presented in chapter 4,and
excellent agreement is again concluded,

It was desired to produce dimensionless velocity profile charts
for both Bingham plastic and power law fluid models, but difficulty
was encountered in computations for Bingham plastics, Similar difficulty
was encountered with axial flow of all but Qery nearly Newtonian
fluids (e.g. power law with n)>»,8) ,It is thought that these difficul- -
ies arose from the very low velocity derivatives occuring over most
of the annular gap in these flows and are related to those reported by
Guickes(75).

Calculations were performed for power law fluids in helical
flow with parameters varying over the ranges encountered in oil well
drilling, The variables and velocity profile charts involved were
reduced to a reasonable number by using the non dimensional formulat-
ion of chapter 2 with the three parameters n, k, and %%%%. covering
all possible independent variations of the physical values, The required
ranges of n and k are available from chapter 1, but it is more diffic-
ult to estimate the range of the third parameter, For any value of k,
however, a recommended average velocity is available (chapter 1), and
thus knowing the range of drill string rotation speedg, a range of
non dimensional average annular velocity may be calculated,

Calculations using MUDFLO were therefore performed in the
following way:

i) Choose n and k,

ii) Calculate the appropriate range ofnon dimensional average

annular velocity, )
111) Run MUDFLO with various values of g}%& till the range
of non dimensional average annular velocity has been covered

by the values obtained as output from the calculation.
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In this way, a full picture of the velocity profiles and their
dependence on the various parameters was built up, The results are
presented and discussed in chapter 4,

Calculations for all the practically occurrUB cases converged,
however a few results were rejected on the basis of the result assess-
ment criterion described earlier in this chapter, Those rejected were
once again cases where very low velocity gradients occurred over large

sections of the annulus,

3:2,4 -Conclusion

The conclusion is drawn that application of the present algor-
ithm is limited to cases with significant velocity gradients over most
of the annular gap, Investigation of the exact nature of this limitat-
ion and possible methods ofovercoming it are left as a matter for
further research to be carried out after experimental verification of
existing results and of the suitability of the result assessment

criterion,
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CHAPTER 4
RESULTS

4,1 Comparison with existing experimental data,

Rea(67) studied the flow behaviour of a power law fluid in
an annulus with a rotating outer cylinder, A flow visualisation
technique was used to measure velocity profiles in the helical flow,
Only one set of flow conditions was studied and these are listed in
table 4,1, Rea presented results in the form of two graphs: one of
the modulus of velocity and one of the flow angle, at various radial
positions across the annulus, Data was extracted from enlarged copies
(about 2% times) of these graphs and compared with results obtained
using MUDFLO, The data extracted from Rea's paper is listed in table
4,2 along with a linear interpolation of the MUDFLO calculation, and
the results are presented graphically in figs 4,1 and 4,2, Inspection
of the table and graphs shows that good agreement exists between the
MUDFLO prediction and the experimental results,

Taking the interpolated MUDFLO results to be a statistical
expectation and estimating the variance of the experimental results
from this expectation, we obtain values of 1.4 (cm/sec)2 ‘and 1,1
(degrees)2 for the variances of the velocity magnitude and flow angle
respectively,This compares well with the values of 1,4 and 1,5 respect-
vely quoted by Rea for his computational procedure,

The conclusion may therefore be drawn that the MUDFLO finite
difference approach produces a good theoretical prediction for Rea's
experimental measurements,

Volumetric flow rates obtained by integrating velocity profiles
also show good agreement between MUDFLO predictions and experimental

measurement as may be seen from the table below,

VELOCITY PROFILE FLOW RATE (GALS/MIN) INTEGRATION
METHOD,
MUDFLO prediction, 20,261 Trapezoid rule,
Rea's experimental 20,38 Graphical methed,
data, 21,18 Least squares rule,
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APPARATUS Inner radius = 2,992 + .001 (inches)
Outer radius = 4,000 + ,001 (inches)
BOUNDARY Outer cylinder
i = +
VALUES rotation speed 100 = 1 &pm)
Axial pressure drop = 787 + 6
(dyne/cmzlcm)
FLUID Power law fluid with:

m= 6,93 + ,08 (dyne-sec®®** /cnt)

n = 0,825 4+ 0,023

TABLE 4,1 Flow conditions used by Rea(67)
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NODE RADIAL EXPERIMENTALLY MEASURED MUDFLO PREDICTION

NUMBER POSITION FLOW ANGLE VELOCITY FLOW ANGLE | VELOCITY

(cm) (degrees) (em/sec) (degrees) | (cm/sec)

1 3.800 73.70. 3,00 73.70 0
2 3,838 72,81 9.16 73,20 7.31
3 3.881 72,71 16,81 73,03 14,93
4 3,927 71,71 24,11 72.41 22.51
5 3.973 71.21 31,32 71,78 28,98
6 4,055 70.24 39.58 70,50 39,13
7 4,112 68.97 45,44 69.53 44,69
8 4,202 66,04 51,34 67.79 51,67
9 4,306 64,84 56,37 65.46 57.04
10 4,404 62,87 58,78 62,88 60,41
11 4,469 60.74 59.24 60,87 60,71
12 4,538 3797 60,11 58.30 61,01
13 4,59 54,88 59.63 55,78 60,61
14 4,658 52.59 58. 34 52,31 59,12
15 4,708 48,81 57.33 49,02 58,54
16 4,765 45,24 55,42 44,54 57.23
17 4,806 41,69 55,42 40,71 55.69
18 4,859 36,85 54,46 34,98 54,02
19 4,907 30,63 53,23 28.83 52,81
20 4,959 23,49 52,21 21,18 51.84
21 5,009 14,54 51.50 16,02 ‘51,65
22 5.050 6.57 52,70 5,89 52,20
23 5.080 0 53,61 O 52,83
TABLE 4.2 Comparison of Rea's experimental results with

MUDFLO prediction,
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4.2 Predicted velocity profiles for power law fluids in helical

flow,

In 4,2 we give graphical presentations of the results obtained
by MUDFLO for the ranges of parameters normally encountered in oil
well drilling with power law fluids, In order to reduce the number
of graphs involved, we use the dimensionless formulation of 2,3,3
with the calculation procedure described in 3.,2,3, 1In 3,2.3, it was
shown that the three independent parameters

n (fluid index)

k (radius ratio of annulus)

and PRy

L
mdl

(dimensionless axial pressure gradient, denoted ® in
this section)
are sufficient to specify any particular flow conditions,

In o0il well drilling, n varies from ,3 to 1,0 and is usually
close to 0,7 ,. whilst k varies from ,2 to ,7 and is usually close
to .5 (Chapter 1), Velocity profiles for flow conditions covering
these parameter ranges are presented in this section as follows:

4,2,1 concerns - the most common radius ratio of k= .5,

for various values of n and @,

4,2.2 concerns the commonly occurring fluid index values of

n=_,5and ,7 with k and ® varying,

4,2,3 covers the remaining cases of k = ,3 and ,7 with n and
f variable,

An index to the graphs presented in these sections is provided in
tables 4,3, 4,4 and 4,5,
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4.,2.1 Radius ratio k = .5 ,

This section deals with the results for the commonly occurring
radius ratio of k = .5, Values of n=1,0, .9, .8, .7, .6, .5, and.. 4
are considered with values of @ being chosen to cover the required
range of dimensionless average annular velocity, Three discussions are
included in this section covering angular velocity profiles, axial

velocity profiles and average annular velocities in turn,

(4) Discussion of the angular velocity curves,

. To aid interpretation of these graphs, the curve for £ = 0O
has been included oneach graph, This curve represents the angular
velocity when axial flow has no effect on viscosity and is the curve
obtained when the approximation of Slawomirski(76) (that viscosity 1is

dependent only on angular velocity gradient) is made,

As the fluid index n decreases the angular velocity graphs
(see table 4,3 and figs, 4,3 R to 4,7 R) show increasing gradient near
the inner wall, and increasing influence of P on the shape of the
curves, The curves on each graph are all quite close, and indeed are
all close to the P = O approximation curve particularly when n is
high,

The angular velocity graphs show a curious grouping with an
upper and lower family of curves being formed near the drill string,
a.mixed region in the middle, and then different upper and lower
families near the casing, Since these effects are particularly evident
on fig, 4,8 R ( n =,5, k =,5 ), this case was studied further,

On examining 4.8 R it can be seen that the P = -6,-9 and -12
curvesare grouped together near the casing whilst the /P = 0,-3 and
-6 curves are grouped together near the drill string, It is also
interesting to note that the P = -6,-9 and -12 curves are convex
near the casing and thus have a point of inflection,

For ease of discussion, we divide the radial domain into three
sections which we refer to as:

i) The 'LHS', where the upper and lower families are formed

near the drill string,

ii) The 'RHS', where upper and lower families are formed near
the casing,

i1ii) The 'MIDDLE', where the curves cross,
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Now viscosity is dependent on the non dimensional shear rate

*dw* 2 dv* 2
‘{ T * {—‘;}
dr dr
and increases as shear rate decreases for power law fluids with index
less than one, Conversely it is clear that velocity gradients will be
low in regions of high viscosity,

We consider the effect on velocity gradients and on viscosity
of introducing axial flow to a rotational-only flow, (i.e, of increas-
ing P from 0 ), In: rotational flow, velocity gradients are high
at the LHS and low at the RHS, whilst axial flow has high velocity
gradients at both the LHS and RHS, but very low velocity gradients in
the MIDDLE, Thus, on introducing an axial flow component to a rotating
flow, we would expect to see viscosity decreases first on the RHS, and
then on the LHS, Consequently, we expect increased angular velocity
gradients on the RHS, and then on the LHS, Finally, since the velocity
~profile must remain continuous across the annular gap, we expect a
corresponding decrease in the angular velocity gradients near the
MIDDLE,

Examination of fig,.4,8 R reflects the above discussion in
that increased angular velocity gradients are apparent at the RHS of
the P = -6,-9 and -12 curves, and at the LHS of only the # = -9 and
-12 curves, Further information may be obtained from the 'characteris-

tic function' :

' * 2 *
* dw dv
r —% —'{ %
dr dr

The characteristic function reflects the relative dependence of

2

viscosity on each of the flow components. throughout the annular gap,
being positive when the axial velocity gradients are dominant and
negative when the angular velocity gradients are dominant, From the
characteristic curves in fig, 4,8 (iii) it may be seen that the

'dominant' flow components are as follows:
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P LHS MIDDLE RHS

-3 angular —— angular
) angular - axial
-9 axial - axial

Dominant velocity components on fig 4,8 (iii),

The viscosity curveson fig, 4,8 (ii) show a similar pattern,
but illustrate clearly that increasing axizl flow has most influence
on the LHS where the contribution to shear rate from the angular
component is lowest, The viscosity profiles in fig, 4,8 (ii) may be

summarised as follows

P * LHS MIDDLE RHS
-3 low medium high
-6 low medium low

-9 low high B low

Summary of viscosity profiles in fig, 4,8 (ii),

(11) Discussion of the axial velocity curves,
As n decreases, the axial velocity profiles (figs, 4,3 A to
4,9 A) all become flatter in the MIDDLE and more skewed towards the LHS,
Since the governing differential equation system was made non
dimensional by reference to the angular velocity of the drill string
(see 2,3,3) it is difficult to see quantitatively the effect of varying
fP on the shape of the velocity profiles, Accordingly, for the partic-
ular case of (n= .5 ; k = ,5) a graph of 'reduced velocity' versus
radius r* was produced (fig 4,8(i)) by dividing each velocity profile
by the appropriate average annular velocity, Denoting the non dimen-

sional average annular velocity as * , the reduced velocity is thus

*
v /V* .
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From this graph it may be seen that as # decreases, the
reduced velocity curves become less skewed towards the LHS and their
peaks become flatter and lower, To explain this, we consider a helical
flow in which the axial flow rate is gradually decreased, This is equiv-
alent to reducing /P/ , and will result in reduced shear rate at both
the LHS and RHS, The reduction in shear rate will, however, be more
noticeable at the RHS since there is little contribution to shear rate
from the angular component in this region, Consequently, the viscosity
at the RHS will become increased, and the the point of maximum axial
velocity will move towards the LHS, The resulting viscosity profile
will be asymmetric, and thus the sharpness of the velocity profile
may be expected to increase, These effects may be clearly seen on
fig 4.8(i), with the P =-9 and -12 curves having broad flat peaks near
the centre, and the P =-3 curve being skewed towards the LHS and having
a sharper peak, Further support for this discussion may again be obtain-
ed by studying the viscosity profiles and characteristic functions on
figs. 4.8(ii) and (iii). As/®/ decreases, the viscosity profiles do
indeed increase considerably near the RHS and a slight increase is also
apparent at the LHS, The decrease in viscosity in the MIDDLE as
decreases is not explained by the simple discussion above, but is due

to the interaction of both velocity components,

(iii) Discussion of the average annular velocities,

A graph of the average annular velocities obtained for all the
cases considered in this section is given in fig 4,10, It is ig@ediately
clear from this graph, that as expected, the average velocity (V ) increas-
esbas P increases, It is also clear that the rate of increase becomes
greater as n decreases from 1,0,

The Newtonian fluid (n = 1,0) curve is a straight line (through
the origin) of slope -,021, Hence V varies linearly with ®# for Newton-
ian fluids,

It can be shown from the results on this graph that the axial
flow rate is unaffected by the speed of rotation of the inner cylinder,
This is in accordance with the independence of the governing equations
for helical flow of Newtonian fluids,

comparing the other curves with the n = 1,0 line, it can be seen
that the average annular velocity increases non uniformly with # for

n less than 1,0 .

52



It is also clear that the average annular velocity is affected

by W; though it is not immediately obvious whether increasing W, causes

1
an increase or a decrease in v , The situation may be clarified by the
following example,

Consider the results for n = ,7 , From fig, 4,10,
—%
for P = -10 v = ,291

and for P= -5 v = _123.

Suppose that A , m and R, are fixed and that for # = -10, the

2
inner cylinder rotates at a speed W.
"Changing # from -10 to -5 is equivalent to increasing the speed

3. of rotation from W to 2”’w. I.E, to 2,692 W,

Hence
v (for P = -10, W= W) = 291 RW
and
P (for P = -5, Wl = 2,692 W) = ,123 x 2,692 le.
= 331 le.

Thus the average annular velocity has been increased by increas-
ing the speed of rotation of the drill string, as expected,

This result applies in general when n is less than 1,0 ,

Note,

In the above discussions, variations in # have been considered, for the
most part, to arise through changes in # , Similar discussions could
be built up by considering changes in /P to be produced by changes in w1
or in both w1 and @ , The results of such discussions would be virtu-
ally identical, but would be made more complex by the dependence of many
non dimensional quantities ( e,g. viscosity and characteristic function)

on the angular velocity W, of the drill string,
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FIGURE VERTICAL AXIS QUANTITY n k ﬁ)

L3 A axial velocity 1,0 .5 |-25,-20,-15,

R angular velocity -10,-5,

4,4 A axial velocity .9 .5 -25,-20,-15,
4.4 R angular velocity -10,-5,
4.5 A axial velocity .8 .5 | -20,-15,-9,
4.5 R angular velocity -6,-3,
4,6 A axial velocity o7 .5 | -20,-15,-10,
4,6 R angular velocity -5,-2,5
4,7 A axial velocity b .5 |-15,-10,-5,-2,5
4,7 R angular velocity
4,8 A axial velocity - .5 ) -12,-9,-6,-3,
4,8 R angular velocity
4,8(1) axial velocity ratio
4,8(ii) |viscosity .5 .5 -9,-6,-3,
4,8(iii)|characteristic curve
4,9 A axial velocity N 5 1-7,-6,-3,
4,9 R angular velocity
4,10 Average annular velocity versus P for the values of

"(n,k,P) above,

TABLE 4.3 List of figures for 4,2,1 ,
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4,2.2 Variable radius ratio,

In this section we study the effects of varying the radius
ratio k on the velocity profiles, To aid comparison of the results,
we plot the velocities versus radial node number instead of the
dimensionless radial coordinate r*, and we present the axial velocity
profiles as plots of axial velocity ratio v*/;* . For completeness,

a gréph of ;* versus k is included.

The values of k that occur in oil well drilling range.from
.2 to ,7 (though are normally close to ,5) (ref, chapter 1), and so
we take values of k as ,2, .3, .4, .5, .6, & ,7, The computations for
the small values of k, however, become difficult especially when n is
also small, (c.f, 3,2,3), Some such calculations failed to satisfy
the result assessment criterion established in 3,2,1 and accordingly
are not presented here,

We note that in the present calculations, 41 equally spaced
nodes were used with node 1 being at the inner cylinder and node 41
being at the outer cylinder,

We consider the cases of (i) n = ,5 with P = -9 (axial compon-
ent dominant) and P = -3 (angular component dominant) and (ii) n = ,7
with P = -10 (axial component dominant) and #® = -5 (angular component
dominant) .,

For reference we also consider the case of a Newtonian fluid
with the arbritrary value of P = -10, noting that viscosity is not
affected by either velocity component in this case,

Details of the graphs are presented in table 4.4 ,

Before discussing the results we examine the Newtonian fluid
case theoretically, First we recall that an exact analytical express-
ion for the velocity profiles exists in this case, (Langlois 61),

This expression takes the form
%
V*(r*) =[PE<2 B ot e kz){%‘_%/%x;_)ﬂ

2
e+ ey ]
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Plotting the curves against nodal number is equivalent to

introducing the change of variable

* * 40

P = (r - k) T T 1

which is effectively the same as the change of variable

1

¢ = -1

With this change of variable, the exact soiution becomes

2. L(1/k - 1)¢+1

v = P [:-(1 - - e - e+ - Y Aallesy

2
w*(¢) - 1 . [: k . _ kZ:I )
1-k ((1 - k)P + k)

Both these equations are heavily dependent on k and so we expect variat-

ion of velocity profiles with k even for the constant velocity Newtonian
fluids,

With non-Newtonian fluids we therefore expect the profilesto be
affected both 'directly' by altering the radius ratio (in a similar way
to the above) and 'indirectly' by the resulting changes in viscosity
profile, and thus we must refer to the Newtonian fluid case when analys-
ing results,

For Newtonian fluids the dependence of the angular velocity
profiles on k is shown in fig, 4,11 R, As k decreases, the curves fall
much more steeply near the LHS and become flatter near the RHS, with the
angular Velocity at the mid pdint of the annular gap drobping from 3,69
for k = |7 to 0,74 for k = ,2 ,

The dimensionless axial velocity ratio ( v*(¢) / ;*) is not so
strongly dependent on k and fig 4,11 A shows that the shape of the
profile is altered most on the LHS, As k decreases from ,7, the curves
become skewed towards the LHS, and the peak value of the axial velocity
ratio rises from 1,5 at node 20 for k = ,7 to 1,54 at node 18 for k = ,2,

As k decreases, the angular velocity gradients (with respect to
@) increase on the LHS rapidly, whilst those on the RHS decrease, The

-
axial velocity ratio gradients change little with k but since v
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increases as k decreases (see fig, 4,16), the gradients of the axial
velocity v* will increase as k decreases,

Hence, as k decreases, the shear rate profile will become more
dependent on the axial component both near the MIDDLE and on the RHS,

With non-Newtonian fluids then, we expect the axial component
to become more dominant on the RHS and near the MIDDLE as k decreases,
The viscosity profiles for n = ,7 and P= -10 (fig, 4.,12(i)) illustrate
this effect with the curves becoming peaked in the centre as k decrea-
ses, The effect can also be seen in the angular velocity profiles for
n=.,5and P=-9 (fig, 4.14 R) as the k = ,6 and k = ,5 curves become
more convex on the RHS indicating the dominance of the axial component
in this region,

In general the effect of decreasing k on the velocity profiles
becomes more pronounced as n decreases in that the curves fall even
more rapidly near the LHS,

With the axial velocity profiles, the direct effect of changing
k and the indirect effect (arising through the resul ting changes in
viscosity profiles) are in opposition, and this gives rise to a fairly
complex set of graphs,

As mentioned above, with Newtonian fluids the axial velocity
curves become skewed to the LHS and the maximum value increases as k
is decreased, With non Newtonian fluids however, the viscosity profile
develops a peak when k is decreased, and this will tend to give the
axial velocity profile a flatter, more central peak,

On the axial velocity profile graphs for n = ,7 with P= -5
and P = -10 (figs, 4.12 A & 4,13 A) we see that the indirect influence
of decreasing k has the stronger effect on peak height (which decreases)
whilst the opposition of the direct and indirect influences is demonstr-
ated near the RHS where the curves are almost identical for all values
of k,

The indirect influence of changing k on axial velocity profiles
is even stronger for the case n = ,5 and /P = -9,and examination of
fig, 4,14 A shows that the curves on the RHS appear in opposite order
to those on the RHS of the Newtonian axial velocity profile graph,

Finally the n = .5, P = -3 graph (fig. 4.15 A) has a confused
structure, reflecting the interaction of the various influences on the

axial velocity profiles,
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(n,k,P) above

FIGURE VERTICAL AXIS QUANTITY n P k

4,11 A axial velocity ratio 1.0 | -10 | .2, .3, .4, .5,
4,11 R angular velocity .6, .7

4,12 A axial velocity ratio .7 | -10 A5 5, 65 o7
4,12 R angular velocity

4,12 (i)| viscosity

4,13 A axial velocity ratio o7 -5 .3, .4, 5, .6,
4,13 R angular velocity .7 .

4,14 A axial velocity ratio .5 -9 LT T
4,14 R angular velocity

4,15 A axial velocity ratio D -3 By Sy 6, 2T .
4,15 R angular velocity

4,16 Average annular velocity versus k for the values of

TABLE 4.4 1List of figures for 4,2,2 ,
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4,2.3 Variable fluid index with other radius ratios,

In this section results are presented for the remaining values
of power law fluid index and radius ratio, The characteristics of these
results are similar to those of 4,2,1 and 4,2,2, and further discussion
is therefore considered unnecessary, Table 4.5 lists the graphs presen-

ted in this section.

FIGURE VERTICAL AXIS QUANTITY n k P

4,17 A axial velocity .9 o -200, -150, -100,
4,17 R angular velocity -50, -25 ,

4,18 A axial velocity ol N -60, -45, -30, -15 ,
4,18 R

4.19 A | axial velocity 5| .7 |-30, -20, -10 .

4,19 R | angular velocity

4,20 A axial velocity .9 .3 -20, -15, -10, -5 ,
4,20 R | angular velocity

4,21 A | axial velocity .7 .3 | -6, -4, -2,
4,21 R | angular velocity

TABLE 4,5 List of figures for 4,2,.3 ,
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4,3 Physical representation of results,

In order to facilitate visualisation and discussiocn of results
a physical model of the three dimensional flow field was constructed,
The model represented a section of the annulus formed by the drill
string and the outer casing, Radially positioned pins were used to
represent the magnitude and direction of the flow field across the
annulus, Realistic dimensions and parameters were used for the model
and these are listed in table 4,6 , The model is illustrated in
Fig, 4.7 ;

INPUT PARAMATERS

Inner radius = 2,5 inches,

Outer radius = 9,5 inches,

Drill string rotation speed = 100 RPM,

Fluid : Power law withn = 7 and m = 2 ,

Axial pressure gradient = -10,8 Kg(m s)n2 .

OUTPUT PARAMETERS
Average annular velocity = 55 feet/minute,

Volumetric flow rate = 625 gallons/minute,

TABLE 4,6 Parameters used for physical model,

4.4 Conclusion,

The previous studies discussed in chapter 3 did not, with the
exception of Rea(67), present any calculated velocity profiles, Nor,
it would seem are the respective computer programs still available
(Watson, 77).

Whilst it would be possible to reconstruct these earlier prog-
rams and compare results, the question of accuracy would still remain

unanswered till experimental work was carried out,
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Fig, 4.7 PHYSICAL REPRESENTATION OF RESULTS
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In view of the excellent agreement with Rea's experimental
results reported in 4,1, it is hoped that future experimental results
will support the predicted velocity profiles presented above,

In 4,2, the results obtained using MUDFLO were discussed using
gimple arguments to explain their characteristics, Since the results
were found to be both explicable and sensible, it would seem reasonable

to expect that this hope will be realised,
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CHAPTER 5
REVIEW, CONCLUSIONS AND RECOMMENDATIONS,

In the final chapter of this thesis, we review the previous
chapters (5.1); restate the conclusions drawn (5.2) ; and make recom-

mendations for further research into drilling fluid flow,

5,1 REVIEW,
5.1.1 Chapter 1 : Introduction

To provide suitable background for the present thesis, we gave
an introductory discussion of drilling fluids and their purpose in
chapter 1, We indicated that it is desirable to understand the nature
of the flow of drilling fluids, but explained that geometric and rheol-
ogical complexities preclude an exact analysis of the flow, The

central aim of the thesis was introduced as the solution of the problem

of predicting velocity profiles for non-Newtonian fluids flowing in an
annulus with a rotating inner cylinder ', It was hoped that greater
understanding of drilling fluid flow would be achieved through the solut-
ion of this problem,

To elucidate the scale of the problem, and to provide data for
later calculations, typical values for the parameters involved were

listed in 1,3 , It was noted however that, as with any such list, the

1 1

values quoted could only be considered as representative ', with some

omissions being inevitable,

5.1.2 Chapter 2 : Theoretical description,
In chapter 2, the governing equations for the flow of drilling
fluid were discussed, It was shown that without several simplifying

approximations, the equations are so complex as to be, for practical

purposes at least, insoluble, The introduction of these simplifications
led to the final mathematical model of ' Helical Flow ' given in 2.1 .
This model describes a flow far removed from the flow of drilling fluids
in oil wells, but it was argued that greater understanding of the
original flow should be possible through understanding of this helical

flow model,
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In 2,2, the term ' fluid model ' was introduced as being some
relation between shear rate and stress for the fluid in question, It
was shown that for the helical flow model, fluid models of the form :

T= f(4:9) 4
are of general applicability, and several examples were discussed,
It was shown that, in helical flow at least, the fluid properties of
viscoelasticity and thixotropy are unimportant,

A general system of non-dimensional variables was introduced

in 2.3 and was extended for two particular fluid models,

5.1.3 Chapter 3 : Work on drilling fluid flow,

In 3.1, previous literature relevant to the problems of drilling
fluid flow was reviewed and it was established that all previous work
had used the mathematical model of helical flow, or a particular simpl-
ified case of it, Previous studies were found to have used one of two

analysis methods, referred to as the '

integral formulation ' and the
' differential formulation ' ., It was established that the more complex
analyses involving partial differential equations had used the latter
approach and the suggestion was made that it would be difficult to
extend the former method to these cases., On this basis it was decided
that, with a view to its later extension, the present thesis should
adopt the differential formulation, It was noted that an additional
advantage of this approach was its applicability to any fluid model of
the type
T = f(a:9) A .

The computer algorithm developed for this thesis was described
in 3.2 and reference made to the program listing in thé‘appendices.

jAs'experimental verification of results was outwith the scope

' result assessment criterion 'based on the integral

of this research, a
formulation was established,

It was noted that computational difficulties were encountered
in calculations where very low velocity gradients occurred over large
sections of the annular gap, _

The difficulties appeared similar to those reported by Guickes

(75) and were manifested in two ways :
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i) Calculations for Bingham plastics failed to converge in
most cases,

ii) The result assessment criterion was not satisfied in
calculations for power law fluids with very low index n,
especially when the radius ratio k was small,

These were taken to be limitations of the present algorithm, and
their circumvention left as a matter for further research to be carried
out after experimental verification of the results presented in chapter -

four,

5.1.4 Chapter 4 : Results,

In 4,1, the velocity profiles predicted by MUDFLO were shown
to be in excellent agreement with those measured experimentally by
Rea(67) . This was taken as being indicative of the applicability of
the finite difference approach to the helical flow problem,

In 4,2, the results of many calculations were presented using
dimensionless variables, The results presented form a ' data base '
from which the velocity profiles for most practically occurring flows may
be interpolated, The results were shown to be both 'explicable' and

'sensible' by discussion of their characteristics with reference to the

shear rate profiles associated with each flow component,

5.2 RESULTS AND CONCLUSIONS,

This research was motivated by a desire to understand better
the flow of drilling fluids, To this end an analysis of the approximate
model of helical flow has been performed with the result that a con-
siderable amount of data for any particular flow condition is available
through interpolation of the graphs presented in chapter 4, or by
running the computer programme MUDFLO,

Many direct applications of these results to the practical
problems of drilling fluid flow are possible, For example, estimates of
the torque required to rotate the drill string in the fluid may be made,
and thus the torque required at surface level to apply a ceftain torque
to the drill bit may be deduced,
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Similarly, the 1ift exerted on the drill string by the fluid may be
estimated and the required load on the drill string to produce a certain
load on the drill bit may be determined,

The interaction among the axial flow rate, the fluid parameters,
and the axial pressure gradient can also bedetermined for any partic-
ular case, and the best combination of parameters for a given flow rate
may be determined,

The initial motivation has thus been fulfilled to some extent,
Immediate extensions of the work of this thesis are possible, affording
even greater understanding of drilling fluid flow, These extensions
are described in the section entitled ' further work ' ,

The central aim of this thesis was to predict the velocity
profiles for non-Newtonian fluids flowing in an annulus with a rotating
inner cylinder, This too has been achieved, though to a lesser extent
than the motivation discussed above, Solution of this problem has not
however been achieved for cases in which low velocity gradients occur
over large sections of the annular gap; in particular, no solution
was obtained for Bingham plastics, and for power law fluids with
low index n .,

From the work of the thesis the' following conclusions may be
drawn ;

1) Whilst there are many variables to be specified for a
particular helical flow of a power law fluid, the flow may
be completaly described by only three independant parameters:
n, k, and P,

A similar result holds for Bingham plastics,

2) The present work has resulted in the develoﬁment of a computer
programme which may be used with either dimensional or non-
dimensional variables to give comprehensive information on
many problems concerning the helical flow of non-Newtonian
fluids,

3) Despite the occurrence of computational difficulties when
very low velocity gradients were present over large sections
of the annular gap, the iterative finite difference approach

appears a useful technique for many of the problems of
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drilling fluid flow, Its advantage over integral formulat-
ion based methods lies in its adaptability to more complex
fluid flow situations, Problems arising from the computat-
ional difficulties described above are minimal since adequate
indication of the quality of results 1is given by the computer
program itself,

4) The results presented in chapter 4 have been supported both
by the comparison with the experimental measurements of
Rea (67) and by the integral formulation based data assess-
ment critefion; with satisfaction of the latter criterion
implying good agreement with integral formulation calculat-
ions,

5) It is apparent from the discussions in chapter 4 that much
qualitative information on the nature and behaviour of
velocity profiles in helical flow may be obtained by
consideration of the shear rate profiles arising from each
velocity component,

6) An incidental conclusion from the present work is that the
technique of upwind differencing is not always suitable for

use in an iterative calculation procedure,

5.3 RECOMMENDATIONS FOR FURTHER WORK,
Recommendations for further work may be divided into both short
term investigations which can be carried out at the present time, and

long term aims for future research, We consider each separately below,

‘A) SHORT TERM, _
i) Expefiméntal verification of results,

Of immediate importance is the experimental verification of the
results presented in chapter 4, The techniques of Rea(67) may still be
suited to this task, though use of a more sophisticated method such as
laser Doppler or hot film annenometry (Frene,75) would possibly provide
more accurate results and would facilitate later investigation of flow
instabilities,

In conjunction with this, a preliminary investigation on

stability could be carried out to see whether MUDFLO computational
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difficulties reflect a physical flow instability, Full investigation of
flow stability is however a long term project and is discussed below,
ii)Particle transport,

Another area of immediate interest is to assess particle trans-
port capabilities of drilling muds under various flow conditions (Mayes
& Walker, 75 ; Sifferman, 74),

B) LONG TERM,

Longer term aims of any research programme must be the full
investigation of flow instabilities in the helical flow of non-Newtonian
fluids, and their effect on particle transport properties; and the study
of the flow of drilling fluids in conduits more complex than the ideal-
istic concentric annulus used for the present work,

Starting points for the former study may be obtained from the
following initial literature survey, whilst no literature is currently

available on the latter topic,

5.3.1 Initial literature survey on instability in the helical flow of
non-Newtonian fluids,

Denn and Roisman (69) discussed the onset of Taylor vortices in
Couette flow of viscoelastic fluidsandcpmpuuitheoretical predictions
with experimental work, A similar study was reported by Graebel (61),

M Eachern (69) studied the tramsition from laminar to non-
laminar flow with viscoelastic fluids flowing axially in an annulus,
References are cited to indicate that a generalised Reynolds number
does not provide a good criterion by which to judge the end of the
laminar flow regime, The paper reports some success in the use of an
alternative criterion, A similar criterion was also proposed by Walker
and Korry (74),.

Finally, a general referance on all aspects of instability in

non-Newtonian fluid flow is given by Pearson(76),
The success of research programmes in the above areas should

provide considerably deeper understanding of drilling fluid flow and its

associated problems than is currently available,
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APPENDIX A, DERIVATION OF THE COMPONENTS OF THE SHEAR RATE TENSCR

IN HELICAL FLOW,

In this appendix, we derive the components of the shear rate tensor

a for helical flow from the general expression for three dimensional flow

in polar coordinates,

We recall from 2,2 that the components of a4 for a general flow are

Iw
<
'-‘
——
]
wiro
~
19
<
N~

A ge
- v .2
A,z 2 3 z} 3(Y'Y)
. o 2.t¥ 1l v -
Are > ar{?e} + r aer Aer
= Ve ov -
Ay 0z i bez Aze
- oVz =
Arz DY i %T Azr
where
= l ..a... _1. ?L-!e Qy_
(g.v) r Oor {r,vr,} * r de + 3zz

We first note that since vr is zero and since all derivatives with

respect to e and z are zero in helical flow,

(v.v) = 0,

Using this result, we consider each component of A in turn,

Arr

= l 2—! 11‘}
A rr z{r ar, .t T

= 0, since W O and all derivatives with respect to e and z are

zZero,



1,

=
AOG

zero,

Thus in

1dve .&}
z{r de + T

0, since L 0 and all derivatives with respect to e and z are

= 0, since all derivatives with respect to z are zero,

2 le-} 1 v
r or Lr + r de

) 8
{:f} since all derivatives with respect to e and z are

9% v
or 2z
%%1 since all derivatives with respect to e and z are zero,
helical flow,
s d (v dv, ™
“ Yar (r) dr
d (v,
A w3 o °
T~
dvy A
| & o S




APPENDIX B, COMPUTER PROGRAM,

B.l1 Description,

The computer program consists of one main routine ' MUDFLO '
and seven subroutines, Each subroutine is self contained and performs
only one function, Another program ' DATIN ' is used to create an
input data file on disc store,

The main program . is divided into four main subsections, each
performing only one function, and several small sections to control the
operation of the subroutines, The functional sections of the main prog-
ram . and the subroutines are listed in table B,1, and the operation
procedure is shown in figure B,2, Note that figure B,2 makes no distin-
ction between main program - subsections and subroutines,

The program 1is self documenting and is listed in B,2 .,

A list of variable names has been included in B,3 to aid interpretation
of the listing,

Copies of the programs have been archived on magnetic tape by
the Computing Services Unit, RGIT, Aberdeen ; and may be accessed using
the archive numbers listed in B.4 .
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TABLE B,1

SECTION NAME FUNCTION LOCATION
DATIN Create input data file, Separate
prograrm

PPRO Read input data file; initialise MAIN
and preprocess data, '

CNVRG Control iteration cycle and test MAIN
for convergence,

DATOUT Generate program output, MAIN

CRASH Print diagnostic information if MAIN
the program run is aborted,

MOVSET Set up finite difference matrix, Subroutine
SOLVSR Solve finite difference matrix Subroutine
by successive over-relaxation

methods,
SOLDR Solve finite difference matrix Subroutine
‘using direct method,
VISCO Update viscosity profile vector, Subroutine
DIFF Numerical differentiation, Subroutine
VARIAN
COORD Post processing of results, Subroutine
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START ) “BATIN

PPRO DISC STORE

| |
/
1 ITE
ITERATION —-— |
CONTROL ‘

|
MOVSET (AXIAL) et VISCO
[ T
— SOLVSR (AXIAL) | DIFF
l
MOVSE T (ANGULAR) —  DATOUT
|
l—{ SOLVSR (ANGULAR) SToP
s CRASH —
Fig. B.2
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B.2 PROGRAM  LISTING MAIN(1)

DIMENSION FLUID(6),RADIUS(60),VISCY(60),DVISCY(60),Y2(60),NYZ(60),
1DDVZ(60) ,VA(60),DVA(60),0DVA(60),VSOL(4,58) ,AKGLE(60),ALPHA(60),
2CONST(60)

RPEAL LASTYZ(AN),LASTYA(60),¥0ODV(60)

INTEGER CRASH,DUMP,RATCH,BCHKNT,SFT,CNTRL

EXTERNAL DIFF

fesepoRResaiE R e EReRRRsRRERRRERERRAORORURRORERIERBRECHUCEROVANTS
THE MUDFLN PROGRAM AND SURRNUTINFS WERE WRITTEN RFTWEEN OCT
76 RND MAY 7R BY JNHN MNRTNON AS PART NF A RFSFARCH PRNJECT FOR
THE DEGREE OF %,PHIL, IN THE SCH,OF MECH,ENG,,RPGIT,ARFRDEEN,

THE PROGRAM IS DESIGNED TO PREDICT VFLOCTITY PROFILFS THAT
OCCUR WHEN NON=NEWTONIAN FLUIDS FLOW THROUGH RN ANNILUS WITH
A ROTATING INNFR CYLINDER,(E.G.DPILLING FLUID FLOW),

A FINITE DIFFERENCFE PRNOCEDURE IS USFD WITH AN ITERATIVE LOOP 1
1) CUESS INITIAL VISCOSITY PROFILF,

fe=>2) CALCULATE VELOCITY PRNOFILES USING (1) OR (4),

1 3) TEST FOR CONYERGENCE, (SYOP TF SQO)

{ee=4) CALCULATE NEW VISCOSITY ESTIMATE USING (2),

THE SEPARATE PRNGRAM *DATIN,FOR' SHOULD BFE RUN FIRST TO
CREATE THFE DATA FILE FOR36,DAT WHICH MUDFLO USES,

OUTPUTS FROM MINDFLO APRER
CHANNEL S TTY: (KEY INFORMATION)

» 25 LPT: (FULL PRINTNULT)
. 40 DSK:? (COPY NF ROTATIONAL VELOCIYY PROFILE
COORNDS FCR GRAPH PLNTS)

. 41 DSXg § *® AXTAL . )
O N N R R R N N R RN AR TR R R Y]
WRITE(S,.19)
10 FORMAT(IH ,20X," ¢ ¢ ¢ ¢ ¢ 8 s 8 ¢ /
1 20X,* & MelleDeFelLeD & *,/,
t T e 58 1,/)

AANAAANAANANANRNANNNNAANANNAANN

2 19X," s ¢ &
s
st
PeP=R=0
$8¢ TN RFAD,PREPROCESS AND TWITIALISE DATA. (22 WAY 77)
%% TPANSFFR OF DATA FROM FILE FOR36,DAT $8¢
OPEN(UNTIT=36,DEVICE='DSK’ ,FILER'FOR36,DAT')
RFAD(36,200)%,DUHP
200 FORMAT(I4)
MEMNRY=DUVP
PEAD(36,205)RADIUS(1),RADIUS(R),VA(1),P #1 VA(1) FOR OIL BUT VA(X) FOR REA
205 FORMAT(2F10,4)
READ(36,210) (FLUID(I),T1=1,6)
210 FORMAT(3F12,6)

AAAAAN

READ(36,215)TNL, TOLMAT,LIM,LIXAT,SORFCT
215 FORMAT(2F11,5,214,F10,4)
CLOSE(UNIT=36,DEVICE='DSK® ,FILE='FOR3I6,DAT®)
938 EMND OF DATA TRANSFER #¢%
DATA INITIALISATION
BOUNDARY VALUES
VZEAX1AL VFLOCITY ,VAZANGULAR YELOCITY
VA(1) HAS BFEN READ,VA(1),YA(N),VZ(1),VZ(N) MAY ALSO BE SUPPLIED AS
eeeDATA RUT ARE 0 IN OIL WELL DRILLING (EXCFEPT VA(1) )
RADITUS(N) ¥ATRIX CNONSTRUCTION
CALCULATE F,D,INCRFMENT H,
H =(RADIUS(H)=RADIUS(1))/(Ne1)
DO 220 I=1,M
1S PEVALUEING 1ST AND KTH ENTRIES REDUNDANTY?
RADIUS(I)=RADIUS(1)+HS(I=1)
220 CONWTINUE
c ITERATION CONYERGEMCE? COUNTERS
KOUNT=0 jKOUNTHEO
TOLETNL/10700N0 3 TOLMATSTOLMAT/1000000 3{TOL*S IN PP M, 1}
[ 4 VISCOSITY MATRIX (NEaTONIAM APPROXIMATION)
DO 225 I=1,N
VISCY(1)=FLUID(6)
OVISCY(I)=0
225  CONTINUE
] END OF DATA INITIALTSATION
1F (FLUID(1),LE,10,0) WRITF(S,305)
IF (FLUID(1),.LF,10,0) WRITE(25,305)
305 FORMAT(///,* DVISCY TN BE SET U'P RY NDIFFERENTIATING VISCY',/
1,° THIS IS UNRELIABLE IF LN4 SHFARRATE OCCURS IN THE ANNULUS'/
2, CHECK RPPLICARILITY ! (SFE VISCO LISTING) *)
IF (PUNP,LT.1) GNTD 230
€ $%& OPTINMAL DUMPING OF VALUES sss¢
APITE(25,300)
300 FORMAT(' PePeRen ')
1IF (DUMP,LT,2) GOTO 230
WRITE(2S,310)
310 FORMAT(' DUP VALUES t ')
WRITE(25,235)%,H
23S FORWAT(' Nz *',14,10X,' H= *,F10,4)
KRITE(25,240)VA(1),VA(NY,VZ(1),VZ(N),P
240 FORMAT(' BOY,VALS,:',4F10,4/' Px ',F10,4)
WRITE(25,245)TOL,TOLYAT,LI¥,LI¥AT,SNRFCT
245 FORMAT(' CNNVERGENCF PARAWETERS ',2¥11,5,216,F10,4)
WRITE(25,250) (FLUID(T),1%1,6)
250 FORMAT(' FLUID PARAMETERS ',3F12,6)
WRITE(25,255)(1,1=1,N8) *
255 FORMAT((' NODE *,5(4X,74,3X)))
WRITE(25,260) (RADIUSCI), I=1,N)

AANA=ANA

Ly
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MAIN(2)

260 FORMAT((' PAD: ',5(X,F10,4)))
WRITE(25,265)(VISCY(1),1x1,N)
265 FORMAT((' VISCY',S(X,F10.4)))

C #¢% FEND OF VAL/IE DUVMP sss
230 CONTINUE 31! END OF PPRO
C 0=Pep=p
C s
C s
RATCH=S

1000 CONTINUE 3! l=TeEeRepeTeleNeN CeYeleloF SeTeleReT=S HeE=ReE
C 8% FIRST CALCULATE VELNCITY DISTRIRUTINNS
TIF ((VR(1),EQ.0) AND (VA(R),EQ,0)) GO TN 2000 7! AXIAL FLOW OWNLY
C sss COMPUTE THE ANGULAR VFLOCITY DISTRIBUTION (VA(I)11=1,N)
IF (CNXTPL.EQ,3) CNTRLE? p!RFSFT CMTRL
IF (CNTRL,FQ.1) CNTRLEND 3!RESET CNTPL

400 pumMp=0 .
. CALL MOVSFET(3,0,0,0,M,H,CNTRL,D!I™P,RADIUS,VISCY,DVISCY,VA,
1 vsoL)
C sse N,B, PECALL THAT THF FIRST TWN ARGUMENTS IN MOVSET DETFRMINF
C =82 dHICH VELNCITY COMPNNENT 1S CONSIDFRED,
pUMPZO

CALL SNLVSF(VSOL,VA,LIMAT,TOLMAT,SORFCT,CHUTRL ,KOINTN,DUNP,N)

C 838 s$2¢ IF (CNTRL=2) THEN AN SOLN FOHND TO CENTRAL MATRIX,
C ¢%e s8¢ COULD 'GUTN 420" FOP F/R SCHE™E MATRIX BUT AS A FESULT OF RUKS €22.1 & €22,2,
C ®93% $3% THIS »AS DISSALLOWED ON 11DFC,
1F (CNTRLLER.1) GO TO 405 3! SOLUTINN O.K, [NRIGINALLY (,KF . 4))
CRASH=10 1! NO SOLN, TN MATRIX (ANGULAR COKPONENT) .
GO TN S000 3! Ce=R=A=Sey
405 CONTINUE 3! VA(60) NOW HOLDS ANGULAR VFULONCITY DISTRIBUTION

IF CCIVZ(1) FO,0) ANDL(VZ(YN) FON)) AND,(P,EO,0)) GO TO 430
C sss S$IF SO,THEN ROTATTONAL FLOW NNLY,

2000 CONTINIFE 3! COMPUTE AXIAL VFLOCITY DISTRIBUTION (VZ(T)1l=1,N)
410 IF (CNTHL,FO,3) CNTKL=22 3! RESET CNTRL
IF (CNTRL,FQ,.1) CHTRL=0 ;IRESET CATRL
420 DUMP=0
CALL MNVSET(1.0,P,N,H4,CNTRL,DUMP ,PADIUS,VISCY,DVISCY,VZ,VSOL)
nUMPzO

CALL SOLVSR(VSOL,VZ,LIMAT,TOL¥MAT,SORFCT,CNTRL,KOUNTK,DUMP,N)
€88 e3¢ JF (CNTRL=2) THEN KO SOLN TN CENTRAL MATPIX,
€88 ets COULD *GOTN 420 FNR F/B MATPIX,RUT AS A REFSULT OF RUNS $22,1 & #22,2 ,
€88 s8% THIS #AS DISSALLOWED N¥ 110DEC,
IF (CNTRL.FQ,1) GN TO 425 3! SOLUTION N.K, [ORIGINALLY (,NE.4))
CPASH=1 ! NN SOLK, TO F/B MATRIX (AXIAL COMPONENT)
GO TN SO00C 3! CePeA=S=H
425 CONTINUE 32! VZ(60) NOW HOLDS AXIAL VELOCIYY DISTRIBUTION
436 CONTINUE
C ®¢% NOW HAVF CURRENT VELOCITY DISTRIRUTIONS FOR THIS I1TERATION
C #%¢ SET UP VISCOSITY DISTRIRUTION HERE FOR CONVENIENCE

aAnAn

C VeleSeCe(eSei=T=Y B .
IF (FLUID(1),FQ,7) GO TO 4000 3! DeA=T=0=UeT FOR KFEWTONIAN FLUID
C #¢¢ SECTINY TO UPNATE VISCOSITY PROFILE ESTIMATE
DUuP=0 ~
CALL VISCO(FLUIN,VZ,VA,RADTUS,N,H,DUMP,VISCY,DVISCY,CRASH,NDVA,NDVA
1,DVZ,DDVZ,P,ALPHA)
832 VISCY NOW HOLDS VISCOSITY ESTIMATE
#£38  KOTE THAT A w#AKNSIYG SHOULD RE PRINTED IF FLUID(1) 1S L.T. 10 !
TE (CRASH,F0,2) GN TO S000 ! CeReA=SeH (MO SUCH FLUID XODFL)
YoTeleS=0=CeS=1~V
#2% YFST FOR CONVERGENCE USING SECTION CeNeVeReG
CeNeVeR=G
RCHKNTZRCHXNT 41 1! RFSET RATCH=CONTROLER
KOUNT=KOUAT41 5! RFSFT TTFRATION COUNTER
IF (FLUID(1),F0,0) GN TN 4000 3! DeAeTeO=il=T FOP NKEWTONIAN FLUID
IF ((KOUNT,GT,S) ,0UR, (RCHENT EQ,RATCH)) GO TO 505
$88  PRIXT FRO™ FIFST FFw 1TFRATIONS
WRITE(2S,53C)KOUNT
WRITF(25,557)(VZ(1),1=1,N)
WRITE(25,560)(VA(I),121,%)
$0S IF (BCHYNT LT, (RATCHe1)) GO T0O 1000 1! BATCH NOT COMPLETE tEXY ITERATION
#4¢ INTEGFR RATCH INITTIALISFD AT RFGINNING OF MUDFLO 1t .
°s¢  CNULD RE PEAD BY P=PeRen THNUGH,
TF - (BCHENT ,EG,RATCH) GN TO S00 1! RATCH COMPLETE t TFST CONVFRCFNCFE
#8¢  ON PEMULTIMATE ITERATION NF BATCH,STORE LASTVA ¢ LASTYZ FOR TEST
00 S10 I=1,N
LASTVA(TI)zVA(Y)
LASTVZ(I)=vVZ(1)
s10 CONTINMUE
GO TO 1000 3! NEXT ITERATINN TN COMPLETE THFE RATCH
€ 888 END NF RATCIH<CMITROLEP
S00 CONTIMI'E 1! RATCH COYPLETE SO SFT UP CONVERGFMNCE TEST
C sses IF BATCH=1,THERE 4AY RF PROBLEMS |
DO 520 I=t,N
DIVIDR = ARS(VA(T))
DIZIDR = ABRS(VZ(IM))
-9 IF ((DIVIDP LT, (10%%10)) ,AND ,(DTZIDR,LT,(108810))) GO YO S2%
CRASHZ4 p!SOLUTINN TENDING TN INFINITY
GO TN 5000 3! CeRedeSeH
$25 CONTINUE
IF (PIVIPR,LT,0,0001) DIVIDR=N _NO001 5! TO AVNID DIVISIOK BRY O
IF (DIZIPP,LT,0,0001) DIZINREN,0N01 3! TN AVOID DIVISINK BY 0
ACHFCK 3 ARS(VA(I)=LASTVA(I))/DIVINR
2 2CAFCK = ABS(VZ(TI)=LASTVZ(I))/DPIZIOR
999 IF (ACHFCK,GT,TNL) GN TN S27 !FATL TFST RY ANGULAR COMPONFNT
IF (2CHECK,GT,TOL) GO TO 527 !FAIL TEST BY AXTAL COMPONENT
$20  CONTINUE 3
€O T0 4000 3¢ TFST PASSED S0 PRINT RESULYS (DeAeTe0«ll=T)

ANAA AN

A NAA AA”AA"
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nAAAN

AnnAAAN

R24

€33

B3R

B4R

ese
85¢€
R2R
&30
R32
#34
835
f36
R40
R42
Raq
846
RSO
£S2
RS54
«57
1

R60
R0
€80

tas
3

£90

€92

2%
1
k |

s
(21
s

%00

902

904

906

FORVAT(IHY ,//7," RNTATIONAL COMPONERY  (I1,F, ANGULAR VYFLOCTITY)')
WRITE(25,828)(1,1=1,%)
VRITE(25,%30)(VACT),I=1,N)
WRITE(2S,532) (LASTVA(CTI) ,  1=1,N)
BRITE(25,834)(DVACT) I1=1,%)
PO 833 I=1,%
CNNST(T)TRADINS(I)®DVACT)
CONTINUE
WEITE(25,93S)(CONST(1),I=1,N)
PRITE(25,836)(DVACT), 1=1,N)
VFEITE(25,813R)
FORMAT(IH1, /7% AXTAL COMPONENT ')
WRITE(2S,R2°)(T1,1=1,%)
WRITE(25,R40)(VZII),121,N)
¥RITE(2S,R42) (LASTVZ(I),151,N)
PRITE(2S,R44)(0VZ(I),T=1,N)
FRITE(2S5,R4A)(ODVZ(]),1=1,N)
WEITE(25,R4R)
FORPVAT(1HI, /7" VISCOSITY?') "
VRITE(25,82R)(1,1=1,%)
VRITE(25,RSON(VISCY(T),T=1,N)
VRITE(25,R52)(DVISCY (1), 121,%)
WRITE(25,RS4V(ALPHACT) , I=1, %)
DO RSH T=1,%
IF (RLPHA(T),NF,0,00001) GNTO BS6E
WRTITE(25,257)
GOTO 8SR
CONTIHVF
CONTI UF
FORVRITC/Z(® 1ODF 2%, B(3Y,15,57)))
FOFMAT(/(" va BIX,F12.6)))
FORVAT(/(* LASTY RIX,E12.6)))
FORMAT(/(* DvA 8(X,F12,6)))
FOPYAT( /(' FRADPVA' ,2(X,F12,.6)))
FORYAT(/Z(* DDYVR 2%, #(X,F12.6)))
FORMATO/Z(® V2. KIX,F12,.6)))
FCRVAT(/(* LASTVZ',R(X,F12.6)))
FORMAT(/(Y DVZ 3',R(X,F12,6)))
FORMAT(/Z(* DDVZ 2',R(X,F12,6)))
FORMAT(/C'  VISCY',R(X,F12,6)))
FORMAT(/(* DVISCY' ,R(X,F12,6)))
FORMAT(/Z('  ALPHA' ,R(X,F12.6)))
FORMAT(//' VIuINUM SKEAR RATF LIMIT HAS REEN APPLIED'/
Y L e.SFE ALPHA VECTNOR'Y)
C=N=0=R=N
CALL COORD(FADIUS,VE ,VZ ,MNDV ,ANGLF ,N)
FRITF(25,860)
HRITE(25,870)(FODVIT) 121, N)

WRITE(25,FR0) (M GLF(1),1=1,N)
FNRYAT(1HI,//* VFCTORIAL SUM OF AXTAL AND RPOTATIONAL VELOCITY®)
FORMAT(/(® / V / *,2(X,F12,6)))
FOPYAT(/(* RNGLE *,R(X,F12,6))) :
PeReQe=C
JeNeTeFeGePalaT=N=P
#E USE THKE TPAPFZNINAL PULE TN CALCULATE YOLUMETRIC FLOX RATE (0)
eeos Al AYEFAGF ANLULAR VEIDCITY (AVANVZ)
Q=RADIUS(1)8VZ(1) ¢ RADIUS(N)SVZ(N)
DO R90 I=7,N=1
Nz ¢ 24PADIUSCINISVZ(I)
CONTI"UE
AVRNVZ = O%H / ((RADIUS(N)$$2) « (RADIUS(1)%%2))
Q=E0%H % 3,141592654
WRITF(25,%92)
FORVAT(Y%1,///7," AXIAL FLN¥ RATES THROUGH THE AKNULUS '/77)
QI“P=OEN,N & 1000,0 / 4,546
Qisaszal~p /7 L8327
RRITE(25,894)0,21#P,DUSA
FORYAT(® VOLUYETRTIC FLO¥ RATE =',F12,6,/,
* ( =',E12,6,"' TMPFRIAL GALS/¥TN [F MKS TNPUT DATA USED }1°*
7% 1 =',012,6," 1,5,4, GALS/¥IN IF ¥KS INKPUT DATA USED 1%)
MRITE(S,RO6)AVALVZ
KRITFE25,R36)0VANVY
FORMAT(//* AVERAGK ANNULAR VELOCITY 1S *,F12.6,/7
¢ NOTE: AVERAGE ANULAR VFLOCITY DFFINFD AS,,..'/
. ((VOLUYFETRIC FLOw RATE) / (DISCHAFGE APEA)] *3
PeleTeRePeiefeTeke]
ReNedal=Y=S=l=5
TO AMALYSF PFSULTS,CALCULATE FORCFS NN CYLINDPFRS,
esoAND ENAKLE CNUPARISNAN WITH NTHER AIITHOR'S RFSULTS
[SFE ®IrTHFGRAL EQUATION DFSCRIPTIONS,,,," 1DECT? NNTES]
WRITF(25,909)
FORPYAT(IN],//," RFSIULT ANALYSIS'//)
DO 902 I=1,W
COLST(T)=2,0%3,1415926548VISCY(IVISDVACT)I®(RANIUS(])®%]3)
SONTIUE
WRITF(25,904)
BRITE(S,904)
FORVAT(//* CNUSTANT % (ROTATIONAL $=TONRQUFE APPLIFNI')
KPITF(25,920)(CO%ST(I), T=1,\)
WRITF(5,920)(CNAYST(IY,121,%)
CALL YARIAN(»,CONST,AV,STDDEV,PERCNT)
‘WRITH(25,90A)AV
FORMAT(/' TOURQIF PFR 'MTT LEXGTH RFQUIRED ON CYLINDERS =',F12,6)
WRITE(S,922)STDONFY,PERCHT
WRITF(25,922)STNNEY ,PFRCNT
DO 908 =1,V .
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MAIN(4)

$27 IF (XOUNT,LT,LIM) CO TO S29
CRASHES 7!TON MANY ITFRATIONS
GOTN S000 3! CeReA=SeH
$29 CONTINUE 3! RESET PARAMETERS FOR NEXT BATCH OF ITFRATIONS
ACHFCKX=0
ZCHFCK=N
BCHKNTEOD 3NUMPEMEMORY
$¢8 RECALL THAT LASTVZ 4 LASTVA ARE RESET 0ON THE PFNULTIVMATE ITFRATION
ses . OF A RATCH,
IF (DUMP,LT,2) GOTO 10002! START KEW BATCH
C %3¢ OPTINVAL PRINT
WRITE(25,S530)KOUNT
$30  FORMAT(//,* ¥UDFLN AT ITFRATION',16)
IF (DUMP,LT,3) GO TO 100071 MNEXT RATCH
WRITE(25,540)

"N

S40 FORYAT(' PRESENT VALUES®)
WRITE(25,550)(VZ(T),T=1,N)

550 FOPMAT( /(" VZ t',8(X,E12,6)))
WRITF(25,560)(VACT), I=1,N) '

560 FORMAT( /(" VA 1',8(X,E12,€)))

GO TO 10003! START MEXT BATCH OF ITERATIONS
$88 END OF CONVERGENCE TEST SECTIOM
CeReVeX=C
't
CeheTeOelU=T
4000 CONTINUE 3! DATOUT TO PRINT PESULTS
¥RITE(S,B00)K0UNT
WRITF(25,R0D)IKOLNT
800 FNRMAT(1HY,///,' HMUNFLO CONVERGENCE ATTAINED AFTER®
1 L,16,* 1TERATIONS')
CN TN 4100
c CeReA=S5=H
$000  CONTINU'F 3! CRASH (SUBSECTINN OF DATIN) *
WRITE(S,600)
KRITE(25,600)
600 FORMAT(IHY,///,10X," CeReA=S=H'//)
¥RITE(S,605)CRASH,KNUNT
WRITE(2S,60S)CRASH,KOUNT
605 FORMAT(* CRESH TYPE',13,* AFTER ',I5 ' [ITERATIONS'//)

nAAA

c 28 SOLVSR CRASH ANALYSIS
TF ((CPRSH,YE,1) AND,(CRASH,NE,10)) GNTO €10 3! NOT A SDLYSR CRASH
c #%8 WE CALL “NVSET AND SNLVSR WI1TH HIGH DUMP AND THEN STUDY THF DIAGONAL
c $,..DOMIYANCE NF THF VSOL MATRICKS,FINALLY WE FESET THE COMPONENT
c *,..CRUSING THE CRASH (¥%) TN ZERND,AS V% WILL NOT HAVE BEFM UPDATED AND
c $,..50 41LL BF FOUALL TO LASTVS
WRITE(25,615)
615 FORMAT('1 CRASH DUE TD SOLVSR FAILURE'/,4X,
] * CRASH ANALYSIS DATA AS FOLLOWS'//)
c 888 ANGULZR FIPST

CALL MOVSET(3,0,0,0,N,H,0,3,PADIUS,VISCY,DVISCY,YA,VSNL)

CALL SNLVSK(VSOL,VA,LIMAYT,TOLMAT,SORFCY ,CNTRL,KOUNTH, 3, %)
¢ €88 NOW AXIAL

CALL MOVSET(1,0,P,N,H,0,3,RADIUS,YISCY,DVISCY,VZ,VSOL)

CALL SOLVSR(VSNL,VZ,LI¥AT,TOLMAT,SORFCT,CRTRL,KOUNTN,3,K)

C 288 DIAGNNAT DNNINANCE
WPITE(25,620)
620 FORMAT(//7' ROW®,8X,* 1/R',11X,* 3/R’,6X,* DVISCY/VISCY', -
1 3X,' H$PEA FOTL,.',3X,' HSPEA AXIJAL')

DN 625 1=1,%
R1=1/22DIUS(Y)
R3=3eF1
DYIVIZDVISCY(T)/VISCY(T)
PEAROTE(PI4NVIVI)$H
PEAAXL=(RI4DVIVI)®H
WRIYE(25,630)1,RP1,R3,DVIVI,PEAROT,PEAAXE
630 FORMAT(IH ,T14,X,5(3Y,F12,6))
625 CONTI' UE
IF (CRASH,EQ,1) GOTN 635
D7 640 1=1,%
VA(1)=0 3! NOT YET UPDATED !

640 CANTINUVE .
GOT 645 ) o s
€35 DN 650 I=1,M
Y¥Z(1)=0 3! AOT YET UPDATED ¢
€50 CONTINUFE
64s CONTINUE
4 #9¢ SISYLANA KSAPC RSYLOS
610 CONTI%NUF
HeSedeReC

4100 WRITE(25,810)
810 FORMAT(' INPUT DATA AS FNLLNKS:*/)

C 883 WE USE TwF PePeRe0 FORMAT STATEMFENTS
WRITE(25,235)N,H4
WPITE(25,240)VACT) ,VA(N) ,VZ(1),V2(N),P
SRITE(25,245)TOL, TOLMAT,LIN,LIVAT,SOFFCT
WRITE(25,250)(FLUIN(I),I=1,06)

WRITE(25,%12)
WRITE(2S,814)(KADTUS(T),1=1,%)
812 FORVWAT(//' RANIAL CNNPDINATE OF NNDES AS FOLLOWS ')
B14 FORMAT(/(' PADINS' ,RIX,F12,6)))
IF (CPASH,FQ,2) GN TN 6000 3! STOP
IF (CFASH,F2,0) <RITE(25,820)
1F (CRASM,%E,0) sRITE(25,822)
WRITE(25,R24)
820 FORMAT(/////* PESULTS AS FNLLNWS'//)
822 FORMAT(////77' VALUFS AT TIMF 0OF CRASH AS FOLLDWS'//)
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910

912

914
1

C sss

916

91R

~N -

920
922

- -

924

s
s

AnNA

930

C eee
C Y=U-
6000

CONST(I)=RADIUS(I) ® (YISCY(I)®DVZ(I) = O0,S¢PSRADIUS(I))

CONTINUE

WRITE(25,910)

WRITF(5,910)

FORMAT(//*' CONSTANT At [(AXIAL) ')
WRITE(25,920) (CONST(I),I=1,N)
WRITE(S,$20)(CONST(T),I%1,N)

CALL VARIAN(N,CONST,AV,STDDEV,PERCNT)
WRITE(25,912)AV

FORMAT(/' CO“STAMNT A =',E12,6)
WRITE(S,922)STDDEV,PERCNT
WRITE(25,922)5TDDEY,PERCKT

CALCULATE DRAG LIFT NN CYLINDERS

DRAGI®} 1415926542 (2,08AV « P#(RADIUS(1)*82))
DRAGIRI 141592654 (2,08AV + PE(RADINS(N)SE2))8(=])

WRITE(25,914)DRACT,DRAGN

FORMAT(/' DRAG LIFT ON IXNFR CYLINDER s',F12,6/
* DRAG LIFT ON OUTER CYLINDER ®

FIND PLANE OF ZFRO (Z,R)=SHEAR=STRFSS
ALAMD2= =2,0%AV/P
IF (ALAMD2,LT,0,0) ¥RITE(25,916)
IF (ALAMD2,LT,0,0) GO TO 924

FORMAT(//' 5O PLANE OF ZERO (Z,R)*=SHEAR=STRESS FXIST8'//)

ALAMDA= ALAVD2830,S

ALAMDIZ (=2, ,08(AV4STDDEY) /P)%%0 .5

ALAMDL=E(=2,08 (AV=STODFV)/P)%$30,5
WRITE(2S,918)ALAMDA ,ALAMDU ,ALAMDL,

FORMAT(/' PLAMNE OF ZFRQO (Z,R)=SHEAR«STPESS OCCURS AT RADIUS s°'

«E12,67% WITH UPPER ROUND =',E12,.6/
¢ AND LOWEP BRCIIND =',F12,6)
FORMAT(/("* PLR(X,E12,6)))

FORMAT(' WITH STAMDARD DEVIATINN' F12,6/
' AND MAX PERCFNT DIFFEPFNCE®,E12,6,/'WeAeReNea]eNeG '/
* JF ¥AX PERCENT DIFFFRENCE IS GREATER THAN 1/2,THEN'/

¢ RESULTS OF THIS RUN MAY BE UNRELIABLE')

CONTINUE
SeleSeY=L~A=N=2
GeR=hkeP=H
CREATE GRAPH DATA FILFS

OPEN(UNITEZ40,DEVICE=*DSK' ,FILEE'FOR40,DAT")
OPEN(UNIT=41 ,DEVICE='NSK' ,FILE='FOR41,DAT')

KRITE(40,930)((RANTNS(T),VA(I)),Is1, N)
WRITE(41,930)((RAPINUS(I),VZ(I)),I=1,N)
FORMAT(IH ,E12,6,3H , ,E12.6)

CLOSE(UNIT=40,NFYICE=*DSK' ,FILE='FOR40,DAT")
CLOSE(M"NIT=41,DEVICEE'DSK' ,FILEZ'FOR41,DAT*)

HeP=A«R=G
GO TO 6000 3! FINNISH AKD STOP

EXD OF DATOUT
0=T=A=D "
CONTINUE

STOP

END

+E12,6)
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MOVSET

SUBRNUTINE ¥OVSEY(SCALER,PRESSR,N,H,CNTRL,DU¥P,RADIUS,VISCY,DVISCY
1.V,VSOL)Y

DIMENSION RADIUS(60),VISCY(60),DVISCY(60),V(60),VSOL(4,58)

INTEGER CNTRL,DUMP,ONE, THREE

‘s cs e LR 2] es L1 2]

MeNeYeSeE=T * s ] L]
SURPPOGRI! 1 OF MeU=DeF=L=0 * (4 JULY M *
0 * *
Y0 KFT UP FIY . DIFF MATPIX V<nL
VSOL(4,SR) IS THE RIGHMENTFD, cnrpnrss}n MATRIX nr...
esoFIN DIFF , COFFFTS.('ALTFRNATIVF STOPAGF' USFD ¢
COL1=LOWER DIAG, ,COL2=2MAIN ,COL3=UPPFR ,COL4ZR,H,S,
tee s ses e tae sesn

IF (DUMP GE,1) ®¥RITF(25,10)
FORMAT(® MeNeVeSeF=T RUNNING ')
IF (CHTRL,.EQ,2) GOTO 20 3! FNRWARD/BACKXARD SCHFME REQUIRED
SET UP VSNL(4,58) USING CENTRAL FINITE DIFFFPFNCE SCHEME
WE GO THROUGH A LOOP FOR PNOWS 1 TILL K=2 ,
AND THEN *ADJUST' THE FIRST AND LAST ROWS
po 30 1=f,%=2 N
PROGRAM SFTS 1'P VSNL FNR THF GENERAL RDY,VATUE PROBLEM g
Y*' & PEACX)Y' & QUU(X)Y = RRR(X) ON (A,R)
WITH YCA) AND Y(R) KNOWN  AND QUUIX <= 0
IM OUR CASE , QUU(X) = 0 ,BIT wF LEAVE IT IN FOR GENERALLITY

FIRST,EVALUATE PFA,QUIN AND PPR AT MODF (=[¢1%teseN _B,THAT?
eeeVSOL IS (4,5R),WHILST VECTOKRS ARFE (60)
seass HENCE VSOL ROW(T) CNRRESPONDS TN VECTOR(J)

RESEAI
PFA=SCALEK/RADIUS(J) + DVISCY(J)/VISCY(J) 3!VISCY SHOULDN'T RE 0 1
onnN=0
RPR=PHRFSSR/YISCY(J)
PIACE ENTRIES IN MATRIX (REFCE . MOVSFY DNCUMENTATION P6 (1JULYTT))
VSOL(1,))= 2,0=(PFASH) 1Y LAWFR DIAGNNAT, FNTRY
YSOL(2,1)==4,04(0V118H8H22 . 0) 3! MATN DIAGONAL ENTRY
VSOL(3,1)= 2,04 (PFASY) 3! UPPER DIAGONAL FNTRY
VSOL(4,1)= 2_ 08 (RPRR®KEH) 31 P H.S.CONSTANT ENTRY
CONTINIE
GATN 40 ;!ADNJUST FIRST AND LAST FNWS,0PTIONAL PRINT,THEN PETURK
CONTINUE ;!SFT UP VSOUL DUSING FORWARD/RACKWARD FIN DIFF(SCHFKE
QO S0 T=1,M=2

FIRPST EVALUATE PEX,QNU,PRR (AS AROVE)

J=Te1 2! SEE NNTF AROVE

PEASSCALER/RADIUS(J) ¢ DVISCY(J)I/VISCY(J)

Quu=0o

RPPPPESSP/VISCY(J)

~ B .7

ONEx1 7 THPREE=)
THESFE VALUES PRODUCE VSOL ENTRIFS FNOR FORWARD FIN,DIFF,SCHEMF,
USING FOR«2RD SCHEME wHEM ARS(PFA) > 0 ,AND RACKWARD WHEN < 0.,
ee o EMSURES NNONeSTNGILARITY NF VSNL (SEE DOCUMFNTATION)
IF (PEA,GF,0) GNTO 70 ;! FNRWAKRD SCHEME
ONF = 3 3 THRFF =1 p!INTFRCHANGE VSOL ENTPIES .¥0 GIVE BACKHARD SCHENE
IF (DUMP,CE,2) WRITE(25,R0)1
FORUAT(* BACK4APRD SCHEHME IN ROK *,[4)
CONTINUE
SET 1P VSOL MATRIX [F/B SCHEME )
VSOL(N%NF, 1) =1,0
vsSnL(2,1) 2-2,0 -(A“S(Prl)lN)O(OUU!utu)
VSOL(THREE,T)=1,0 ¢ H*ABRS(PEA)
VSOL(4, 1) ERRRIHEH - <
CONTINFE
CONTIEUF, 31*ADJUST® FIRSY AND LAST ROWS .
vsoL 1)Y=VSOL(4,1)=YSOL(1,1)8V (1)
M,R, * NNT 'ONE? 12
VSOL(4,9«2)2VSNL(4,N=2)=YSOL(3 , N=2)8V(N)
¥YSNL(1,1)=30 7 VSOL(3,N=2)30 7! NOT PEALLY NECFSSARY (NEVFR USED)
OPTIONAL PRINT
IF (DIMP,LT,2) GOTO 90 3! RFTURN .
IF (CNYRLLEN,0) WRITF(25,100)
ENRMAT(® CENTRAL NIFFFRENCE SCHEME HSFD')
IF (CATPL.E0,2) WRPITE(25,117)
FORMAT(® FOPWARD/RACKwAPD DIFFFRENCE SCHEME USED')
1IF (SCALEP,FQ,1.0) WRITF(25,120)
FOPMAT(* AXIAL VFLNCITY COMPONFNT')
JF (SCALER,FQ,3,0) WRITE(25,130)
FORMAT(®* ANGULAR VFELNCITY CNYPOKENT')
IF (DUMP_LT,3) GOTO 90
WRITE(25,140) ((VSOL(X,T) ,K=1,4),121,N=2)
FORMAT((12X," ¥VSNLs',4(X,E11,5)))
RETURN
END -

B-9



SOLVSR (1)

SUBROUTINE SOLVSR (VSOL,¥,LIMAT,TOLMAT ,SORFCY ,CNTRL,KOUNTN,DUUP,K)
DIMENSION VSOL(4,5R),V(60),FX(60),RFSIDL(60)

REAL LASTEX(60)

INTEGER CNTRL,LIXAT,DUMP ,DUMMY,SET,CNTR

c

o

€ ‘e e tes e L2 2] o8 e
c Se()e»VeS=R ess
ly "SUBPROGRAM 2 OF MelleDeFelL=0 * (RJUNE T77) sss
c . see
c TO DETERMINE THE SOLUTINN VECTOR OF THE COMPRESSED sse
[ o TRIDIAGONAL LIN=SYSTEM VSOL(4,58) BY Laad
(o SUCCESSIVE OVER=RELAXATION METHODS sss
C s sss s s s L2 2 e see
c

1F (DUVYP,LT 1) GNTO 20
KRITE(25,10)
10 FORMAT(' S=0=LeVeS=R RUNNING')
20 CONTINUE
C s8¢ DAYA ITMITIALISATION
KOUNYV=0)CHECK=0)SFT=S
EX(1)=03EX(N)=0 N
DO 30 I=2,%-1
EXCI)=V(1) 1! COPY Y(2,N=1) TINTO FX FOR INITIAL GUESS SOLN,!

C sss WE NOW DIVIDF THROUGKH FACH VSOL RC¥ RY ITS DIAGONAL ENTRY,AS
Cess | THIS SAVES DOING IT IN EACH ITERATION

K=l=1

DIAGEL=VSOL(2,K)

IF (DIAGCEL,FQ,0) GOTO 90 3! TERO IN MAIN DIAGCONAL !
DO 40 J=1,4
VSOL(J,K)=VSOL(J,X)/DIAGEL
40 COUTIANUE
30 CONTINUF
S0 CONYJINUE ;! ¢#8% SeNeR (CeYeCelL,sE STARTS HFRF sss¢ ¢
C $*% WE NOW GO THROUGH EX(K0) VECTOR APPLYING SOR EQUATION , AND
Céss [COMPAKING FX(60) WITH LASTEX(60)
C 3¢ EX(60) HOLNS THF CURPENT SOLUTION ESTIMATE , AND LASTEX(60) THF
Cess {PREVIIUS 0OVE
C %0¢ 2 B, THAT DIVISION RY PARTIAL DERIVATIVES (=VSOL(2,K)) HAS BEEM
Ce¢es JCARRIED OUT ARAVE,
DN 65 DUMMY=1 ,SFT
C %3 ITERATINNS DONE A SET AT A TIMF sss
DO 60 [=2,H-1
Kzl=-1
EXC(U)=EXC(I)=SORFCTS(VSOL(1 ,K)*EX(T=1)¢VSNL(2,K)*EX(I)e
1 VSOL(3,KI*EX(I41)=VS0L(4,K))
60  CONTINUE
C ess RESET COUNTER BEFORE NEXT ITERATION

KOUNTMZKOUNT™ ¢ 1
€S CONTIMUE
€ ®%& SEY UP CONVFRGANCF CHFCK (EVFRY 'SFT! OF ITFRATIONS)®ss
IF (KOUNTN,LEL.SET) GNTO 70 7! 1ST SET,SO CANT TEST CONVEPGANCE 1
0O 75 ¥=2,H-1
IF (CHECK ,GT,TALYAT) GNTO 70 3! IF SO,FAIL CONVERGANCE YEST !
DIVIDREARS(EY (1))
IF (DIVIDF,GT_ 10%%10) GNTN 92 3! SOLN, TENDING TN INFINITY 1@
IF (DIVIDR,LT,0,0001) DIVIDR=0,0001 !¢ TO AVOID DIVISINM RY ZERO 1!
CHECK=ARS(EX(1)=LASTEX(T))/DIVIDR
IS CONTINUE
70 CONTILUE
IF ((CHECK LF,TNLVYAT) AND,(KNUNTH ,GT_,SET)) GOTO €0

C 8¢ IF CHECK <€ TIL¥AT,CONVERGANCE 0,X, BilTeee
C sss +eeBUT IF KNUNTY <x SFT ,1ST SET SO CAK'T TEST COMYFRGAKCF
IF (KOUNTM,.GE.LIXAT) GOTN 94 1! IF S0,TO0 WANY ITERATIONS
c
C #6% RFSET PAPAMETERS REFOPE NEXT SFY OF ITERATIONS sss
DO 150 I=1,N
LASTEX(1)2EX(1) -
156  COnTINUE i .
CHECK=z0
¢ . - .
15 (DUMP,LT,4) GNTD SO 7! START NEXT SET OF [TFRATIONS 1
C sse OPTINHAL PPRINT

WRITE(2S,110)KNINTH
110 FOPYAT(® SeQeleVeSeR RUNNING AT?,IS,' TH ITERATION®'/
1 ¥ CONYEPGANCE NOT YFT MTTAINED'/* PPESENT VALIES AREL‘)
WRITE(25,120)(1,1=1,N)
120 FORMAT((* “CDE:*,S(4X,14,3X)))
WRITE(25,130)(EXCIY,I=1,X)
130 FORVAT((' EX 2',5(X,F10,4)))
CNT0 SO0 3! START NEXT SET OF ITFRATIONS !¢

80 CONTINUE 3! CONVERGANCE ATTAINED , SOLUTYION FOUND ¢
CNTRLECNTRL#1
AF {DUMP,LT,1) GNTO 160
WRITE(2S,170)¥0UNTH ,SORFCT
170  FORNMAT(' SOLUTIC OSTATNED AFTER®,IS,' ITFRATIONS®/
1 * SOR FACTUR =',FR,3)
IF(DU¥P,LT,.2) GNTO 160
BRITE(25,180)
1e0 FORMAT(® SOLUTINY VECTOR AS FOLLOWS®)
WRITE(25,120)(7,1=1,%)
WRITE(25,130)(FX(I),1=1,%)
WRITE(2S,140) (LASTEX(I), 1x1,N)
140 FORMAT( (" LASTX*,S(X,E10,4)))
160 CONTINUE .
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SOLVSR (2)

INSERT SOLUTION EX(2,59) INTO VELOCITY VECTOR V(2,59)
DO 190 I=2,h=1
V1) =EX(T)
CONTINUE
GOTO 210 3! OPTIONAL PRINT,THEN RETURN |
CONTINUE 3! OUTPUT FOR 3 CASES WHEN NO SOLN, FOUND |
KRITF(25,91)
FORMAT(' ZERO ELEMENT 1IN MAIN DIAGONAL OF VSOL(4,58) 1')
GNTO 96 '
WPITE(25,93)
FORMAT(® SOLUTION IS TENDING TO INFINITY 1| ( > 10¢%10 )*)
COTO 96
WRITF(25,95)
FORMAT(' TON MANY ITERATIONS !')
CONTINUE 7! “ANDATOPY OUTPUT IF NO SOLUTION
TF (DUMP,1T.1) PRITE(?25,97)
FORNAT(' <<€,,., IN SURROUTINF SeQelLeVeS«R >>!)
CNTRL=CHTRL42ICNTRECHTRL=2
WRPITE(25,200)KOUNT™,CNTR,CNTRL
FORMAT(' NO SOLUTION AFTER',IS,' ITERATIONS !'/' CNTRL=',14,
>, 19)
WRITE(25,120)(1,1=1,N)
KRITF(2S,130)(EXC(I),T=1,8)
WPITE(25,140) (LASTEX(1),1=1,K) .
PO NOT ALTFR  V(60) 1!}
JF ((CHTFL,NE 4) (AND(DNIIMP,LT,3)) GOTO 210
PRINT MAMDATATORY 1F CNTRLEZ4
WRITE(25,215)
FORYAT(' MR, VSNL FOWS DIVIDED BY DIAGONAL ENTRY !%)
KRITE(25,220) ((VSOL(K,T),K=1,4),1x1,N=2)
FOPMAT((11X," VSOLI',4(X,F11,5)))
IF ((CNTRL.KF.4) ANDL.(DUMP,LT,3)) GOTO 240 3! RETURN !
CALCULATE RESIDUALS
DO 230 1= 2,N=2
RESTDL(T)=VSOL(1,I)%FX(T=1)4VSOL(2,1)%EX(1)4VSOLI, I)SEX(T41)e
VSOL(4,T1) .
CONTINUF
®RITE(25,120)(1,122,M=1)
WRITE(25,250) (RESIPL(Y), 122, ,N=1)
FOFMAT((' RESDL',S5(X,E10.4)))

coNTINIE
IF (CNTRL,FEC,2) WRITE(25,260)
FORMAT(® S=0<LeV=S=R COULD BE RFCALLED WITH DIAGNNALLY DOMINAKTY *

1, MATRIX 1°/% ., ,BUT F/R F,D, SCHEME FOUND YD BE'
2," INACCURATE FOR N/N FLUIDS &SO IS DISALLOWED,'/)

270

IF (CKTPL.FQ,4) WPITE(25,270)

FORVAT('=%“UDFLO SYSTEM CeR=A=S=H FROM SUBROUTINE SOLVSR 11'/,//)
RETURN v

END

B~11



SOLDR

SURRQUTILE SALVSF(VSOL,V,LI¥AT,TOLMAT ,SNRFCT,CHNTRL ,KOUNTHM , DIiMP N)
PINENSTION VSOL(4,5R),V(A0)

DOURLE PPFCISTOY KETA(SE) ,GAMMA(ST),7FN(5R),FX(58)

INTEGFR CATRL,['UVP

C s A1) Tse ses ses e sss
C sss SURPRAGFAY 2«h OF MIINFIN 3 SeOej«P=R (10JANTR)
C 802 COVPATAKLE NITH SNLVSRE [PARPRMS 13,4,5,7 APF DHMUIES)

c‘-to TO DETFERMIAF THE SOLYN, NF A TPIDTAGH AL, SYSTF™ [LIRFCTLY
C #s¢ PEF3 N,GFEFNSPAL INTRODUCTION TO NUVFPICAL ANALYSIS AND
C vss ¢ «e o APFLICATINNS 1971 »ARKHAM  SFCTION 3,4
C %8s 44 s e LR a8 tss s
C ¢¢3 CFNERATE UPPER AND LONFP TRTIANGULARISATIONV VECTORS
BETAC1)=VSAL(2,1) 3! “AIN DIAGONAL €
IF (PFTA(1),F0O,0) GOTO IS 3! SINGULAR MATRIX
DO 40 1=2,H=2
Jslet 2! S0 JE1,2,3,000003
GAMUA(I)=VSOL(3,0) 7/ RFTA(I)
BETA(I)=VSOL(2,1) «VSOLO1,1) & GAVMA(J)
IF (RETA(I),FO,0) ANTO 35 2! SINGULAR MATRIX
40 CNNTIHUE
C #3s% SET 1P ZFD VECTNPR
ZED(II=VSHL(4,1)/6FTACE)Y
DO 6O 1=2,M=2
ZEDCI) = € VSNL(A,1)=VSOL(1,1)¢ZED(I=1) ) 7/ RETA(])
6«0 CONTIYUE
C %8s SKFT 0P FX VECTOR [SOLNTIOM)
C ste [SETTING P ERPSOR FOUATINYGS wOI'LD ALTFR CNL4 NF VSOL TO CURRFKRT
C &8  VECTOR OF RESINHALS, FRROR FONSOLL IYUVOLVES APDING PARTS NATN
C sse VECTNR V(40) , SC V wOULD HAVE TO BE ZERN'D AT THE START)
EX(N=2)=ZtD(H=2)
0O 70 I=1,%+3
JS(N=2)=] 3! SO J= Ne3,ii=d NeS,,,.,,1
EXCIV=ZFO(J) = FX(J41)3GANYA()
I6 CONTINUR
100 CONTINUE 3! FX »Da CAYTAINS THE SOLUTION
C %38 CCPY SOLUTION TOH V(E0)
pe o40s 1=1,H=2
V(T1+1)=FX(T1)
S 10S COnpnuE
CHTRL=CITPL 41
TE (DU¥P LT, 2) GNTO (RO
wRITE(25,190)
190 FORVAT(/' SOLUTINYG PRTAINED BY SeQeLen=R')
®RITE(25,200)(V (1) ,1=1,¥)
200 FARUAT(/(* Vo1 *,4(X,F12.6)))
189 GPTH 219 PETURN
35 COMTINIE MAT21X SIMGULAR,SN I[NSOLUABLE
CXTKL=CHTPL 2 ; DIIMP=4 3 NTRLE=CNTRL=2

PRITE(25,240)4TRL,CHTKREL
240 FORMATI(/' SINGHULAR MATRIX : INSOLUABLE®/' CNTPL=®,14,°' =>°,1477)
FEITE(25,260)((VSOL(1,J),1=1,4),Jx1,N)
260 FORYAT(/(* vSUL 3°,4(X,%12,.6)))
210 CONTIVUF
C s¢¢ CALCULATE A'D PRINT DETERUNTINAKT WHEN NEEDED
IV (NOVP LT ,.2) GOTO 300
PTEYNT=1,C
N0 270 1=1,8+2
DIPYNTZDTPUSLTERETA(T)
270 CONTIMUF
ARITE(25,230)DTEVNT
280 FORYAT(/® DETER"ILANT NOF VSOL IS*,E12,6,/' RETA VECTOR 1S1')
RRITE(25,290)(AFTA(TY ,I=1,N=2)
290 FORUAT(/(' RFTA 2',4(X,F12,6)))
3IN0 FFTUPH
XD

NOTE :’SOLDR is an alternative routine to SOLVSR,
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VISCO(l)

SURROUTIAFE VISCO(FLUID,VZ VR ,RADTUS,N,H,DUNP,V]ISCY, NVISCY,CPASH
1,DVA,DNVA,NVZ ,DDVZ,P,ALPHA)
DIMFNSINN FLUTD(H),VZ(60),VA(K0),RADINIS(60),VISCY(60),DVISCY(60),
1DDOVISC(60) ,DYA(H0),NVZ(K0),DNVA(60),0DVZ(50),ALPHA(60),PALPFA(6Q)
IKTEGER DUP,CRASH
¢8s DOVISC 1S A DiMMY VARIABLE AND IS NOT USED IN THE COMPUTATION

‘s e e Tt L2 R L2 2] s e
tss Ve]=S=~C=0 . . ‘8 . s
tee SUBPROGRA4 3 OF MelleD=F=L=0 . (20 oCT 1M . ess
s . L . * L] . s
s TN SET "P THE VISCOSITY VECTOR VISCY AND ITS..e0e0 ssse
e ® . ] cee0e s DERIVATIVF DVISCY ses *
tes EXTFRYAL SUBRNUTINE Del«FeF 1S (ISED FNR DIFFFRENTIATION $ss
g8 ‘s s ‘e s e (22 L2 2]

keAeReNel=tef ON DIFF(VISCN) APPLICARILITY

FESULTS PRIANICED RY NIFF(VISCY) ARF PARELTAQLE IN FLOWS WITH,,,.
esedl PLANE NF LNW SHEARSRATE [ (E G AXTAL FLNOW),

RAD RESULTS FNR DVISCH ARE PRODNICEDN MFAR THF PLANE OF LOW SHEAR
AND POAR RESULTS AFTFN OCCUR AT NONES 3 AND Ne?2 ,

11! WHFRE FOR&ARD AND RACKWARD F D, FORMIILAE ARE USFD,
11! CHECK VISCO=TFSTING (28=31 NCT 77) FOR NMORE DFTAILS.
tsse

tss OPTIOUAL PRINT

TF (DUVP GF 1) SRITE(25,10)
10 FOR¥AT(* VeleSeC= ')
IF ((NUVYP GE L 4) (AND,(FLUID(1) ,LT,10,0)) WRITF(25,20)
20 FOR¥AT(® DVISCY TN BE SET (P AY DIFFFRENTIATING VISCY , CHECK
1APPLICARILITY! )
$88 FIPST NIFFFRENTIATE VA AND V7
1E ((VAC1) . FQ,0) AND,(VA(N),EN,0)) GO TO 223! AXIAL FLO® ONLY
CALL DIFF(VA,DVA,DDVA N, H,0) 3! 0=DIIVP
TF (COVZO1) M0, 00 JAND ((VZIN) LFR,0)) 2ND,(PL,EQ,0)) GO TN 24 F!ROTATION ONLY
22 CALL DIFF(VZ,DVZ,DDVZ,N,H,0) 3! O=pUMP
S%8 SFT UP 2LPHA VFCTUP (SHFAR«RATE VFCTNR)
24 DO 30 1=1,v
ALPHAC1) =24 ((BADIUS(I)ISNVA(TI)I®®D & NVZ(1)s%2)
tes APPLY MI%THUM LIMIT (RFE,NNCUMFNTATION AND GUICKE'S PAPER)
tes ALSD ZIEMKIFAICZ PAPER,
se THE MIN,LI¥IT ENSURFS THAT VISCOSITY [S NFVER INFINITE
IF (ALPHA(I) GFE,0,N0001) GO TO 29 3! ALPHA RIG ENNUGH
ALPHAC1)=0,00001
29 COUTINIE
30 CONTINUE
IF (FLVIN(1), LT, 10,M) GN TD 40 3!GET DVISCY FROAM DIFF(VISCY)
$8s FLUID(1),GF 10,50 DVISCY T7 BE SET UP DIRFCTLY
s NEED DALPHA FIRST

DO SO I=1,%
DALPHR{T)=48(RADIUS(1)#(DVA(I)*#2) ¢+ (RADIUS(I)$32)3DOVI(I)®
1 DVACT)«DVZ(T)*DDVZ(1))
S0 CONTINVE &
40 CONTINUE
sts
€48 «F MUST WNw SELECT THF CORRFCT FLUID MODFL
$3¢  THE CHOICE IS bASED 0N FLIIIN(1) IF THIS IS LFSS THAN 10
s . . AED DN FLUID(1)=10 IF FLUID(1) IS “ORE THAN 10
SELECT= FLUID(1)
1F (SFLFECT,GT,.10,0) SELFCT=SFLFCT=10,0
GOTN (110,120,130,140,150,160)SFLECT
GNTA 70 3! 0 MONEL HAS REEN SFLECTED
110 CONTINIF ;! Rele’leCeleded PeleheSeT=]=C MODEL
IF (PUMP,GF _4) wPITF(25,112)
112 FORMAT(' RINGHAY PLASTIC ¥NDEL')
#8¢ SET UP VISCY
DO 114 1=t,%
VISCY(1)=FLUINC2) ¢ FLOID(3)/((N SSALPHA(1))*20,5)
114 CONTINUE
IF (FLUID(1),LT,10,0) GNTN 200 2! CALL DIFF YO SFT P DVISCY .
®e¢  SET UP DVISCY DIKECTLY
DO 116 I=1,%
OVISCY{I)=(=0,25¢*FLUINCIISNALPHA(T))/( (O, S*ALPHA(T))® 9] 55
116 CONTINUE
GO TO 210 3! NPTINYAL PRINWT,THF RETHRN
120 CONTIHUE 3! PefewWebeR [elexX MODEL
IF (DNVP,AF,4) #PITE(25,122)
122  FNRMAT(' PN«FR LAW “ONEL')
sss SET 0P VISCY
DO 124 I=1,%
VISCY(T)SFLUID(2)0( (0, S¢ALPHA(T) ) S8 ((FLUID(3)=1)%0,5))
124 COANTINUE
IF (FLUID(1),LT,10,0) GO TO 200 3! CALL DIFF TO SET UP DVISCY
s8¢  SET (P DVISCY DIRFCTLY
20 126 1=1,N
OVISCY(I)=(FLUIN(2)$(FLIIN(I)=1)%0,5)
1 (N, SEALPHACT) IS S ((FLUID(3)=3)*0,5))*DALPHA(T)S®D,S
126  CONTINVE
GO TN 210 3! NPTINNAL PRINT, THFEN RETURN

SPACES FOR “EW ~0ODFLS .
1F NEW ¥ODEL D)FESK'T HAVE A NIRFCT DVISCY SFT UP , THFN,,...
essses RFPLACF THE DVISCY LOJP BY *GN TD 70 g! CRASHINN MODEL®
130 CONTIKUF
140 CONTINUF
150 CONTINUE
160 CONTINUE . 2
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VISco(2)

C eoe
0 CONTINUE 2! CRASH 3 20 MODFL FODIND
FRITF(2S,R0) FLUID(CY)
®h FORPVAT(® C=ReA=S=it FFIM SURPNUTINF Ve]eS=(C=N"'/

1 ' MO MODEYL AVATLARLE FOF FLUID()) =Y, FR,3,/
2 Y CHECK DOCUNMENTATINON OFR LLINF PRINT FNR MODELS AVATLABLE!
3 o /)

CHASHZ? 3! [“TEGFF CRASH RECNAPDS RFASON FOR FATLURE

pnapsae

GO T 210 ! OPTIONAL PPINT THEN KETIURN
C s%¢
200 CONTIWUE, 38 PVISCY TN Ry SEY UP RY DIFF
C o8y DOWVISC IS A DUMMY VAPJARLF,AND IS NOT USED IN THF COMPUTATION
CALY. DIFS(VISCY, ,DVISCY, ,DDVISC,N,H,DIINP)
C ase
210 CONTINUFE 2! OpTINNAL PRIKT THEN RFTURR
IF (MR LT, 3Y GO TA 220
WRITF(25,230Y(ALPHACT) () =1 ,N)
230 FORYAT(/Z(® ALPHA' ,4(X,F12,.6Y1))
rHITHE(?25,240)(DALPHACT) ,T=1,K)
240 FORVAT(/Z(' DALPHA® ,4(X,F12,6)))
WETITF(29,250)(VISCY(I) ,I=1,%)
250 FARMAT(/(* VISCY',4(X,F12,6)))
WRITH(25,260)(DVISCY(T),T=1,N)
260 FORAAT(/(* DVISCY',4(X,F12,6)))
220 FETHW™
FND
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nAanNnNAANNAN

nM

DIFF

SUBROUTINE DIFF(VCTR,DVCTIR,NDVCTR ,N,H,DUMP)
DIMENSINN VCTR(60),DVCTR(60),0DVCTR(60)
INTEGER DUVP

L2 ‘e a5 e s 122 tss st
DeleFeF . L . L . s
SURPROGRAM 4 NF MelleD=F=LeD SYSTEM (25 JULY 77) . sse

vee FULLY DFVELOPEN VERSION 1t 4 (R AUGUST 77) . s
tee EXTERNAL TN SURPROGRAM Vel=Se=Ce0 s . see
s 8 . . s L] . 88
1ee TO NUMEPICALLY DIFFERENTIATE VECTOPIVCTR(K0) * e
e DVCTR(60) STNRES 1ST DERIVATIVFE IPDVCTR(60) THE 2ND, ®¢¢
88 " LR e e tes s s

1IF (DUMP,GE.1) wRITE(25,10)
10 FORMAT(' Del<FeF RUNNING')
IF (N,LT, 15) WRITE(2S,20)
20 FORMAT("® s¢¢ INSUFFICIENT NNNES FOR SURROUTINFE DeleFeF')
$e¢ SET UP DVCTR ¢ DNVCTR  (RFF,GREFNSPAN 4 M 1. JAMES ¢ DNCUMENTATION )
#9s 7 POINT FORWARD F,D, FORYULAE AT NODFS 1,2,3
pOo25 121,13
DVCTROI)I=(=14T7#VCTR(I)¢IAOSVOTR(T41)=4503YVCTR(T42)4400¢VCTR(T43)
1 *225¢VCTR{J44)+128VCTR(T4S)=1NSVCTR(146))1/(608H)
DOVCTP(I)=(16248YCTR(I)=62648VCTR(141)4105308VCTP(T142)=10160%
IVOTR(T43)4S0408VOTH(144)=13448VOTR(I45)42743VCTP(T46))/(3608HEH)
25 CONTINUE
82 7 POINT BACKWARD F . D, FORMULAFE AT NODES Ne2 Nel,N
DO 30 F=Ne2,M
DVCTR(T)IZ( 1474 YCTR(1I=3A0SVCTR(T=1)44SOSVCTR(T=2)=400¢VCTR(1=3)
142258VCTR(1=4)=72¢VCTR(T=S)41NIVCTR(T=6))/(6N%H)
ODVCTR(I)=(15248VCTR(1)=A2643VCTR(T=1)410S308VCTR  [=2)=10160¢
IVCTR(I=3)+S5940¢VCTR(I~4)=19442VCTP(I=5)42T74%VCTR(I=6))/(3608HSH)
30 CONTINNF
$8% S POINT CENTRAL F N, FORMULAE AT NODFS 4,.,.000N3
PN 35 I=4,%=3
DYCTRIT)=(=VCTH(142)4FSVCIP(T41)=REVCTP(TI=1)4VCTR(T=2))/(128H)
DOVCTIR(I)=(=VCTF(I+2)4168VCTR(141)=308VCTR(T)I+168VCTR(1I=1)
1=VCTR(1=2))/(12%HsY)
35 CONTINUE
€8¢ OPTINNAL PRINT
IF (DUYP,LT,3) CNTN 40
YRITE(25,50)(1,1=1,%)

so FORMAT((* KONE',4(5X,14,4X)))
ARITF(25,60)(VCTR(I) ,1=1,Y)

én FOPHATC( (" VCTR® ,4(X,F12,6)))
®RITE(25,10)(DVCTR(L) ,1=1,KN)

70 FORMAT((* DVCTR',4(X,E12,6)))
WRITE(2S,80) (DNVCTR(TI), I=1,N)

80 FORMAT( (" DDVCTR',4(X,E12,6)))

40 RETURN

€D
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(2 Mo s Helia R

A AANANN"AN

COORD and VARIAN

SURROUTINE COOPN(HADIUS ,VA,VZ ,¥ODV ,AYCLE ,N)
DIMELSINY RADTUS(AO) ,VA(60) ,VZ(6D) ,ANGLE(6N)
FEAL 2Oonv(nn)

tes ‘400 LER) 400 s9s ses see
s90 C=fi=li=p=n . . . L AL
eee SUHPRNGRAY. § 1F FelleDeFal,eN (14 NOV 77) oo
ses TO VECTORTALLY ADD THE AXTAL AND RUTATINNAL LA
ese ] ® . VFI.OCTITY PRNFILFES ®¢%
se s tes (2 %] st e ses 2s s LA A

b 10 I=t,N

RADVA = RADIVS(TISVA(TY)
(X 2] RANDVA = TRHCFNTIAL VELOCITY IN METRFES/SECOND
MODV(T) = ({RADVA®SD) ¢ (VZ(1)®*%2))%30,5
ANGLFCT) = (ATAN2(VZ(TI),RADVA))*(1R0,0/3,1417) 3! TN DFGKEFES
10 CONTINUF
PETIURY
Fun

SURENNUTINF VADIRAN(N,VCTR,AV,STNDFV ,PERCNT)
NIMESSING VOTRIGD)

s L XX 2% e 289 s%s LR 2

2% VeA=Re]=fet ] s . see

LR N ) SURPROGREY W} VelleNeb=],=N » 8

1t CALCHULATFS LVFRACGE,STRANDARD CFVIATION AND (23 )

¢ss “AY PERCFUT DIFFFREFNCE OF VCTR(60) L] sss

L X X ] se8 ess LR R 38 $ss LR R 4
sStvz=n

#%3 CRALCUIATE PVEPAGKE (AV)
0N 10 1=1,"
SUs=SUVY ¢ VCTR(T) .
10 CONTINIE
AV=SHUP /N
sv=(Q 2 PERCHT = 0
¢ CIICIULATF STALDARD DFVIATION (STDNDEV) AND MAX,PERCENT DIFFFREKRCE
338 __, FENY AV (PFECNT)
nrn 20 1=1,"
SHv=Sd ¢ (VCTP(J)=AVIS$2 0
NEEYNCEZANS(VCTR(I)=AV) .
PHRONT=Z“AXI (PEFCLT ,NFRACF) i
20 COUTTIHIE
PHRCAT = PERCYNT & 300,0 / AV
STNDFV = (SUv/(N=1))3¢05,5
RETIURY
FuD
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B.3 Variable

names used in the program.

NAME TYPE USAGE AND COMMENTS

N INTEGER Number of nodes, Warning is printed if it is
less than 15 ,

P REAL Axial pressure gradient,

FLUID |[REAL(60) Fluid paramater matrix, First entry defines
model ; sixth entry gives initial viscosity
approximation ; entries 2 to 6 hold the fluid
parameter values,

TOL REAL Tolerance limit for convergence of velocity
distribution calculations,

TOLMAT | REAL Tolerance limit for matrix solution calculations,

LIM INTEGER |Max, NS, of iterations in velocity calculations,

LIMAT INTEGER Max, N®, of iterations in matrix solutions,

SORFCT | REAL Successive over-relaxation factor for SOLVSR,

H REAL Distance between nodes,

RADIUS | REAL(60) [Nodal values of the radial coordinate,

VISCY REAL(60) |Viscosity vector,

DVISCY | REAL(60) |Derivative of VISCY,

KOUNT INTEGER |N©, of main program iterations so far,

KOUNTM | INTEGER [N©, of SOLVSR iterations so far,

vz REAL(60) |Axial velocity vector,

Dvz REAL(60) |Derivative of VZ, .

DDVZ REAL(60) Seéond derivative of VZ,

VA REAL(60) |Angular velocity vector,

DVA REAL(60) |Derivative of VA,

DDVA REAL(60) |Second derivative of VA,

LASTVZ | REAL(60) |[Copy of VZ from previous iteration block,

'LASTVA | REAL(60) |Copy of VA from previous iteration block,

\Y REAL(60) [Copy of VA or VZ in SOLVSR,
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B.3 Contd,

NAME | TYPE USAGE AND COMMENTS

VSOL REAL(60) Matrix of finite difference coefficients,

EX REAL(60) Current solution estimate in SOLVSR,

RESIDL |REAL(60) [Residuals in SOLVSR,

VCTR REAL(60) Vector to be differentiated in DIFF,

I,J,K |INTEGERS |Indices,

CRASH INTEGER Used to control subsection ' CRASH'of main prog.
Its value depends on reason for programme
failure,

DUMP INTEGER Controls amount of output generated by program,
Normal value is O; except when diagnosing faults,
BATCH INTEGER Number of iterations between convergence tests,
BCHKNT |INTEGER No, of iterations since last convergence test,

SET INTEGER No, of iterations between convergence tests in
SOLVSR,

CNTRL |[INTEGER Controls the interaction of MOVSET and SOLVSR,

SCALER |REAL Used to control whether MOVSET sets up matrix for
axial or angular velocity profile,

PRESSR |REAL ( As for SCALER )

ONE INTEGER Used in MOVSET U,D,S, to effect interchange of VSOL

columns 1 and 3 when backward scheme is chosen,

THREE INTEGER ( As for ONE )

B-18




* B.4 Archive numbers,

Archive numbers may be used to retrieve magnetic tape copies

of the program . from the Computing Services library, RGIT,

FILE NAME ARCHIVE NUMBER DATE ARCHIVED
DATIN ARC 017,018 28/04/78
MUDFLO | ARC 009,015 21/01/78
MOVSET ARC 021,018 28/04/78
SOLVSR ARC 023,018 28/04/78
SOLDR ARC 019,018 28/04/78
VISCO ARC 025,018 28/04/78
DIFF ARC 018,18 28/04/78
COORD ARC 024,018 28/04/78
VARIAN ( As COORD ) =
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NOTATION

SYMBOLS

fa:a) Apparent viscosity (M ﬁlTﬂ)

g Acceleration due to gravity (L T

k Radius ratio of an annulus

m Power law fluid model parameter (M LT

n Power law fluid model parameter

Pressure (M L'T?)

® Axial body force defined as yg - %g (M L'T)

R Dimensionless axial body force, defined in 4,2

v Velocity (In axial direction unless otherwise indicated) (L T')
w Angular velocity (T7)

W Angular velocity boundary value (T

r Radius (L)

R Boundary value of radius (L )

t Time (T )

z(r) Stability parameter of Ryan and Johnstone, defined in 3.i.4
« Shear rate (equall to (g:g) ) (Tfﬁ

A Shear rate tensor (T')
;ao Bingham plastic model parameter (M L'T")

Density (M L*)

T Shear stress tensor (M L' T")

T Shear stress at wall (M L'T™)

% 3 Y Fluid model parameters (M L'T )

0oy 0y Fluid model paramaters (T)

. Fluid model parameters (M L'T')

SUBSCRIPTS

152 Used to indicate value at inner and outer wall respectively
r,®,z Coordinate subscripts defined in tﬁe usual way

~ Indicates that the quantity is a vector

e Indicates that the quantity is a tensor



SUPERSCRIPTS

OPERATIONS

(I: D

=

Indicates an averaged quantity

Dimensionless value as defined in 2,3

The second invariant of the tensor I_ defined as

3 3
T
_iZl j; iy i1

where the subscripts i and j have the conventional meaning.

1a g 1 3v, v,
rdr rvr} & r 9@ * 2z
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